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ABSTRACT

A set of coupled integral equations of the Hallén type
have been derived in an earlier note for a wire model of a
parked aircraft. Numerical results for the currents induced
on a somewhat simplified model of a parked aircraft are obtalned.
The three-dimensional structure is assumed to be above a per-
fectly conducting ground plane and 1s excited by an incident

time-harmonic electromagnetic plane wave.




NUMERICAL SOLUTION OF INTEGRAL EQUATIONS

A wire model of a parked aircraft has been investigated

[1] and a set of coupled integral equations of the Hallén
type has been derived for the structure subject to illumi-
nation by a time-harmonic electromagnetic field. The model,
which is placed above a ground plane of infinite extent and
grounded, includes representations of the wings, the nose

and fuselage sections, the horizontal and vertical stabilizers,
and the grounding strap. The axial currents on this model of
a parked aircraft can be obtained through the solution of the
set of fifteenequations derived in Part I [1]. As an
initial step in determining these currents, a numerical
solution for the currents on the simplified wire structure of
Fig. 1 has been obtained.

As can be readily seen, this wire model differs from that
investigated in Part I only in the elimination of the hori-
zontal and vertical stabilizers. The numerical techniques
used for solving the more representative structure of Part I
present no new problems, but would require a several-fold in-
crease in computer program length and execution time over that
for the simplified structure. The solution of the original
model has therefore been deferred for treatment by a larger

and faster computing machine than is available to the authors.




Formulation

The definitions and assumptions presented in this
analysis of Section I hold, of course, for the structure of
Figure 1. The analysis for the simpler structure is exactly
the same as that for the original model excépt that no ex-
pressions for vector or scalar potential are derived for the
horizontal or vertical stabilizers. This leads to three
Hallén type coupled integral equations rather than the five
equations for the original structure [Eq. 29 (a-f) of [1]].
The equations resulting from physical requirements on the
structure are, as a result of fewer wire segments, reduced in
number. Since the junction of the fuselage and the stabili-
zers no longer exists, there are no resulting Kirchoff
current equations or continuity of scalar potential equations
at the tail.

Continuity of scalar potential is still enforced at the
junction of the nose, fuselage, wings, and grounding strap,
and the resulting equations are used to constrain the con-
stants which appear in the integral equations. The Kirchoff
current law equation at the front'junction and the equation
requiring scalar potential to be equal to zero at the point
where the ground strap joins the ground plane both remain
unchanged. The equations necessary for solving for the

currents on the structure now become (see notation of [1]);



™) + 1" (0) - 1¥*(0) - 1f¢0) - 18¢0) = 0 (31)

1"(-n) = 0, (32a)
" (-w) = 0, | | (32b)
™" o) =0, (32¢)
1fe) = 0. | (32d)

As stated before, the Hallén type equations for the nose-
fuselage, wings, and grounding strap are unchanged save for
the deletion of the terms involving the stabilizer sections.
These equations now assume the form given by Equation (33).
The equation containing the scalar potential to zero at
(0,0,g) is repeated here as Equation (33d). The 1list of
unknowns noﬁ includes five currents and four constants for a
total of nine. There are six equations specifying physical
requirements (boundary conditions) and three Hallén-type
integral equations, also for a total of nine. This is a
tractable system of equations and a solution for the

axial currents should yield to the method of moments.
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SOLUTION PROCEDURE

As the initial step in the numerical solution for the
currents on the structure in Figure 1, the five unknown
currents are expanded in series of piece-wise sinusoidal
basis functions. The current expansions are given in

Equations (34):

P
12 (x') =7 ) Ig £,(x'), (34a)
p=
1f oy 2 ? iff
. *lo T 5 x") | (34b)
p=
Wt .y o R w+ .
Iy (y') = IZ)=1 Ip fp()' ), (34c)
IW"’ ' e 3 Iw' £ '
y 00" = g=1 p p(y ) (34d)
T
18 (z') 2] 18 £ (z2"), (34e)
z p=1 P P

where fi is given by

: 1 1 t ' . i
fi(x') = IxT [U(x'—xi_l) - U(x'—xi)} sin k(x'vxi_l)

t
+ [U(x'—xi) - U(x'-x;_lj] sin k(x;+1-x' (35)
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t ' 1
3 = 1 . - X.
with Ax sin k le+1 1|

and U(x) is the familiar unit step:

1 x>0

Ux) =
* 0 x < 0. (36)

An illustration of the piece-wise sinusoidal basis is given
in Figure 2. The distribution of piece-wise sinusoids on
the structure of Figure 1 is illustrated in Figure 3.

The method of collocation is employed to generate a
set of linear equations which can be solved through the use
of well-known numerical methods. The boundary condition
constraining the currents to be zero at the free wire ends
is invoked by setting the magnitude of the piece-wise
sinusoidal components at those points equal to zero and not
including them in the arfay of unknown constants (See
Figure 2). The array of unknownsincludes the coefficients
of the piece-wise sinusoidal expansions for the currents
and the four unknown constants arising in the Hallén type
integral equations.

Subject to the approximate representations of
Equations (34), Equations (33) can be written in the form
given by Equations (37). The following definitions are

useful in describing subsequent matrix equations:
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0
ST x) = it J fp(x')an(x,0,0;afn)dx', xe(-n,0), (38)
P x'=-n x'e(-n,0),

C X 0
YS -(x) = l—T J J fp(y')g—Gv (g,0,0;afn) cosk(x-g)dy'de, (39)
y

Ay oy W-
P £=0 y'=-w xe(-n,0),
y'e(-w,0)
X .
vi(x) = j% J E;(g,0,0;afn)sink(x-g)dg, xe(-n,0). (40)
£=0

In Equation (38) the superscript n on S denotes the
wire element on which the match point is located, the sub-
script n refers to the wire element on which the source
current is located. The same convention holds for Equations
(39) and (40). The Ei is Equation (40) is the electric
field impressed on the structure by the induced currents.
For a scatterer, Ei is the negative of the incident electric
field component polorized in the x direction.

The number of linear equations resulting from the use
of collocation will depend upon the number of match points
specified on each of the wires. For this structure, it
will be aséumed that there are D match points on the nose
element, E match points on the fuselage element, F match
points on each of the wings, and H match points on the

ground strap. Employing the following definitions:

n n ,.n, |
S = s (x), (41a)
nmp np m
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=yl (), (41b)

Vo= Vi), (41c)

where xg, y;, and zﬁ are match points on the x, y, and z-

directed wires respectively, one arrives at the set of

equations:
D P R S
) ) [0gh + % Ifsn + Wl + 3 w+ .
pn p £ P Ww- w+
m=1 | p=1 mp p=1 mp p=1 mp p=1P mp
T n fn n n n
) 1I§rg = € coskxp + B sinkx) - V >, (42a)
p= mp
E P R S
y ;] oist s ) ifsf ] WP ] Ys
m=1 p=1 p nmp p=1 p mp p=1 p w mp p=1 p w+mp
T
g.f _ ~fn f . f _ f
+ g=11prgmp C, coskx  + b sinkx, -V o, (42b)
F P R S
R R 5 D R M
pn p £ p w- p Sw+
m=1 p=1 mp p=1 mp p=1 mp p=1 mp
T
w- w w- . w- w-
+ géllgrgmp = C coskym + P 51nkym - Vm , (42¢)
F P R S
) 3 AWt % IfrW+ + z Wo Wt + Z WH Wt
1 pn -1 P f _+ P W- _1 p wt
m=1 ) p= mp  p= mp - p=1 mp  p=1 mp
+ ) 18r¥t = c¥ coskyn® + B sinkylh' - VI'}, (42d)
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yoo0y 188 o+ % TGS S Lo S N LAY
pn f p w- p w+
m=1 | p=1 mp  p=1 mp  p=1 mp p=1 mp
T
+ g=1I§S§mp = C§ coskzﬁ + B sinkzi - Vﬁ

Equation (33d) can now be rewritten as

+

p R S
) I;rg + % Igr% ) Ig’rﬁ_ +J I¥r8
p=1 mp p=1*. p=1 mp p

]
(@]

g sinkg - B coskg + V§ R

0Q

k
Jo

J B, (0,0,¢;a8%)cosk(g-£)de.
£=0

where Vg

Equations (42), (43), and (31) can be writteﬁ in

matrix form,

[A] [I] = [V],

where [A], [I], and [V] are given by Equations (46).

matrix equation (45) may be solved to obtain the column

vector of unknown current coefficients and constants [I]

(46c) by regular matrix inversion:

1

[I] = [A]"" [V].
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One should note that the next to last line of the matrix
[A] in Equation (46a) represents Equation (43) and the last

line represents Equation (31), the Kirchoff's law equation.

n g1
I Vi
Ig VTD’

£
If Vi
Ig Vf:
v vi”

1

. _ .w-

(1} = | Ip (46b), and [V] = VE
. : w+
IW+ V'l i

1

g

I% Vi

18 Vi

fn Vg

C S

X
c¥ 0

Y o -

g
CZ
B

L _
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DETERMINING THE [V] VECTOR

The structure is treated as a scatterer with illumi-
nation provided by a plan wave polarized in a specified
direction. The boundary condition that tangential electric
field on the surface of a perfect conductor be zero is in-
voked. For plane wave incidence, this involves substituting
the negative of the x polarized field component into the
integral of Equation (40) and performing similar operations
for the y and z polarized components in order to determine

the elements of the [V] vector.

In the case treated numerically, the incident field is
considered to be polarized in the x direction and propagating
in the y-z plane. The total incident electric field along

the x-directed wire is given by

i =d T
EL - B+ (47)
-d -iBSA
where ES = 1le JBSux (48)

is the directly incident field component and

= _ -jBT~
ET g S L (49)
is the reflected incident field component. The quantity s
is measured along the direction of propagation and is equal

to zero on a plane passing through the wire junction, r. is

16



the reflection coefficient of the ground plane which equals
-1 for a perfect conductor, and 8T is the phase delay of
the reflected wave. The incident field is illustrated in
Figure 4 showing both the directly incident and the re-

flected field components. The phase delay BT is seen to be

equal to
BT = B(Q + R)
_ D
= B Rcos 2¢ +.cose
=8 1 4 cos 26) (50)
COS®
where B = %1 .

Results of the Investigation

Solutions for a representative structure have been
obtained for two different length of ground strap and two
directions of propagation of the incident plane wave. The
resulting current distributions are presented in Figures 5,

6, and 7.
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FIGURE 4,

Incident X-Polarized Plane Wave at Surface
of X-Directed Wire
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Induced Axial Current Distribution on X-Directed Wire: n/x = 0.1,
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FIGURE 7A

Induced Axial Current Distribution on X-Directed Wire: n/x = 0,1,
£/ = 0.2, w/A =0.1, g/x =0.1, alm=2a"=2a%=0.002 1
Incldent field 1s X-Polarized with 45 degree from normal incidence.
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