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Abstract

Transmission-line equations are derived for a braided-shield cable by
modal analysis. The parameters of the braided shield appear in the coefficients
as well as in the source terms of the equations. The source terms also depend

on the currents and charges on the outer surface of the shield with all the

shield's apertures short-circuited.
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I. Introduction

In the theoretical study of braided-shield cables the main goal is to
derive a set of transmission-line equations from which one can calculate the
voltage and current induced by external sources in a load impedance, which may
represent a piece of electronic equipment connected to one such cable. The
coefficients of the equations should contain, among other things, the parameters
of the braided shield, and the source terms should involve the currents and
charges on the outer surface of the shield with all the shield's apertures short-
circuited.

As of now there exist several articles directly related to the study of
braided-shield cables [1]-[6]. The common approach employed in these references,
except [2], is to incorporate the concepts used in statics into the conventional
transmission-line theory. The approach in this note is different in that we
start with Maxwell's field equations and work our way towards the frequency
range where the transmission-line theory applies. Therefore, this note is
written with the field theorist in mind and, hopefully, will get him interested
in braided-shield cables. -

A real braided-wire shield will be modeled by a perfectly conducting thin
shell with many small apertures in it. Other aspects of the shield, such as
finite wire conductivity, contact resistances between wires, dielectric effects,

etc., can be taken into account in some approximate manner as discussed in [6]

and will not be treated here. From the viewpoint of boundary-value problems

the tangential electric field in the apertures is all that is required for the
determination of the fields everywhere and, hence, the field theorist will pay
particular attention to obtaining this aperture electric field. Although an
integral equation can, in principle, be set up for this field, it will require
an inordinate amount of computer time to obtain any meaningful numerical results
from this equation. Besides, the wavelengths in cable applications are always
such that one does not really need detailed information on the aperture electric
field. Thus, this integral-equation approach, although rigorous, is impractical.
If one makes the observation that all practical braided shields for cables are
actually very good shields, then the problem of calculating the electromagnetic
interaction of a braided-shield cable with external sources can be divided into

three separate problems, namely, (a) the exterior scattering problem of determining



the induced currents and charges on the outer surface of the shield with all
shield's apertures short-circuited, (b) the problem of calculating the transmission
coefficients of the apertures or, equivalently, the static electric and magnetic
polarizabilities oy and & in the low-frequency approximation, and (c) the interior
problem of determining the magnitudes and also the propagation characteristic of
the cable voltage and current.

In this note we treat exclusively problem (c), assuming problems (a) and
(b) to have been solved. In fact, a large amount of results is available for
problems (a) and (b) in the literature. To develop from Maxwell's equations a
set of transmission-line equations that will involve the polarizabilities @ and
o« and also the currents and charges on the outer surface of the shield, it is
most expedient to use the modal analysis [7], [8]. Throughout the analysis we
will focus our attention on the dominant mode and calculate the perturbation
of the shield's apertures on the propagation characteristics of that mode. We
will also see that in the modal analysis the two source terms (the series voltage
source and the shunt current source) appear naturally in the transmission-line
equations.

In Section II we briefly review the modal analysis and single out the
dominant mode for discussion. We then derive equations for the cable voltage
and current, which are directly related to the mode voltage and current of the
dominant mode.  The source terms are expressed in terms of the 'virtual" electric
and magnetic current densities which are introduced to replace the effects of
the aperture discontinuities in the outer conductor of the coaxial cable. These
"yirtual" electric and magnetic current densities can be approximated, respectively,
by point electric and magnetic dipoles for small apertures. Detailed calculations
are given for a single aperture.

In Section III we relate the 'virtual' current densities to the tangential
electric and magnetic fields in the aperture. It turns out that the dominant
mode would not couple to the tangential aperture magnetic field, i.e., the
"virtual" electric current density. However, the tangential aperture electric
field, when taking the size of the aperture into account, will give rise to a
magnetic dipole in addition to an electric dipole and all multipoles. We then
demonstrate that problem (c) can be reformulated with the magnetic dipole (and

perhaps all the multipoles) as the series voltage sources and the electric dipole



(and perhaps all the multipoles) as the shunt current sources in the transmission-

line equations.
Section IV is devoted to the calculations of the equivalent lumped circuit
elements of a single aperture in the outer conductor of a coaxial cable, and in

Section V transmission-line equations are derived for a braided-shield cable.
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II. A Coaxial Cable With an Aperture in the Outer Conductor

Figure 1 depicts a coaxial cable with a small aperture in its sheath.
For simplicity, all conductors of the cable are assumed to be perfectly conduct-
ing and the cable is taken to be infinitely long. In this section we will calculate
the effects of the aperture on the waveguide modes, especially the TEM mode,
within the coaxial cable and also the coupling of electromagnetic energy through
the aperture from the exterior region to the interior region of the cable. 1In
a later section we will extend this analysis to a coaxial cable with many apertures
in its sheath, e.g., a braided-shield cable.

To treat a waveguide problem with aperture discontinuities as shown in
Figure 1 it is most expedient to use the modal analysis [7]. However, it must
be borne in mind that only within a uniform (i.e., discontinuity-free) guide do
the guide modes form a complete orthonormal set. The situation in Figure 1 can
be remedied by invoking the Schelkunoff field equivalence theorems as has been
done by Marcuvitz and Schwinger [8], and others [9]. These theorems enable one
to duplicate the effects of any geometric discontinuities, such as the aperture
in Figure 1, on the fields within the waveguide by some appropriate distributions
of electric and magnetic current densities, J and gf, over the discontinuities.
Thus, the original problem can be reformulated as a Kirchhoff problem of calculating
the fields produced by J and gf inside a discontinuity-free coaxial waveguide.
Of course, J and gf are unknown and, generally speaking, they have to be obtained
by solving some appropriate boundary-value problem. Later on in this note their
distributions will be approximated by point dipoles with undetermined dipole
strengths.

Given a Kirchhoff pfoblem within a discontinuity-free coaxial waveguide
we can apply modal analysis to solve Maxwell's equations. As will be seen in
the following, this analysis is by far the simplest to derive the transmission-
line equations for the TEM mode in a waveguide with aperture discontinuities.

: *
Let us start with Maxwell's equations with J and J :

It

*
VXE = iguH - J

(1)

i

VxH = —-iweE + J



Figure 1. A small hole in the shield of a coaxial cable.
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where the time-harmonic factor e has been used and suppressed, and where J

*
and J are related to the electric polarization P and magnetic polarization M by
*
J = -iwP, J = -iwuM (2)

Vector multiplication of (1) by the unit vector e, gives

e B = UE, - 5B = -lullce, 10,
- (3)
e () = Ty, - 5 Hy = -luce B + o0
Scalar multiplication of (1) by e, gives
*
(_ez-(Vx_E_:) = —Vt-(EZX_Eit) = iwqu - Jz
(4)

gz-(VXE) = Vt-(_lithz) = -1weEz + Jz

Here E=e E +E , V=e (3/32) +V,_, etc. Elimination of E_ and H_ from (3)
- A = —2 t Z Z

by means of (4) gives

9 . 1 * t'z
Tz ;t _Mmﬂtxsz + iwe VtVt-(ﬂthz) +3 =" iwe
(5)
v J*
9 1 t z
- = = -1 —_— . + -
9z —tH 1megzx§t + iy Vtvt (szg-t) szl iwp

These equations are identical to equations (1) and have been proven most expedient
in analyzing various waveguide problems [7].
We now expand the transverse fields -Et and l-I_t in terms of a complete set

of orthonormal, vector functions gn(x,y) and hn(x,y), where x and y are the



trangsversce coordinates of the coaxial waveguide. Some of the properties of these
functions that are pertinent for the present discussion are given in Appendix A.

Thus,

Et(x,y,z) z Vn(z)gn(x,y)

(6)

H (x,y,2) E In(Z)En(X,y)

where n sums all TE and TM modes. Note that the TEM mode is included in the TM

modes.

Substituting (6) into (5) and using the orthogonality condition (A.7) and

equations (A.8) to (A.11) one gets

an
— =1k Z I - v
dz nnn n
(7)
dIn
=ik YV -1
dz nnn
where for a TE mode
\
2 2 1 “n
v - _ ' v - = -,
“n k kcn’ Zn Y! we (8)

for a TM mode

" " 2 " " 1 w
“n ko - kcn’ Zn Sy T E%-; (9)

and
e -V J
_ * -n tz
vn(z) = ,”S(it En R )dxdy

*
= IJS(Q ‘h - Zngenz)dxdy (10a)



bved,
1n(2) = JJS it.g‘n - —'—‘lw—u— dxdy

(10b)
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Here, the integration is over the waveguide cross section S. These equations,
(7)-(10), are not new and can be found, for example, in [8].

Here and henceforth, we will restrict our discussion mostly to the TEM
mode, occasionally referring to the higher-order modes when discussing the mode
couplings. Transforming the mode voltage Vn and mode current In of the TEM mode
to the line voltage V and line current I, etc. according to the transformation

rules in Appendix A, one easily gets from (7)

21 ra
*
dv iwLlI +-—l—J J J dpdé
o

dz 2n b ¢
(11)
Z 2mca
dl _ . w1l
iz - iwCV + 7 om I J depd¢
c o’b

where L = (u/2w)1n(a/b), C = 2ne/1In(a/b), zZ, = Yu/e, and Zc = YL/C. The sign
convention of V and I is shown in Figure 2 together with the cylindrical coordinates
(p,9,2). \

Equations (l1) are exact for any number of apertures. The effects of the
apertures on the TEM mode are expressed by the integrals of J; and Jp. These
current densities are unknown quantities and are determined by solving some
appropriate boundary-value problem which would involve, among other things, the
external field and all the waveguide modes within the coaxial cable. Such a
boundary-value problem is, in general, difficult to solve and will not be
treated in this note. As stated in the Introduction, however, the relevant
boundary-~value problems one needs to solve are quite tractable for all practical
braided-shield cables. The point to be made here is that the integrals in (11)
take into account the mutual interactions among all the waveguide modes and the
coupling of external energy into the interior of the cable's shield.

In the case we are considering, the apertures are all located in the outer
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Figure 2. Sign convention of V and I.
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conductor (i.e., the shield) of the coaxial cable. Hence,

* *
J¢ = K¢(a’z’¢)6(p = a_)
(12)
Jp = Kp(aaza¢)6(p = a_)
where a_ = a - €, ¢ being a small positive number. Equations (11) become
2%
dv . 1 *
1z = LI + 3= J Kyd¢
" Jo
(13)
Z 27
dr _ . w1l
e iwCV + ZC o jo Kpd¢

Equations (13) are as far as we can get from Maxwell's equations without making
any approximations. To proceed further we will use the small-aperture
approximation [10], which is justifiable in braided-cable calculations. For

a small aperture located at ¢ = ¢a’ z =z in the cable's shield we have, from

(2) and (13),

. 5 (6-4,,)
K = —iwugj——7;——— §(z - za)
(14)
5 (9-9,)
K = —iwg_———g——-6(z - Zd)

where the dipoles m and p are obtained by comparing the transmission field far
from the aperture (which may be gotten by solving some appropriate boundary-
value problem [10]) with the far field radiated by m and p in the presence of

*
an infinite conducting screen.

*
In some references, like [6], a subscript "eff", a shorthand for "effective", is

attached to m and p. However, this subscript is deleted throughout this note for

reason of simplicity. If one compares the free-space dipole field formulas with

11



Insertion of (14) in (13) gives

dv iwp

iz " iwLI - E;;~g;g¢6(z - za)
(15)
iwZ
dI .
PP iwCV - ZNaZc B;ng(z - za).

The terms proportional to m and p have been derived previously by employing
different methods [2], [4], [6]. By comparison it is easy to see that modal
analysis is the simplest of all the methods that lead to equations (15).

Let us see how to generalize (15) to a cable of non-circular cross sections
or to a cable where the inner conductor is not coaxial with the shield. From
(7) and (10) it is not difficult to generalize (15) to be

dv _

iz - iwLlI + Veqa(z za)
(16)

ar _

iz - 1wCV + qud(z - za)

where
_ 1/2
Veq = 1wu(N) m-h

@17)

-1/2
qu 1w (N) P&,

the transmission field to obtain the appropriate dipole strengths (let them be

denoted by Eeq and Eeq)’ then of course, Eeq = 2m and Eeq = 22_[9]. So, 1if Eeq

and Eeq are used in (14) and subsequent equations, a factor of 1/2 will have to be

carried through. For reason of simplicity and for reason that the equivalent

dipoles for an aperture have different signs for the scattered field in the

illuminated and shadow regions, we will use m and p instead of m__ and Peg® This
- —eq q

usage also agrees with that in [7].

12



e, and Eo are the normalized transverse electric and magnetic fields of the TEM
mode and N is the normalization constant equal to the ratio of the line character-
istic impedance (=VL/C) to the TEM mode impedance (see Appendix A). Of course,

(17) is evaluated at the position of the aperture. Since e, and ho can be obtained
from the consideration of only one two-dimensional static problem, a large class

of cross-sectional geometries can be solved analytically by the method of conformal
mapping.

The approach described above may also apply to multi-wire cables.

13



III. Further Considerations of the Source Terms

Before applying equations (15) to the calculation of the equivalent lumped
circuit elements of a single aperture in the cable's shield and eventually to a
braided-shield cable, let us discuss briefly the electric and magnetic volume
current densities, J and g%, that appear in the above equations. For the purpose
of deriving (15) it is most expedient to think of J and gf as arising respectively
from an electric dipole and a magnetic dipole located close to the inside wall of
the cable's outer conductor and at the position where the aperture was. The dipole
strengths are proportional to the external field as well as the field of the TEM
mode inside the cable, and they can be calculated by the method described in [10]
and [6]. An alternative interpretation of J and gf is to use the tangential

electric and magnetic fields in the aperture:
*
J = -nxH §(p - a) d =nxE d(p - a) (18)

where n is the outward unit normal to the aperture and equal to Ep in Figure 24
1*—is~the~pesition vector describing*the aperture. Actually, one only needs the
magnetic current density J to describe the effect of an aperture discontinuity
in a waveguide. This can be easily seen if one recalls that the tangential
aperture electric field is all that is required for the determination of fields

everywhere. Thus, the source terms given by equations (10) reduce to
. .
vn(z) = gt'EndXdy
S
(19)

i (2)

*
-Y ff J h_ dxdy
n J)g 2z nz

For the TEM mode, hoz = 0 and hence io = 0. Consequently, the source term for

the second equation of (13) is also zero and equations (13) become

dav 1 JZ“ *
K

iz 1wl + P ¢d¢

(20)

ar _
E;_ iwCV

14



Solving these equations and keeping only the outgoing wave we get

LL iklz-z'l * ar ' _ ' '
I(z) ZZC 7ra fJAe K¢dS , (ds' = ad¢'dz')

*
e K,ds’', z > z'
Ja :

eikz g JV —ikz'

e1kz 1 r *
~ - " ' [}
* 27 9ma I (1 - ikz )K¢dS
‘A
eikz iwp inw
T T2 [21raZC EfE¢ + 21raZc B:gp] (1)

where A is the aperture and where we have used the usual definitions:

ff Efds = ~iwum (22a)

€ *
< ” w*as = -p (22b)

(Es lies in the aperture). Here, care must be exercised to choose the coordinate

origin for the definition of p. From (21) we obtain V:

1 dI
V=1aC az
eikz fwu inw
) 2wa<§'§¢ + 2ra E:Ep] (23)

Equations (21) and (23) agree with the solutions of (15). As expected, the
tangential aperture electric field alone gives rise to all the source terms in
the transmission-line equations (15).

It is not difficult to see from (22) that m is related to normal aperture

magnetic field and p is related to the electrostatic potential, ¢, in the aperture.

15



Noting that (Vs is a surface operator lying in the aperture)
*
(1) ngg = iwun-H
(ii) E = -V¢, (static limit)
(iii) ¢ = 0 at the aperture contour C
*
(iv) the component of K tangent to C = 0

one can easily show from the definitions (22) that

A
- J JAESB'—dS (24)
e 5[] oo [ w0
= .2“:_3 “Ar -V _¢dS = - -;—_rl ”Afsz'zst
- —en H 5ds (25)
A

Thus, in the low-frequency approximation m is proportional to the normal component
of the static aperture magnetic field, whereas p is proportional to the static

aperture potential in agreement with [6].

16



IV. Lumped Circuit Elements of an Aperture

In this section we will obtain a lumped network representation for a small
aperture in the shield of a coaxial cable and give explicit calculations for the
case where the aperture is a long slit. In the next section we will extend our
calculations to a braided-shield cable.

The lumped network elements will be expressed in terms of the electric
polarizability, s and the dyadic magnetic polarizability, 9 of the aperture,
where ae and e have been computed and measured for various aperture shapes [1],
[6], [11]. These_network elements can be easily found from equations (15).

Following customary procedures we define

P = ea E,

(26)
m= o *H
—~  =m -o

where Eo and Eo are the fields of the TEM mode at the position of the aperture
when the aperture is closed and they are given by equations (A.1l4). Here and
henceforth, one should keep in mind that in the "illuminated'" side of the screen
p is always anti-parallel to the electric field of the incident wave at the
aperture, whereas in the "shadow" side of the screen p is always parallel to
the electric field of the incident wave at the aperture. The corresponding
relationship between the component of m along the incident magnetic field and
the incident magnetic field itself is just opposite [12].

Now substituting (2b) and (A.14) into (15) we get

dav
dz

iw[L + Laé(z - za)]I

(27)

dI .
iz iw[C - CaG(z - za)]V

l

where

17



m
La i 4m a2
(28)
eaezi
Cc

and o denotes the ¢¢~component of o The equivalent networks of the transmission
line and the aperture are shown in Figures 3a and 3b. Figure 3b 1s a symmetric
"Tee" network for the aperture and is equivalent to Figure 3a when terms of the
order of szaCa and higher are neglected compared to unity. Equations (27) show
that a longitudinal aperture can be represented by a positive series inductance
and a negative shunt capacitance, as one would expect on physical gréunds.

As an example we now apply (27) to calculating the characteristic impedance
of a coax with a narrow, infinitely long slit in the outer conductor (Figure 4).
First, we find a, from (25) with the static potential distribution ¢ in the

aperture given in [13]:
2
d d eE d™n
P = -¢ f ¢ (x)dx = eEo J de - x2 dx = ~—%———
-d o

from which

=1ﬁ
a, 5"
Substitution into (28) gives
€ dzw 2
Ca = ZEE:— farads/meter (29)

Since a = o, for an infinite slit, we have from (28)
L =4 (~ii-)2 henries/meter (30)
T ‘4a

a

The relative changes in capacitance and inductance are

18
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Figure 3a. Equivalent network of an aperture imbedded
in the network of a coax.
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Figure 3b. Equivalent network of an aperture in a coax.
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Figure 4. A narrow, infinitely long slit in the
shield of a coaxial cable.
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AC _ _ EE._ _ lESElEl.(lL.Z Eﬂ.= _ l.(il)z Eﬂ
C c 2 ba 2 T 4a’ 2
27 Z c
c
(31)
o _ta_ 2 a2 1 042%
L L In(a/b) ‘4a T “ha ZC
and the characteristic impedance is increased by
e a1 a?% (32)
Zc L C m “4a ZC

Equations (29)-(32) agree with those given by Kaden [14]. For N slits, ae(N,d)
can be obtained by either conformal mapping [6] or the integral equation method
[15], and o is still numerically equal to age Then the relative increase in Zc

is simply given by

e oo _ac MWDz, (33)
Z L c 2 2 Z
c 4~ a c
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V. Braided-Shield Cables

Before considering the electromagnetic interaction of a braided-shield
cable with an external source we return momentarily to equations (15) which apply
to a coax with a small aperture at z = z, in the outer conductor. As has been
pointed out before, p is proportional to the normal components of the interior
(E;nt) and exterior (géXt) electric fields and m is proportional to the tangential
components of the interior (E?nt) and exterior (E?Xt) magnetic fields. These
field components are evaluated at the position of the aperture when the aperture
is closed. Thus, when the coax 1s immersed in an external field we have

p = (eaeg)lnt + (eaeE)EXt

(34)
m= ( .H)int + (o .H)ext
o (s o
where (saeg)lnt = Elnta;ntgént, etc. If the wall of the outer conductor is
infinitely thin, then
O‘1nt - O"ext _ o (35a)
=m =m =m
2¢e
int ext T int
(ea,) = (eae) = e 4 e a, (35b)
where €. = eeXt/elnt and a, is for the case where eint is set equal to eext.

Equation (35b) can be easily deduced by considering the electrostatic problem
of a perfectly conducting sheet with a small aperture and sandwiched between two

half-space dielectrics with different dielectric constants. For simplicity, we

. ) int ext .
will consider the case ¢ = ¢ = ¢. Equations (34) can be rewritten as

p= eae(E?n +E )

(36)

22



0f Course, E?nt and ﬂ}nt are just Eo and Eo’ the fields of the TEM mode as used
in (26). Substituting (36) into (15) and using Figure 5 for the definition of

the signs of various quantities we obtain

dv
-— = iwL[1 ﬁ~AL6(z - za)]I + Veqd(z - za)

dz
37
AL _ uC[l - AS(z -z )IV+ I 6(z - z)
dz cO'? a eq Z "2
where
La Ca
AL=tT o b=t
1wua
—B Xt _ e 1%t (38)

Tg = = Traz F " ~w(C,/¢)Q"**

and La and Ca are given by (28). The total axial current 1°*% and the total
linear charge density QeXt on the outside wall of the outer conductor satisfy

the continuity equation and are obtained when all the aperture 1is short-circuited.
Equations (37) are rederived in Appendix B from the coupled transmission-line
analysis which utilizes the results given in [7] as the starting point.

We will now generalize (37) to a bralded-wire shield cable whose physical
configuration is shown in Figures 6a and 6b, The braided-wire shield is to be
modeled by a perfectly conducting thin shell with many small holes in it. We
will first assume that the distribution of the holes is periodic along the line
with period d and then we will generalize the result to the case where there are,
on the average, n holes per unit length along the line. We now have a series of

-z =2z -2z = d, etc. Thus,

delta functions in (37) with Z 41 o o a1

[

gd(z -z,) = } 6(z - ad)

a=—w

23
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Figure 5. Definition of signs of various quantities

(V' and I' are used in [6]).
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Figure 6a. Physical configuration of a braided-wire shield cable. -

7

2Ta

Figure 6b. Braid pattern developed on a plane [4].
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The sum can be transformed into a cosine series by either the Poisson summation

formula or expanding 6(z) in a cosine Fourier series in the interval -d/2 to

d/2. Hence,

oo

I 6(z-0ad) =3+2 ] cos B (39)

o =00 k=1

Since our interest is mainly in the effects of the apertures on the TEM mode,
it is permissible to retain only the average-value term 1/d in (39). 1In this
connection one can refer to Appendix C for proof by means of Floquet's theorem.

For one aperture per period d equations (37) become

av , t
gy = L@ + 8 /DT + 1w(La/d)Iex

(40)
dI ext
3 = @ - A,/DV - 1 AdC)Q

If there are n apertures per unit length along the line we can, to the
same accuracy as in deriving (40), simply replace 1/d in (40) by n. From the
practical viewpoint it is more convenient to express n in terms of the optical
coverage v of the shield (the case v = 1 means that there are no apertures).

Elementary consideration immediately gives
n= (- v (41)
av

where Aav is the average area of an aperture. Finally, we have, for n apertures

per unit length,

L= uL@ + 6 )1 + duLs 1%
V4 m m
(42)
dl _ . _ s ext
iz = iwC(1 Ge)V iws Q
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where the magnetic (inductive) coupling parameter 6m and the electric (capacitive)
coupling parameter 6e are defined by
. name

m 4n2822
c

(43)
Ge = (ae/am)ém

Except for the sign difference in the source terms which arise from using different
sign convention for I and V (see Figure 5), equation (42) are the same as those
derived in [6] where Ls and SS are used as the coupling parameters and are related

to the dimensionless parameters 6m and ée as follows:

L = -L6§
S m

(44)

w0
]

-Ge/c

Tables and curves pertinent to Ls and SS are also given in that reference for
a braided shield modeled by a perfectly conducting shell with periodic distribution
of diamond-shaped apertures.

Although we have been successful in characterizing, under certain
reasonable assumptions, a braided-shield cable by only two important coupling
parameters Gm and Ge’ theoretical determinations of these parameters are by
no means easy for a real braided-shield cable. As can be seen in [6], to make
the calculations of these parameters tractable one has to assume, among other
things, that the apertures are of the same shape and that the shield is planar.
Therefore, it would be interesting to see how these parameters can be determined
experimentally. Figure 7a is the schematic sketch of an experiment for
determining Gm. The cable under test is electrically very short and hence there

is no significant voltage drop along the entire length of the cable. From the
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Concentric metal tube

Shield

Figure 7a. Schematic diagram for determining Gm experimentally.

Shield

Figure 7b. Schematic diagram for determining 6e experimentally.
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first equation of (42) one can easily get

(/1)

m 1-(1/1_) (45)

§
since IeXt = Io as shown in Figure 7a. From the measurements of I/Io, Io
being the current driving the shield, one can obtain Gm from relation (45).
Figure 7b 1s the schematic sketch of an experiment for determining Ge. Note
that Figure 7b is the dual of Figure 7a. The relation between Ge and the
measured value of V/V0 can easily be obtained from the second equation of (42)

by noting that QeXt = COVO:

w/v)

e = W, IO-CVV) (46)

S

where Vo is the voltage driving the shield and an outer conductor coaxial with
the shield, and Co is the corresponding capacitance when the apertures in the
shield are all closed. It would be quite valuable to obtain measured values
for some practical braided shields and check the measurements against
theoretical calculations reported in [6].

Figure 7 can be thought of as illustrating two elementary tests for
magnetic and electric coupling through a braided shield as long as the radian
wavelength is large compared to the sample length. There are many sophistica-
tions that one can incorporate in such test fixtures.

Figure 8 shows a test configuration for determining both Ge and Gm. For
a given cable length to be tested the balanced drive scheme gives better
separation between charge per unit length and current. There is a common
signal generator (or two separate ones if preferred) used to drive the test
fixture in the two separate test modes by means of switching some connections.
Note that this source should be designed for balanced output, at least for
driving in the current mode. At either or both ends of the test cable the
current and/or voltage driving the cable shield and that resulting inside the
cable can be monitored. When driving the cable shield in the current mode
the voltage (and thus charge) on the cable shield with respect to the outer
shield can be observed to be small. When driving in the charge mode the

current on the cable shield can be observed to be small. Note that both ends
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of the center conductor of the coax under test should be open circuited for the
Ge measurement and both ends should be short circuited for the dm measurement.
There are q}her variations on this general configuration. For example
one might-égg;gg; the source current and voltage at the center of the cable =
shield. Similarly one might measure the resulting internal current and voltage
at the center of the test cable. There are various design details (such as the
design for shielding the ends of the test cable) that are beyond the scope of
this note., Perhaps some future notes can consider the detailed design of such
test fixtures for testing cable shielding. Note that for the present discussion
we are only considering aperture coupling through the cable shield. There are
other effects associated with finite but nonzero conductivities of the cable

components that change the form of the results somewhat.
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Appendix A
Some Properties of Cylindrical Waveguide Modes

We will 1ist, for the purpose of easy reference, the properties of the

vector mode functions, e and h_, that are needed for the derivations of the

formulas in the text. For an exhaustive study of these modes one can refer
to References [7] and [16].

For a TM mode one has,

(]
1l

—vtq)n (%, Y)

é

where ¢n satisfies, in the waveguide cross section §,
2 2
(Vt + kcn)¢n =0

subject to the boundary condition

¢ =0
n
on the periphery of S.
For a TE mode one has
"o o
ell = hIIXe
-n -n —=z
where y satisfies
2 n2 _ .
(Vt + kcn)wn =0, in S
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subject to the boundary condition that the normal derivative
— =0 (A.6)

on the periphery of S, v being normal to the periphery of S. The vector mode

functions are orthonormal in the sense that

Jf e'.e'ds = IJ e".e"ds = §
gmn gmn mn

(A.7)

Jf e'-e'"ds =0
gmn

where Gmn is the Kronecker delta. The eigenvalues kén and kgn are ﬁsually
called the modal cutoff wave numbers and depend solely on the geometry of the
cross section of the waveguide.
To derive equation (7) from equation (5) in Section II we need several
. : T -yt '
relations which will now be worked out. For Etn Vn(z)gn(x,y) and

L '
Etn In(z)hn(x,y), we have

. ' ' . ' = T eal
Vtvt (Etnxgz) IthVt (Enxgz) Invtvt gn

2 2 2
= -I°' = JT'k"' = _T" 141
IthVth Inkcnvtd)n Inkcngn (A.8)
. ' =' . '
VtVt (e xE n) VthVt (e xe')
=_' . =
VthVt (e XVt¢n) 0 (A.9)

" — " ”" ”" - " 1"
For Etn = Vn(z)gn(x,y) and Etn In(z)hn(x,y), we have
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. (un " (!
VeVt (Blpre,) = TV, V- (hyxe))

—I;;VtVt-(Vttpnxgz) =0 (A.10)

" " . "y o yn Rl
VeV (BepXe,) = V¥ Vs (exen) = ViV Ve by

_yn 2 _ ym,n? = _y" 12w
antvtlpn B Vnkcnvt‘pn Vnkcny-n (a.11)

In the text we deal exclusively with the dominant mode of a coaxial
waveguide, i.e., the TEM mode. For this mode we have [7]
v

)
E =Ve = -e
—to o0—o "pznp/ﬁ

(A.12)

I
)

2mp YN

—to o—o -Ecp
where

1 a

N = 27 ln(b)
for a coaxial line with inner radius b and outer radius a. Instead of the mode
voltage Vo and mode current Io one is more interested in the line voltage V and

line current I in the transmission-line equations (7). To do this one simply

makes the transformation

2 |«

(]

+ .
%[
(]

(A.13)

ZION
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in equation (7) for n = 0, where ZC is the characteristic impedance of the line.

The t:ansformation'(A.13) indeed preserves the power definition
\ * Re (V *
Re(VI ) = Re( oIO)

With this transformation (A.12) becomes

\'
“to _Ep p 1n(a/b)

H = -e L
~to = 2mp

(A.14)

which clearly show that V and I have the usual meaning of voltage and current

in the transmission-line theory.
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Appendix B

Coupled Transmission-Line Equations

In this appendix we wish to rederive the basic equations (37) obtained
from modal analysis consideratlons from the coupled transmission-line analysis
which utilizes the results in [7] as the starting point. The notations that
will be used in the following are the same as those of Marcuvitz [7], Vance [4],
and Dairiki [17]. They all use the time convention ejwt.

Consider a section of length d of two concentric coaxial guides coupled
by a small aperture in the common wall of zero thickness (see Fig. Bl, which is

taken from [7]). The elements of the equivalent circuit of the aperture are

given by
L
ZE.= 1n(R2/R1)
Y° ln(R3/R1)
Ba wP ‘ Yé
T = 3 1+ T (B.1)
o 4ncR2 ln(Rlel) o
B 2ch2 1n(R,/R,)
a 2 271
Y © wM (8.2)
o
B
== — wP (B.3)
o 2'rrcR2 ln(R3/R2)
B B Y!
d
T LT (B.4)
o o o
where

¢ = propagation speed of the TEM modes in both coaxial guides

P = "effective'" electric polarizability = o,
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M = "effective' magnetic polarizability = e
Y = characteristic admittance of inner coax
Yé = characteristic admittance of outer coax

Let us now imagine the equivalent circuit of the aperture to be embedded
in the circuits of two wuniform coaxial guides. For simplicity, let there be
one aperture per period d, which is assumed to be less than the wavelength but
large enough so that the interactions between neighboring apertures are via
the TEM mode only. Then, one can easily write down the coupled transmission-
line equations from Kirchhoff's laws. Before doing so, we let R3/R2 +> o
while keeping the charge per unit length on the walls of the outer coax constant.

Then, equations (B.l) to (B.4) become, as R3/R2 +> o,

B :
2= wb (8.1)"

Y 2
) 4ncR2 1n(R2/R1)

2
B 2mcR ln(RZ/Rl)

b 2 '
Y wM (B.2)
o

B

& - 2‘*’P +0 (.3)'
o 2ch2 ln(R3/R2)

B

d _ '
T = 0 (B.4)
o

The circuit representation of a section of length d is depicted in Fig. B2.

In obtaining Fig. B2 we have discarded terms of order of (Ba/wdC)2 so that
*

the two Ba's in Fig. Bl just add.

*
This can be seen by using successive Pi-to-Tee transformations.
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Applying Kirchhoff's laws to Fig. B2 we have

ext
-AV = jwdLI + %— (B.5)
-AT = judCV - 2jB_V - jBCVeXt (B.6)
Using equations (B.1)' to (B.3)' and letting
& av
d dz
AL _d1
d dz
27e ext ext
1n(R3/R2)
we have
MZ MZ
%= -juLf1 + —5—J - Jo —5— 1%t (B.7)
4 RZZod 4 RZZod
PZ PZ
g—i= -jwC|l ——2—;—V +jw—'—2—‘zi——Qexc (B.8)
47°R.Z d 4n°R;Z d
270 270

which are identical to equétions (37) for the case where there is one aperture
per period d. If there are n apertures per section of length d, one then replaces
d—l by n in (B.7) and (B.8) and arrives at equations (42). This replacement is
valid only if the interactions of the apertures are predominately via the TEM

mode.

40



Appendix C
Periodic Distributions of Apertures

Let there be one small aperture in the outer conductor of a coax per period
d along the line. Let d be such that the aperture - aperture coupling is

predominantly via the TEM mode. Hence, we have from equation (37)

(-]

dv iwL[l + 8 Yy &(z - ad)]I

dz
a:-oo
(C.1)
d1 v
o= 1wc[1 - ¢ a}_m §(z - ad)]V

Here, we have taken the source terms to be zero and will study the homogeneous
equations in the following. Let us restrict our consideration to a wave propagating

in the +z direction. According to Floquet's theorem [16] we can write

z v ei(Kd+2mr)z/d

vV(z) n

It

-00

(c.2)

i(kd+2nm)z/d

I(z) 2; Ine
where k is the propagation constant of the dominant mode and is yet to be
determined. The infinite sum of delta functions can be written as, by means of
the Poisson summation formula,

] 6z-od) =1 ] oiZM2/d (c.3)

Substitution of (C.2) and (C.3) into (C.1l) and identifying terms of like

exponentials give
wL
wL(1 +T)Ip +—-diL— b1
m#0 P70

27
+ =By
(x d)p

(C.4)

AC wCA
wC(l - d_)vp -

27
(3 d)p
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where p = 0, %1, *2, ..., For nontrivial solutions, i.e., Vp # 0 and Ip # 0,
the determinant of (C.4) has to be zero, which gives an equation for determining
k. If the modes are only weakly coupled among themselves. Then for the dominant

mode (p = 0) we have

AL
KVO = wL(1 + TT)IO
(C.5)
A
kI = wC(l - -V
o d’ o
from which we obtain
A A
G =iea +Pa-H (C.6)

which agrees with the propagation constant géverning equations (40).

As 1s evident from (C.4), the condition that AL/d << 1 and Ac/d << 1
implies that the coupling among modes is weak, and vice versa. Then, one may
agrue that AL/d and AC/d in (C.5) should be discarded. However, there are
cases where one knows a priori that higher-order modes may not be excited at
all or, if excited, can be neglected entirely as far as measurements are
concerned. A coax with long slits in its outer conductor and a cable with a
good braided shield are such examples. Thus, by retaining AL/d and AC/d in
(C.5) and (40) one gets a set of equations that would describe more accurately

the behavior of the dominant mode within such a cable.
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