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Abstract

The formulation for both a Pocklington and a Hallén frequency
domain integral equation describing the currents flowing on a thin-wire
attached to a conducting sphere is presented, This model is capable of

studying the EMP response of a long trailing wire attached to an aircraft,

transient radiation, calculations, trailing wire antennas
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I, Introduction

This note begins an investigation into the transient behavior of cur-
rents flowing on a thin-wire which protrudes from a perfectly conducting
sphere., This particular idealized model may be used to study a number
of different structures and how they interact with an EMP, One problem
of interest is attempting to understand how an aircraft with a long ‘trailing
wire antenna will behave when subject to an EMP environment. By com-
puting the isolated capacitance of the aircraft and then replacing the air-
craft by a sphere with the same capacitance, an estimate can be made as
to how the short circuit current at the input of the antenna will behave.

Another use of this model is to consider the sphere and wire to
represent an EMP sensor and the structural boom which holds the sensor
in place. As before, the transient behavior of the input current is of
interest, as well as the perturbation of the electromagnetic fields in the
region of the instrument,

Recently, there has been considerable interest as to the effects of
EMP on satellites, Whereas this particular model does not address the
case of system generated EMP and its effects, it does provide a means
for the computing of the conventional EMP interaction with a satellite.
Various antennas may be represented by radially directed wires and the
induced currents and charges computed as a function of the EMP,

The aﬁalysis technique employed for this problem involves the for-
mulation and solution to an integral equation for the wire current, By a
proper choice of the boundary condition at the sphere surface which the
dyadic Green's function for the problem satisfies, the range of the integral
equation is limited to be over only the antenna wire, The effect of the
sphere is then included in the kernel of the integral equation.

Specifically, two frequency domain integral equations (Pocklington
and Hallén) are derived for the currents flowing on a single radially

directed wire attached to a conducting sphefe, Both the scattering and



the driven antenna problems are considered, as it is necessary to com-
pute not only the short circuit current, but also the input admittance of
the long wire to characterize its operation, Explicit relations for the
fields driving the integral equations for both of these cases are derived,

In this note, only the formulation of the problem is discussed., Itis
anticipated that the numerical techniques for summing the relatively slowly
converging series for the kernel and the results of the calculations (in both
frequency and time domains) which are being presently performed, willbe

reported in a future note,




II, Formulation of the Pocklington Integral Equation

To analyze the time dependent behavior of currents on a wire attached
to a perfectly conducting sphere, a frequency domain integral equation for
the wire currents may be solved at many different frequencies and then
transformed to the time domain using the Fast Fourier Transform, |
Throughout this procedure, the presence of the sphere is accounted for by
using the spherical Green's function instead of the free s'pace Green's
function. (12)

Consider the structure shown in Figure 1. The scattering electric
field, E5°® produced by the current density on the wire and by the sphere

surface currents (both of which are excited either by an incident plane wave

or by a driving source at the junction of the wire and sphere) may be written

as:
=5Ca,— \ _ . == . - -
E (ro) = quf J(rs) I‘fs(rs,ro) ds, (1)
Sphere
& wire
: : . (10)
where I, is the free space Green's tensor as described by Tai, If,

fs
however, one uses the Green's tensor which satisfies
A

n

xI(F ,F)=0 (2)
S ~

s’ o
for ron the sphere surface, it is possible to show that the integral in

Eg. (1) extends only over the wire., Thus, it is necessary to determine
only the wire currents to solve the problem,

For the case under consideration, only radially directed currents
flow on the thin wire, Moreover, the component of the electric field
needed to form the integral equation for the wire current is only the radial
component, Noting that for the perfectly conducting wire, Einc + Eica: 0
on the wire surface, Eq. (1) yields the following integral equation for the

wire current density:
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Figure 1, Perfectly conducting sphere with a thin-wire attached, excited
by an incident plane wave or by a voltage source,
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Figure 2, General locations of the source and observation points in the
presence of the sphere. ‘




Jdne . . =y, - —
- Lr (ro> = qu/ Jr(rs) Frr(rs,ro)ds . (3)

wire

As in most thin-wire problems, only the total current flowing in the wire

is computed,

The (rr) component of the spherical Green's tensor is derived by

(5)

Jones and has the form

2]
- = _ n(n+1)(2n+1) |, (2)
DY z r.r [Jn<kr<)hn (kr )

n=1

+ T h(z)(kf )h(Z)
nn o n

(kr )| P (cos %) (4)
s'| ' n

smaller
larger
sent the spherical Bessel and Hankel functions respectively. The angle v

where I' o, represents the < ) of r andr , and j and h<2) repre-
() ) s n n
is that between the two vectors FO and FS as shown in Figure 2, The fac-

tor Trl takes into account the presence of the sphere and has the value

d
—aj (ka)
T -.da ‘n (5)

n 4 ah (ka)
da n

for a perfectly conducting sphere of radius a, For a sphere of finite con-
ducting material, this term may be modified as outlined in Jones. (5)
It should be pointed out that the construction of T by Jones does not
explicitly include the L functions in the eigen-function expansion., These
vector wave functions, along with the M and N functions, have been dis-

cussed by Stratton(®) and may be employed to reibresent an arbitrary vector

field. For ¥ being a solution to the scalar Helmholtz equation

Vzl,l/ +k2¢ =0



the wave functions I, M and N have the following form

L=w
M=V x3
— 1 —_
N—EVXM

with & being a constant vector., From these relations, it is possible to

verify that

2

; vV-.L=-k%Y

Thus, if the électric field E is represented by an expansion of the form

E’=Zai +b M +c¢ N
nn n n nn
n

where the coefficients a, have to be determined, the presence of free

charge is accounted for since

V-E=p/eo=zanV-L.

If the point of observation lies outside of the region having charge, the L
functions are not needed. Tai, (11) in a recent correction to his text(lo)
discusses this point., In the present analysis, however, this problem is
of no concern, as the source and observation points are always separated
at least by the antenna wire radius due to the thin wire approximation
which is employed as a computational aid, '

Another point which is important to understand is how the currents
and charges on the sphere affect the incident field alohg the anfernna. Con-
sider the scattering problem as shown in Figure 3a, where it is assumed

that the wire end at r = a is not touching the sphere. Since there is no

current flowing out of the sphere, the net charge on the sphere must be
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Figure 3, Sphere, current element and associated charge,



zero, Indeed, integrating the radial E field of Eq. (3), which is due to
the charges (and currents) induced on the sphere, over the sphere sﬁrface
gives S Er' a2 singdg d ¢ = 0, since the summation starts from n = 1,
There is no term in the series which contributes to a.net charge.

An interesting question is to ask what happens when the wire actualiy
touches the sphere, Physically, the current can then flow at the wire end
and leave a net charge on the sphefe, having a value related to the input
current by Q = Io/jw. If one attempts to compute this quantity by integrating
the radial electric field of Eq. (3), it is seen that zero still results because
the summation has not been changed from the previous case, This is in
- conflict with the equation of continuity, The difficulty with the latter
approach is that all of the charge within the Gaussian surface is included
in the integral of E . dS over the surface, not just the charge on the sphere.
Consider the case shown in Figure 3c, If the current element Id# is such
that L > ros then clearly S ErdS = 0 since there is no net charge on the
sphere., If ro < ro then again fErdS = 0 since there is still no free charge
within the surface of integration. If ry = a, the same still holds, The
total charge enclosed is still zero, even though there is now a net charge
on the sphere. One can think of the dipole moment Id¢ in this case con-
sisting of two oscillating charges, one on the sphere and the other of
opposite polarity, a distance df away from the surface of the sphere, The
Gaussian surface encloses both of these charges., Hence, although it is
possible to speak of the total charge on the sphere, it is not necessary to
compute it exactly in order to determine the effect of the sphere on the
electric field tangential to the radial antenna wire, This follows from
the fact that Frr in Eq.' (4), as observed at some observation point r
and with a current element at r =a, accounts for the total Er produced
by the current element and the sphere currents acting together, not

separately,
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The integral equation Eq. (3) for the current on the antenna looks
similar tothe integro-differential equation of the Pocklington type for a

single isolated scatterer or antenna. (7) This type of equation is written

as
inc 1 a2 2 e_Jk’ro-rs‘
- B (r )=—( — +k J(F)——_—:—-—ds, (8)
r o jwe 2 rs 4r|F _-F \
dro 0 °s

wire

and is known to have a triplet-type singularity in the kernel asr —r if
the indicated derivatives are carried out explicitly., This necessitatesthe
use of the finite difference technique in order to determine a solution. (2,6)
By analogy it is expected that the infinite sum in Eq, (4) will contain a
similar triplet singularity as r,"rgs SO it is desirable to rewrite Eq. (3)

as an integro-differential equation as was done in the isolated dipole case.

If gn(kr) represents any spherical Bessel function, then by definition(l)

2

r

i’ dg
n +§_ n o, <k2 __n(n+1)>gn=0 . )

Looking at the function fn(kr) = krgn(kr) and taking the appropriate deriva-

tives, it is found from Eq. (7) that

2
<-‘i-§+k2>-ﬂ(—-nzf—1) £ (kr) = 0 (8)
n
dr r
or,
n(n+l)g (kr) 2
2 =<d +k2>rg(kr) . (9)
r dr2 n



Substituting this back into Egs. (3) and (4), an equation of the '

Pocklington form results:

2

inc,— , _ . 4 2 - - =
- E, (ro) = juu <dr2 +k )er(rS)K(rs,ro) ds (10)
' ° wire

where the kernel K(FS,FO) is given by

g - . B T

K(r ,Tr
s’ o

0 r .
_ ‘o . (2)
) 47k zl re (2n+1)[3n(kr<)hn (kr>)
n:

(2) )

+T 0P e 0 (krs)].Pn(cos 7. (11)

In solving Eq.. '(10), it is necessary to evaluate fhe kernel K in an
efficient manner. - If the calculation of K reqﬁirés more time. than to solve
the equivalent set of coupled integral eqﬁations using the simpler free
space Green's tensor, this rhethod will not be a usefyl one. From the
isolated thin-wire problem, it is known that the kernel in Eq. (6) has a
| singularity of the form lro-rs‘-l. If there is a similar singularity in the

kernel of Eq, (11), it is expected that the series would converge very

slowly at poini;s near r_ ::::rs' and, in fact, diverge when L g Thus, it
would be advantageous to put Eq. (11) in closed form for rapid numerical
computation, |

In looking at Eq, (11), it is seen that there are two terms in the
summation., The first term involving jn and hx(12) represents the direct
contribution of the source on the observed electric field, while the second
term, involving the factor Tn, represents the effect of the sphere on the
observed field, Thus, the singularity in the kernel will occur in the first
termas ¥ —F_. | ' '(1)

The addition theorem for spherical Hankel function =~ will permit

the summation of the first part of the kernel K, It may be shown that

-10-
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o
, 2
h(z)(, ro_rso = (2n+1)Jn(I‘<)h§1 )(r>) P_(cos %) (12)

n=0

and that

n gy =S | (13)

Thus, upon noting that Eq. (12) is essentially the first part of
Eq. (11), aside from then =10 térm, it is possible to express the kernel

K as:

. . . _jk’FO-FSl
K(F,F) = 7 -2 Jek}F =T i 0 e )
S (o] 5]
: (2) (2)
+n; T_(2n1)h (ke B (ke ) P (cos ) | (14)

Hence, the first portion of the kernel, which is singular at FO = Fs’ may
be summed in closed form, leaving only the reflection contribution to be
summed numerically, This kernei as given by Eq. (14) and the relaéion
in Eq. (10) describe the Pocklington integro-differential equation for the
currents flowing on the wire in the presence of the sphere.

It should be pointed out that, for the case of a single wire on the
sphere as shown in Figure 1, the angle v between the source point ('fs)
and the observation point (’f"o) is zero, thereby causing the Pn(cos 7) term
to be unity for all values of n, For the more general case where there
are other wires on the sphere, this term needs to be included.

The solution of Eq, (10) is often facilitated by assuming that the sur-;
face current J on the antenna wire can be replaced by the same amount of
total current I = 27bJ which flows along the axis of the wire, The factor b
is the radius of the wire, With this thin-wire approximation, the factor
'Fo_fsl in Eq. (14) is never singular, Care must be exercised in using

this approximation, however, as is discussed in Ref, (6).

-11~-



III, Hallén's Integral Equation

Since the integro-differehtial equation (10) is of the same form as
Pocklington's equation for a straight wire, it is expected that a Halléntype
integral equation can be derived for the present problem.

By letting w(ro) be represented by the integral

w(r )=fJ(r YK(r ,¥ )ds . (15)
o s s’ o , :

a differential equation for 7 is obtained directly from Eq, (10} and has the

form
d2 2 1 inc
-—2-+k rr )=-—E (r) . (16)
4 o jwg T r o
I‘0

It is interesting to note in passing that this function 7 (ro) is actually pro-
portional to the radially directed vector potential Ar which produces fields
which are TM with respect to #. By comparing Eq. (6.28) of Harrington(S)

to the present equation, it can be shown that

A ()=~ kzﬂ(ro)
The solution of Eq. (16) consists of two parts, a homogeneous solu-
tion and a compliment;ry solution. Obtaining the homogeneous solution
is straightforward, Determining the particular solution is accomplished
by the use of the method of variation of parameters. (4) If Ul(ro) and
Uz(ro) are both solutions to the homogeneous equation, then a particular

solution is given by

Ufr)s= d€ , (17)

K /TO_ _1—_ Emc (g) Ul(g)U2(ro) - UZ(E)Ul(rO)

jou W[U, (8,0, ()

where W represents the Wronskian,

-19-




Noting that U, = cos (kro) and U, = sin (kro), after some algebra the

1 2
resulting solution to the differential equation in Eq. (16) becomes

r
= , . o1 o _inc , _
7r(ro) = C1 cos (kro) + C2 sin (kro) Gon )kl Er (8) smk(ro £)de .
‘ (18)
Using the definition of 7 (ro) from Egq, (15), the following Halléntype

integral equation is obtained for a wire antenna on the sphere.

/ Jr(rs)K (rs,fo) ds = C1 cos (kro) + C

ant.

5 Sin (kro)

L r°ﬁinc<s> ink(r -£)dE (19)
" Gon )k ] - sink(r .

The unknown constants in this equation must be evaluated by the
application of suitable constraints on the solution of the integral equation,
It is known that I = 0 at the end of the antenna due to the termination of the
metal there. This gives one constraint, The other is found from the

requirement that for a perfectly conducting sphere,

or (ro)

or
o)

=0 (20)

r =a
O

This requirement is necessary since the tangential electric field on

the sphere is given in terms of the radially directed vector potential Ar by

i aA(ro)
3 57 =0 , (21)
o)

1
jue

Ee(a) =

Since this expression must be zero and since A(ro) is proportional to
7T(I‘o), it is readily seen that Eq. (20) is required, Similarly, it can be

shown by taking derivatives explicitly, that

-13-



=0 , (22)

r =a

—a-fJ(r JKA(r_,7 )ds
aro S s’ o
o

ant

Thus, upon taking the derivative of Eq. (19) at ro=a, the following expres-

sion is obtained

0= - kC, sin (ka) + kC‘ cos (ka) - oz o EC(8) sink(e_-£) dg
1 2 jwupk Or r o _
“ova r =a
(23)
Taking the derivative of the last term yields:
=0, (24)

r
r =a
O

froEinC(E)k cos k(ro-’s') dg + Einc(ro) sin k(r'o-ro)
a

Hence, the second constraint is given by the first two terms of Eq, (23)

and can be expressed as:
C, sin (ka) = C, cos (ka) . (25)

This relation, along with Eq. (19) and the condition that I(r) = 0 at the end
of the wire, provide an alternate integral equation for the current flowing
on the wire in the presence of the spherical obstacle,

Either equation is capable of yielding correct answers and the choice
of which equation is used is often a maftter of personal taste,

In the derivation of the Pocklington or Hallén equation, it was
assumed that both the current J and the incident electric field Einc were
in the radial direction only and therefore related simply by the Green's
tensor component Frr' In the limiting case of a very thin cylindrical
dipole mounted on a relatively large sphere this is a good approximation
but it is never exact, due to the finite thickness of the wire. Therefore,
if an exact solution is desired, both the é\and 2 components of E and J
must be considered and suitably related through the four components of

H
the Green's tensor, Prr’ Fre’ I‘erand PGG .

-14-




Through the use of appropriate approximations, it is possible to
simplify the above problem to a certain extent., The tangential longitudi-
nal current flowing at a point FS on the antenna wire is given by

Jtan(:Fs) = Jr(FS) cos(g) - JG (Fs)sin(e)

where § is the angle between the tangent % to the antenna wire surface and

the radially directed vector FS at the source point is given by the relation:
cos(g) = b/rS s

b being the wire radius. See Fig., 4 for a graphical description of this
problem,

Since the antenna wire surface is not a constant co—or'dinatie sﬁ‘rface,
the angle ¢ is a function of position along the wire, Assuming that
b/rS K 1 for all L, it is then possible to approximate the current as being
completely radially directed, The largest possible value for the term
]o/rs is when ro is equal to the sphere radius, This requir’ement may

therefore be written as b <« a,

-15=
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Figure 4, Pictorial representation of the currents on the wire anteﬁna,
the components of the electric field and the pertinent antenna
dimensions,
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III. Antenna Loading and Finitely Conducting Sphere

In the two previous sections, the Pocklington and Hallén integral
equations have been derived assuming infinite conducti{rity for the sphere
and the trailing antenna wire. In many practical cases, it may be desir-
able to include the effects of the finite conductivity of the metals from which
the antenna and sphere are constructed. Also, being able to consider the
effects of placing a load somewhere on the length of the antenna wires
would be useful. |

In Ref. (5), it is shown that the boundary condition on T is given by
Eq. (2) if the sphere is a perfect conductor. If the sphere is composed of
some sort of penetrable material, the boundary condition on I" must be
such that the tangential components of E and the tangential components of
H are continuous across the spherical surface. Under these conditidns,
the term Tn in Eq. (5) takes on the following form for a sphere made of

material with constants u 1+ €1:0 # o

u k
1d . . . d ,
uolk = <a3n(ka)> klajn (kla) - kaJn(ka) ey <a3n (kla)>
T =
n ‘ u k
d . (2) ol d (2) .
= <a3n(k1)> ka hn (ka)- ulk >y <ahn (ka> kla;jn(kla)

where kl = wm . The use of this parameter in évaluating the
kernel K in Eq. (11) correctly accounts for the finite conductivity of the
sphere for both the Pocklington and Hallén formulation,

If the Hallég equation is employed in the case of the finitely conduct-
ing sphere, it is important to realize that the boundary condition given by
Eq. (25) is no longer correct, since the derivative of 7 in Eq, (20) is no
longer zero. This derivative, evaluated at the spherical surface, must be
known and should replace the left-hand side of Eq, (23)., Unfortunately,

this derivative depends upon the unknown current on the antenna. By

-17-



taking the derivative of Eq. (19) and utilizing the results of Eq. (24) the

following relation is determined:

fJ (r )~—8—-K(r ,r ) ds + kC_ sin (ka) = kC_ cos (ka) .
r s or s’ o 1 2

ant. - © r =a (26)
| o
This relates the unknown current to the two unknown constants and pro-
vides the extra relationship needed for the solution of Hallén's equation.
Notice that thié relation reduces to Eq. (25) for the perfectly conducting
sphere,
To.include the effects of loading and finite conductivity in the antenna

_wire, it is noted that under these circumstances

C scCa

tot _ win
E, (ro) =B, (ro) + Er (ro) # 0, (27)

For the case of the finite conductivity of the antenna wires, it is convenient
to reﬁresen‘c the relationship between the tangential electric and magnetic
fields on the wire surfaces by a surface impedgnce approximation, The
impedance per unit length of a cylindrical wire in which a total current I

(8)

flows is known to be given by

1

E vJ _(vb)
7 == °% (28)
s I 27rbch’o(’Yb) )
Here Es is the electric field tangent to the conductor surface, '?2 = - juuo

¢ = wire conductivity, b is the wire radius, and JO is the eylindrical Bessel

function, With this constraint Eq, (27) becomes
—\ _ inc— | . _ref,_ ,
ZSI(rO) =B (ro) + B, (ro) (29)
The Pocklington equation of (10) is therefore slightly modified, yielding

the following inhomogeneous integro-differential equation,

-18-




. 2
SEPCGE )= -2 1E )+ jep [ 2 4 K I(F )K(F_,F )dr_,  (30)
r o} 8 0 drz S s’ o S
0 ant,

whete the integral over the current distribution has been approximated by
a simple integral over the length of the antenna by use of the thin-wire
approximation,

The relation for the impedance of the wire as given in Eq., (28) can
be approximated in many practical cases., For very high frequencies such
that "ybl = IW bi >>1, the asymptotic form of the Bessel functions

may be employed and the impedance expressed as

1+ ‘
s~ 27bc s (31)

/1
6= rfuc

represents the effective skin depth as defined for a plane surface,

where

The impedance term ZS of Eq. (30) which arises from the finite
conductivity of the wire can also be thought of as arising from impedance
loading of the antenna wires. In thislway both the effects of conductivity
and loading may be included by a solution of the modified integral equation,

A similar modification of the Hallén equation can be made so that
wire conductivity and loading effects may be considered, In this case,
the effects of the conductivity will occur within the integral of the right-

hand side of Eq, (19), The result is given by:

N _ . 1
/I(rS)K(rS,rO) drs = Cl cos (kro) + C2 sin (kro) " ok
ant,
©_inc |
(Er (&) - ZSI(E))sink(a—’s')d’s' (32)

a

where again the integral over the source current density has been approxi-

mated by a line integral. .

-19-



IV. Determination of the Incident Field: Scattcring Prohlem

The source term for both the Pocklington and Hallén equations depend
on the tangential component of the electric field incident on the wire due éo
a driving source on the wire itself (antenna problem) or due to an incident
plane wave (scattering prpblem). Note that, in evaluating this tangential
field, the presence of the conducting sphere must be accounted for, In the
scattering problem, the field incident on the wire consists of two parts, as
shown in Figure 5, One is a direct contribution of the incident field and
the other is reflected off of the spherical obstacle. 7

The scattering of an incident field by a conductirng sphere is presented
in detail by I—Iarrlington (3) For the geometry as shown in Figure 6 where
the 1n01den’c plane wave of magnitude E is & polarized and propagates in

the § direction, the radial component of the electric field observed at the

point ro = ro,e, ¢) is given by

2
EGF)=— (- +i2}a G . (33)
ro Jw€ drvz r-o
O

The quantity Ar is the radially directed magnetic vector potential which
generates fields TM with respect to the ¥ direction. This may be expressed

in series form as shown by Harrington as

A (F )=-h:‘3cos¢§ kr [a i e ) +b 8P e )| PL(cosg) (34)
r o wu oi"n'n" o nn ol n
n=0
where -n
*n "~ Jn(lﬁ?;-l) 189),
and
b =aT (36)

n nn

-20-
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Figure 5. Representation of the incident field on a wire in the presence
of an arbitrary scattering body.
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ﬁo Incident Field

mi

Figure 6, Incident plane wave striking a sphere and producing E (r )
which is the source for the integral equation,
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where T is defined by Eq. (5), Using the relation in Eq, (8), the expres-
sion for the field in Eq. (15) can be simplified to yield

E cos¢ (2)

inc,_
(¥
n

r o)= ik

-n
i Ment+1) _1 .
E Z Pn (cosp) Jn(kro) + Tnh

(kr )| (37)
r (¢
o
This relation may be used to evaluate the forcing term in Egs, (10)
or (19), $ince the field is not singular along the wire as is the kernel in
Eqg. (14); it is not necessary to separate out the singular term to sum it
directly., The complete sum in Eq., (37) may be done numerically without

difficulty.
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V. Determination of the Incident Pield: Antenna Problem

At this point it is desirable to consider the exact form of the electric
field incident on the wire for the case of a driven antenna. This source
which produces the incident field may be considered to be a small voltage
source between the antenna and the sphere, '

If the case of a single driven monopole on the sphere is to be con-
sidered, the antenna will be assumed o be fed by a co-axial line having
the TEM excitation. This is shown in Fig, 7. By the equivalence prin-
ciple, a mathematical surface can be drawn about the \antenna wire and an
equivalent source of & x H = J placed on this surface, thereby allowing the
removal of the antenna wire. The incident electric field tangent to the
mathematical surface may then be calculated by considering the excited
aperture in the sphere to be radiating without the wire present. Figure 8
shows the geometry for this problem. 7

The radially directed electric field for the source in this problemis
easily determined from the Green's tensor I, From Jones(S), it may be
shown that the radiated electric field produced by an impressed tangential

electric field ES on the surface of the sphere is given by -

E, (F)= f @ x E(F ) - (V x L(F_,T ))ds (38)

s’ o
sphere
surface

where I is the spherical Green's function.

The electric field on the surface of the sphere is assumed to be

related to the voltage across the co-axial line by the relation

A%
= ——-————--O [t
B Tt/ ~ % , (39)
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Figure 7. The assumed antenna feed is a co-axial transmission line

which impresses an electric field E_ over the annular ring
at the antenna base, 6

9

Einc

Observation point

Figure 8, The geometry for calculating the incident electric field with

the antenna wire removed,
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where 7 is the radius of the cylindrical co-ordinate system for the co-
axial line and b and ¢ are the inner and outer radii of the line. Noting

T = asing, the impressed electric field is given by

v
o

Ey™ aTn(c/b)sing (40)

for ¢ within the co-axial region and zero elsewhere.

Since fi x E is in the -§ direction and we wish to find E™'C in the 7

th

direction, it is desired to extract the @? component of VS X F(fs"fo)’

which has the following form:

_ ik X 2n+l (2) (2)
(ng)ér— g 1 r (Jn(kr<)hn (kr>)+Tnhn(kro)hn (kr )
n:
dPn
P (cos g ) P (cosg ) (41)

where 0, defines the observation point and es defines the source point,
Specializing this for r —>aon the surface of a perfectly conducting sphere,
and using the Wronskian to reduce the complexity of the Hankel functions,

the following is obtained:

(VxT), = -5 i @otl) 1@ yp (cose )
~"¢r drar [ d o 'n S
°on=1 35 ahn(ka)

dPn
36 (cosec). (42)

Substituting this and Eq. (40) into (38) yields:

-1
g=sin c/a

inc _ Vok 2(n+1) hn(kro)
Er (I‘O) ) 2a2 In(c/b) ‘ 1 =1 4 (ah_(ka)) kro
es=sin_ b/a "7t da Tn
dPn
- P (cosp ) a9 (03 05) (a2 sing _dg ) (43)
n Yo s ’s

sin
es
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where the integral over ¢ has already heen carried out, Interchanging the

order of summation and using the following relationship,

/ez-c-i-I—DBdOT-P(X)-P(X) (44)
0, n 2’ T a1 |
where
X,, = cos(sin -1(c/a))
and
X, = cos (sin-l(b/a)) ,

the resulting equation for the incident radial electric field is

(2)
. V k ) h " (kr )
inc,.,_ o 2(n+l) "n 0 _
Er <I‘o) " 21n(c/Db) Z d kr Pn(COS 60) Pn(Xz) Pn(Xl) )
n

=1 -d—a—ahn(ka) o - (45)

This relation should be evaluated for observation points on the sur-
face of the antenna wire and subsequently used in Pocklington's or Hallén's

equation to determine the current on the driven antenna.
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VI. Conclusions

The formulation for the two different frequency domain integral
equations describing the currents flowing on a radially directed wire in
the presence of a conducting sphere has been presented, as well as the
relations for the incident tangential electric fields for the scattering and
the antenna problems which act as forcing terms for the current,

In this note, only the frequency domain formulation has been con-
sidered., It is anficipated that the numerical methods used to solve the

integral equations and convert the results to the time domain, as well

as the computational results will be the subject of a future note,
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