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ABSTRACT

A new mathematical formulation is given for the calcu-

lation of currents and voltages in a thin wire circular
loop receiving antenna. The resulting expressions facilitate
a discussion of the convergence properties and validity range

of the familiar results to this problem.
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CIRCULAR LOOP ANTENNA

1. INTRODUCTION

A mathematical treatment of the single-turn,
circular loop antenna has existed in the literature
for at least 34 yearsl. Numerous discussions and mod-
ifications of this work of Hallén, have éppéared in
the intervening years (e.g., References 2, 3, and 4).
A recent review of the theoretical literature on this
subject, as well as a comparison of theory and exper-

iment; can be found in the book of\King and Harrisons.

The theoretical work of this paper is not intended
to significantly expand the fange of validity of the
work referred to above, nor to improve the élready good
agreement with experiment. This work approaches the
same problem using a somewhat different mathematical
framework, and yields a different form for the final
result. The results, when evaluated numerically, yield
results which agree well with previous numerical results4
but are in a form which provides a better analytic "feel"
for the behavior of the results. By inspection of the

analytical form, it is possible to see the effects of

the approximations which are normally made, as well as
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more clearly defining the range of validity of the
final results. A second, and as important, reason for
presenting a new approach to an old problem is that

it appears to provide a better basis upon which to
build the solution to a related, but less investigated

problem ~- the multi-turn circular loop.

2. THE PROBLEM

The questlon to bé:;aérésséd is therfollow1ng?
consider a conductlng wire with a 01reular crossﬂsectioh,
radius a; thiS,WiFe,iS wound intorthe shepe of_arsingle
circular loop, raaius b (inside diameter of the»loop is

2(b-a)); at the joining point of the loop is a generator

capable of maintaining a potential difference across this
poiht; external to the wire is a source of electromag-
netic fields; what is the current on the wire due to

the two sources?

Assumptiohs which are normallyvmade, and which will
be made here, ere as follows; 1) a << b; 2) ka << 1
where k te the wave nhmher of the ihcominé rediatieh;
this restricts con51deratlon to wavelengths much greater

than the w1re dlameter, 3) conduct1v1ty of the w1re is
1nf1nlte. Assumptlons l) and 2) (the thln w1re approx-
imation) allow one to conSlder only the currents flow1ng .

parallel to the w1re ax18.




The integral equation which describes the situa-
tion of interest has a straightforward derivation.
Assuming the antenna to be immersed in a nonconductive
medium*, with permittivity ¢ and permeability u, the
potentials of the fields radiated from the antenna
are related to the currents and charges on the antenna

via Maxwell's equations (mks units);

[\l

2 _ ) -
(Vv HE 5‘;‘7) éR(g't) = Ug(grt) (1)
(7% - ) bzt = - Loy (2)
e —5) dp(g,t) = - = oz, t),
ot
where éR and ¢R are the vector and scalar potentials

for the radiated fields, J and p are the current density

and charge density on the antenna.

Consider the fields, and thus the potentials, to be
harmonic with a time dependence e TtOt, (This is of
course no limitation -- an arbitrary time dependence can

be built of linear combinations of terms of this form).

Equations 1) and 2) thus take the form

%
For a discussion of both bare wire and insulated antennas
in conductive media, see the Appendix.



(7 + kM) ag(z,w) = -u g(z,0) (3)
(vZ + k2)¢R(£,w) = - %— p(x,w) (4)
where k2 = uewz. (From this point onward, explicit

reference to frequency dependence will be guppressed,
and the notation f(g) will imply f(g,w) unless other-
wise stated). These equations can be shown to be sat-

isfied by potentials of the form

e g
R = w ) 3eh S (3)
iklg-x'|
1 ' 1y ©
bply) = —— |dg' plg') E— . (6)
4re |-z |

The fields due to the external source will be related
to the fields due to the antenna sources by the bound-
ary condition requiring the tangential component of the

electric field to vanish on the surface of a perfect

conductor. The radiated electric field can be derived

from the potentials via

, oA, (x,t)
ER(E’t) = _z ¢R(£lt) = __AP:L;_—E‘L . (7)

Ba(3) = ~Tog(5) + iv 3o (p)




This expression can be simplified using the Lorentz

condition
: o¢ (rlt)
Peoat e 2E ®

v - AR<£) - ipew ¢R(£) =0

yielding

Il

1 .
Ex(®) = 555 Z(Z-AB(Q)) + iwhp (x)

ik|g-x' |

= Trew fd3£' {Zr(2r°£(£') E‘Tﬁ—‘[“
, ik|g-x" |
+k Q(E')E—I;:;Tr~}
i 3 eiklg-g']
e ol 255
ikl;-;'[
+k2 & } . (9)
lx-5" |



Specializing this equation to the thin wire geometry:
discussed earlier, allows the following simplifications:
J(x') has components only parallel to the wire axis;
J(x') as well as the Gréen's function are assumed not
to vary across the Wire (the point r=r' will be con-
sidered in detail later). Equation (9) can, with these
assumptions, be reduced to a one dimensional relation-

ship for the ¢ component of E at the wire surface,

™ 1 32 2 Helgg |

ER¢(¢) = 4;€wjﬂd¢' I(¢'){ ;5—;—7 + k%cos(¢-¢"') E—Ti:ng—
A ¢

(10)

where ¢ is the angular distance about the center of the
loop, and I(¢) is the current in the loop at angular

position ¢.

It is now expedient to expand ER (¢) and I(o")
¢

into Fourier series in the appropriate angular variable

Eg (¢) = Z Eneln¢
¢ N=—

1y = imo
I(¢’ ) - Z Ime 14 (ll)

me==—oo




such that

T
By = = j B, (9)e My,
it

™
I = _2];_T.r_ J- I(¢')e-lm¢'d¢' . (12)
-1

These Fourier coefficients obey the equation

o T
_ i T 1 -in¢ 1
ERm-'z‘V_;:- Z{ﬁf‘”’e pI
m==-oo =7
T ik |z-x"|
v Jime' 103 _a1y| €
:[qus o [kb —7 +kb cos (4-¢ )] S }Im. (13)

The matrix in the curly brackets will hereafter be

referred to as .
%nm

If the Green's function is a function of the dif-—
ference ¢~¢; only (as it will always be for the purposes
of this paper) then the matrix reduces to a diagonal one,
with diagonal elements Oy e If one represents the Green's

function by a Fourier series in the differences (¢-9'),



ik|z-x'| ©

n==o

it
K = l.._ j d(¢_¢l)eln(q}—¢') e T;—E'I ‘ (14)

then it is straightforward to express the a's in terms

of the above Fourier coefficients

-n2 kb
% = <_E5 Ky ¥ 377 (Kpyqp * Kn—l)) (15)

The resulting equation, relating the radiated field

to the current now reads

2

-1 +E = LVE (2 kb )
E 2 £ OLnIn 2 e \kb Kn + 2 (Kn+l+Kn-l) In'

(16)

The boundary conditions on Maxwell's equations re-
quire a vanishing tangential electric field on the sur-
face of the perfectly conducting wire. Thus the total
of the incoming field, field due to a load on the
antenna, and radiated field due to currents on the
antenna, has to have a vanishing tangential component
on the wire. Assuming the antenna gap to be infinites-

imally small, the boundary condition reads
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, I($p=0)%
Ex(¢) + E(¢) + Ep(¢) = Ep(¢) + E(¢) - —p—— 8(4)=0

(17)

where E(¢) is the incident electric field, EL(¢) is
the field due to the impressed potential difference

at the load, Z_. is the load impedance (located at ¢=0),

L

and 6 (¢) is the Dirac delta function. Fourier trans-

forming this equation leads to
I(o)ZL
ER+ En——m——-=0 (18)

n

and consequently

I(o)Z . 2
En = _;F%fé - % ng (:%E Ky * %g(Kn+l * Kn—'l))In'
(19)
This equation can be solved for In, and using the fact
that I(o) = i? L I(o) can be expressed in terms of
n=-c

the E. and K :
n n

€ = En
n=-c = K_+ == {X_ .+K__
I(o) = gb n 2 n+l "n-1
iz
1+ WbL \[5‘ Z: 2 -
. n=-=c (:ﬂ— K+ Pk _4x 0
kb "n 2 n+l "n-1

(20)
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Quantities of interest can be derived directly from
this expression. The short circuit current is defined

as the limit of I(o) as Zy approaches zero;

E
I =2iE )} 5 nkb : (21)
=== -1l
(kb” Kp * E—(Kn+1+Kn-1))

open circuit voltage is the limit of ZLI(o) as Zp

approaches infinity;

E
Z n
( n? kb )
n=-w [-2_r + &2x  _+r )
v__ = 2mb kb 2 " otl n-l (22)
oC S
1
L -n’ K+ fR(x _4x ))
n=-—o kb "n 2 n+l "n-1

antenna impedance is the ratio V_ /I
oc¢’ “sc

© -1
——w 0T kb )
n= ,(kb Kn + 2 (Kn+l+Kn—l) J

(23)
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The current I(¢) at any point on the antenna can be
evaluated by solving Equation (19) for In, and using
Equation (20) to eliminate I (o) from the resulting
equation, and finally constructing I(¢) according to
Equation (11). Expressed in terms of the previously

derived qualities,

T 7.7 .
’ . n T

1) = L 1,7 = 21 F L 2 kbL

OO e OO -:r—l——— ——t——

n= n ( kb Kn+ 2 (Kn+l+Kn-l))

(24)

The problem thus reduces to finding values for the
coefficients Kn' It is in this evaluation that the
approach of this paper differs from that found in the
published literature. The approach of references (1)

and (2) is to represent the Green's function by

eik|£‘£'! . oikb 1/4 sin? ii%ill + a2/

=S bV 4 sin? L0200) 4 .22

(25)

assume a<<b, and after considerable manipulation evaluate
the expression for K (Equation 14) by numerical integration
This form of the Green's function (18) is equivalent to

allowing the current to flow at the center of the conductor,

13



and evaluting the bdundary condition for the electric _
field on the surface of the conductor at the circular
locus of points furthermost removed from the plane

of the loop. This has the behavior of the true

Green's function at all points except where ¢ = ¢,

where the singularity of the true Green's function is

replaced by a sharply peaked, but finite function.

3. SOLUTION

- The basis of the present evaluation of the coeffi-
cients Kn is the following formula for the Green's

function in spherical coordinates;

ik |lg-x" | o ' 2 %
) . (1) m v
s = 47mik )} g (kr dh, "7 (kr,) )} Yo (8',4")Y,(0,9),
lg-z' | 2=0 =4 '

(26)

where jz(z) is the spherical Bessel function, order &,

h(l%z) is the spherical Hankel function of the first kind,
%
order %, and r_{(r,) is the smaller (larger) of the two

magnitudes, |r| and |r'|. Orienting the spherical coordinate
system such that the axis of the wire is described by the

circle 9 = % » ¥=b, this yields an expression

14



[0

k= ik ) ()3, sb)alY (k(bra))

2=|n]|, |n|+2,...

ptntl, 7 2
20 | p (=) (2-n) ! (27)
n)!

T L =n+2 (2 !
F(__ﬁ—_)

This expression represents the case where the current
is on the axis of the wire and the boundary conditions
are satisfied at the points on the surface of the wire
at a distance at+b from the center. The effects of such
small geometrical differences should be small. To more
precisely describe, in this representation, the Green's
function of Egquation (18), one should write the argument
of the Hankel function as k V b2+a2 and evaluate one
of the spherical harmonics at & = arctan(b/a). This
deviation from 6= 7m/2 gives corrections to the series
(18) of second order (a2/b2) and higher orders, which

can usuaily be ignored.

This form (Equation 27) can be slightly simplified

by combining the gamma function and factorial terms;
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k= ZE Y i 3, emnY kwra)) -
2=|n|, [nl+2,...

L4n+l 2-n+1
(——) (—=—)

r 2 T 2 (28)
(2+n+2) (£—n+2)

r 2 r 2

This series converges, albeit slowly, and has been
numerically evaluated in order to compare present

theory with the published values of admittance

(Y = 1/2) of Reference 4. Good quantitative agreement
has been achieved by summing £ up to 200 (at most 100
terms in series) for n values from 0 to 19. Terms for

n > 20 were ignored in the evaluation of Y, as they were
in Reference 4. Evaluation of this series is simplified
by the use of the asymptotic expressions for the Bessel

and Hankel functions when 2>>kb;

. 3
. (1) . -i [ b
3y (kbYh, ™" (k (b+a)) K (6Fa) (20FD) \b+a) - (29)

An investigation of the asymptotic behavior (in n) of
the expression (28) will reveal fesults at variance with
the conclusions of previous authors (1, 2). Inserting
the appropriate limiting forms for the Bessel, Hankel

and gamma functions6, one finds
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=}

« L< b >n|+l Z T (A+1/2) (b/b+a)2>‘
n large n b \b+a WfI:THT— X

(30)

8

1 —ln[% r 2
_ z T (A+1/2) (b/b+a)

~ = e ’
Th o0 W[K:T;T Al

a function which decreases monotonically with increasing

In|. (The second form above depends on the inequality
a << b, but does not require |[n|a < b.) The coefficients,

o of the current expansion, thus have an asymptotic

form
a x
. n? e-lnl-b— y LO+1/2) (b/b+a) 2% (31)
n "~ 2 Y ”
Tkb A=0 Vi+|n|
This contrasts with the asymptotic form derived by
Hallén (1) and reiterated by Storer (2)
2
n 2b
0~ —— {ln == - y,..-In n (32)
N ykb a Y '
where vy = 0.5772... in Euler's constant. This form

shows o becomes very small (or even, in qguite special

circumstances, zero) for n -~ Z% e_Y, thus yielding large

contributions to the current (.~ %—). Beyond this point,
n
the form changes sign and diverges with increasing n,

allowing a convergent series for the current (Equation

17). Equation (31) shows oy increasing with n for small

17



(however still asymptotic) n due to the n2 hehavior,

but finally a turnaround at n -~ %E-where o begins its
asymptotic decrease due to the exponential behavior.

The diverse nature of these two results is a consequence
of the treatment given to the two inequalities, n >> 1

and % << 1, The earlier results (Equation 24) exhibit
expressions which are good for large n and small %, only
gso long as na << b. This limitation (na << b) has been
avoided in deriving the form (31). The two limiting forms
agree, as they should, for na << b, but when this inequal-

ity is not satisfied the proper asymptotic behavior is

given by Equation (30).

4. DISCUSSION

A result of the eventual convergence of Equation
(31) is that in general, the expression for the current,
Equation (7), diverges, whereas the supposed incorrect
result (32) yields a convergent current expression, and
furthermore gives results which compare well with exper-
iment. The explanation of this parédox can be found by
considering the exact kernel and comparing its results
with those exhibited using the approximate kernel
(Equation (25), (28)). Wu3 has written the exact kernel
and then reduced it by assuming the current to exist

only on the surface of the wire, and to be constant around

18




the perimeter of the wire for fixed ¢. His expression,

which is adequate for the purposes of this discussion,

yields
T m .
K_ = %F -f as e x(4) = %F _[ ds etR¢ .
il =T

1 p ik \/(2b sin ¢/2)2 + (2a sin 6/2)°
=— as

2m \/ . 2 . 2

=T (2b sin ¢/2)° + (2a sin 8/2)

(33)

Wu's Green's function behaves generally like thaf
of Equation (18), with the quite noticeable exception
of the singularity at ¢=0. The singularity is logarith-
mic, and thus integrable, (in the principle value sense),
and yields finite values for the Fourier coefficients,
Kn for finite n. This singularity is indeed what allows
the more exact kernel to yield convergent results for
the antennarcurrent. Considering only the region of
expression (33) which differs from the Kn's derived from

the approximate kernel (20), are-written

8 >
bR, ~ 1 > asé _[ ae e I (34)
(2m“  J Pl Wfb2¢2 + 2262
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where § and € are small but finite angular intervals.

If they are chosen such that bé << ae then one can

show
L S, (nd)
AR = L B >—{1og (2 g—g-) Slnnn‘s - 1n (35)
(27)"a
810 %X is the sine integral which

X

X
where Sl(x) = fdx
o

approaches w/2 for large x. For large values of n, thus

This addition (Equation 35) to the function Kn is
always small compared to the Kn of Hallén and Storer
except (possibly) at the n value when the expression in
parentheses of Equation (32) vanishes, or nearly vanishes.
Thus the only change of these 0ld results due to the
inclusion of the singularity in the Green's function is
to eliminare the (near) divergence mentioned by Hallén

3 (in fact the o

and Storer. This was pointed out by Wu
presence of this "divergence" is what prompted Wu to

derive his results using the exact Kernel).

For low n values, AKn makes only minor corrections
to the Kn expressions developed in this paper (Equation
21). Asymptotically, however, the % behavior of AKn

will cause it to become dominant compared to the

20




a
_ln[__
e B behavior of Kn (Equation 22)). The AKn term

forces the asumptotic behavior of the o of this paper
to a, ~n and allows the current in a circular antenna

driven by a delta function generator,

ind

I(¢) =Y & (36)
n

o
n

to be finite everywhere except at ¢=0, the position of
the load, where the delta function load induces the

equivalent of an infinite current.
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APPENDIX

LOOP SURROUNDED BY CONDUCTING MEDIUM

If the infinite medium in which the loop is
buried is assumed to have a non-zero conductivity,
simple modifications in the expressions of this paper
allow for a proper description. If the conductivity
of the surrounding medium is ¢, the differential
equations for the potentials (in ?he»frequency domain)

read

(72 + k22 () = -u J(x) ‘ (a-1)

-1
€

(7% + k'2) o (z) o (x) (a-2)

where k'2 = uewz + iuow. With the above. equations,

the Lorentz condition (Equation 8) is equivalent to

the charge continuity equation: either can be used to
yield the samerzhtegral expression for electric field
in terms of currents (e.g., Equation 9). With a conduc-

tive surrounding medium, two possible versions of the

Lorentz condition suggest themselves:

Y« Br(x) - duew ¢p(x) = 0 ; (A-3)
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and
Y+ Bp(y) - (ipew - wo) ép(x) = 0. (A-4)

Equation A-3 is equivalent to a continuity equation
where charge is conserved in the source region, i.e.,

no charge can be transferred between the antenna and

the surrounding medium. This représents an antenna

with a very thin coating of perfect insulator on the
wire. Egquation A-4 is equivalent to a continuity
equation in thch total charge is conserved (of course),
but charge can leak from the antenna to the surrounding
medium and back, thus a bare wire in a conducting medium.
To account for both these cases, the Lorentz condition

will be written as follows

.. 2
lkA
Y - Bplx) - —= ¢5(x) =0, (a-5)
2 _ .2 _ 2 .
where kA = k© = uew” for insulated antenna,
2 _ .,2 2 . ,
and kA,— k = Yew  + ipow for bare wire antenna.

These modifications result in modifications to the

equation of this paper as follows:

E

T = n .
s¢ kA -n2 kAb !
—_— - ' B ' v
n (k g Xyt (KK )

(A-6)
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n=- X.B K
V' = 27b ;o (A-T7)
oc ®© 1
Z -n2 kXB
e ! —_— [ ]
n=-o (kAb K n + 2 (K n+l+K n-l))
- -1
Ve —imp UM 1 .
Z' = -imb | L 52 Kb ;
=00 [l ' e ¥ T
n= (kAb Kt =3 (X ne1t K n—l)
(A-8)
T
Lo Il 27
: 1
_— 0 n 2nb (Z +Z£T ind
I(¢) = 21 — z e ;
Ky .2 Kb
—_— L ' £ [ t
SR S8 RK)y + =5 EBig*K )
(A-9)
where
K = —i %— T (2041)3, (k'b)hél) (k' (b+a))
'Q'=In| ‘
[n]+2,.
P(5&+2+l) T(R 2+l)
L+n+2 T-n+2 . (A-10)
T( s ) T (——T—)
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