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ABSTRACT

If a multi-wire cable or transmission line is embedded
in a non-homogeneous or mixed dielectric, or if its conduc-
tor losses are taken into account, it turns out, generally,
that more than one propagation parameter is required to
describe the response of the line to an externally-applied
field. With waves travelling generally in both directions
on the cable, the series resistances representing the power
loss in the various conductors become functions of position
along the line, the nature of the functions themselves vary-
ing with the nature of the line terminations.

The difficulty can, in principle, be eliminated by
resolving the line dynamic quantities into biorthogonal
mode sets. Criteria for establishing such mode sets are
presented.

For the homogeneous dielectric case, complexity of anal-
ysis can be reduced if one is willing to accept some error
in the values of series impedance assigned to the various
conductors and to make use of a reasonable approximation that
becomes consequently possible. In view of the intended appli-
cation of the analysis, namely, an evaluation of external
interference effects, the resulting errors must be considered
as of small significance. The solution thus obtained is only
slightly more complicated than that previously obtained for
lossless lines.
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1. INTRODUCTION

When a number of lossless cylindrical conductors consti-
tuting a multiwire transmission line, or cable, is embedded
in a homogeneous, isotropic (but not necessarily lossless)
dielectric, energy is transmitted in either direction with a
single propagation constant. When the line is excited at one
end and match-terminated at the other, the relative amplitudes
of potentials and currents on the conductors are the same at
every transverse plane, diminishing in absolute amplitude in
the propagation direction in the case of a lossy dielectric.
This simple model leads to relatively easy analytical proce-
dures for determining the dynamic response of such lines.

If the conductors are in a non-homogeneous dielectric,
or if they are lossy, transmission is no longer in termé of
a single propagation constant. For a line of N conductors
plus reference (or ground), i.e., an N-line, there are gener-
ally N modes of propagation in each direction. Each of the
N conductors carries N modes, making N? components in all.
However, for each mode, the ratios of all voltages are deter-
mined by the mode eigenvalues, so that only one constant has
to be determined for each mode in each direction, i.e., 2N
constants altogether, as in the strictly TEM case.

If we postulate a system in which the conductors are loss-

less, then no conceptual barriers arise, even in the presence



of partial mode degeneracy. However, practical difficulties
may limit the generality of the class of problems that can be
solved with accuracy. On the other hand, if we are dealing
with low-loss conductors in a homogenepus dielectric, practi-
cal analytical considerations give rise to certain questions
which must be clérified to justify the procedures used. Thus,
in such a system it is customary, except in the simplest cases,
to find the field and boundary distributions in the limiting,
conductor-losslessfcase, and then to determine the conductor
losses by allowing the conductor current density to be inde-
pendent of small values of conductor resistivity.

However, if we assume, even temporarily, that the conduc-
tors are lossless, we are back to thebpure—TEM, single-propa-
gation-mode case. It would appear that the multi-mode approach
is not useable in this procedure. On the contrary, it can be
useful to separate the line dynamic quantities into sets of
bi-orthogonal modes in order to obtain a closed solution to
the line excitation problem. Furthermore, subject to certain
constraints, it is possible to construct a non-denumerable
infinity of orthogonal mode sets for a given line configura-
tion; in other words, the resolution into bi—orthdgonal mode
sets is not unique.

The background information for the bi-orthogonal formula-

tion is reviewed in section 2, and the formulation itself



discussed briefly in section 3.1 in connection with end-excited
lines. When such mode sets can be found, the conductor losses
(and therefore the attenuation of all line components) may be
determined by finding the losses for the individual modes, and
incorporating them into these modes as independent attenuation
constants.

The problem that next presents itself is the actual deter-
mination of a set of modes for any particular case. While
this is a relatively simple matter in the case of a 2-, 3-,
or 4-line, it remains to be seen whether such a determination
is practical in the case, for example, of a cable consisting
of one hundred conductors of various sizes in a uniform dielec-
tric.

An alternative is to abandon the multi-mode approach and
to employ an approximation, or a succession of approximations,
for determining the line attenuation. 1In view of the generally
inexact nature of the phenomenological studies toward which the
present study is directed, such an approach might well repre-
sent a suitable compromise between quality and cost of analysis.
An approximate method which deliberately degenerates the mul-
tiple~-mode status of the line to an infinite-series expansion .
of completely degenerate modes of equal eigenvalues but differ-
ing multiplicities is discussed in section 3.2.

In either case, attenuation constants may be determined



by minor adaptation of the same electrostatic analytical pro-
cedures that yield the lines coefficients of capacitance and

inductance.

2. MULTI-MODE METHOD: EIGENVALUES AND EIGENVECTORS

Non-trivial solﬁtions of the homogeneous line differen-
tail equations imply a finite number, -at most, one less than
the total number of conductors,- of modes of TEM or quasi-Tem
propagation. In this section we outline procedures for deter-
mining the eigenvalues of such modes, under certain restricted
circumstances, and necessary conditions that their components
must satisfy. Special problems arising when mode degeneracy
occurs are treated. Simplifying procedures for approximate
solutions in the likely case that the eigenvalues are nearly
equal are reserved for section 3.2.

2.1 DIFFERENTIAL EQUATIONS OF A QUASI-TEM LINE: PROPAGA-

TION MODES

When a set of N cylindrical lossless conductors plus
reference conductor are embedded in a homogeneous, isotropic,
but not necessarily lossless, dielectric, the system can
constitute a guide transmitting electromagnetic.waves in a
pure TEM mode. If the axis of such an N-line is parallel to
the x-axis of a rectangular coordinate system, we have the
following homogeneous differential equations for the system

(Reference (9):



+tgl1=20
(1)
dl
gz taov=20
where
vh = [V V.1 (2a)
v l'ooo' N
- ‘
_I_ - [Illo;o’ IN] (Zb)
;— [; ]l l'J l,-;olN
- +J (2c)
= jm [Lij] =ij
n= [n 1, 1, j=1l,..., N
tJ (2d)
= [Gij + JwCij] =G + juC
v’ and I’ are transposes of V and I respectively. I, is

the total current in the ith conductor. Vi'is the potential
of the ith conductor, with respect to reference, in a trans-
verse plane.

L.. is the coefficient of inductance between the ith and

ij t
jth conductor, Hy. (Reference 1). Lij = Lji
Gij is the coefficient of conductance between the ith and
jth conductor, mho. Gij = Gji

cij is the Maxwell coefficient of capacitance between the

ith and jth conductor, Fd. (Reference 1,2).

Ci3 T %51

For a homogeneous isotropic dielectric, Gij and Cij are



identical with the electrostatic values, and, furthermore,

G.. g
ELJ. = €_d (3)
ij d

where
9a = dielectric conductivity, mho/meter

dielectric permittivity, Fd./meter

m
I

When the conductors have a small resiStivity, or when the
dielectric is inhomogeneous or mixed, a component of electric
field exists in the propagation direction; only the magnetic-
intensity component of the field is transverse. We call it
a quasi-TEM mode since itkapproaches a pure TEM mode in the
limit as conductor resistivity and permittivity differences tend
to zero. Inasmuch as the magnetic field is transverse, we can
continue to characterize the transverse component of the elec-
tric field as the gradient of a potential, so that equations
(1) continue to be applicable. However, Laplace's equation in
the transverse plane is no longer satisfied, so that the use
of electrostatic values for the Cij is only an approximation.
Similarly, the Lij’ which, in the strict TEM case, can be com-
puted from a knowledge of the Cij and the propagation velocity,
deviate from their electrostatic limits. Thus, we continue td
use equations (1) with the understanding that determination of
the line parameters, f and n constitute a separate problem.

In equations (1), eliminating I and V successively yields



\
d*v
~-tnv=2_0

) |

i-ngz=0

dx? )
Write

A=zn (5)
Then

ng=@HT = @nT=a" (6)

since [ and n are symmetric matrices.
For a forward wave, assume a solution of equations (4)
the form

v =y, exp(-vx) ,
Re(y) > 0 (7)

#

I=1I_ exp(-vx)

=0
Then from equations (4) we get

(v*1-2) V=0

(8)
(Y? 1 -a%) I=0

— . i

where
I = unit N x N matrix

= [6.,.] , i,3=1,..., N (9)

ij
and Gij is the Kronecker delta.
Write A = y?2. Then non-trivial solutions of the homo-

geneous equations (8) exist only if (Reference 3)

det. (M - A) = [AI - A|] = o}

‘_ (10)
det. (AL -~ AT) = |A1 - aT[= 0

and

7
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Since LT is the same as 1, and since

(A1t

-2h) = o1 -7
has the same determinant as (Al - A), both equations (10)
have the same solutions for A. The left members of equations

(10) are identical Nth order polynomials in A.

2.1.1. Propagation Modes When Eigenvalues are all Differ-

ent; Mode Orthogonality and Independence; Additional

Constraints.

Assume that solution of equation (10) yields N distinct
eigenvalues, Aj’ () =1,..., N). Each Aj in turn yields a pair

of values

Yy = t\pj : (11)

where only the upper sign corresponds to a forward travelling
wave., Each Yj substituted in equations (8) yields a consis-
tent set of equations from which the ratios of currents and
voltages may be found. The solution corresponding to the jth

eigenvalue, Aj,yields a voltage vector

T . . :
A L S AL (12a)

1<

and a current vector
AEEES SEL I 1208 (12b)

The N voltage eigenvectors are arranged as columns of a

square matrix



(1) (N)
Vl PR Vl -
v=rw3r= . 00 o =i (13a)
(1) (N)
VN PR VN
. -

Similarly, the current eigenvectors are shown as

(1) (N)]
Il g eeeys Il
- (j) - ’ [ ] .o L2 L] L] - (j)
1=i2-"] (1) Lo | T (13b)
N g oo 0oy N

A standard result in eigenvector theory yields (Reference 4)

T

V- I =W-= . 0. 14
where wj are undetermined constants. Equation (14) implies

? :

' (3) +(3) _ _—

i=l Vi Ii - Wj ’ J l' -‘. . N (l4a)

?

(3) (k) _ .

If the line is excited in the jth mode, the transmitted
power is represented by the summation of the potential-cur-
rent products on all the conductors, i.e., by the summation
shown in the left member of equation (l4a). Thus, vy is
identified as the power transmitted in the jth mode. If the
line is excited generally by all modes, the total transmitted

power is



" G E )

N N N ..
k
=L v e

j:l k=1 i= 1

S5 Y e
j=1 i=1 * *

in virtue of equation (14b)
N

= ] w. (15)
j=1 J

in virtue of equation (l4a). .

Two sets of vectors, ¥ and I, satisfying equation (14) are
said to be bi-orthogonal. Thus, we have the result that when
the propagation eigenvalues are distinct, the resulting current
and voltage vectors necessarily obey the bi-orthogonality con-
dition.

However, equation (l14) is not a sufficient constraint on
these modes. If one of the assumed solutions (equations(7)) is
substituted in equations (1) we get, respecti?ely,

v(3) o £<j)’ | (16a)

Y3

vy 100 200 g0 (16b)

where we have indicated that ¢ and n may be functions of the

mode configuration.
10



We can write

v ] - (3| = [v(3) =
][] B o s o

=[5 %]
Similarly,

,:. (J)] l: (J)] « (17b)
3

For the right members of equations (l6a,b) we have, respec-

where

tively,
(3 1) [ii) K [I]gj)] | (18a)
(3) (3)
where the symbol (j) outside the brackets indicates that j is

not a position index for its associated matrix. Continuing,

REICI l:z £ ,ﬁ”} =E:i(j>] _ ) (185)
(3) (3)
and :
NEIMEI [Z 2y ]E:)] =l:Hi(j)] e (18e)
k=1 (3) (3)
Then equations (l16a,b) extended to all j become
Vy=E-= [E(j)] = [Eéj)]
whence
V=E

.Y—l
- } (19)

11

1=

]
hx
=<



Using these successively in equations (14), and noting that

(l—l)T = y"!
we get
Y'E L=¥
and
-1 T T

Yy EY¥Y=W =W

In more explicit form, upon making the appropriate substi-

tutions,
N N . . .
[y>!' ¥ ASTE S S o ¢ LR RS P S (20a)
1 .2 Rzl kL “R k i 7ij
and
N N . . .
- (1), (1), (3) 4 -
[y3! Ny Vo 'V ] = [w., 6..] (20b)
i kgl Rzl k& "% k i "ij

These equations may be taken as necessary conditions that

a set of modes satisfy the homogeneous differential equations

of the line, and be consistent with the power condition equation

(l4a).
The N vectors of either mate of a pair of bi-orthogonal
modes constitute a linearly independent set (App. A). But any

(N + 1)st vector is expressible as a linear combination of

these. The linearly independent set, Z(J) (3 =1,..., N} con-

stitutes a (generally non-orthogonal) coordinate system in

N-space. The forward-wave voltage for the transmission line is

SEP EE)

v= 7] v = 7 v'3I(0) exp(-y.x) (21a)
j=1 j=1 ]

(3)

(v,

(0) ] [exp(-ij)] . (21b)

12
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where
viV©),..., vi¥ (o)

i = : : : = v(0) (22)
* (1) (N)
VN (0),e04, VN (0)

and
[exp(—YjX)]T= [exp (=Y X),..., exp(-YyX)] (23)
Similarly,
T (3 ¥ ()
1= 710 = 7190 expl-v,x) (24a)
T 3=1T j=1 ]
= (1{7 (0) Ttexp (-v %) ] (24b)
where
| 1 0),..., 1M (0)
({3 (0) 1= : = 1(0) (25)

(1) (N)
IN (0),...,IN (0)

2.1.2. Quasi-TEM Mode; Eigenvalues not all Distinct

consider the case where (N - 2) of the Aj are distinct,

while the remaining two are coincident. Without loss of gener-
ality let Aj(j =1l,..., N~ 2) be distinct, while AN=AN_1#Aj

(3 =1,..., N - 2). There are now only (N-1) different voltage
vectors, !(j). For every Xj' (3 < N=1), the matrix I - A (26)
is of rank (N - 1) (Ref. 3). Consequently, each of the vectors,
g(j), (3 =1,..., N - 2) is specified within a scalar constant,
as in previous case for all vectors (sec. 2.1.1). On the other
hand, corresponding to the double root, AN-l’ the matrix (26)

is of rank (N-2), (App. B), whence Z(N—l)is unspecified within

(N-1)

two constants. Two components of V may be specified arbi-

trarily, and two equations removed from the set, provided the

13



the determinant of the diminished set is different from zero.
The remaining components are then uniquelyvdetermined in terms
of the two chosen arbitrarily. In geometric interpretation,
we are free to choose both amplitude and direction of the pro-

(N-1) on an appropriate 2-space, after which,

jection of V
amplitude and direction of all remaining components are fixed.

Similarly, if the first (N - 3) eigenvalues are distinct,
while Ay = AN—l = KN—Z # Aj(j =1,..., N - 3); the matrix (26)
is of rank (N - 3). Three components may be specified arbi-
trarily, whence the remainder are fixed. The projection of
X(N-Z) on an appropriate 3-space may take any amplitude and
direction in that space, whence the remaining components are
fixed.

In general, if the first (N - r) eigenvalues are distinct,
while

AN = AN—l = te. = AN-r+1 # Aj(j =1l,..., N -1r)
the matrix (26) is of rank (N - r), (r > 2). The projection of
y(j) (N - r < j =N) on an appropriaté r-space may be speci-
fied arbitrarily in amplitude and direction, after which the
remaining components are fixed.

Finally, if all eigenvalues are equal, there is only one
eigenmode, and its'amplitude and direction in N-space are
completely arbitrary.

Translated into multiconductor line terminology, these
results are interpreted as follows:

(3)

The component, Vi » is the value of the jth mode potential

14



on the ith conductor. When the eigenvalues are all different,
one of the conductor potentials may be specified arbitrarily

to satisfy terminal conditions, whence the remaining components
of the jth mode are fixed. Since this holds true for all N
modes, we have a total of N arbitrary values available for ter-
minal excitation conditions. An equal number of arbitrary
values is available by virtue of a back-travelling wave, making
2N values in all.

When (N-r) values are distinct (r > 2), there are (N-r+l)
different eigenmodes. For (N-r) of these, one arbitrary ter-
minal assignment is available, while for the remaining one,

r values may be assigned, again making N arbitrary terminal
values in all for a’forward wave. Finally, when f = N, cor-
responding to a pure TEM mode, there is a single‘eigenmode
associated with N arbitrary terminal conditions for a wave in
one direction.

Since, in the general case, the rank of the characteristic
matrix is (N-r), it follows from the argument in part (b) of
Appendix A that the (N-r+l) eigenvectors are linearly indepen-
dent.

The whole foregoing discuésion applies, with appropriate
adjustment in terminology, to the current modes, E(j). Further-
more, equations (14b) continue to apply to the modes correspond-
ing to simple zeros of the characteristic equation, i.e., to

the first (N-r) modes in the foregoing discussion. As for the

15



modes corresponding to multiple zeros, we have shown, at least
in the case of a single multiple root of multiplicity, M, that
the projection of the vector on an appropriate M-space may be
assigned any set of arbitrarily chosen components. Now, pro-
vided that it is practical to do so, it turns out to be some-
times useful, as discussed in section 2.2.1, to choose these
M components of potential and of curreht in such a way that
potential and current vectors constitute a bi-orthogonal set
satisfying equations (20a, b). If v9) ana 199 (5 =1,..., m
are, in fact, bi-orthogonal, they must satisfy equation (14).
In addition, any solution must satisfy equations (19). But
these two sets of equations were used to obtain equations
(20a, b), which therefore, remain valid in the degenerate case.
(Note that Yy remains non-singular under degeneracy conditions).

If the characteristic equation has more than one multiple
root, the previous arguments are extended to each of the degen-
erate eigenmodes in turn.

In equation (20a), for i # j, we have

N N . . .
;' k£1 Z£1 LI SR ACUEI RIS

or, since Y # 0 for w # 0
N N . . .
v aé;)lél)léj) =0, i#3
k=1 2=1
The true number of independent parameters involved in

this set of equations is exhibited more clearly by normalizing

16



the various parameters in some sense.

Write

$B \
kL . (i) _

L ' %mm =t

Cmm

(i) _
e T

(1) &i,k,z =1,..., N (27a)
x(i) Il etc; X(i)= 1
'3 -1215 ’ " "m

m ‘ J

where m is chosen such that Iél) # 0. Then we get

N N . : .
(1) (1) _(3) _ . .
L le Sep X Xt =0, i F i (27b)

Similarly, from equation (20b)

N N . . .
k=1 letéi)yél)yéj) =0, 177 (27¢)
where
(1) \
NECONNL'Y S ¢ S
kL (1} 4 mm
Nmm
(1) $ ik, =1,..., N (274)
(1) _ Ve oto. s (i) _ 1
yZ _\;Tﬂ- ’ .7 ym =
m

/

The proof, in appendix A, that the vectors of a bi-orthog-
onal set are linearly independent is not a function of any
conditions on the eigenvalues. It follows that any bi-orthog-
onal set of current or voltage vectors is linearly independent,
and therefore adequate for supplying the number of degrees of

freedom required to satisfy line terminal conditions.

17



Application of the multimode formulation to the behavior
of a 2-1line is illustrated in appendix C.

2.2. Line of Lossy Conductors in a Homogeneous, Isotropic

Dielectric.

We review, first, the lossless conductor case. Propagation

is in the pure TEM mode, and equations (2c, d) apply. We have

A=fn=Juwlk (G+ juwC (28)
where
Using equation (3) in equation (28),
g
A = Jw E§-+ Jw\Eg (30)
a )

LC=yp.6e,1 =22 71 (31)
== dfd-"75 =
d
whence
w? .
A= (- "y + Juwuggy ) I
d
— - 12 : :
h k = l._d_
where k = Vs (33)

The characteristic equation is

det. [(A + k2% = . . o
et. [( o T Iwug93 ) 855 1 - (4 k2 - Junggg )= 0 (34)

18



yielding the single root of multiplicity N:

A=yt o= - k2 o+ Juugdy
or 1/
94
= + g —
Y * jko 1l + Jueg
= : - 1/2
= * ]ko (1 j tan 6d ) (35)
where
94 |
tan 5d = a-g— (36)
d

is the loss tangent of the dielectric. 6d is usually small
enough so that for practical purposes,
(L - j tan ad)l/z s (-9 6d)1/2 (14 % 62)
- j(1/2)6d s 1 - 3(1/2)64 (37)
If we write
Yy = o + jB

we have, for a forward wave

: .1
ye ik, [ 1-335684]1

so that

a ™ % §q ko = % 9a"g (38)

_ T \
Ng = -
d V €4 (39)

dielectric wave impedance in the absence of losses.

where

Other details for this case are available in reference 5.
Although there is a small modification required to the Z and
Y matrices of the lossless case, it is, for practical purposes,
ordinarily permissible to ignore the change in these parameters,

19



modifying the lossless case only to the extent that
Y = 3B

is replaced by
Y = o+ 3B

When conductor conductivity is finite, this simple picture
is, in principle, drastically modified. Whereas, in the pre-
vious case, the relative conductor potentials had no effect on
the attenuation constant (which measures the relative loss on
the line), this is not true of conductor losses, which are a
function of current distribution around the conductor peri-
pheries. These distributions, in turn, depend on the nature
of the line excitations and terminations.

It is customary, ordinarily, to determine the conductor
current distributions by first assuming the conductors to be
lossless, finding the peripheral and axial distributions, and
then, assuming that these distributions are modified negligibly
when the conductivities are made finite, célculating the loss
rate at each point along the line. This approach generally
introduces a number of difficulties. For example, if we are
dealing with the problem of finding the currents and potentials
on the exteriors of a number of closely-packed cable shields,
with terminations which are either shorﬁ-circuits to ground or
open circuits, the stated procedure yields infinite resonances
at isolated frequencies which happen to be most important for

solution of the physical problem. Furthermore, relative

20



potentials vary along the line, generally by virtue both of
differing losses on the various conductors and of terminal
reflections, so that behavior must be determined point by
point along the line, with points separated by distances

much smaller +than the smallest wavelength of interest. 1In
that case, much of the advantage of distributed line theory is
lost.

If great accuracy is not of importance, this problem may
be circumvented by assuming uniform current distributions
around conductor peripheries, regardless of relative conduc-
tor potentials. For typical conductor proximity in multi-wire
cable, this writerlhas estimated that this yields an estimate
of conductor resistance too low probably by something of the
order of fifteen percent, at most. Calculations of interfer-
ence based on such an assumption would therefore yield results
on the conservative side, but considering the very approximate
nature of the assumed excitation forces, conservatism of that
magnitude can hardly be considered excessive. Analysis of
line response based on pre-assumed values of.conductor resis-
tance aﬁd internal inductance is dealt with in section 3.2.

In the section immediately following this one, we diécuss the
use of bi-orthogonal modes for finding‘the line response

without the need for pre-assumed current distributions.
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2.2.1. Conductor Losses Produced by Bi-orthogonal Mode

Currents

Once again we note that equations (27b, c) are indepen-
dent of the associated propagation constants. A priori, the
possibility that two modes may be bi-orthogonal, is not
excluded merely because they have identical propagation con-
stants.

Assume, again, that the line voltage and current vectors
have been resolved into bi-orthogonal mode sets in accordance
with equations (2la) and (24a), where, however, the Yj are |
not required to be all different. It is clear by inspection
that the total voltage and current are linear superpositions
of the individual modes, independently of the nature of the
propagation constants.

2.2.2. Conductor-Loss Attenuation Constant

Given a specific bi-orthogonal mode (g(j), l(j)) determined
on the lossless conductor basis, conductivities may then be
assigned to the conductors, and, on the assumption that the
curren£ distributions remain unchanged, the a.c. resistances
of the various conductors may be determined. The attenuation

constant for, the mode is then obtained on a power-loss basis:

__ 1 aw
¢ = T I ax (40)

where W is the transmitted power at some convenient cross-
section of the line, and -dW/dx is its rate of power loss at

the same cross-section.
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2.2.3. Modifications Resulting from the Presence of Mixed

Dielectrics

In the caée of lbssless conductors ih a homogeneous dielec-
tric, equations (3) and (31l) lead to a single propagation mode.
When mixed dielectrics are present, it is again convenient to
think initially in terms of lossless conductors, introdueing
modification for finite conductivity later. Transmission is in
the TM (nearly TEM) mode. The electric field has a component,
Ex’ in the direction of’propagation; the two—dimensional.Laplace
equation no longer holds exactly. 1In fact, we have

E=-Vv —'jwud A

and since we have a TM mode, Ay = Az = 0. Thus,

' = - Vv
E, = o0X
oV
E = - 2¥
y 3y | (41)
oV

E, = -3z

- Juughy

and

that is,

2y = X = _
Vt \Y/ "% Y Ey 0 (42)
The transverse field is no longer quasi-static, so, strictly
speaking, the concept of electrostatic capacitance is invalid.

Nevertheless, it has become customary to apply the concept to
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the present situation, even ignoring the likely possibility

that effective capacitances will vary with frequency (Ref. 7,8).
More recent literature has taken a closer iook at this problem
for some special cases (e.g., reference 13, which contains addi-
tional recent references). Inductances have been determined

by assuming that magnetic flux distribution is independent of
the dielectric constant, uniform or not.

The restriction to quasi-static approximations may be
avoided by finding the bi-orthogonal sets and their eigenvalues
without recourse to the static differential equations (1). This
problem has not received our attention in the present study.

In additibn to these distortions to the TEM model, we still
have the effect of finite conductor conductivity, which modi-
fies the mode propagation constants and the impedance param-
eters. Again, the details of these distortions have not been
covered in the present study.

No further consideration is given in this report to the

discussion of mixed dielectrics as a separate subject.

3. FORMAL SOLUTIONS

The eigenmodes found in the previous section, along with
appropriate terminal conditions, are sufficient to define
the response of the line to terminal excitation only. We have
yet to consider solution for the continuously excited line
(non-homogeneous equations). Inasmuch as we believe that
this may have been documented elsewhere in terms of eigen-
mode solutions (e.g., Ref. 14), and since, furthermore, we
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are, for the present, concerned with homogeneous dielectrics
and lossy conductors, we investigate the response of the con-
tinuously-excited line only by the approximate average-pole

method of section 3.2.

We summarize, first, the solution for the end-excited line
in terms of bi-orthogonal modes.

3.1. End-Excited Line

Let
fg(J), fE(J), be a bi-orthogonal set of forward-wave
voltage and current vectors, respectively, j =1,..., N

bz(j), bl(J), be a bi-orthogonal set of back-wave

voltage and current vectors, réspectively.

Then we have, from the second of equations (19),

= -1
g2 = gH Y
. (43)
bt = T pE X
where the minus sign in the second equation results from
changing Yj to -Yj in the derivation of equations (19).
The total forward wave of current is
N l .
= (3) _ | +(3) -
£L jzl e A L (44)

row

where lc is a unit column matrix and we have written "row"
under the bracketed quantity as a reminder that it is a row
matrix.

Similarly;

(45)
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The total line current vector is

L= I+ I+D) 1L

b=
(46)

From equation (18c)

CRleer e
Write
e = w0 expi-vgx = w083 (48)
where
s§ = exp(ij) (49)

Then equation (47) becomes
H = E,‘j’ v‘j)m)s":' = v s
f= - f— j - f— 2

row row

(50)
= ¢H(0) s™!

where s is the diagonal matrix

|—51 ', exp (Y,x)
s = P = " (51)
l_ .SN_| exp(YNx)

H0) = n'3 v 0] (52)

and

Similarly
H = H(0) s (53)
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where

_ a3 ()
JH) = 29 v (54)

row
Then equations (50,53) in equation (46) yields

I=(HOs™ - HO 8) ¥ I

1y'I_ (55)

and, for the line voltage vector,

V= _V+ V= 7] v(j)+liT v(3)
- f-  b— =1 f— 521 b
= (g + ¥ Lo
= .« g1 .
= (fg(o) s ° + bg(O) s) lc _ (56)
For the pure TEM mode
(3) _ - = .
n =n-= [nlj] [Gl] + Jw Clj]
=§+jw_(_3_
s = exp(yx)- 1=-s I; s = exp(yx)
y=v1

and y is defined in equations (35-39)

Then equations (56) and (55) become, respectively,

v.

—

-1. .
sT1e ¥ (0) I + s0,¥(0) I_

sT1egV(0) + s+, V(0) (57)
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=]

=y"! n (sT1e.V(0) - s- [ V(0))
=YY" (sT1eLV(0) - s+ L V(0)) (58)

where (Ref. 5, Chapter 5),
Y- = (1 - § tan Gd)’/z v C ' (59)
in which C is the line capacitance matrix, and
v = (ugeg) 172 (60)
Equations (57,58) constitute one form of canonical equations
for a multi-wire TEM line with end excitation only (Ref. 1 and 5)
while equations (56) and (55) are their respective generaliza-
tions for a quasi-TEM line.
Some additional development of the theory of multimode end

excited lines may be found in reference 12.

3.2. Continuously-Excited Line; Approximate Average-Pole

Méthod.

In the following development we assume that the resistance
and internal inductance of the various conductors are known in
advance. This, of course, is not true, but we can approximate
the true values by assuming for this purpose that current dis-
tribution on the conductors is uniform. The estimated error
in resistance for typical situations is expected to be no
greater than about fifteen percent on the low side, thus yield-
ing a conservative result for externally induced, undesired

signals.
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when an external field is impressed on a line, forcing
functions must be added to the homogeneous equations (1);

thus (Ref. 9, App. B)

—+71I=E(x

(61)

I

Lrnv=H0m

where Ee(x) is an equivalent series voltage source distribution
resulting from the impressed transverse magnetic field, and
ﬂe(x) is an equivalent shunt current source distribution result-
ing from the impressed transverse electric field.

3.2.1. Laplace Transforms for Line Potentials and Currents.

The generalization of Laplace transform methods to vectors

is straightforward (loc. cit.). Use the general designation

F(p) Laplace transform of F (x)

i

¥ E(A) exp(-pA) dA\; p=c + jn, © > 0  (62)
(o]

F(p)

and the inverse transform

Fi{x) = *%— j°+jm F(p) exp(px) dp (63)
2T e T ,

where F(x) is a column matrix (vector).

Taking transforms in equations (61) leads to
v(o) + E°

~e (64)
1(0) +H
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Multiply the first of these by p, the second by &, and

subtract
(* L-gn) ¥=py(0) - g I/ +p E® - g #S  (65)
In the pure TEM case we have
tn=ng=-8"1; B=¢ (66)

and equation (65) is easily solved explicitly for V:

v =—F—v() - 1 £ I(0) + —B— E®(p)
p2+62 N P2+62 p2+82
z %) (67)
- p2+32

whence the inverse transform, V, is obtained in a straight-
forward manner (loc. cit.).

More generally, equation (65) is solved for i by multi-
plying both sides on the left by (p* I - g n)7':
= (p2 1 - g n)~! {pv(0) - g I(0) + pES - ¢ H®} (68)

1<

whence the formal solution for V follows by way of equation
(63).
Similarly, elimination of i in equations (64) yields

= (p2 1 - nz)”! {pI(0) - n v(0) + pH® - n E®} (69)

[ e

3.2.2. Inverse Transforms

[ @
I
)
N
L]

- ﬁ) = [qij] ' (70)

(71)

le)

]

Il
0] o>
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where Q is the adjoint of Q:

Qr1r+++r Qnn

LSJN,..., QNN

O

ji
|Q| is the determinant of Q.

and jS is the cofactor of q.. in IQ];

Thus the formal solution for V is (Ref. 10, 11).

Q (p) {pV (0)~£L (0)+pE° (p) ~zH" (p) Jexp (px) dp (73)
2l

1 ot

v=-
j2m o=
This may be written
v=1Myv (0 - ¥z 1(0) + () - 1*) (74)

where

. PQ(p)exp(px)dp .
) =L [ = 2 BT () (p)exp (px) dp
C-j‘” Igl j2mr  c~jeo
dz(z)
_= ' (75)
dx

Qp)exp(px)dp

(%) (x) = A J‘c"'j‘” J.c+j°° i(z) (p)exp(px)dp (76)

j21T C—joo I.Q_l jz.n, C—joo
. REE
) (g = L O3 pQ(p) E” (p) exp (px) dp
jZTT C—joo Igl
L o E (77)
== " 10 pEpepEa
JZTT C—joo
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1 jors 6 (p) H® (p) exp (px) dp

(%) (x) = —
j2mr  c-je IQ]
= [°3% 1(2) (p) £H® (p) exp (pue) dp (78)
j2r c-j

Inspection of equations (75-78) shows that the basic solu-
tion needed is T(2)(x), equation (76). T(!)(x) is then obtained
from T(2) by differentiation. T(3) g determined by convolution
of T(1) with Ee, while 2(“) is obtained by convolution of 2(2)
with Eﬂe. (See App. D).

Thus, the solution for the potential may be written

ar(2) (g)
v=0) -2 p 10+ [P Eerxenac
dx o dg
- X 1) (g) ¢ H®(x-E)aE (79)

o]

For the current, I, we note in equation (69) that

(p2L - ng) = [p?I - (z )71 = [p*I - ¢ nIT
T _
=Q = [qji] (80)
and (é?)
ZI _ -1 = T -1 = em——
(p°L-n2% | Q%) QTI
But [Q7] = g
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and (QT) = matrix of transposed cofactors of q..

= [Qij]

Jji

The formal solution for the current is, from equation (69)

where

E = 5(1) E(O) - 5(2) n Z(o) + 3(3) - B(H) (81)
RO () = L [otie pd exp (px) dp
B j2m c-je ’Ql
loo ~ dR(Z)
j2m c~j= ax
2T
r(2) (x) = 1 Ic+jm Q exp (px)dp
- jZTT C—joo Igl
Jem c-j=
' ATHe
r(3) (x) = 1 J'C+jao pPQ"H~exp (px)dp
B j2m c~-j» Igl
= Ti" ICTJQ R(?) (p) #®(p) exp (px) ap (84)
Jam c-jo
R(*) (x) = % Ic+jw QTﬂgeexP(px)dp
= : j2m c-jo IQ' ‘
= 'j; {cfjm R(?) (p)nE® (p) exp (px) dp (85)
c-joo
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In this case, equation (83) for g(z)(x) is the basic solu-
tion, the others being derived from it in the same way as in

the potential ?a?ea Equation (81) mav bhe written
2

drR . @Rl
I=— 1(0 -Rr(@)nv(o) + [¥ ——— B (x-£)dE
dx o dg
X
B { Rzl (g) n E®(x-g)de (86)

Returning to equation (76), we note from equation (70) that

|Q| is a polynomial of the Nth degree in p?, and may therefore

be written

el =

N :
(®* - p2y= ) ap?MN); 4 =1 (87)
i =

r=0 °

==
—

where the p; are the roots of
el =0

In the numerator of equation (76) the elements of Q are
rational integral functions of p and therefore contain no
singularities. In fact they are polynomials in p? of degree
no greater than (N-1). Thus the solution for 2(2)(x) is just
the sum of the residues at the poles, * P; (i=1,..., N) of
the integrand.

3.2.3. Approximate Solution: First Order Effects.

With the conductor resistance assumed small, the deviation
of the propagation modes from pure TEM is also small. The
roots, * p; are contained in regions R, and R_, respectively,

bounded by small circles of radius, p, such that
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<< 1, i=1,..., N

'Ul*o

i
We make use of this fact by expanding the integrand of
+

equation (76) in Laurent series around the points * p_, 1n R,

and R; respectively, where

§.
p; = by + 8;4 || << 1 (88)
Py
and N
=15
Pa = N.%.Pi
i=1 . (89)

average value of the P;

It follows that

.
5 5. =0 (90)

1 1

1

(2)

The value of Tij 'is then just the sum of the coefficients

1 and (p + pa)-lin the respective expansions.

of (p - p,)
Details are given in Appendix E.

The result is

N a.‘q)
Tifz) =3 = -1 F(xip,iq) (91)
7 =1 (4p M)

where

P =Q+§—l ; (_1)q+s-r—1 < (xr> <2q+s-r-2)
s

r=0 s=0 sza)s'r+1 oal (92)

P X “PX
x [e & -(-1fe a]
The ajiq) are coefficients in an expansion of jS

(c.f. equation (E-3)):
35



N
- (r) 2_.. 2y0-r 93
T o

The first few values of the SS are

Sp =1

51 = 0 (94)
N i

S, = % r 8. 6
i=1 j=1 * J

In particular, for q = 1,2:
I R
F(X:Payl) = pa {S.‘th pax
S,
+ — [{1+2p,*x*) sinh p_x-2p,x-cosh p x] (95)
(2p_) 2 o
a
+ ...}

F(x;pa;Z) = - %— {[sinh PoX = PgX * cosh pak]
a

S2
+ ——2[31nh p,Xx - 3p,x cosh p_x

2p
a (96)

2,2 o4 _ 1 3,3
+ p, % sinh P X 3 Py X cosh pax]

+ ...}

At this writing, we have not taken the time to explore
carefully the convergence properties of the double series,
equation (92). Some preliminary analysis suggests that (1) the
series converges more slowly for larger values of (pax); (2)

terms begin to get smaller when s is of the order of dmx, where

§_ is the largest of the Iéi . Actually, for low-loss con-

m
ductors in a homogeneous isotropic dielectric, we expect ap-

plications of these results to show that the dispersion
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effects are accounted for adeguately by the ajéq), (g>1), and
that their multiplication by factors containing SS, (s>1),
introduces only second-order corrections to the dispersion

calculations. 1In that case, the determination of F becomes

simply
gq-1 ,_,\g-r=-1/r e p.X -pax] (97)
r=0 (2pa) :
In particular,
1 .
Fo (x;p_:1) = = sinh p_x
0 a Py a (97a)

fi

2 .
Fo (x,pa,2) -5 (sinh PoX = PyX cosh pax)

a

From equation (91) we have immediately

(@) T
(2) N A g .
T %= I —— F(x;pa;q) (98a)
q=l (4pa2)q-l
where ‘
(q) _ (q)
A = [aij ] (99)

Furthermore, comparison of equations (76) and (83) yields

(q)
()_ 3 2

R e
g=1 2,g-1
(4p, )

F(x;pa;q) (98b)

To determine the response of the line as a function of its
terminations, we proceed essentially as in reference 9, appendix
B. In conformity with previously established notation (loc.cit.)

we introduce the following symbol changes:
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1) > 1°
where 2 is the length of the line.
In addition we have the terminal conditions

Il+l\ll=
o 6 .o (100)
1° - ¥° v =0

[+
(=)

<

where Zl, X?

are the line termination matrices at x = 0, £,
respectively (Ref. 15).
In Appendix F we use these conditions to obtain the

following results:

vix) = (100 ) + () 0 g ¥t sTIRM) + Ux) |
. (101)
1x) = - (K xyt + RO ()n)sTIR() + W(X)
where ‘ |

S = P;l Q{[B(l)(l)zi + R (2)(£)ﬂ] + 10[2(1)(1) + 2(2)(2)5111}

k(2) =p;' g (IRCI () - rM )1 -z ) -z ()1}

ux) =20 (x) -0 () (x) (102)

w(x) = ROGI(x) - () (x)
Although small conductor losses can affect the line propa-
gation constant significantly, the effect on the line impedance,

or admittance, matrix is usually considered unimportant. In

\

38



accord with this view we have, from equations (l6a, b),

V=p'lzI=271 | |
(103)
Ww=xv

(1 - jtanéy)~/2 v L |
(104)

Y =p;' nw~jup;’ €= (1- jtanch)l/2 ve

1

il

e
o)

where

Z=p;' £~ jup,'L

and we have used the average propagation constant, Py for v.

z and Y are the line impedance and admittance matrices,

respectively (Ref. 15):
ZY = viILC » I (105)
Again, using previously established notation we write the
normalized load admittance matrices:
pt = gyt
_1_>_° _ @_{_o} ‘ (106)
whence equations (101) become |

vix) = [T (x) + 7(2) (x) (p.2 Y} 18~ K(2) + U(x)
— — — a—-— — — —

=z x) +p, T x) B ST R + U (107)

1) = - R ) ¥ et + RO () (pY)ISTIR() + H(x)

Y
- 1R ) ¥ Y+ p R (0)YISTIR(L) + W(X)

where

= (1) (g i (2) Orm(1) (2) i
s = ZURM™ (MYR” + pRIV (Y] + ezt () + p 22N (RTINY )o)
k(2) = z{[R( () - R ()] - ¥p°1() (2) - () ()1} (108)
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4. DISCUSSION OF RESULTS

We will discuss, first, the approximate method of the pre-
ceding section, and then review, briefly, the method of bi-or-

thogonal modes.

4.1. Discussion of the Approximate Solution

The results obtained in the previous section may be
summarized as follows: The TEM potentials and currents induced
along a multiwire line of low-loss conductors by an external
electromagnetic field may be approximated by the equations

v) =[2) 0 + p 7 optysTiR(E) + U0
(109)

1) = - [ 60 et ¢ p R 0y)sTIRM) + W

where S is the non-singular matrix given by the first of
equations (108)
K(2) is given by the second of equations (108)

ue =1 - ) ()

wix) = RO x) - RO (x)

(1) (x) = az(?) (x) /ax

g(a)(x) = 2(1)(x)*§e(x) (convolution)
2 x) = 2 (x)wz 8 (x)
T
2(*) (x) = = sinn -é(Z) inh
T X) = 5; sinh p_x —EB;?(Sln P X - pax cosh p_x)
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k(1) (x) = @ R(?) (x)/dx
5(3)(x) = 5(1)(x)*ﬂe(x) (convolution)
RV (x) = (2D (x)*n E€(x) "
(2) 1 . oA |
R (x) = E; sinh PX - 5 5 3(31nh PoX ~ pPoX cosh pax)

Lt = line series impedance matrix, ohm/meter
= R+ juL
R = ‘[Riaij] i L = [Lij] i Ry << Ly,
n = line shunt admittance matrix, mho/meter
=g+ dug
G = [Gij] ; C = [Cij] ; Gij << cij
Zn=(R+ jwL)(G+ juC)
= [R + juw(Lg ¥ L;)1 (G + JuC)
where
L, = external inductance matrix
= inductéhce matrix in the absence of conductor
losses
Ei = internal inductance matrix
Li << L

Continuing, we can write

£ n = Jwb, (G+ juC) + (R + JuwL,;) (G + JwC)

-k 1+ (110)
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where

k2 = (1 + - ) (111a)
v Jwe 4
and .
g = (541 = (R + JuL;) (G + Jug)
(111b)

Fij << |k?|

jkO is the line propagation constant in the absence of conduc-
tor losses. The polynomial

det. 9 = det. (p? I -~ ¢ n) = det, ((p? + k%) I - g)
has zeros, + p., given by |

Py = P, * 6; s 1=1,..., N
where Pay is the arithmetic average of the p;:

Py % .§ Py

i=1

and

65

Pa

<<l ’iAzl'--.'N

The zeros may probably be determined most accurately by
first writing

u=p’+k2;det. 9 =det. (ul - g) (112)
and finding the zeros, u. of the resulting polynomial. The

p; are then given by
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2
2
(ui - kO) 1/

Pi =
= j(ké - ui)1/2 (113a)
vy
3 jko - j 2—' ’ i = l,uo-, N (1l3b)
o

Knowing the 6, we can compute S2, the coefficient of

(p - pa)-2 in the power series expansion of

The desired coefficient is readily obtained by initiating

the indicated operations. Write

8y
bi = .
2
N
P-1= I (l-bi)
i=1
=l_al+a2-a3+oo't
where
N
a; = ) bi
i=1
N N
a, = } } b b,
i=1 j=i+1l
N N N
a, = } } ;) b;bsby etc.
i=1l j=i+l k=j+1
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Then inverting by long division one obtains

- 2
p“l+a1+ (al—a2)+--oo-

]

N
1+ (p - pa)“_z 85

i=1
'y xN N N
+ (p-p )72 1 1 6;85 - D) §i651 + ...
i=1 j=1 i=1 j=i+l
Thus,
N N N N i
S, = 1 65| 1 8 - ) 851 = ) JLB (114)
i=1 j=1 j=i+l| i=1 j=1

Finally, we have the matrix, 5(2), of the coefficients

aé%) in the expansion of the cofactor Qi

j jf

N .
= (r) 2 _ .2\N-r s

il

Normally, Qij' being a cofactor of det. Q, will be avail-

able initially in the form

N A
= (r) _N-r
r=1
where u = p? + k2 ? (116)
s p® |
bij Gij' 'bij << 1, r>1

/ ;
The coefficients, a{%’ are obtained by initiating the

binomial expansions of the first two terms of equation (116)
in powers of (p? - p;): thus, for r = 1,

W= 12 - p2) + (p2 + k2N

Nl - 12 - p2)N2

2_p2)

=(p A

(pZ + k2)+...
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for r = 2,

N-2 N-2
u

= (pz - p;) + ...

Collecting coefficients of (p? - p;)N"2 in the two expan-
sions (eq. (115) and (116)), and equating

a£§) = béﬁ) + (N - 1) (p2 + k2) 855 (117)

The remaining parameters (Y, Eé, ﬂ?, Rl, go) have been
fully defined previously for the case of lossless lines (Ref 15).

The dominant terms in T(2) (x), R(2) (x) have the identical

form

() (x) = = s (118)

M' T (x) = 5 sinh p_x

a

Thus, for the lossless-conductor case we get
sinh p_x

T(8) () = R(?) (x) = a_ g

sin kox

o

in which, for lossy dielectrics, kO is complex. In addition
we get

(1) = p(1) = .
T (x) R (x) = cos k x 1 W

2(3)(x) = Ee(x) * cos kox
? (119b)

(") (x) = k7! g H®(x) * sin k x

o]

=3 2 #H9(x) * sin k x
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by equations (104). Furthermore,

5(3) (x)

ﬂ?(x) * cos kox

B("') (x)

ko' n ES(x) * sin k% (119¢)
=3jY Ee(x) * sin k X
by equations (104).
Equations (108) become
s = z{[Y Ri cos k. & + jY sin k L] + ¥ E?[cos koz-l

+ 3 P sin k 2]} = (2*+P%cos k & + 3 (I+R°P") sin k & (120a)

K(2)

2{[H" (L) * cos k & - 3Y ES(L) * sin k2]

¥ PPES(2) * cos k & - jZ H%(2) * sin k &1}

= (I cos k & + jB° sin k_2) * 2 H(2)

(° cos k& + 3 I sin k_2) * ES(2) (120b)
From equations (102) we get

U(x) = Ee(x) * cos kox - J 2 ﬁe(x) * sin k_x (121a)
W(x) = ﬂe(x) * cos kox - j ¥ Ee(x) * sin k x (121b)

and, finally, equations (10l1) become

V(%) (1 cosok X + jgi sin kox] §"1 K(L) + U(x)

I(x) =- [zi cos k x + jY sin k x1STIK(R) + W(x) )(122)

= - X[gl cos k. x + J sin kox]g'lg(l) + W(x)
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where S, K(%), U(x), and W(x) are given by.equations (120a,b)
and (12la,b).

These results conform with those previously obtained for the
lossless case (App. B, Ref. 9) on setting

- - w
ko =B =%

4.1.1. Series Impedance Approximation

We have to re-emphasize the fact that the method developed
here is based on the assumption of values of conductor series
resistance and internal inductance which generally must be
only approximate. On the assumption that the current distri-
bution on each conductor periphery is uniform, the attenuation
estimate will generally be too small. For a typical cakle
situation we have estimated the worst-condition error to be
of the order of 15%. Furthermore, insofar as the study of
interference phenomena is concerned, the line attenuation is
important chiefly when one or more conductors afe terminated
in lossless loads, as for example, a group of cable sheaths
grounded or open-circuited at the cable ends.

The error in estimating the internal inductance has not
been studied. We guess it to be of the same order as that
of the resistance, and, probably, of even less importance,
since, in any case, the internal inductance is small compared

with the ever-preseht external self-inductances of the various
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conductors.

4.2. Discussion of the Bi-orthogonal Mode Scolution

Expansion of the line response in a set of bi-orthogonal
modes has the advantage that the contribution of the conductor
losses can be formulated independently of line terminations.

In at least one special case, that of perfect circular
symmetry for all conductors within a circular sheath, a set
of independent bi-orthogonal modes is readily postulated.

(Ref. 1, Sec. 4.10, p. 172). Figure 1 illustrates this con~
figuration class for N = 6. A suitable set of potential modes
is

v o [q, gkl G201

r

v &IIT e g, L, 6 (123)

e ey

where
v = exp(j2n/6) (124)
More generally, for N symmetrically-disposed conductors

in a circular shield we have

Y(k) = [1, vk—l’ v2(k—1) V(N—l)(k—l)]T,

k’_‘l'o..’N

g e oy

(125)

where
v = exp(j2n/N) (126)
Furthermore, the vectors so established, form a linearly

independent set (App. G).

We presume that this subject is well-covered in reference

14,
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Fig. 1 Six Conductors Symmetrically Disposed in a Circular Shield.
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In the meantime it must be stated that certain configura-
tions of importance (e.g., Fig. 2) do not fit in this category.
For such arrangements, it would appear necessary to accept the
complexities inherent in the multi-mode solution for large N
or to accept the errors inherent in the average-pole-residue
solution, or else to become involved in a much more complicated
step-by-step, iterative procedure that hardly seems justified

by the overall improvement to be expected.

5. CONCLUSIONS

This report studies and contrasts two analytical methods
for investigating the response of multiconductor lines to
external fields. We have identified these methods as the
bi-orthogonal multi-mode and the average-pole-residue method.

From open literature available to us'’!?, and from what
we expect to find subsequently'!", we éonclude that the multi-
mode method is well-discussed elsewhere. Consequently, we
have studied and sketched this approach to the problem some-~
what superficially. We are satisfied that, at least for a
line or cable with a moderate number of conductors (less than,
say, twenty), this method is a powerful one.

The average-pole method requires that the resistance and
internal inductance of the conductors be known in order that

the system determinant, which contains the needed poles, may
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be written. On the other hand, logically, not only can these
quantities not be known until the solution of the problem is
known, but they further complicate thz problem by being func-
tions of position along the line. However, they may be simply
approximated by assﬁming uniform current distributions on the
conductors. For the purpose of studying interference effects,
the suggested approximation should be adequate, and, in any
case, should overstate, slightly, the degree of interference
expected. Thé method should be particularly advantageous for
a cable with a large number (fifty or more) pf conductors. The
relatively small complexity it adds to the lossless conductor
formulation appears to be commensurate with the gain in infor-
mation accruing from inciusion of conduéﬁor losses in the model.
The chief pre-occupatioh in this report has been with the
effect of conductor losses. The effect of mixed dielectrics
has received passing mention because the analytical methods,
particularly that of bi~-orthogonal modes, appear to be suit-
able for that class of problems as well. The attractiveness
of the average-pole method for this problem éhould vary,
roughly, inversely with the spread in permittivities of the

dielectrics involved.

ACKNOWLEDGEMENT

The work reported herein was sponsored by Harry Diamond
Laboratories, Washington, D.C. for the Defense Nuclear Agency

under its Subtask EB075.
52



APPENDIX
r——

A. LINEAR INDEPENDENCE OF THE VECTORS OF A BI-ORTHOGONAL PAIR.

For a bi~orthogonal pair we have [Eg. (14)]

__
= = . 6L A-1
V'I=W=[w §;,] (a-1)

Assume, if possible, that the z(j) are linearly dependent.

In that case a constant vector
T
E:'[cllo.o' CN]
different from O exists, such that

c'y’= 0

This is possible only if the determinant of V is zero:
|l¥|] = o.

But, from equation (A-1),

w| = |yt

Il = |y

1l =0
which is contrary to hypothesis, since, by equation (A-1),
N

|W| = |w, 6.5 =T w, # 0.
3 %30 T50

Therefore, the z(j) are linearly independent. Proof that the

1(3) are linearly independent follows in an okvious manner.

B. CORRESPONDENCE BETWEEN EIGENVALUE MULTIPLICITY AND THE

RANK OF THE CHARACTERISTIC MATRIX

The following discussion is based on the development in

Reference 6, sections 10.13, pp. 303 ff. (q.v.).
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r A ,...Ap, where Ak is

Let (AI - A) have eigenvalues, A )

1

of multiplicity, Mk’ By means of a similarity transformation
[loc.cit.]
B=0'AQ (B-1)

the matrix, A, equation (5), may be transformed to a matrix,

B, with the same characteristic equation, i.e. the same
characteristic determinant set equal to zero, and therefore

the same eigenvalues, such that

B = diag. (A, A (B-2)

1 Lorec-y l_\p)

where, by virtue of the symmetry of A, Ay (k =1,..., p) is

reducible to a diagonal matrix of Mk rows and columns:

r-)\k’ 0,‘ 0,.--, o-1
‘A—k= 0, )\k, 0,-.., 0 ’ k= 1,-.., p (B—3)
—(.)I Ol OI IA]S-

The characteristic equation is
)\1"&1 0 r 0},0.-, 0
’

0 ? )\l—éz’o'.." 0 .
det. (A\I-B) = =0 (B-4)

0 ’ 0 ,Oloon’(A_I_—.A_p)

When we substitute A=Ak, it is clear that equation (B-4)
will contain Mk rows and columns of zeros, whence its rank

cannot exceed (N - Mk). In fact, if we form the (N- Mk)-rowed
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determinant, D(k)' obtained by excluding the Mk rows and

columns of zeros, we get by Laplace's expansion

N
Dy = T {det. I -2a)}r#0
i=1
(k)
since, by hypothesis, det. (Akl - éi) # 0, i# k. Thus, det.

(Akl - B), and therefore, det.(AkL -2), are of rank (N - Mk).

C, BI-ORTHOGONAL MODES FOR A 2-LINE

From equations (27b, c¢),

N N . . .

I S
k=1 2=1 i# 3
N N . . .

11 ey ) o
k=1 =1

For homogeneous dielectrics and lossless conductors,

(1)

the superscripts on s, and téz) may be dr0pped:

v (1) (3)

DL spg %7 %7 =0 (C-1a)
k=1 2=1 L4

N N . . !

Ity v =0 (C-1b)
k=1 £=1

Note that interchanging i and j in equations (C-1la,b)
adds no new result. Thus, the condition i#j changes to

i>9,3=1,..., (N - 1) (c-2)
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We can use either of equations (C-la,b) to discover sets
of bi-orthogonal modes for a 2-line. Considering equation

(C-la) for a 2-line we have

1+s (x4 x(2)) 4 g
2 2

x(1) x(2) = ¢ (C-3)
12 2 2

22

We have two unknown ratios and one equation. An infinite
number of solutions is possible, subject to physical realiz-

ability constraints on the ¢'s, including

2
0 = Bia < 1
' ;11 sz
C22 5
T

We can obtain another equation by imposing the condition

that the mode set be independent of s,,. In that case,

xil) + xgl) = 0 (C-4a)
and, consequently,
(1) g(2) = - g=1 _%11 -
X, X, S,, = Z,, (C-4Db)

Solving these simultaneously yields
i

Iél) - 4+ [48

= —— N =

Il(l) - Cz'z I(Z) (C’-S)
1

In the case of a symmetric line, z,; = .2, and we get

—_—— = ot ] = - 152)
I(l) I(z)
1

(C-6)
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If we choose the upper sign, E(‘) is the so-called even,
or common, or unbalanced-line mode, while 2(2) is the odd, or
balanced-line mode,

Still restricting discussion to the symmetric line, if
we remove the restriction that the mode solution be indepen-

dent of C1z' we have to satisfy

1 + s (x(l) + x(z)) + x(l) x(z) = 0 (C-7)
12 2 2 2 2

xiz) is plotted as a function of xil) in Figure C-1.

Values of xiz) = * » are best interpreted as Ifz) = 0.

The voltage vectors are then readily obtained from equa-

tions (14b):

|
o

v(1) 1(2) 4 y(1)1(2)
1 1 2 2

vi(z) 1) 4 y(2)1 (1) =
1 1 2 2

that is,
1+ y(1) x(2) 2 g
2 2 (C"'8)
1+ in) x§1) =0
whence
vil) _ IfZ)
V(l) I(Z)
2
viz) _ _ 1Y)
v T T Im (C=9)
1 2
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€ e e an—— % (N A ot ko

x(2) = 1)

asymptote: xzm =-8|2

"2“)

asymptofe: x 2(2) =-8|2

x2(2) s _xa(l)

"2(2) =32

Fig. C-1 Relationship Between Mode-current Ratios for a 2-line.
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In the generally unsymmetric case, if modes are limited

to those independent of clz,

vit) _ g2 _ _ V42 (C-10)
V(l)‘ z V(z)
1 11 1

and for the special case of symmetric lines,

(1)
PSR R 7 5 (c-11)

Sometimes (see, for instance, Reference 1, Chapter 3),

for unsymmetrical 2-lines, it is assumed that

W(1) o - p = 1Y) (C-12a)
I(1)
. 1

In that case,

«(2) =L = S12 _ L1y = Tra2 _ 1{2) (C-12b)
2 s -5 E - C I(z)
22 12 22 12 1
and
_ (1)
y(1) - _ 1 = _ &1 Ciz - V2 (c-13a)
2 X(z) 4 -z V(l)
2 22 12 1
(2)
(2) = - l = 1 = V2 C"'l3b
Y, (1) v (1) | ( )

Thus, for the general unsymmetric 2-line, if one mode is
chosen as an odd-current.mode, the other mode is an even-voltage

mode. The fact that an even-current mode, chosen for the first
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mode, leads to an odd-voltage mode for the second, is clear
on reversing the sign of xél) in equation (C-12a).

To continue illustrating the results obtained in section
2, assume we are dealing with a symmetrical 2-line above
ground (Fig. C-2). The dielectric conductivity and permit-
tivity are 94 and €3 respectively. The conductors all have
conductivity,’gc. For simplicity we assume h/a, D/a >> 1.

As we have just seen, a set of bi-orthogonal modes inde-
pendent of line parameters is

£(1) = [Igl)' I}l)]T

1(2) = (z{2), - 1{2)7 (C-14)

X(l) - [V](I), le(l)]T

[VI(Z) , - VI(Z) ]T

v(2)
Furthermore, assuming 9. to be infinite, initially, we
have (Ref. 1)
v =213, 5=, N (C-15)
where Z is the line impedance matrix

Zy14 2,2

I~
]

—
(S

Sd
]

$ 211 = 2223 221 = 22 (C~16)
221, 22,

Equation (C-15) applies to any combination of the modes,

as well as total potentials and currents on the conductors.
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D radii = a

T

1

Fig. C-2 Symmetric 2-line above ground.
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For the dielectric we have (eq. (38a)),

1

%9 = 7 %aq Ko
g9
6q = 4
“Fa
- 1/2 _ 2T
Ko = wlig®q) 77 = 33

where kd is the propagation wavelength in the djelectric.

For the conductors we have (Ref. 5, Chap. 5)

R l 2 2 2 y
all) = 9 1+2 (_a_) £ 2+E +2(a) 1+3£°+E
c 8'rrazou { D 1+£2 D ""( l—+—£.’i_)_-

(C-17)
R 3 2 6
- o L ]ofe) [
0b 1+£2 (1+g2%)?
where
TTf]J 1/2
RO = ( c) ohms/square (C-18)
gC
1
z =35 (2, + Z,,)
Ou 2 (C-19)
ZOb =2 (211 - 2,2)
=D -
£ = o (C-20)
f = frequency, Hz.
= 471 x 10”7 Hy/m for non-ferrous metals
g, = 5.8 x 107 mho/m for copper
Therefore
Ry = 2.61 x 10=? £!/2 ohms/square (C-21)
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Furthermore (Ref. 5, p. 4-17), ignoring conductor internal

inductance,

n
2
Zi1 = 5y 40 2
(C-22)
N4

S
le=71—r-2n-ﬁ

where

S = (D% + 4n?)}/%; §/D = (1 + 2 )1/
£

For a non-ferrous dielectric, 7
_ 120w (C-23)

n ]
N

where €. is the dielectric constant relative to free space.

Then equations (C-21 are

Z11 = 60 Zn gal:l-
VA (C-24)
S
2,, = 80 2n 2
€r

Choose constants as follows:

Er = 2,3
E:S
a

- D _ a 1
£ = 3, = 1; therefore ( 5) = 715

Then
_ _ 60 !
21y = 2y, = n(10) = 91 ohms
\/2.3

Zis = %5, = —20_ gn(1+1)'/2 = 27.4 ohms
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Therefore

Zyy = 5 (91 + 27.4) = 59.2 ohms
Zgp = 2 (91 - 27.4) = 127.2 ohms
Take a = 2.5 x 10~ ? m.
£ = 10°% Hz.
Then

Ry, = 2.67 x 1077 x 10" = 2.67 x 10~ ® ohms/square

Substituting the foregoing results in equations (C-17) yields
af!) = 0.968 x 107? Np./m. = 8.4 x 107° db/m.

af?) = 1.48 x 107 Np/m. = 1.28 x 1072 db/m.

To compute Ogqr take

§q = 2 X 107"
g =Y= 3 x 10 - 1.982
10° x 2.3
whence
27

and

aq = 3 (2 x 107*)(3.17) = 3.17 x 10™"

The total attenuation constants are

al) = 8.7 x 1077 /m.

o (2)

1.31 x 107° /m.
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For a semi~infinite line excited at one end,

1, = 1{+ 1{?)
= 1{1)(0) exp{-[8.7 x 10~% + j3.171x}
1{2) (0)exp{-[1.31 x 10™% + 33.17]x)}
1, = 1) + 1{?)

= 1{) (0)exp{-[8.7 x 10™% + §3.17]x}
- 1{2) (0)exp{-[1.31 x 10™% + 33.17]x}
Vl =V§l) +V§2)

= (lelgl) + 212151)) + (lelfz) + lelgz))

= (Z,, + 2,,) Ifl) + (Z,, - Z2,7) I§2)

1z 12

- (1)
—2ZuI1 +20b

0
118.4 1{!') (0)exp{-[8.7 x 10”3 + j3.17]1x}

]

+ 63.6 I12) (0)exp{-[1.31 x 102 + j§3.17]1x}
v, = vi) & vf?)

(szlgl) +.ZzzI§1)) + (Z121§2) + ZzzI§2))

]

(1) _ 1 (2)
2 25,11 7 Zopl!

= 118,4 1{!) (0)exp{-[8.7 x 10™° + §3.17]}
- 63.6 I{2) (0)exp{-[1.31 x 107% + j3.17]1x}

The two unknowns, 151)(0) and Iéz)(O) must be determined

from the terminal conditions. For instance, if the initial
currents are qiveﬁ, write

1,00) = 1§ (0) + 1{2)(0)

1.(0) = 1) (o) + 1{2)(0) = 1{V)(0) - 1{2)¢(0)
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whence

1{0) =% [1,.(0) + I,(0)]

1{2)(0) = 5 [1.1(0) ~ I.(0)]

thus completing the solution.

D. CONVOLUTION INTEGRAL FOR THE TRANSFORM OF THE PRODUCT OF

A SQUARE MATRIX AND A VECTOR.

Let M(x) be an N x N square matrix function of x, and let

P(x) be an N-rowed vector. Let the corresponding Laplace
transforms be M(p) and P(p) respectively.

Given

~

an expression for G(x) is derived as follows:

G(p) [Mij(p)][Pi(p)]

From scalar transform theory (Ref, 11), if

then

N
Gy (=116 (p)} = L7! { ]

; Mij(p) Pj(p)}

1

N

I
o~

-1 /vn -~
it {L (Mij(p) Pj(p))}

N
= jgl (Mij(x)*Pj<x))
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G(p) = M(p) B(p) (D-1)

N
[ DREY ﬁj] = (G5 (p)] (D-2)
j=



and
N
G(x) = [G;(x)] = Lz (Mg 5 () * Pj(x)ﬂ

il

M5 (x)] * [Py(x)] = M(x) * P(x)

[* M(x-£) P(E)AE = [* M(E)B(x-£)dE (D-4)
o}

o]

E. EVALUATION OF A RESIDUE AT A MULTIPLE POLE

From equation (87) write

lg| = n,(p) * 1_(p)

where
N

i, (p) =i£1 (ptp,)

To evaluate the residues at the poles in R+, note that,

for this purpose, p is confined to R, and its boundary, so that

N N
I,(p) = I (p-p,) = T (p-p_-6.)
+ i=1 i i=1 a i
g N §;
= (p-p,)" T |1 -
i=1 P-P,
and N N
I_(p) = I (p+p,) = I (p+p_+6.)
i=1 . i=1 a 1
N N
= I (p+tp.) = (p+p.)
i=1 a a
thus,
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lo|™" [(pZ-P 2)N lI\II (1- ! )]
a i=1 P7P,
o S
= (p-p, )N 1 —2— (E-1)
s=0 (p-pa)
where
So =1
N
Sl = X §. =0 (E_Z)
. i
i=1
N 1
S, = 1 r 8. 6.
*oi=rg=1 1D

and, in general, SS is of the order of 6i1612 .

each il,...,iS is one of the integers from 1 to N.

«e.,6, , where
i

Next, turning attention to the numerator of equation (76)

we have noted previously that the cofactors, Qij

« of Q-are

polynomials of order (N-1) in p?, at most. In fact, a little

study shows that the cofactors of the diagonal elements are of

order (N-1) in p?, while all off-diagonal elements are of

(N-2) in p?, at most. If jk, is the propagation constant

the line in the absence of conductor losses (ko generally
plex), the Qij are available in the first instance from Q
the form
N
(r) , » 2y N-r
LLo= L . . .+
Qlj N blj (p ko)
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where the coefficient of the leading term is dij’ while,

for r > 1,
€.

r-1 ’ i j
bl (r) = I Ei s lk' jk = 1‘l'~°l N; k'k << 1
J k=1 Z*xJk k2
Thus
b, V=s.., 4,3, =1 N
ij ij’ A re oy
b (r+t) b (r)

i ij << 1, r >1, t pos. int.
g?%%¢€:TT << ;?%E:T) ’
(o] o

These may be re-expressed in powers of (p? - p;) by use

of Taylor's theorem:

N-1 | 3Q.. (p?) (p2-p2)°®
Qi' = I. S Bl ___ETE__
3 s=0 ap*? :
P=P,

or, by changihg the summation index, thus:

s =N-r; r=N-38

r ' N- .
Qij = E a(J)(p - P;) rl i, J = l1,..., N (E-3)
r=1
where
alt) = 5.,
ij ij
N-r 2 . .
) Q.. (p?) ‘
(r) _ ij _ '
8i3 a(p2)N° T /// Lo :).] (E-4)
P=p,
a£F+t) a.fr)
i
2 (r+t-1) << 2 (C-1 <<1l, r>1, t poes. int.
a pa



Finally, expand the exponential of equatidn (76) into a

series in (p - pa):

exp (px) exp(pax)exp(p - pax)

|

exp(pax)

(E-5)

Substitution of equations (E-1), (E-3), and (E-5) for the

element of the ith row, jth column of 2(2)(x) in equation (76)

yields, for the poles around Pt

AN (p-p 2)N"d epax - (p-p,) "% ][ - S
1 -1 Ji a -0 re _n(P-P
Res(pa) = ??Fj{ — r= , s=0 “a
2__ 23N
(b,) (P"-p, ")
pP.Xx N o o r (p-p.) = 97"
_ - a (q) (x ) 1 a
= e E E E aji Sg\zT 137 3 dp, (E-6)
g=1l r=0 s=0 (p+pa)
(p,)
Next, expand (p + pa)-q in powers of (p - pa):
- o ® _1\/P-p\m
(p+p) % = (2 p)7 % 2 (-l)m(q+m 1)(2 a)
m=0 m Pa
where

binomial coefficient

()

(g+tm-1) (g+m-2) ..., (g+l) g
m!

- g+m-1
q-1
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Equation (E-6) becomes

Res(p.) = e a z z z g (-1)™4 -] SS(ET Ca(pa) (E-7)
a g=1 r=0 s=0 m=0 a-1) (5p yatm :
a

where

= 1L - )
Ca = ‘j—i—TF (p pa) dp

(p,) (E-7a)
o=r+m-gq- s

The residue at p = p, is the coefficient of C_,; that is,

it is the coefficient corresponding to the constraint

o =r+m-g-s = -1 (E-8)

We are interested in terms corresponding to the first few

values of g and s. For specific values of these parameters,
equation (E-8) implies

r+m=q+s -170
Furthermore,
m=(g+s-1) -r 50
which implies that
r<gq + s -1

Making use of these facts we have, for the residue at P,
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(q) -X-= 2g+s- _2 J
pyx N g+s-1 = a_.’ «F (_l)q+s r-1 g+s-r
L M ey-JE A £ 2o T5E I\ @l ) (E-9)

a

Res(p_) = e
a g=1 r=0 s=0 (2pa)q 8

Following the same procedure inlthe region R_ we get .

(q)
“p_.x N g+s-1 « a,: r _1y9+s . ’
Res(-p) =e 2 I © 1 —di ss(ﬁ) (-1) (ZC”S r 2) (E-10) *

q=1 r=0 s=0 (2p)% (2p) IHSTETIN g1
The solution for Tig)is
Tf%l(x) = Res(p_.) + Res(-p_)
ij a a
N 2. (@
=37 —Ai F(x;p,1q) * - (E-11)
g=1 2yg9-1
. (4p,°)
where
g+s-1 » .. .g+s-r-1 r\[2g+s-r-2 [ p_x -p_X ~
F= 3z 3 =B s, (fT)( g1 Jle®-tnTe ] (m12)
r=0 s=0 (2p )s—r+l

a

We are particularly interested in values of F for g = 1,2;

with the help of equations (E-2) we get

]
F(x;p,il) = %— {sinh P X + 2[(l+2pa2xz)sinh P X
a (2p,)
E-13)
-2 pa}F'COSh pax] + ”.} (
F(xjp,i2) = - %—{[sinh P,X - P x cosh pax]
a i
S
—~—i—[(1+p x?) sinh p_x - 3p x(l+lp Zx?) cosh p_x]
P, a a a 9%a a ( )
‘ E-14

+ ...}
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F. ADDITIONAL DETAILS -~ FINAL APPROXIMATE SOLUTION

Starting with equations (74) and (8l) and using the revised

notation for terminal voltages and currents, write

vO = r() (vl - 1) gy 1t + 7D (2) - (M) (g

= Wzt - R wn v+ RO ) - R @)

Substitute the first of equations (100) for 51:

v =1yt + 20w pivt s 2w - 1M w

- 5(1)(2)Xizi - 5(2)(2)n Yi + 5(3)(2) - 5(“)(2)

IO

Combine these in the second of equations (100):
- 5(1)(2)_i2i - 5(2)(2)Il Yi + 5(3)(2) - E(“)(g) =
Yorr () (vt + o) (yz yivi 4 20 () - 20 (a))

which reduces to

(RO (0t + R (0] + Y1) (1) + 7(2) ()¢ yippvd

= {RC)V ) - rMW ()1 - ¥y - )1} (r-1)

Write
z ; .
§=5 (IR (vt + RO (yn1 + ¥Orr () () + () (o)t}
a
E -
K(2) = B {{R(}) () - E(")(E)] - X0[2(3)(2) - o) ()1} (F-2)
a

It will be noted that S and K(2) are the bracketed quan-
tities in the left and right members of equation (F-1)
respectively, except that each has been multiplied by the

factor, g/pa. This has been done in order that the terminology
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will conform with that of reference 9 when the results are
reduced to the lossless-conductor case.
Substituting equations (F-2) in (F-1l) and solving for !l,

vt = 57! K(2) | (F-3a)

while, with the help of the first of equations (100), we get
i

i = -'Xig" K(%) (F-3b)

Finally, using these results in equations (74) and (81)
and re-arranging terms yields equations (101) and (102) of the

main text.

G. PROOF THAT THE VOLTAGE VECTORS OF A CERTAIN POLYPHASE SET ARE

LINEARLY INDEPENDENT.

Start with equations (125) and (126) defining the vector
set

(k) k-1 v2(k--l) T

v =1, v y (-1 (k=1)

Peoer ]
where
v = exp(j2n/N)
The proof consists in showing that the Gram determinant

Y(l)T v(1), X(’)T v (2) Z(1)T v (). (G-1)

g o0 0y

] = | v®T y(), yT yl2) T g | 7T )

v g0y, g™ gy T g

v



is different from zero. (Ref. 6, Sec. 10.8, p. 297). By

equation (125) we have

v(i) i+j-2)N—l (G-2)

s s 2
+ (V1+j 2) + (v
By equation (126) we have

VkN = 1, k any integer, including zero;

ioeo ’

OHYN 21 =0

which factors into

k k,N-1 N-2 k

(v* - 1) [ (v + (WO 24 s 2K 11 =0 (6-3)

If we set k =i + j - 2, then k ranges from k = 0, corre-
sponding to i = j = 1, to k = 2N - 2, corresponding to i = j
= N. In the permitted range,

v -1 =0

only for k 0, N. For all other values in

0 s=k=1+3 -2 §l2N - 2,
the expression, (G-3), is zero only if the right member of
equation (G-2) is zero. That is,

T .
vy S g, 0si+3-23028-2

provided that
i+j-2#0,N

.\ T .
Consider the values of i, j, for which Z(l) X(J) # 0.
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We have,

for i =1, j=1

1 = 3, j =N -1
i = N' j = 2
Therefore,
v()T 2(1), 0 ,0,.0.,0, 0 ,
0 ’ 0 '01000’0’ 0
= (3)T (N"'l),
lrl 0 ! 0 '0"'.'0,! !
0 'X(N) 2(2)101---10, 0 ’
0 Iololoo., 0 \IY.(I)T y_(l)
0 ,0,0’...’1’-(2)'-[‘ ‘—,'(N), 0
(-l)N-l ’ e * ° .
)T
-V—- !(2)’0’_'.." 0 ’ 0

(-1)N—1(-l)%N(N—l)(z(1)T !(1))(Z(Z)T X(N))(V(g)T K(N-l))

T
(Y(N) v(2))

The first product is

vOT vy o 10T [1,...,1] = N
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For the remaining factors we have the product

N=1 T
I (!(r+l) X(N-r+l))
r=1
N-1 r _2or (N-1)r,T,, .N-r _2(N-r) (N-1) (N-r)
= I [1, v ,vT ,.e.,V 17 [1,v 'V 1 eeo,V ]
r-1l
N-1 N-1
= I [1 + v+ v2N + ...+ V(N—l)N] I (N)= NN-l
=1 r=1
whence
Ir| = (-1) % (N-1) (N+2) N # 0. Therefore, the vectors of

the polyphase set are linearly independent.
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