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Abstract

The results of the singularity expansion method as applied to the
electromagnetic scattering from a thin cylinder are used in the analy-
gis of the electric cylindrical dipole antenna response to electromag-
netic pulse (EMP). Simple analytical formulas are obtained for the
short-circuit current response to incident fields with a step function
and decaying exponential time histories. Simple analytical expressions
are derived for the dominant terms in the solutiong of the antenna
admittance and the open-circuit voltage. Also, simple formulas to cal;
culate the load current and voltage responses are developed. For the
tuned load with a first resonance equal to the antenna's first resonant
frequency, an expression for an upper bound of the EMP energy dissipated
by the load during the first half-cycle is developed. Finally, pulser
circuits to.approximately simulate the half-dipole response baged on

this work are presented.
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I. Introduction

A first step to determine the effects of the nuclear electromag-
netic pulse (EMP) environment on electronic systems is to perform an
ahalysis on the EMP interaction with the EM coupling mechanisms. In
communications systems, the antenna is an important means of coupling
EMP energy to some of the most vulnerable electronic components in the
system. In this note, the EMP interaction with the eylindrical dipole
antenna is discussed.

This work is an effort to advance simple solutions for the cylin-
drical dipole and half-dipole (monopole) antenna responses to EMP.

The accuracy of the solution depends on the accuracy of the theoretical
model and the mathematical solution. The model used in this study to
calculate the antenna short-circuit current response is straightfor-
ward and the accuracy of the solution is determined by the number of
terms used iIn the singularity expansion. To determine the open-circuit
voltage and load current and voltage responses, it 1s necessary to use
the antenna admitﬁance. The dipole admittance expression used in this
study was derived from the late-time solution for the current on a dipole
antenna excited by a source voltage across a circumferential gap of o
infinitesimal width. Thus, both the model and the mathematical solu-
tion are not entirely accurate for realistic antennas. However, the
results obtained from this work compare very well with those obtained
from classical antenna theory.

In classical antenna theory, the frequency-domain antenns response
to a time harmonic source is found as the solution of an integral equa-
tion.* The integral equation is normally of such complexity that numeri-
cal evaluation is required. The method of moments is one technique that
has been used more recently to solve the integral equation by ths forma-
tion of a matrix equation.® The time-domain response is then obtained
by a Fourier inversion. Analytical formulas for the time-domain response
are available for only very special and limiting cases. A disadvantage

of a numerical solution is that the functional dependence of the response



on the various variables is often "lost" in the numbers. Also consider-
able numerical computations are required to obtain the antenna response
to EMP since it has a relatively (to many sources commonly used in clas-
sical antenna theory) large frequency spectrum.

The purpose of this paper is to apply more recent treatments of the
time~-domain solution for the interaction of electromagnetic fields with
an object for the analysis of the dipole EMP response. The singularity
expansion technique formalized by Baum,® has been used by Teschet and
Lee and Leung® to solve problems concerning cylindrical structures.
This method allows the solution to be factored into an object response
and the incicent waveform characteristics. The object response can be
split to some extent into terms associated with the geometry of the ob-
ject and its electromagnetic coupling characteristics. When thisg tech-
nique is appiied to the cylindrical dipole antenna, the time-domain
response cah be expressed by simple analytical formulas.

Again, it should be pointed out that the dipole antenna admittance
is derived from the work performed by Lee and Leung® which is of an
approximate nsture. Thus, the solutions involving the antenna admittance
are necessarily approximate. However, most analysés of the EMP effects
on systems require only reasonable estimates of the EMP-induced transients
that couple ianto the system. Reasonable estimates are those estimates
that permit the overall vulnerability analysis to be performed within
acceptable error bounds.

In addition to theoretical analysis, this more recent work is appl{ed
to experimental techniques. 1In Section VII, simple pulser simulation cir-
cuits are derived from the Thevenin equivalent circuit for the half-dipole

antenna. _

II. ANTENNA FUNDAMENTAIS
In considering an antenna as a receiving device, it is useful to
employ Thevenin and Norton equivalent circuits to calculate the antenna
response. The Thevenin and Norton equivalent circuits are shown in
Figs. la and 1b respectively. The eguivalent circuit parameters are:
v - voltage across the load

I - current through the load
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Zy, - load impedance

Yy, - load admittance

Zg = 1mpedance of the antenna
Y, - admittance of the antenna

V, - egjuivalent voltage source of the antenna and the
electromagnetic environment

I. - equivalent current source of the antenna and the
electromagnetic environment.

Tt is easily seen that the following circuit relationships apply:

V= Za sz =3 Ii T, (2-1)
a L a L

t= YIa+Y¥ =7 Vi zZ. - (2.2)
L a L

I,=Y,V, - (2.3)

The Thevenin equivalent voltage is the open-circuit voltage at the
antenna's terminals, i.e., V, =V for Zy = ». The Norton equivalent
current is the short-circuit current through the antenna's terminals,
i.e., I5 =1 for Yy = w. If two of the three antenna equivalent circuit
parameters Vg, I, and Z, are known, the electrical quantities recelved
at the load can be calculated.

To calculate the open~circuit voltage for electric dipoles, the
concept of the complex effective length, L pp, OF the antenna can be
employed. The open-circult voltage is defined by

Toolw) = Bm(0) tepp(Bw) | (2.4)
oc eff
where Ey is the component of the incident electric field in the direction
of maximum sensitivity of the antenna. In general, the effective length

is & very complicated function of the radian freguency, w, antenna and

ground plane geometries and the direction of the incident wave .




For electrically small antennas such that the antenna dimensions
are small compared to the radian wavelengths contained in the incident
wave, the concept of equivalent length, zeq,can be used. The equivalent
length is only a function of the antenna and ground plane geometries and

is related to the effective length by

Lopp ~ Yeq for w,>w=+0 , (2.5)

where W, is the first resonant radian frequency of the antenna.

III. THE SHORT-CIRCUIT CURRENT

In practice, the symmetric cylindrical electric dipole consists of
two highly conducting circular cylindrical tubes or rods each with radius
a, and both aligned along a common axis with half-length 4 as shown in
Fig. 2a. The half-dipole antenna® generally consists of a highly con-
ducting circular cylindrical tube or rod with radius a and length g,
erected perperdicular to a highly conducting ground plane. The half-
dipole with its image is shown in Fig. 2b.

Short circuiting the electric dipole shown in Fig. 2a gives the
cylindrical thin-wire (£ » a) scatterer shown in Fig. 2c¢c. The thin-wire
scatterer 1s a perfectly conducting circular cylinder with a half length
4 and a radius a. The incident plane wave pulse is also shown in Fig.
2c and is polarized with the magnetic field perpendicular to the cylin-
der and the angle of incidence is §, measured from the axis of the
cylinder. The short-circuit current for the symmetric dipole is the
total current at z = 0. |

The solution of electromagnetic interaction probiems by the singu-
larity expansion method as formalized by Baun® permits the direct calcu-
lation of the time-domain response of the electromagnetic quantity by
considering the singularity points, e.g., the natural frequencies, asso-
ciated with the frequency-domain solution. Recently, Tesche applied this

singularity expansion technique to the thin-wire scatterer.4

The half-dipole is also called a whip or monopole antenna.
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The total axial current at z on a thin-wire scatterer for £ » a
is given by’ '

M s t
m

i(2,6) = b B4 Real Z ,(2) € (0)m—7m | (3.1)
M= m

where the time history of the incident field E(t) is a step function of
time, i.e., B(t) = E, U(t) where U(t) is the unit step function, and M
is thelnumber of poles used in the calculation. Mm(z) is the mbh normi-
lized natural mode, C,(8) is the m coupling coefficient, and sy is the
mbh natural frequency.

Equation (3.1) can be written as

M
-7 t
i(z,t) = 4 Eozz e [4,(z,8) cos w t + B (2,8) sin w_ t] ,(3.2)
m=1

where sy = -7y + Jwp, ¥y is the natural damping constant and w, is the

natural rescnant frequency and

M (2) ()

A, = Re ——EE;_Z7E—_ (3.3)

Mm(z) cm(e)

0 Im —'532f75ﬁ?" s (3.4)

o
]

where Re(z) and Im(z) are the real and imaginary parts of z respectively.
Tesche found that for late times, i.e., t > 6 g/c, the current can.
be accurately conputed with three poles (M = 3). The complete time
response can be accurately described with ten poles.4# A good approxi-
mation of the current can be obtained with five poles as seen from
Fig. 14 in Reference k. ,
Table 1 gives the values of 7y, © Apn(z,8) and By(z,8) up to m =10
for 4/a = 100.0, z = 0 and £/2, and 6 = T/t, T/3. Table 2 gives the

values of the natural guantities for a wide range of Q = &KQE/a) at z =0C.
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Table 1. The Natural Resonant Frequencies, Damping Constants, and Coefficients Am and Bm for z/a = 100
no org(ed)  ened) A (0,%) B (0,5 INE RN W 8,(0,3 5,(0,%)
1 .257 2.910 1J@ﬂwﬁ* 8. 190E-0k 1.012E-Ok 5.9772-0k 1.7918-03 -8.915E-0k
2 371 5.960 1.279E-16 1. 482E-14 1.828E-09 6.827E-09 1.206E-11 5.413E-10
3 453 9.022 ~2.783E~05  ~-1.025E-OL 1.694E-05 6.932E-05 -6.731E-05 -4.183E-05
Iy 517 12.692 2.735E-15  -6.19LE-15 7.958E-11  -1.933E-10 2.715E~-11  -1.495E-11
5 .571 15.166 1.284E-05 3.922E-05 ~-1.439E-05 -2.914E-05 5. 718E-0L -1.174E-Ok
6 617 18.242 -2.659E-15 3.896E-15 -1.643E-08 -7.624E-09 -8.227E-11 1.486E-10
7 657 21.322 -7.597E-06  ~2.076E-05 -6.605E-06 -1.259E-05 | -1.427E-05 -6.698E-06
8 .69g 24.386 3.071E-15 -3.38L4E-15 -3.310E-11 9.146E-11 2.661E-11 -3.691E-12
9 .721 27.h23 5.158E-06 1.296E-05 3.294E-06 1.089E-05 -1.722E-06 1.274E-05
10 IV 30.441 -6.031E-15 5.161E-15 2.109E-10 4.601E-10 -1.307E-10

1.588E-10

*1.465E—Oh = 1.h65 x

Zl.O'lL
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Table 2. The Natural Resonance Frequencies, Damping Constants, and Coefficients Ay
and By for 8 = /2 and z = O

" 7, (2 2/c) w (2 2/c) A B

0=5 Q=9 Q=8 Q=9 Q=8 Q=9 Q=8 Q=9
1 .33% .302 2.776 2.8L40 2.82L9E-0Ok 2.1650E-0kL 1.1886E-03 9.9551E-04
2 496 Luhh 5.748 5.851 2.1806E-1k 9.6909E-15 3.0366E-14 . 2.326L4E-14
3 .603  .5LL 8.738 8.877 -5.3454R-0 4 .2013E-05 -1.3838E-04  ~1.2372E-Ok
i .68L . .619 11.73h 11.91k -2.2833E-15 1.0572E-16 -1.3072E—1& -9.2419E-15
5 L7l L680 14.696 14.956 -2.3315E-05 1.8737E-05 5.1536E-05 4 .6354E-05
6 - .731 - 17.995 -- -2.0889E-15 - 6.1771E-15
7 - 773 - 21.036 -- -1.0807E-05 -- -2. 4142805
8 -- .811 -- 24 . 061 - 2.5395E~15 - L. 6827E-15
9 - .848 - 27.073 - 7.292LE-06 - 1.4948E-05
10 - .879 - 30.070 -- -5.8109E-15 - 7.1880E-15

0=10 Q=11 Q=10 Q=11 Q=10 Q=11 Q=10 Q=11
1 .273 .2h7 2.387 2.9023 1.6855E-04 1.3387E-04 8.7835E-0k 7.8316E-04
2 .397  .356 5.926 5.930 2.6789E415 -1.1251E-15 1.7527E-1h4 1.3267E-1k4
3 485 L33 8.977 9.049 -3.2590E-05  -2.5407E-05 -1.0992E-0k  -9.7774E-05
L .555 Lok 12.036 12.124 2.0333E-15 3.0601E-15 -7.2L60E-15  -5.5635E-15
5 ﬁéle .5hs5 15.100 15.203 1.4872E-05 1.16L43E-05 4 .1858E-05 3. 7496E-05
6 .600 .580  18.168  13.285  -2.3841E-15  -2.7841E-15 L.4OT9E-15  3.5100E-15
7 L7020 L6228 21.238 21.369 -8.7125E-06  -6.9034E-06 -2.2030E-05  -1.9014E-05



Table 2. (Cont'd)

n 7m(2 8/c) u)m(2 L/c) Am Bm

Q=10 Q=11 Q=10 Q=11 Q=10 Q=11 Q=10 Q=11
8 .739 .661 2h.295 24,1438 2.9435E-15 3.1116E-15 -3.8717E-15  -3.0701E-15
9 770 .688 27.325  27.478 5.9229E-06 4.6795E-06 1.3726E-05 1.24L41E-05

10 . 796 . 709 30.337  30.500 -6.04L41E-15  -5.9664E-15 5.9213E-15 L.6741R-15

=12 Q=12. ~12 Q=12.5 Q=12 0=12.5 Q=12 0-12.5
1 .226 216 2.950 2.961 1.0845E-0k 1.0845E-0L 9.8272E-05 6.71L65E-0b
2 .321  .306 6.020 6.036 -3. 1272E-15 -3.7262E-15 1.0194E-14 8.9968E-15
3 .388  .369 9.101 9.122 -2.0118E-05  -1.8026E-05 -8.751TE-05  -8.304LE-05
I k1 .L18 12.188 12.213 3.4948E-15 3.5776E-15 -4 . 274hE-15  -3.7631E-15
5 486 LU0 15.278  15.307 9.1505E~-06 8.1536E~-06 3.3576E-05 3.1825E-05
6 .525  .Lob 18.370  18.403 -2.9068E-15 -2.8987E-15 2.7194E-15 2.3932E-15
7 - .560 .529 21.463  21.500 ~5.4281E-06  -4.8241E-06 -1.7897E-05  -1.6966E-05
8  .588 .555 2L.541  2L.580 3.0870E-15  3.0276E-15 -2.3847E-15  -2.0996E-15
9 610 .575 27.587 27.630 3.6577E-06 3.2392RE-06 1.1182E-05 1.0594E-05

10 .628  .591 30.615  30.660 -5.6648RE-15  -5.468LR-15 3.6169E-15 3.1799E-15

Q=13 Q=13 =13  Q=13.5 0-13 Q=13.5 Q=13 0=13.5
1 .207  .199 2.971 2.980 8.9423E-05 8.1687E-05 6.4L091E-0L 6.1276E-0h
2 292 .279 6.050 6.062 -4 1486E-15  -L.L4O3E-15 7.9767E-15 7.1044E-15
3 351 .335 9.140 9.156 -1.6227E-05  -1.L6T73E-05 -7.8960E-05  -7.5226E-05
Iy .397  .378 12.234 12.253 3. 60L0E-15 3.5909E-15 -3.3260E-15  -2.9523E-15
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Table 2 (Cont'd)

o 7m(2 2/c) wm(2 g/e) AL B
Q=13 Q=13.5 Q=13 Q=13.5 Q=13 Q=13.5 Q=13 Q=13.5
5 436 .L415 15.332  15.353 7.2965E-06 6.5582E-06 3.0215E-05 2.8736E-05
6 L7000 Lhk6 18.431  18.455 -2.8618E-15  -2.8060E-15 2.1122E-15 1.8711E-15
7 500 LWk 21.532 21.558 -4.3019E-06  -3.8514E-06 -1.6099E-05 -1.5297E-05
8 .525  .Lh97 o6l  2L.643 2.9497E-15 2.8609E-15 -1.8522E-15 -1.6392E-15
9 543 .51k 27.666  27.696 2.8776E-06 2.5667TE-06 1.0045E-05 9.5361E-06
10 .558 .527 30.697  30.729 ~5.2595E-15  -5.0473E-15 2.8021E-15 2.4780E-15
Q=14  Q=1L. Q=1k Q=1k.5 Q=14 Q=14.5 Q=14 Q=1k4.5
1 .192  .185 2.988 2.995 7. 4890E~-05 6.8891E-05 5.8690E-0b 5.6308E-05
2 267  .256 6.073 6.083 -4 .6349E-15  -L.7572E-15 6.3552E-15 5.7087E-15
3 .320  .306 9.169 9.182 ~1.3324E-05  -1.2147E-05 -7.1805E-05  -6.866LE-05
Y .361 .34k 12.270  12.284 3.5510E-15 3.4931E-15 -2.6320E-15  -2.3565E-15
5 .395  .376 15.372  15.389 5.0206E-06  5.3677E-06  2.T379E-05  2.6133E-05
6 Loy Lok 18.476  18.495 -2.7383E-15  -2.6637E-15 1.66L4E-15 1.4867E-15
7 450 Lh2g 21.582  21.602 -3.4L627E-06  -3.126TE-06 -1.4559E-05  -1.3879E-05
8 472 kg 2L .668  2L4.690 2. 7667E-15 2.6708E-15 -1.4562E-15  -~1.2992E-15
9 A87  Lh63 27.722  27.745 2.2904E-06 2.0692E-06 9.0665E-06 8.63L43E-06
10 99 LTk 30.757 30.780 ~4.3382E-15  -L.6360E-15 2.2004E-15 1.9626E-15
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Table 2. {Cont'd)
o 7.(2 2/c) w, (2 2/c) A B
O=15 (=15.5 Q=15 (O=15.5 Q=15 0=15.5 =15 Q=15.5
1 178 172 3.002 3.008 6.3571E-05 5.8833E-05 5.4 106E-0k4 5.2065E-0k4
2 26 L2337 6.092 6.100 © -l .8254E~15  -L4.8532E-15 5.1485E-15 L. 6608E-15
3 L2093  .281 9.192 9.202 ~-1.1115E-05  -1.0207E-05 ~-6.5773E-05  -6.3104E-05
L .330  .316 12.297 12.308 3.4234E-15 3.3465E-15 -2.1187E-15  -1.9125E-15
5 .360  .345 15.403  15.416 4.8862E-06 L . 4648E-15 2.4987E-05 2.3931E-05
6 .385  .369 18.511  18.525 -2.5859E-15 -2.5070E-15 1.3337E-15 1.2013E-15
7 09 301 21.619 21.635 -2.8351E-06 -2.5810E-06 -1.3254E-05  -1.2678E-05
8 J27 0 .Lh08 24.709  24.725 2.5756E-15 2.4828E-15 - ~1.1640E-15 -1.0473E-15
9 IR 10T I I¥alo) 27.765 27.782 1.8703E-06 1.6976E-06 8.2366E-06 7.8706E-06
10 .h51 L L30 30.801  30.819 -4 BU28E-15  ~4.2597E-15 1.7583E-15 1.5822R-15




The Laplace transform of Eq. (3.2) in terms of the Laplace trans-

form variable g is

M
A ( ,9)( + 7 ) + B (Z:9>w
I(z,s) =L{_EOEZ mz 8 m m m ) (
m=1

2 2
(s + 7m) + w2

Lo

.5)

For EMP analysis of communications antennas, the most interesting
and common case to consider is the symmetrical dipole or half-dipole,

i.e., z = 0, with the angle of incidence 8 = T/2.

Equation (3.5) is the short-circuit current response of a dipole
antenna subjected to an incident field with an angle of incidence § and

with a step-function time history. The current at z = O for an incident

ot

field with 8 = T/2 and a time history e = is given by

M . Ay (s+7m) + Bm@m]
Ioﬁ”“Z[sm] : (3.6)
(s+7 )2 + w? J
m=1 m m
The inverse ILaplace transform of Eq. (3.6) is
M
—_— -t ~Tmt _
i, = 4L E zz: D, © + e [(Am Dm) cos w t + -
m=1
Apn *+ BBy - Am(a+7m) + (o=7,) D . . (2.8)
wm sin (Dm ] 2

where
. Amgz - (Amym + Bmwm) a :
0= . .
-v )2 2
(o 7m) + 02

(@8
be)
~—r

For the double exponential incident EMP, E(t) = E, (e-jt - e-nt),
the current can be calculated by
i=1 =1 s (3.9)

where in is given by Eq.(3.7) with « replaced by-in.

15



The substitution of ¢ and n into Eq. (3.7) as indicated by Eg. (3.9)
gives the time domain short-circuit current response of the electric .

dipole antenna to a double exponential incident wave as

M

s -t "'T’]t - 7mt _
i=14 E 4 E {Dma e - Dmﬂ e + e [(Dmﬂ Dma) cos w t +
m=1
A (n-a) + (a=7.) D - (n-7.) D
m m’ “moy m’ “mn .
e 1 sin wmt} } s (3.10)

where Dmﬂ is given by Eq. (3.8) with o replaced by 7.

For many EMP applications m is on the order of 2 x 10® and o is
several orders of magnitude smaller than n such that n >> o. Also from
Tables 1 and 2, the relations wm.>> "n and Bm > Am are evident. For VHF

and UHF antennas, w, > and Dmy can be approximated by

-Bo ‘l'
(3.11)
mo w

and

2 o
Amn Bmwmn

7~

2
ey R

Also, for thin dipole VHF and UHF antennas (20 MHz to 500 MHz) with
m>> o, it can be shown that ](a-ym) Dma[ << l(n-7m) Dmn[. The current

response can be written to a good approximation as

M

—

- -ab -nt -
i=154 EOE‘ZH Dma e - Dmﬂ e + e ‘M

m=1 i}
nAy = (n=7,) D

't

BDmn-Dma) cos wmt + ™M sin wmﬁ] - (3.13)

where D and Dmﬂ are calculated from Egs. (3.11) and (3.12).respectively.
16




IV. THE DIPOLE ADMITTANCE

Due to the complicated geometry of the cylindrical dipole antenna
and the feed line, analytically accurate formulas for the antenna admit-
tance are generally not available. There are, however, low and high frea-
quency approximations for the admittance, and there are "rule of thumb"
techniques to account for the effects of the feeﬁline.

| In most investigations of the cylindrical dipole admittance, the
antenna is considered as a thin cylindrical structure excited by an
idealized infinitesimal gap voltage source. The finite voltage main-
tained across the infinitesimal gap corresponds to an infinite glice
capacitance at the antenna's terminals. The singularity due to the infi-
nite susceptance of the slice capacitance is normally removed by calcu-
lating the antenna current at a distance b away from the feed correspond-
ing to the half-width of a finite gap. This procedure of "subtracting-
out" the singularity is questionable theoretically and necessarily approx-
imate. However, this procedure does give results that are in reasonable
agreement with experimental results. Nevertheless, the possibility of
large errors in the susceptance does exist and this should be investi-
gated further for transient problens.

The implication of the infinitesimal-gap'solution with the singu-
larity removed is not clear cut for transient problems. Presumably, we
can still use it. Physically, it means that we have ignored the effect
due to a base (feedpoint) capacitance providing, of courge, that the
base capacitance is indeed subtracted from the solution.®

The dominant resonant currents on a thin dipole antenna excited by
an infinitesimal-gap voltage source have been investigated by Lee and
Leung.® The geometry of a thin cylinder with an infinitesimal~-gap exci-
tation at Its center is shown in Fig. 3a. The late-time current due tb

a voltage source with a unit step-function time history is approximately

given by
N . cos (BNZ .
1(z,t) ~ 2: [3OJnﬂ (2z ) e-JWnt} .
oy (k4| z| /M2 a2n0m)
[2] -2 ‘
2 ctlz|y1%2 ’ (&.1)
60 ct[f/n (—T..—;L——L)]
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Fig. 3+ The Cylindrical Dipole Antenna.
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where only odd values of n are used, N is & real constant chosen such
. that N << z/a,’\ I = 1.78107, ¢ is the free space speed of light and

1+ j% on (2nT)

nfic
W = 1+ (4.2)
o2 in g (1 2L2T)
The real and imaginary parts of Wn can be written as®
Rewn=f£—° 1- y L , (4.3)
bn| [0(Z) - on (2.8]n])]
ImW = (2| n|m) - C ()

28V gdy <o (2.8]0])

The Wq‘s represent the string of natural frequencies which is
1

‘ closest to the real w-axis and may be considered as the principal

natural frequencies. Note that

Re W_, = -Re W (4.52)

-1
and

Im W . (L.5b)

Im W_n n

It

Equation (4.1) can be rewritten in terms of positive n for the cur-

rent at z = b as

i(b,t) zz K e ¥ singt  n=1,3, - N (4.6)
n
where .
T, = -Im W, (b, 7a)
B, = Re W, (4. 7p)

*Values of N« .05 z/a gave reasonable results in my calculations.
‘ Larger values of N may result in a negative resistance associated with
the dipole impedance.
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cos (nﬂz
1

Kn =15 am @n(3+z|z| I ’

T2a® nT

(4.7c)

In terms of the antenna parameters Q = 2 @(2%) and § = 2 @K2§), the

inverse time ccnstants can be written as

c (n) 1.83788 s (4.3a)
24 - 3. 4k550 - 2 gn(n)

T =
n

and the resonant radian frequencies are

s m s ey S )
and the constants are
. cos () A)
= T5 o G5V - 55038 2 idn) (&.8c)
where
-G (1.84)

The Laplace transform of Egq. (4.6) is

(5,5) ~Z . (1.9)

n (s+ 7 ) + Bi

The admittance for a dipole with a finite gap b as shown in Fig. 3b
is approximately I(b,s)/V(s), V(s) = 1/s and can be written

s K B s C
Y(s) %Z SIS _—_Z I ,  (4.10)
~ (s + Tn)e + g s? LC,+sRC +1

where .- ] : - . ) _.

¢ =2 (k.11c)




L = (4.11b)
n Kn Bn ?
and 5 Tn .
Rn =B . (4.11c)
n n

The dipole admittance is the same as that of n series RIC circuits

th capacitance,

in parallel as shown in Fig. L4a. The values of the n
inductance, and resistance are given by Eqs. (4.1la), (L4.1lb), and
(k.1lc), respectively.

The admittance of a half-dipole (monopole) antenna is twice that
of the dipole antenna.® This can be achieved by the circuit shown in
Fig. Lb. '

Problems concerning the admittance of a dipole antenna excited by
an infinitesimal-gap voltage generator have been solved more exactly by
a number of investigators such as R. King,' C. W. Harrison,® §. A.
Schelkunof?,'3 ¢. H.'ngas,14 T. T. Wu,'® and R. Mittra® to mention but
a few. However, the solutions are generally not in a simple analytical
form except in limiting cases. A comparison of the results from the
well known King-Middleton Theory with those from the procedure outlined
above withk N = 3 and § = 6 are shown in Table 3 for Q = 10. From
Table 3 it is clear that Eq. (4.10) is a good approximation for the
antenna admittance around the first and third resonances and for small
values of w %. Since the short circuit current response of the second
and fourth resonances are theoretically zero for j = O (Ref. U4), the
admittance at those frequencies are not of much interest. Hence, the
admittance calculated by BEq. (4.10) should prove useful for the EMP
analysis of dipole and half-dipole antennas that have a fifth resonant
frequency above 100 MHz since the bulk of the EMP energy is below 100
MHz. For values of Q > 10, the admittance near the fifth resonance can
be calculated by Eq. (4.10).

For the electrically short dipole antenna, g % < .5, the antenna
impedance can be approximated by*

60 (ga-£3-39> (b.12)

= 2 j
Z, =20 B2 4% (1 + .133 B2 %) - J
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Table 3. Impedance of a Dipole Antenna with
N =3, Q=2m(24/a)=10.0, and
§ = 2on (2b/a) = 6.0.

J} King-Middleton Formula (4.10)
w3 Second Order (inverse values)
1 183 - 339u5° bbb - 33613
.3 1.66 - jlo7u® Lh.6 - 31163
5 h.67 -~ 3716 45,0 -  §6LT7
.7 10.3 - jh51.3 L5.8 - jho8
.9 18.3 ~ j293.8 L6.9 - j259

1.1 30.0 ~ JL77.k4 4L8.4 - j151
1.3 L7,k < 379.8 50.6 - j62.8
l.b 59.1 -~ j3k.3 52.0 - j23.2
1.5 73.6  + j10.3 53.8 +  jli.6
2.0 240.2  + j237.1 70.1 + jlo7.2
2.5 820.4 + J7L.37 127  + jueé
2.6 849.9 - j1k5.6 154+ jhoo
3.0 36Lk.5 - juB80.L4 505  + 3846
3.5 120.9 - 3306.1 1062 - j4B0
4.0 70.61 - j160.8 239 - j226
4.5 86.6 - 317.9 121+ j3.2
4,6 . 100.6  + jl2.49 111+ j35.2

fcalculated by short antenna formula on

p. 192, Reference 1.
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where

For the purpose of comparison, three methods of calculating the
antenna static capacitance are given below. From Eq. (4.12) the antenna

capacitance is

o - 100 ¢
a 1.8 (Q - 3.39)

pf , (}‘"13)

which has a value of 8.40 g pf for Q = 10.
From Eg. (4.1la) the contribution of the first term to the antenna
capacitance for Q = 10 and § = 6 is

K By
G = —— (1. 18)

g+ 8

which has a value of 8.28 4 pf for Q = 10.
And from Eq. (3.5), the low freguency asymptotic form for (o = 10 is

A By + un

e 2 -12 _ I
I(2,s) ~ k E 4 r = 8.19 E 4% x 10 = Eogeq c, - (k.15)
1

For the electrically short dipole antenna the effective length is
given on page L70 of Reference 1 as Eeff ~ .96 4. Also for the elec-
trically short antenna Eeq A zeff’ thus the antenna capacitance as cal-
culated from Eq. (4.15) is

_ 8.19 Eyg® x 1072
a .96 E L

c = 8.52 g pf . (k.16)

The relative difference between the three methods of calculating
the antenna capacitance is legs than three percent.

Although the reactance of the antenna impedance as calculated from
the inverse of the admittance given by Eq. (4.10) is in reasonables agree-
ment with antenna theory, the resistance differs by a considerable amount.
The correct valus of the resistance is most important near the first and

third resonances since the magnitude of the reactance is small at those

2L




frequencies. The theoretical value of the resistance of an infinitely
thin dipole at the first resonant frequency is 73.13 ohms.® For Q.= 10,
the resistance is about 82.8 ohms. For most thin antenna analyes, a
value for Ry of 80 ohms should give reasonable results. Also a value
for R, of 120 ohms can be used for thin dipole antennaé, i.e., 0 in the
range of 10 to 20.

The values of the normalized antenna equivalent circuit elements for
a wide range of Q are shown in Table 4 for ¢ = 6. Equation (4.11) was

used for the calculations.

V. THE OPEN-CIRCUIT VOLTAGE
The open-circuit antenna voltage can be computed from Eq. (2.3) and

is given by
Va(s) = ?;ng . (5-1)

The short-circuit current can be accurately calculated by the expres-
sions given in Section III; however, the antenna admittance given in
Section IV is only an approximate solution good for frequencies near the
first and third resonances and low frequencies. Therefore, the solution
for Vgy(s) given in this section must be an approximation to the same
order of accuracy as the expression used for Ya(s).

The antenna current response to an impulse incident plane wave with

the electric field E(s) = E, parallel to the antenna is given by

M
A(s+ 7. )+ Buw ,
I (s) = b Eozsz z Z - mzm , (5.2)
1 (s + 7p)° + w

where Eq. (3.5) with z = O has been used.
Substituting Egs. (5.2) and (L.10) into (5.1) gives

M

3

=1
N Kn Bn

Am(s+7m) + B,

2

= : (5.3)

(s+7m)2 + W

Vé(s) = U4 E_4

2 2
n=1 <S+Tn) * Bn
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Table L.

Equivalent Circuit Elements for the Dipole Antenna Admittance with
\b‘ = 2?”1(21')/3,) = 6.

0=2 or(22)

»

2

¢

c

Ry G HY Rz L2 L
2 ) [} 2

8 76.3 8.8298 6034 - - —_—
9 60. 1 © 8.818k .6085 008.2 .6309 .8698
10 53.1 8.2816 L6310k 120.4 .9032 .5956
11 48.9 7.6597 . 6696 3.5 . 9340 .5686
12 46.0 7.0783 .7139 82.0 .8898 .5015
12. L4h.9 6.8127 7371 78.4 .8598 .6100
13 43.9 6.5642 . 7607 75.5 .8389 .6307
13. 43.0 6.3320 . 7846 73.2 . 7985 .6530
1h 2.2 6.1152 . 8087 71.3 . 7693 L6762
1h. 41.5 5.9124 .8329 69.6 .Th16 .6999
15 40.9 5.7226 .8573 68.2 . 7355 .72k
15. 0.3 5. 5445 66.9 .6910 . 7485

.8817

aUnits - ohms.

bUnits - picofarads per unit length.

“Units - microhenries per unit length.




In Reference 3, it was shown that the natural frequencies are &
function of the object and not the source. The natural frequencies are
also unique. Thus, theoretically T = and Bn = w, for n'= m and

Eq. (5.3) can be written as

M A

) .
(7" + o} .
V. (s) =4 EL T Ko = Eozeff(é-,s),(5.l+)

s+7m) + B,

2

2
(s+7m) + W

m=1
A first order solution for the effective length can be obtained
from Eq. (5.4) by recalling that for late times (small s) only the first

terms in the series expressions for the current and admittance are impor-

tant. Considering only the first terms gives

boop = bt [Al(sgt)l) t By _ fog * Sty (5.5)
where
fog = (W) (5.6a)
and .
.= %% . (5.6b)

For O = 10 and § = 6, zeq = .963 4 and ze = .1255 %i . The result
for zeq obtained by King} for a very small gap is Zeq = .958 g.*

As (O @ the equivalent length approaches 4. An upper bound for
the open-circuit voltage up to the first resonance for the thin antenna
can be written as

A
Vg(s) = B {1 + s z——i———] - (5.7)

m Am'}/m + Bmtl)m

*The comparison of the éffective lengths are not made for equal gaps
because the theory presented in Section IV does not apply for the small
gap range.
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Note that the voltage is not a function of the antenna gap; howsver,
the assumption is that the gap is sméll,* b << a, such that Eed & f.
From Eq. (5.6a) it can be seen that K =~ LB, (for small gap lengths) for
the thin dipole with arvéry small gap since Biw, >> Alyi. This permits

another method for the calculation of fhe equivalent circuit elements
for the first resonances of the thin dipole. The substitution of wy = &,

v = T, and K; = 4B, in Eq. (4.11) gives

o =B (5.38)
I, = e (5.8b)

R, = 5%?;; . (5.8¢)

The open circuit antenns voltage response to the incident =slectric

field E(t) can be calculated from Eq. (5.4) as

v, (t) = Leg E(t) + 2, é%%El , (5.9)

where'zeq and ze are determined from Eg. (5.6&) anu (5.6b) respectively.

VI. TRANSIENT RESPONSE:AT THE LOAD

The transient response at the antenna's load can be calculated from

Egs. (2.1) and (2.2). The voltage across the load is

v(t) = L7t fale) (6;1)
750+ 1 (s)

and the current through the load is

Ia(s) YL(S)
Ya(s) + YL(s) ?

i(t) = L7¢ (6.2)

*The assumption of the small gap was used by King in computing the
low frequency asymptote of the effective length for O .
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where L™ {F(s)} is the inverse Laplace transformation of a function
F(s) and Y(s) is the Laplace transform representation of the load
admittance. '

If it is assumed that Yr, is a matched tuned band-pass filter load
such that Y; = Y, for a narrow band of frequencies centered about the
first resonance, the load voltage response due to the first singularity

can be written for the step-function incident field as

i (t) R
v(t) = S (6.3)
and the load current is
i,(%)
i(t) = a2 lm:l . (6.4)

The power dissipated in the load is

2(¢)
sz n RL lm:l -

MEZ 4% RL g2t (AL cos unt + By sin wpt)® ~

MEi 42 Ry, B? 8—271t sin® wt (6.5)

where the property that By is normally an order of magnitude larger than
the Ay has been used to obtain the approximate expression. The energy

received during the first half-cycle is approximately

/2w
— 2 -7lt PR
En_uEiz RLB%j‘ e sin® un t dt
(o]

= AE2_52 R
T R R s )
B g2 R
~ 2 n__o” ~ L
~ E(g) 2 RL ﬁ 0_)1_ = 2fo 3 (6'6>



where the relations wp = Qﬂfo and w; >> 7, have been used.
If the dipole is a quarter wavelengbh antenna (wavelength = Lp),
Eq. (6.6) beccmes

P Bf R
En’“_o—'—_f'a_é . (6.7)
32 £

To the same approximation, the peak value of the load current for

the antenna is

EoBlc

(6.8)
o
If it is assumed that YL is a parsllel resistor, capacitor, and
inductor tank circuit resonant at wg = wy such that Yi} ~ R, for fre-

quencies near resonance, the load current response for M = 1 is

1

4E_ 4 Biun R,
I(s) = —2 x L
(S+71)2 + wf

Sy sKi B1
=+

L (s+71)2 + B3

YE_ 4 B L P /‘:l — (6.9)
A/l-uRlBﬁ;I-l- - IR E (s+70)%+ (i)

where

7 o=n + 2R B (6.10a)
and

() =of - bR 0 B9 - W B (6.10b)

and the approximate relations wn = By, 71 = 71, and 4B = K, have been

used. For RiB < 1, w! ~ a, and

@
1

I(s) =~ LB, 2 B (6.11)

(s+2{)% + of
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The load current is given in the time domain as

/

i(t) mLE 4 B e sinmt . (.12)
The peak value of the load current is
71”

i ME 4B e 2w1 . (6.13)

m

The energy received by the resistive element of the load during the

first half-cycle is

2
E =

wi[1 - exp(- 1—)]

/

(b2 + bud)

.2 _ 2
1(t)RLdt_l6E‘Z;2, Ry

O'———a§l:1

~ U P B RL% . (6.14)

For the quarter wavelength antenna (half wavelength long dipole),

the results are

E c? Ef R :
E ~ o - L (6.15)
8 f-
o}
and
EO ¢ B 5
i~ ——— exp (-Ri, B, 7 - H]%—) . (6.16)
. o O

The preceding discussion in this section has been limited to the
electric dipole antenna. Equations (6.1) through (6.16) can be applied
to an electric half-dipole (monopole) antenna by replacing E, with 2E
in the equations. This is necessary because the total electric field at
the antenna is the sum of the free space incident field plus the image

field as shown in Fig. 2b. "

* ’ .
The angle of incidence is broadside to the antenna, 8 =

el ==
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The impedance of the half-dipole antenna 7, is one-half that of the
dipole impedance Z,; and the short circuit current of the half-dipole Igp
is twice that of the dipole current I g; thus, the open circuit half-

dipole voltage V. is related to the open circuit dipole voltage Vgq by

(Ty)

V = I Zad = ——2-—- (EZah) = Vah . (6-17)

ad ad

The powér dissipated in a matched load of the half-dipole antenna

is : o )
2 2
I R I R
ah “'Lh ad "Ld
Py ===t -2p (6.18)
where R., is the resistance of a matched half-dipole resonant load and

Lh
Rig is the resistance of a matched dipole resonant load. The power

received by the matched dipole load P4 is one~half that received by the
half-dipole load P,, thus the power gain of the half-dipole antenna
reference to a dipole is 2 or 3 db.

As an example calculation to demonstrate the application of the tech-
nique presented in this paper,. the normalized current response has been
calculated for a half-dipole antenna with Q = 2 gn (2 é) = 12.5. The
angle of incidence of the incident EMP is g measured from the axis of
the antenna. And the electric field is parallel to the half-dipole.

In Fig. 5, the normalized short circuit current responses are plotted
against time. The waveform shown in Fig. 5a is the response to an indi- ‘
cent wave with a step-function time history. In Fig. 5b, the normalized
short circuit current response to an incident field with a double expo-
nential waveform is plotted for a one-meter-long half-dipole. The values
for the plots in Fig. 5 were calculated from Eq. (3.10) with M = 5.

In Fig. 6, the normalized load current response of a one-meter half-
dipole to a double exponential EMP is plotted for a resistive and tuned
load. The resistive load is a 50-ohm resistor. The tuned load isg a
parallel RIC tank circuit with R = 50 ohms, L = .1 microhenries, and
- C = 50 picofarads. The tuned circuit is resonant at freguencies near but

not exactly the first resonant frequency of the antenna. The values for

the plots in Fig. 6 were calculated from Eq. (6.2) using an inverse
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Lapiace transformation program supplied by James H. Marable of ORNL.
The frequency domain antenna short circuit current was calculated from
Eq. (3.5) with M = 5 and the antenna admittance was obtained from Eq.
(4.10) with N = 3 and § = 6.

The double exponential waveform used in the calculations is of the
form e % - 7% yith oy = 1.5 x 1 sec™ and o = 2.6 x 10° sec™t.-
The pulse has a rise time of about 10 nanoseconds and fall time of about
2.5 microseconds.

The current response through a 75-ohm load connected to a cylindri-
cal dipole antenna excited by a unit step function plane wave pulse is
shown in Fig. 7. The solid curve is the response calculated by the
singularity expansion method as presented in this paper. The dashed
curve is the response calculated by classical antenna theory as employed
by David B. Nelson.'® The program used by Nelson was developed by
Toulious et 2&.;11 it employs classical antenna theory and numerical
techniques to calculate the time response of a cylindrical dipole to a
transient plane wave. The two curves compare reasonably well as can be

seen in Fig. 7.

VITI. SIMULATION

The simulation of the effects of the nuclear electromagnetic pulse
is useful to determine the response of complex systems to EMP and to
correlate experimental and theoretical results of EMP interaction with
less complex systems. Also, manufacturers can utilize the simulation of
EMP effects on their products to design for and meet EMP specifications.

The simulation of the effects of EMP can be classified into two
categories: system-level and partial system-~level simulators. The
system-level simulators are generally bounded-wave parallel-plate wave-
guides, electric- or magnetic-dipole radiating structures, distributed-
source structures, or hybrid simulators which illuminates the
entire system being ftested. The free-field environment of the system-
level simulator has the advantagé that only the free field has to be
known to conduct a high quality test providing the system being tested
does not distort the free-field environment. Also, if the total system

is contained within the free-field environment, all the natural modes
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are excited in the same manner as they would be in the actual EMP environ-
ment providing the simulator does not interact with the object.

The partial system-level simulatofs excite only portions of a sys-
tem such as appendages or points of entry. The partial system-level
simulators often employ the pulse injection technique which hag the dis-
advantage that the pulse being simulated has to be known or at least
approximately known. This requires either & previous free-field test or
M system interaction studies.‘ Also, only one or several EM coupling
mechanisms are simulated and 1t is often difficult to correctly simulate
all the natural modes for any single coupling mechanism. However, the
partial system-level EMP simulator can be a useful tool in determining
the degradation effects of EMP energy at a particular point of entry.

It also, in general, has the advantages of being lower in cost, less
complex, more transportable, and requires less physical space than the
gsystem-level gimulator.

The simulator designs presented here are the pulse injection type
intended to simulate the major effects of EMP interaction with a half-
dipole (monopole) antenna. The first pulser design is for the simula-
tion of a double exponential EMP and the second and third designs are
for the simulation of a step-function EMP.

Only the first mode and the low frequency response is simulated by
the double-exponential EMP simulator. This is a fairly good simulation
since the third mode is smaller than the first by nearly an order of
magnitude. : :

For the half-dipole, the equivalent length is one-half that of the
dipole. However, the electric field at the antenna is twice the inci-
dent field'due to the ground plane reflection for 8 = ﬂ. Thus, from

2
BEq. (5.9) the open-circuit voltage is given approximately by

Va(t) ~ pE(t) = LE (e""lt - e'%t), (7.1)

where the relation g A~ Leq has been used. The double exponential EMP is
assumed to have a fast rise time such that o > m. The Laplace trans-

formation of the open circuit voltage is
z@ a2 = Nir EQZ%
o (s+ay )(S+0p) — (st+og ) (s+ag)

Va(s) ~ B (7.2)
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This voltage can be obtained by a series circuit consisting of a charged
capacitor that is discharged through a resistor and a special non-ideal
switch. The normalized voltage response of the non-ideal switch when

connected to & constant voltage source is given by

Teul®) = 77857 (7.3)

If the source capacitor Cs is charged to a voltage E g, the voltage
across the discharging resistor Ry with the non-ideal switch is the
desired antenna voltage given by Eq. (7.2) where oy = (RSCS)'I.

The circuit to approximate the Thevenin equivalent circuit for the

half-dipole is shown in Fig. 8a. The antenna circuit elements are

given by
8 B
C = ?l—_*_%)lg— R (7.14-8.)
L= L (7.4b)
and
R = Yg—iw}_ . (7.4¢)

The source capacitance Cg and the source resistance Ry should be
selected such that Cg $> (woR)'l and Ry << R to achieve the correct in-
put impedance. To meet this reguirement it is necessary that wg >>

The charging resistor R, should be large enough to provide current-
¢ should

be much greater than Ry to allow the capacitor C, to discharge to a low

limiting protection for the high voltage power supply. Also, R

potential. '

To simulate a step~function incident field EOU(t), set o and Ry
equal to infinity in the pulser circuit shown in Fig. 8a. The pulser
will simulate the dominant sinewave mode for several cycles until the
waveform exponentially decays to zero. However, for most applications
of determining component failure, only the positive (or negative) por-

tion of the first cycle of the waveform is important.
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Consider the pulser consisting of a charged coaxial zabls of length
L as shown in Fig. 8b. If the load input impedance and the cable charac-

teristic impedance Z, are equal, the current through the load is'®
v
. o ZL)
10) = g |00 - v [e - } , (7.5)

where V, is the initial cable voltage and v is the velocity of propaga-

tion for the cable. Equation (7.5) can be rewritten as

V'
. o by ooomvt 1 . 37yt 2L . (7.6)
1c(t) =55 7 |sin 5T + 5 sin 53— + 0t < v

o]

The current response through a parallel resistor, capacitor, and

inductor tank circuit load is given by Eq. (6.12) as
. -7t .
i(t) =~ M-Eoz e B sinwt . (7.7)

Noting that wx >> 7, Eqa. (7.7) can be approximated over the first
cycle for a half-dipole as

e

i(t) ~8 E 4 By sinwt 0<ts< i% . (7.3)

For the narrow bandpass, tuned load with a center bandpass radian
frequency w, = g%, only the first term in the expansion given by Eg.
(7.6) constitutes the current through the load. Equating the first term

in Eq. (7.6) with Eq. (7.8) gives

V= LELT BZ, (7.9)

and

The coaxial cable between the pulser switch and the receiver should
be longer than length L such that the source cable can discharge into
load equal to the characteristic impedance of the cable for the duration

of the pulse. Also, the charging resistor R, should be large to provide
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current-limiting protection for the high voltage power supply. In order
not to distort the waveform, R, should be selected such that R, >> 2 Zge
The value of R, that is required to pfovide current-limiting protection
will normally satisfy the second condition.

Now consider a third pulse injection technique that employs the
antenna to provide its own antenna Thévenin impedance as shown in Fig. 9.
This technique has two advantages over the other two methods presented
in this chaptér: (1) the exact Thevenin equivalent impedance is used and
(2) certain non-linear effects such as spark-over from the antenna to
ground, corona, etc. are also included in the circuit.

A pulser circuit to provide a first-order antenna Thevenin equiva-
lent voltage source due to a step-function EMP E(t) = Ej U(t) is shown
in Fig. 9b. Switch 81 is used to isolate the load impedance 7 while
the source capacitor is charging. Once Cq is charged, 8, is closed and
then the low-inductance, fast-rise switch S, is closed to apply an approx-
imate step-function voltage source between the antenna and the load.

The source capacitance Cq should be chosen such that CS'>> C1 so that
the series impedance of the antenna and Cg as viewed from 8y 1s approxi-

mately the same as the antenna impedance. Cg can be chosen such that

C
8
7 21 nanofarads/meter . o (7.12)
For g = 10 meters, a value of Cq = +0Ll uf will provide adequate

capacitance. The charging resistors R.'s should be large enough to pro-
vide current-limiting protection for the power supply and to isolate

the power supply from the antenna-load circuit once S, has been closed.

VIII. SUMMARY
In this paper, a new technique to calculate the electric dipole
antenna sghort-circuit current, open-circuit voltage, and load current
and voltage responses to EMP has been considered. Basically, it involves
applying the results of the singularity expansion method which expands
the time-domain solution of the electromagnetic quantity such as the
short-circuit current, etc. in terms of simple analytic functions. Each

term comes from an inverse transform of the corresponding term in the
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frequency domain singularity expansion. When this method is applied to
the dipole antenna, it was found that the response can be represented by
a sum of decaying exponentials and exponentially damped sinusoids.

The short-circuit current response of the dipole antenna to a step-
function incident EMP was found to be a sum of exponentially damped
sinusoids. The inverse time constants of the exponentials and the angu-
lar frequencies of the sinusoids were found to be functions of the dipole
structure whereas the amplitude of the damped sinusoids are functions of
both the structure and the incident wave.

For the double exponential EMP, the short-circuit dipole current
response was found to be the short-circuit dipole current response to a
step-function incident wave with the amplitudes of the sinusoids altered
plus an additional current with the same time history as that of the inci-
dent waveform. The amplitudes of the damped sinusoids and the double
exponential currents are functions of the dipole structure, the incident
field amplitude, and fhe inverse time constants of the incident waveform.

An approximate formula to calculate the natural resonance frequencies
of the currents on a thin cylindrical dipole excited by a unit step func-
tion voltage source across an infinitesimal gap has been used to approxi- .
mate the dipole admittance by simple polynomials. This method gives rea-
sonable results at low frequencies and at the first several odd numbered
dipole resonant frequencies. With the expressions for the antenna admit-
tance and short-circuit current, the open-circult voltage and load cur-
rent and voltage responses can be calculated.

A first-order solution for the dipole effective length was derived.
The open-circuit dipole voltage is the convolution of the effective
length with the incident electric field. A first-order solution for the
open-circuit voltage with the antenna oriented for maximum reception was
found to be the product of the incident electric field times the equiva-
lent length of the dipole plus the first partial time derivative of ths
incident electric field times a constant called Lo. This constant 4,
is determined by the antenna parameters.

The transient load response to a step-function EMP for a matchsd
bandpass load with a narrow bandwidth centered about the dipole's first

resonant frequency was discussed. It was found that for the half-length
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of the dipole equal to a quarter wavelength of the operating frequency
(the bandpass center frequency) the induced current and voltage peaks
are inversely proportional to the operating frequency. Also, it was
found that the energy received by the load during the first half cyzle
is inversely proportional to the operating frequency cubed.

Simple pulser circuits to simulate the dominant portion of the half-
dipole response to EMP have been developed from the singularity expansion
solution for the dipole response and the Thevenin equivalent circuit for
an antenna. The lumped-circult pulser simulates one mode of the antenna
response while the second pulser, a charged cable pulser, simulates
several modes for a half cycle. The third pulser circuit employs the
antenna's own impedance and simulates several modes of the antenna re-
sponse for several cycles.

As an extension to this work, one could attempt to derive and apply
a more accurate singularity expansion solution of the antenna admittance
for both the infinitesimal and finite gaps. Also, more complicated an-

tenna structures could be considered.
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