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Abstract
A Hallén-type integral equation is developed for an L-shaped wire
and the singularity expansion method is used to numerically calculate
the natural frequencies, modal current and charge distributions, and
coupling coefficients for plane wave excitation.
Transient énd sinusoidal steady state responses arerconstructed
from the singularity expansion of the current and the time-domain cen-

vergence of the solution is illustrated.




I. INTRODUCTION

The singularity expansion method (SEM) was introduced by
Baum [1] as a tool for treating electromagnetic transient scattering
problems. One of the primary advantages of the method is that it
permits a systematic description of the transient response of an
object in terms of a relatively small number of parameters, viz., a
set of natural resohant frequencies, a corresponding set of modal
currents which are the source free currents that can exist on the
object at the resonant frequencies, and a set of coupling co-
efficients which describe how the object "couples' to the spatial
and temporal distribution of the incident field. In principle, this
information enables one to construct the transient response of a
finite object due to an illumination which is arbitrary in both space
and time. The frequency domain response of the object due to a time-
harmonic illumination may also be readily constructed simply as a
special case.

In addition to the original description of the method of Baum [1],
Marin and Latham [2] have considered some of the theoretical aspects
of the SEM using an H-field integral equation formulation for scattering
by a perfectly conducting object. Tesche applied the method to the
calculation of the transient response of a dipole scatterer [3]. His
work included calculation of the natural resonant frequencies, modal
currents aﬁaaﬁiméﬁaamain current and charge distributions due to a step

Tt

function plane wave illumination. Martinez et.al. treated a conduct-

2




ing sphere excited by a step function plane wave [4]. Because most
of the manipulations could be done analytically for the sphere, thus
eliminating errors due to numerical approximations, the sphere pro-
blem provided a good test of the representation compared with con-
ventional techniques. Lee and Leung also considered a dipole
scatterer and calculated approximate pole locations from a Weiner-Hopf
formulation [5]. Marin later considered some aspects of applying
SEM to scattering by imperfectly conducting objects and perfectly
conducting bodies in a parallel plate region [6]. A parametric study
of prolate spheroids was also undertaken by Marin [7]. Wilton and
Umashankar-have calculated natural resonant frequencies for prolate
spheroids, a dipole above a conducting ground, and a wire loop [8].
In this note, we consider the scattering of an L-shaped wire
using the SEM. The numerical problem is formulated by applying the
method of moments [9] and SEM (Sections III and IV) to the set of
coupled Hallén—type integral equations derived in Section II. In
Section V is presented the results of a parametric study to determine
the influence of the location of the bend and the two wire radii on
the scattering charaéteristics of the object. The complex natural
resonant frequencies, modal current and charge distributions, and
relevant coupling coefficients are given for each case considered.
Sample calculations are carried out for the step function response of

an L-wire and the results are compared with those obtained by the



conventional inverse Fourier transform of frequency domain data. The
appendices describe some of the numerical procedures employed which
are pertinent to the SEM calculations and give a derivation of the
reduction of a double integral appearing in the Hallén formulation to

a single integral.




II. FORMULATION OF THE COUPLED INTEGRAL
EQUATIONS FOR THE L-WIRE STRUCTURE

In this section,kHallén—type integral equations for the induced
current on a perfectly conducting L-wire structure, Fig. 1, are
developed for illumination by an arbitrary incident electromagnetic
field in a linear, homogeneous, isotropic medium. The L-wire
structure is in the xz-plane with lengths, r,h and radii ags ay
corresponding to x and z directed elements. The currents iX and iZ
reside on the surfaces of the perfectly conducting wire elements and
hence give rise to only x and z Components of the magnetic vector
potential A = Axi + AZE. The wire element radii are assumed small
compared to the wavelenéth and the current density is assumed to be
uniform around the periphery of the elements.

In the formulation of the Hallén-type coupled integral equations,
two expressions are independently established for é given component
of the magnetic vector potential. These expressions are obtained as
follows:

(a) One expression arises from the solution of an inhomogeneous
differential equation.

(b) The second is obtained from the solution vector for the
potential in terms of the induced current. These two expressions are
equated and the condition that the tangential component of the electric

field on the conducting surface is zero is then enforced. The con-

stants of integration should be in compliance with the following
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Figure 1. Geometry of-the L-wire structure.




conditions:

1. the scalar potential is continuous at the wire junction
2. iX = iz at the wire junction
3. ix(-rD = 0 and iz(h) = 0, the currents must be zero

at the free ends.

The z and x components of the magnetic vector potential satisfy

the partial differential equations

32A 2 BA,
2 Lq2p =K g 3 X
272 * KA, = 1 B az(ax ) (2.1)
32A 2 3A
X, qp2p =K p L3z
~ P I = T By - =) (2.2)

where E, and E, are the z and x components of the electric field
resulting from currents induced on the scatterer, w is the angular
frequency and k is the free space wave number 2v/x. The complete
solution [10] to the above differential equation valid along the sur-

face of the wire may be written as

!
AZ(O,az,z) = CZ cos kz + BZ sin kz + VZ(O,az,z)

z 8A, (0,2,,2)
2? .
_ %J -gz -8?- Sin k(Z-C)dC, Z€(O’+h) (2‘3)

£=0
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Ax(x,al,O) = C, cos kz + BX sin kx + vx(x,al,O)
v

if\-z_(gaalyg)

3z } sin k(x-£)dg, xe(-1,0) (2.4)
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,BZ and Cx’Bx are arbitrary constants and the forcing functions

where CZ
are
z
v, (z) = J%J E,(0,35,z) sin k(z-z)de (2.5)
z=0
X
and vx(x) = j%-J Ex(g,al,O) sin k(x-g)dg (2.6)
g=0

Integrating once the last term in (2.3) and (2.4) yields the

following expressions for the vector potentials along the wire sur-

faces:
AZ(O,aZ,z) = C, cos kz + B, sin kz + vz(z)

z an (O,az,g)
cos k(z-z)dz, ze(0,*h) (2.7)

X

z=0




AXCx,al,O) = C, cos kx + BX sin kx + vx(x)

A (g, a; ,0)
J .5—— cos k(x-g)dg, xe(-r,0) (2.8)
g=

!
where B, and B, are constants which simply absorb By and B; and

terms arising from the integration by parts.

Differentiating (2.7) with respect to z and rearranging terms, in

view of the Lorentz gauge, we obtain the scalar potential,

12 sv_(z)
-j55; #(0,ap,2) = -kC, sin kz + kB, cos kz + a—zl
“A (@)
r k| o5 sin k(z-z)dz, ze(0,+h) (2.9)

z=0

At z = 0, i.e. at the wire junction,

k o X
B, = -j= 6(0,a,,0); similarly By = -j= ¢(0,a1,0)

Requiring the continuity of scalar potential, we have

B =B, =B (2.10)



The magnetic vector potentials A, and AX can also be written in
terms of potential integrals involving line current distributions

iz(z) and ixﬁx). Using the usual reduced kernel approximations [11],

we have
h ;
?
A (0,a),2) = %; J i,(z') K(0,x ,a,,2,2")dz’ (2.1
z'=0
0
. 1
A (x,a7,0) = %F J i (x') K(x,x ,a;,0,2")dz’ (2.12)
XY:_r .

and from (2.7), (2.8), (2.11) and (2.12) the coupled integral equations

1
of the Hallen-type are obtained:

0 h X
. 1 3 t 3 ! 1
i () K (o' a)dx! J i) ! % K eay,0,20)]
xt=-r z'=0 £=0
cos k(x-£)dg| 4,
X
__ . AT .
= C, cos kx + b sin kx I J Ex(g) sin k(x-g)de, xe(-r,0) (2.13)
E=O v
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0
ix(x') [

z
é-—K'(O,x',az,;] cos k(z-z)dg{dx!
T £=0

X X
'

h
+ [ iZ(z‘) Kz(az,z,z')dz' = ¢, Cos kz + b sin kz
Z

0
Z
.47 i .
-] J E_(z) sin k(z-z)dz, ze(0,+h) (2.14)
z

- %?Cx’ b = %?B and 1 is the permeability

X

_ _ 4
where n = 120, c, = 7ICZ’ c

of the medium and the various kernels in the integrals are given by

K (x,x",a,) = = R R = al + (x-x')°

' z 2 2
KZ(E,al,O,Z') = 2 T, sy Ty =ap+ EZ +z'
'JkR
_e  ? _ 2 12
Kz(az,z,z') = ol R, =a;+ (z-z
_jk-rx
K'(O x',a,,z) = ° T, = a + x4
X H s 2’: rx ’ X C
and
_ 5l
EX(X) = Bx(x)
_ g1
Ez(z) = Ez(z) (2.15)

The latter two substitutions arise from the boundary condition that
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the field produced by currents flowing on the surface of the
L-wire must cancel the incident field B,

In the integral equations (2.13) and (2.14), the internal in-
tegrals of the double integral terms can be analytically evaluated
(see Appendix A) and the resulting expressions are used in the
further development of the matrix equation from the integral
equations.

In the coupled integral equations (2.13) and (2.14),k is the
wave number of the medium and in the steady state analysis it is
real and given by 2n/x or w/ue. We can conveniently write the
derived integral equations in terms of the Laplace variable

s=o+jw,which is more suitable for the SEM,by substituting

k = -j% (2.16)

where ¢ is the velocity of light in the medium.
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III. NUMERICAL ANALYSIS AND APPLICATION OF THE SINGULARITY
EXPANSION METHOD TO THE L-WIRE COUPLED
INTEGRAL EQUATIONS

The coupled integral equations derived in the preceding section
may be solved numerically by using the so-called method of moments
[9]. The currents ix(x) and iz(z) are represented by piecewise

sinusoidal sub-domain expansion functions (Fig. 2):

i (x) i§(x) u(x,-x)

_l x
2iq(x) ‘u(x-xq) - u(x-xq+1

4

q:

+

. X
i q x) u (x-xQ)

where

.X 1 X . X .

1q(x) m—x-Eq sin K(Xq+l_x)+Iq+l sin k(X'Xq)], Xe[xq,xq+l]
(3.1)

and

i,(2) = ii(z) u(z,-2)

N-l.z
3 1n(z){u(z—zn) - u(z—zn+1)}

+

n=2

+

) iI%I(Z) utZ*zN)
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Figure 2. Piecewise sinusoidal basis set and position of
match points used in the Hallen-type coupled
integral equations.
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where

-Z - 1 Z s _ z . _

1n(z) = ETE—EK; [En sin k(zn+l z) + In+1 sin k(z zni}, ZE[Zn,ZN+1]
(3.2)

In the above two expressions u(x) is the familiar unit step

function defined by

0, x<0
u(x) =
1, x>0
and Ig, Ig are unknown complex constants which are the values of the
current at the points Z, and xq, respectively.

According to the method of moments, the above current expansions
are substituted into the coupled integral equations (2.13) and (2.14)
and results in an expression involving the unknown complex co-
efficients Ig and Ié' These two functional equations are ''tested' at

the various match points Xq and z, (Fig. 2) and result in the follow-

ing matrix equation:

" N
X % X ZnXZ Z XZ
o L, I mq + IQ+1T§ + IR+ §=2 1A% N+1 + Pl
+ QXp = PX,
mn m
m=1,2,3 .... Q,Q+l (3.3)
N
X~ ZX % ZX X X Z Za~Z Z yA Z
7R, L, XM wt Tgels 17U,z + §=2 1287+ IgTr Qb
Z _ Z
+ chz = Fg’
2 =1,2,3 .... N, N+1 (3.4)
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where X =0, ¥, =12 1%

Toep = =0,

“17 TN+l

and the elements of the matrix equation are given by the following

single integrals:

e ) sin k(xz-x)
m Kx(x 25 al) sin EAX dx
X=X
x *q sin k(x-xq_l) Xq+l sin k(x- Xt l)
qu - Kx(xm’x’al) sin k. dx - KX(X 2% al) sin kA,
X=Xg.1 » =Xy
XQ sin k(x-fg
T§ B J Kxcxm’X al) sin ka
~Q
22 sin k(z,-z)
2 74
Riz - J K;(xm,z,a ) sin kA z
2=24
. Zn . sin k(z-zn_l) Zp+l . sin k(z-zn+1)
Mﬁn - K, (Xp22:2)) —33 k&, dz K Oz )~ 2
z=2, 1 7 z=2,
Xz zN+l sin k(z- Zy
Dy = Xm’z’al)——ﬁ—d
z=zy
P; = - cos kx, X = - sin ke
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and the kernel functions are given by

exp E j k{a% (xm-x) 2}1/ 2:]
{a§+(xm-x)2}l/2

oy - [l
K (x»2,2;) =

(a%+22) {€2+ai+22}1/2

j {§2+af+z2}1/ 2 sin k(xm-g)}

Ky (x»%521)

{g cos k(xm-g)

£=X,

£=0

Similarly, the remaining elements of the matrix corresponding to the
z-directed wire are obtained by interchanging the variables X,Xp 5875
N with the variables z,zn,aZ,Q, respectively, in the above ex-
pressions. The forcing function terms are given by

X

_ 1oy o _
B, = gJO‘J BL(g) sin k(x -£)de
g=0
) rzg; .
Fr =3k | E;(2) sin k(z,-0)dz

J ¥
£=0

In view of the boundary condition on the currents at the ends
of the wire and continuity of the current at the junction, the

equations (3.3) and (3.4) can be written in a compact form as a
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partitioned matrix

et

where A consists of self and mutual terms corresponding to x and

z directed wirg glements

constants of integration.

and B contains the coefficients of the

Explicitly, we have

X X X, ~XZ Z Z
2 S (TR M iy
X X XZ A Z
_ Sge1,2 7T SQ+1,Q «(TéﬂRQﬂ) M)é*]ez ”‘éﬂ,N
= 1, MQrITQH] , 1,
ZX ZX ZX . Z zZ A
M2 Mg (D) Sy, * S
2X S ZX 2X %y o2 S.Z
M1,z eee Mi1,Q Cner*Unen) Swer, 20" ONeLLN
o ——
. N o
rIz Fl
Y .z "X
_ Tgn (=Ip) _ Fon
J = 7 F = VA
% B
2z 'z
Iy Fne1
! J L
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o
]
o

el
I

cos kx

|
CoS ka+l

0

0

sin.kz1

sin kzN+1

O e e O

cos kz1

3
3
]

cos kZN+£

The partitionedmatrix equation (3.5) assumes that the current A

expansion and testing functions have been truncated so that the re-

sulting matrix in (3.5) is of order (N+Q+2j and is a linear system

of equations for the unknown current coefficients (only N+Q-1 un-

known current coefficients are solved in J of expression (3.5) because

of the boundary conditions, (3.3) and (3.4)).

ing, (3.5) takes the matrix form

N[

(s) T(s) = V(s)

Without the partion-

(3.6)

Equation (3.6) is the same as the form employed by Tesche [3],

who used the generalized impedance matrix interpretation of

Harrington [9]. To emphasize the similarity of the approach here,

we use similar notation. Howévér, one notes that the form'(3.6)

has elements with the dimensions of vector potentials, not im-

1
pedance, because the matrix representation resulted from Hallen-type

eqUatiOné. With k = —j%-we‘identify the terms in (3.6) with the

corresponding ones in (3.5) and obtain
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=~
N
w
—
1]

=i

Ll

I(s)

I
——
O 1 4|
—

and

i
|

V(s)

The solution of the matrix equation (3.6) is

—1 —

I(s) = Z(s)V(s) = Y(s)V(s) (3.7)

where the elements of Y(s) are given by

D™ ()
(s) = [Ynm(s)] = A(5) . (3.8)

and A is a minor determinant of % formed by deleting the m-th

<l

row and the n-th colum, and A is the determinant of f

One can examine the analytic properties of the various
quantities in (3.8) in the coniplex s = o+jw plane and observe that
every element of the matrix %: in the expression (3.3) and (3.4) is
analytic throughout the finite complex s-plane. We should note that
the terms Amn(s), ,and A(s) are formed by taking various combinations
of product factors of the elements m%, hence they are also analytic
everywhere in the finite complex s-plane. Therefore the only possible

singularities of ?(s) are the zeros of ﬁhe determinant A(s).
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Writing A(s) in terms of a partial fraction expansion,

I(s) = [ =—V(s) + W (s) | (3.9)

where s = S5 are the poles of Y(s) (the natural frequencies of the
structure), and %? denotes the corresponding residue matrix of Y(s)

given by

¥ - %_’@i(s-si)§(s) | (3.10)

W;(s) is a vector whose elements are entire functions, that is, they
have singularities only at s = », For convenience in mathematical
notation, it has been assumed that all the poles are of first order.
For higher order poles, the following development must be suitably
modified [1].

In the following analysis the vector Wé(s) is assumed to be zero.
This has been found to be the case in a number of exactly solvable
geometries. We shall take the point of view that the singularities
at s = », if they do exist, seem to have negligible effect on
numerical results from SEM when compared with those calculated from
the inverse Fourier transform of frequency domain data. However, it
is cautioned that entire functions generally correspond to time de-
lays and the exclusion of such a term may possibly lead to erroneous
results. It is shown in Appendix B, that the residue matrix given by

the expression (3.10) can be conveniently written
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in the form

=T - — -:f-

(3.11)
where T, is called the modal current distribution (together with the

|
constants present in the Hallen formulation) corresponding to a
natural frequency of oscillation s = s; and is the homogeneous solution
of the matrix equation (3.6) at s = Sis that is,

T(s)T; = 0 (3.12)

and similarly ﬁi is the homogeneous solution of the adjoint matrix

equation

f*(si)ﬁi = 0 (3.13)

where the dagger implies the transpose complex conjugate operation.
The constant Bi is just a proportionality constant which is determined
numerically after the normalization of T& and ﬁ&. Hence the current
solution can be written in the convenient form

s.TZHT

I(s) = ] ===V(s) (3.14)
1

S-S.
1

In Appendix B, various methods are discussed for the determination
of the natural frequencies of oscillation i the natural modal
current distribution T&, the natural eoupling vector ﬁi, and the

proportionality constant 8. Alternatively, 8, may be written in a
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form independent of the normalization of 'I'i and ﬁi as

_ 1
Bi = ﬁT—'— (3.15)
s |

Zy T

where Zi is the first derivative with respect to s of the matrix 7(s)

evaluated at s = S,
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IV. FREQUENCY AND TIME DOMAIN SOLUTIONS
In the expression (3.14), I(s) and Ti are the partitioned

colum vectors
N _ J.
I = '6 and 1.

)
(!
e

and hence the actual induced current distribution on the structure is
obtained from the upper partition colum vector J

B.EIHT
S

2= V(s) (4.1)
1

J(s) = ]
i

This is the most important expression in the SEM from which either the
frequency domain or the time domain solution can be determined. Note
that because of the Hallén formulation employed here, the matrix 3&?;
is not a square matrix as it is in the E-field approach. Furthermore,
Ti is not equal to ﬁ;, in contrast to the E-field formulation [3].

In the expression (4.1)

2

_ m
V(s) = |-

2
£

and P§ and Pg are given by the integrals

X

x_ -1 | ™. .

E =735 J E (€) sinh g{xm-g)dg
g=0
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and

X
1o
R = 3—1J EL(z) sinh 3(z,-2)ds (4.2)

=0
In the above integrals, E;(x) and E;(z) are the components of the
incident field along the x and z directions respectively, evaluated
on the scattering structure.

For an incident plane wave with 6-polarization,

-2 sin 6 cos b X
E (s) cos 6 cos ¢ e

EL (x)

-2 cos oz
-Ee(s) sin 8 e 7 (4.3)

EL(2)

and for ¢-polarization:

-5 sin 8 cos ¢ x
-E¢(s) singe

EL ()

(4.4)

il
o

EL (2)

where 6 and ¢ are the angles (Fig. 3) of the direction of pro-
pagation of the plane wave. Since the factors sinécos¢ and cos6
are just direction cosines o and 8 with respect to x and z axis (Fig. 3), it

is possible to decompose a given plane wave into the following two
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Figure 3. Resolution of the incident plane wave
field into Ee and E 5 components.
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linearly independent‘excitations:

a) horizontal wire excitation
S

. -ZaX
i _ C
Exa(x) = A(s)e
Eia(z) =0, for -1 <a <1 (4.5a)
and
b) vertical wire excitation
i =
Ex8(x) 0
i 26
Ezs(z) = B(s)e , for -1<pg <1 (4.5b)

Hente, for a given 6 and ¢ one may appropriately superpose two
solutions obtained from the excitation functions (4.5a) and (4.5b).
For the case of plane wave incidence, by substituting (4.5a) and

(4.5b), the forcing function integrals (4.2) reduce to

s s s
-ZoX +=x +2X
F§é = —~?¥igi%;— 2¢ ¢ M. (l-a)e ¢ m-(1+a)e cm
60—5(1-%1 )
FZ% = o (4.5¢)
2 v
and
sl
m
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S S S
-}z +—.Z£. '—Zgl
Fis = SB‘S) 2e c R-CI-B)GC -(1+B)ec (4. Sd)
60=(1-82)

The above excitation terms have a removable singularity at s = 0 -

©

and therefore the only singularities arise from singularities in

either A(s) or B(s).

Frequency Domain Solution

By substituting for the Laplace variable s = jw, the time
harmonic steady state response can be obtained. Hence the expression

(4.1) takes the form

8. J.0
j'. _ 111 =,.
Guw) =] Fas T VUw) (4.6)
. 1 1

where the summation is over all th@ pole locations in the complex
s-plane. This expression illustrates that the cause of the
"'resonances'' one customarily observes in scattering or antenna problems
in the frequency domain is due to the proximity of a pole of the
structure to the ju axis. However, one notes that at certain positions
on the structure, the modal current corresponding to a particular

pole may vanish and the frequency domain behavior of the current at
that point will not exhibit the resonance. Nevertheless, the re-
sonance would still be in evidence if one considered, for example, the

charge at the same point.
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Time Domain Solution

The time domain solution is obtained by taking the Laplace inverse

transform of expression (4.1),

p——
g.J.H.
- -1= 1 11 = st
i(t) =L J(s) = = [ ) st' V(s)e” ds
CB 1 i
= st
2mj 7 tid $-S; '

Ts) = V()] = |E

The expression (4.7) can be written as

HORDEMAEAC
1
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Figure 4. Illustration of the closure of the
Bromwich contour in s-plane.
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where

ACERVO R (4.9)

and in the above colum vector

d
V. (s) = -1 : Ei( s) sinh §{d -g)dg
m 30 alés ' cvm ’
£=0
where
x,m=1,2, ..., Q+1
d =
y, m= Q+2, Q+3, ..., N+Q+2
and

dm = X15Xgy eeen XQ+1’21’22’ ceee g

form= 1,2, ..., N+Q+2, respectively. Hence we are concerned with

the element vmi(t) of the colum vector in (4.9)

4 inh £(d_-£)

1 mq i S com st

V. .(t) = -—J m i Ed(g,S) S‘Si c dS dg (4.10)
g

B

According to the convolution theorem,
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+o0

7%; [ F(s)G(s)eStds = f(t) * g(t) = J f(r) glt-t)dr (4.11)
B -0

C
where the lower case letters denote quantities in the time domain and

capital letters denote their corresponding Laplace transforms. Hence

v_.(t) becomes
mi

d . .S
- mo _7|sinh =(d_-£&)
Vi (8) = %J eé(s,t) # 71 S_‘S:i L (4.12)
£=0

where the asterisk denotes convolution and the bracketed term may be

expanded as

ot ([dra] )

= - - - — dg
s-s; _l 217 2(s si) 2(s si)

Cp

S.
—[ct+(d_-£)]
%—u[ct+(dm-g)]ec[c m

55
Hlct-(d,-8)]

; % ufct-(d -g)]e (4.13)

This result is found by closing the Bromwich contour either by

C: or C; (Fig. 4) and the integral is evaluated using the residue

32




theorem. Because of the fact that all the poles are located in the
left half plane, the integral involving CB + C: is identically zero.
The above time-space function is shown in Fig. 5. It is seen that if
the excitation function eé(a,t) is a delta function in both space and

time (the antenna problem),

eh(5,0) = 6(t) 6(s-4) (4.14)

then the expression (4.12) reduces to the form given in the ex-
pression (4.13) with the variable £ replaced by d_ whenever ldn[<|dm|
and is zero otherwise. For more general excitation functions,
according to the expression (4.12), a convolution in both space and
time is required. Alternatively, a coupling coefficient can be de-
fined, as is done later in this Section,which does not require the
convolution in time. However, the representation given here converges
more rapidly in practice.

For a step function plane wave incident, the electric field has

the general form,

S
i A
5
By(gss) = —, -l<y<1 (4.15)
and
i
eg(&,t) = uft-1& | (4.16)

Substituting the expression (4.15) into (4.10)

dm -%yg . .S
v . (t) = o= L e sinhz(d-8) o
mi 3 S50 — e~ ds
£=0 C i
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Figure 5. Integrand of the forcing function
(equation 4.13) for (a) t < 0O,
(b) t > 0.
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£=0 CB
B (4.17)
Hence' ™! 'ifiﬂ'é - = (2)q

S
- =1, dm ) N DT T i— Ct,ﬂ;fgém é{'ﬁ T L F oy mrieniw
O N et LGS T R I
T E

= L ‘ . . . .
{ '.,‘,'Onx,»u.zi;i; QUETUFLTa0n2 ,uabmob amrd oy M wonsH L 2LX8

wnd aw L (08, 48)

] z—l—uE—t ve-(@,0) ] |e© S ey g)}] .o @18

- iJio

s 1 fh
,; , l 7 l_
With a change in the variable of lntegratlon‘ the above becomes

i

S.
) . ct—ydm EET . ct-ydm
v (t) = ———r u(t) e- -ljdr - ————
5£L.9‘6OS (d 1) =ct+d 6O§igq+%)1T=ct;d¥
m RS
S.
i
C—-T
u(t) le” -1ldc , (4.19)

srofAniiw yiianeb soteds Tllooval rvierh [ebom adf ar :—g— = SJ sradw

s noitareno avidsvitelh edld uniaslget wd e2i2syg ar bsnisido
1nd1cat1ng ‘that the integration is performed for t > 0 and whenever

L. . . . L TR UKOTG0S 909 51 11h
at least one of the limits of integration is positive. Hence the

time domain solution is obtain by substituting the expression (4.19)

for v_.(t) into (4.8). SRS S 9 5. B B
i AS
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Linear Charge Density

The current-charge continuity equation gives the relationship

0|

o) = -1 FE (4.20)

where ¢ is the coordinate variable along either the x or the z
axis. Hence in the time domain, substituting equation (4.7) into

(4.20), we have

P = L) f
- o 2 | B e
B
= ‘E eiﬁlhl"f-L Ve (4.21)
dT

where Q TT— is the modal dlstrlbutlon of charge den51ty whlch 15
obtained in practice by replacing the derivative operation by a

difference approximation,

§= Jn+l,i ) Jn-l,;l .
i

207 _J
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where Jy is an element of 3} and the column vector

1

HO)

[vik; (£)]

ds

st
1 Vh(s)e
2y | s(s-s;)
Cp

Hence the element v%i(t) takes the form

d . S
m ) sinh = (d_-§)
q 21 -1 i c 'm st )
£=0 CB

For a step function plane wave incident, using equation (4.15),

S
=(ct-vE)
N rm _1 J sinh £ (d_-€)e°
;

q
Vi (8) = 35 ] ds|dg

2
= s“(s-s.)

Rewriting the above expression in terms of a partial fraction expansion,

we have
d [
m = (ct-vg)
ey =L | ™ 1| Jsimn S (g -5
Vmi(t) 30 J 27J [ sinh c (dm £) e
£=0 CB
)
-1 N 1 .1 dstdg
sz(s-s ) s s2 s%s
i i i i
)
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and upon taking the inverse Laplace transform, V%i(t) reduces to the

following form:

d S.
j m = Ct-Y€+(dm-£)]
0

) plevereeo]|ge
i

q
v (t)
£=0

L

+4

1 1
o leer@rn] + L
1 Si

S.
1
==|ct-ve- (dm-a)]

Fufeee-@n][Se
S.
1

1 1
o [etver@a]+ Ll (4.23)
1 Si

In the limit as t » =, the expression (4.23) gives the constant linear
charge distribution corresponding to the static response s = 0. This
can also be obtained by applying the final value theorem to the ex-

pression (4.20) or to (4.22):

2im o (t) = 2im sp(s) (4.24)
T sS>0
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By substituting expressions (3.6) and (4.20) into (4.24), we obtain

the result

gim B(t) = - Mm -d— [Z L (s)¥(s)] (4.25)

o

which with the aid of (4.22) yields

v o(t) = ] 8,QH; V(=) (4.26)
o0 i
where 2
d
7 -zl
vi(t+WJ 5 5,

Coupling Coefficients

The time domain solution of the induced current distribution is

given by the expression (4.7)

The treatment of the previous sections regarding the closure of
the Bromwich contour yields a time-domain current representation which
appears to converge favorably as a function of the number of

singularities included in the residue series. Another form of the
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time domain representation is available, however, which is more
convenient for tabulation of the characteristic scattering properties

of the structure. This representation is simply

s.t
it)=)cCJ, e’ (4.27)
;i1
where
- » ot

and we assume V(s) has no singularities in the finite complex s-plane.
If V(s) is due to a plane wave with a more general time dependence,
the time dependence may be factored frém the plane wave dependence
and an expression similar to (4.27) with additional terms to
account for the waveform singularities results [1]. The quantity
Ci is the coupling coefficient corresponding to the natural fre-
quency s, and depends only on the geometry-dependent factors B and
Hi, and the transform of the incident field evaluated at the natural
frequency. Hence, if the incident field is a step function plane
wave, for example, the coupling coefficients Ci depend only on the
angle of incidence.

Corresponding to the two types of incident fields as defined in
(4.5a) and (4.5b), coupling coefficients Cai and CBi may be defined

as

C . = B.ﬁ’if 7 (s.) (4.29)
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where

v (s;) = -——— for -1 <a <1

o

and

where

0

__.B . Fizs for -1 < g <1

28
Fyel

= -

and F§§, Fis are defined in (4.5c) and (4.5d).
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V. NUMERICAL CALCULATIONS

In ﬁhis section is presented the results of a parameter study
of the L-wire structure using the SEM. Referring to Fig. 1, where
all geometric parameters are normalized to the total wire length
L = v + h, only three parameters are required to specify the geometry.
The parameters are the radius ratios 2;/L and a2/L, and the length
r/L, which is taken to be the longer arm of the L. The length of
the shorter arm is simply h/L = 1 - r/L.

The natural frequencies, modal current and modal charge distri-
butions, and coupling coefficients are given in the following for
various combinations of the structure parameters. Sample time and
frequency domain current responses are presented and the con-
vergence behavior of the time domain current representation is

illustrated. The time domain response of the charge is also presented.

Natural Frequencies

Tables 1, 2, and 3 give the calculated natural resonant fre-
quencies for an L-wire with the longer arm having length r/L = 0.9,
0.7, and 0.5, respectively. As in the case of the straight wire,
the poles appear in layers which lie roughly parallel to the jw
axis [3]. In the tables and following figures, the layer nearest the
axis is denoted as the & = 1 layer and the index n labels poles in
that layer according to their distance from the ¢ axis. The location

of a pole in the s-plane is then given by the complex number Sen
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%%-= 0.001, %%-= 0.001 %%-= 0.001 %%-= 0.01 %%—= 0.01 %%-= 0.001 %%-= 0.01 %% = 0.01
’ oL uL oL ol oL oL oL L
2C 2c 2c 2c 2C 2C 2C 2c
1 -0.0943 1.5049 -0.0809 1.3729 -0.1589 1.4991 -0.1472 1.4368
2 -0.1269 3.0782 -0.1098 2.8947 -0.2343 3.1117 -0.2122 2.9861
3 -0.1327 4.6554 -0.1350 4.5008 -0.2778 4.7204 -0.2549 4.5614
4 ~-0.1440 6.2417 -0.1633 6.1525 -0.2978 6.2864 -0.2984 6.1458
5 -0.1665 7.8291 -0.1993 7.8262 -0.3193 7.7572 -0.3631 7.7367
6 -0.2073 9.4169 -0.2523 9.5140 -0.4042 9.1522 -0.4654 9.3427
7 -0.2679 11.0046 -0.3400 11.2276 -0.5188 10.6023 -0.6179 10.9799
8 -0.3454 12,5872 -0.4456 13.0427 -0.5974 12.1500 -0.8551 12.6841
9 -0.4295 14.1497 -- -- - -- - --
10 | -0.4929 15.6809 -- -- -- -- -- --
0 -3.9069 0.0 -3.8381 0.0 -3.3398 0.0 -3.2963 0.0
1 -4.4159 2.3928 -4.3634 2.3608 -3.9904 2.6976 -4.1364 2.2898
Table 1. Natural frequencies of L-wire structure, r/L = 0.9.
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a a a a a a a a
= 0.001 i = 0.001 T 0.001 T 0.01 T 0.01 T 0.001 T 0.01 + = 0.01
n
oL oL oL uL oL wL oL ul
2c 2c 2c 2c 2c 2c 2c 2c
1 -0.0759 1.5326 -0.0666 1.3962 -0.1404 1.6133 -0.1233 1.4801
2 -0.1275 3.1248 -0.1629 3.1952 -0.1707 2.9866 -0.2293 3.0676
3 -0.2580 4.7215 -0.4749 4.6837 -0.3747 4,4813 -0.5104 4.6109
4 -0.2831 6.2206 -0.3589 5.9087 -0.4806 6.3022 -0.5902 6.0905
5 -0.2204 7.8251 -0.3172 7.8114 -0.4337 7.7698 -0.5528 7.6846
6 -0.3786 9.4183 -0.8752 9.4471 -0.5719 8.9414 -0.8936 9.1639
7 -0.4358 10.8581 -0.4747 10.3155 -0.6739 10.7761 -0.8542 10.4894
8 -0.2741 12.4592 -0.3333 12.3323 -0.5996 12.5301 -0.6424 12.2332
9 - _ —— - - - - .-
10 - -- -- - -- -- -- --
0 -4.6492 0.0 -4.4498 0.0 -4.2687 0.0 -4.1219 0.0
1 -4.9128 2.1697 -4.6373 2.1726 -4,8196 2.1545 -4.5321 2.1290
Table 2. Natural frequencies of L-wire structure, r/L = 0.7




Sy

2%-= 0.001 %%-= 0.001 2%-= 0.01 ;%-= 0.001 %% = 0.01 ;% = 0.01
2 n
oL oL oL oL oL wh
2c 2c 2c 2c 2c 2c
1 1 -0.0531 1.5439 -0.1022 1.4997 -0.1028 1.5001
2 -0.2085 3.1212 -0.3762 3.0389 -0.3763 3.0390
3 -0.1969 4.7047 -0.3763 4.6178 -0.3794 4,.6211
4 -0.3632 6.2440 -0.7251 6.0605 -0.7251 6.0607
5 -0.2885 7.8016 -0.5502 7.6231 -0.5587 7.6312
6 -0.4243 9.3316 -0.8610 9.0290 -0.8612 9.0293
7 -0.3086 10.9217 -0.5934 10.7067 -0.6081 10.7212
8 -0.4528 12.4781 -0.9864 12.1681 -0.9867 12.1685
9 -0.3438 14.0815 -0.7015 13.8544 -0.7244 13.8820
10 -0.5191 15.6308 -- - -1.2394 15.2280
2 1 -4.8121 0.0 -2.9787 0.0 -4.,3075 0.0
1 -5.3886 2.2573 -3.8876 2.8260 -5.1622 2.1316
TNatural frequencies are the same for aj/L = 0.001 and aZ/L = 0.01
Table 3. Natural frequencies of L-wire structure, r/L = 0.5.




Only a few poles in the second layer are given in the tables.

Figures 6-9 show the location of the natural frequencies in
the s-plane for the four radius combinations considered here. In
each figure, the complex natural frequencies in the & = 1 layer are
plotted for three ratios of r/L. To some degree, the pole distri-
butions are similar to those found by Tesche for the straight
wire [3]. However, the bend tends to increase the damping constants,
particularly when the bend is toward the center of the wire. Further-
more, the poles associated with a layer no longer appear to lie along
a smooth arc, but seem to be distributed along a zigzag path curving
slightly away from the jw axis.

In Figures 10-12, the data above are again displayed, but with
the ratio r/L held fixed for the various radii combinations in each
figure. These figures show an increase in the damping constant when-
ever one of the arms of the L-wire is increased in radius, the largest
effect arising when the radius of the longer arm is increased. An

important observation is that the figures indicate that poles at

o m[%} m= 1,2, (5.1)

(i.e., p is an integral multiple of the integer closest to the

s = slp’ where

quantity in brackets), are shifted to the left relative to neighboring

46




l\)le
oI

. . oo i
- 412
. ® ‘." -

© o
: A 49

. Cl,/L= .OO' A® o _ 6
- Qp/L= .00l ©Ae

_ e r/L=.9 Agol3
L ® =.7 i
A =.5 'l

 E I N NN (NN NN N NN U N O
ok .9 -6 -3

2C

Figure 6. Natural frequencies of L-wire,
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poles in the same layer. This shift is attributed to the fact that
(1) the coupling betweeen the two arms of the L-wire comes primarily
from the region very near the bend and (2) the modal current is
almost zero in the neighborhood of the bend for modes satisfying

Eq. (5.1) and hence the two arms of the L-wire are relatively un-
coupled. The uncoupling effectively results in two isolated wires
both of which have larger radius-to-length ratios than does the
whole structure and hence have resonant frequencies with larger

damping constants. Conversely, poles s where q satisfies

q

q= (m-%)[%],m=l,2,..., (5.2)

correspond to the case where the bend is located approximately at an
anti-node of the modal current, hence the arms of the L-wire are
strongly coupled and the pole shifts to the right. If we follow the
trajectory of a given pole as the bend position is continuously
varied, the pole position should oscillate right and left as
Eqs. (5.1) and (5.2) are alternately satisfied. This effect is shown
in Fig. 13 for the first three poles in the & = 1 layer.

The effect of changes in wire radius on pole locations is
illustrated in Figures 14 and 15, where the radii of both wires are

the same and the radius is varied for three bend positions.
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Modal Currents and Charge Distributions, Coupling Coefficients

Figures 16-23 show the modal current and charge distributions
as well as the coupling coefficients for a delta function plane wave

excitation. The results given are for the first eight resonances in

the & = 1 layer.

The curve designations relate to the various radii combinations

according to the following key:

/L
Case A 0.001
Case B 0.001
Case C 0.01
Case D 0.01

When r/L = 0.5, cases B and C become identical if the wire arms are

interchanged and hence only one of these cases is shown in the

figures.

Current and charge distributions are shown as functions of the
normalized position variable /L measured from the wire end at
x = -r (Fig. 1). For convenience, the currents were found at only
29 points along the wire and linear interpolation was used to obtain
the modal distributions shown. This was found to be a sufficient
number of points to insure convergence of the pole locations as well

as to approximately represent the modal currents at the highest
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frequencies considered.

One notes that the modal currents exhibit discontinuities for
cases where there is a radius discontinuity at the bend. Such dis-
continuities commonly arise at wire junctions for large radius changes
such as those considered here. Unfortunately, at present there is
no adequate mathematical model available to treat such junctions.

It is felt, however, that except in the neighborhood of the bend,

the modal current distributions are substantially correct. Further-

more, it is also felt that all related quantities (resonant frequencies and
coupling coefficients) corresponding to these currents are correct.

The charge distributions in the figure are calculated using a finite
difference approximation of the dérivative of the current and hence
exhibit the same discontinuities as the currents do.

The coupling coefficients in Figure 16-23 are calculated for a
delta function excitation which excites the bend at t = 0. For a
more general time dependent plane wave, the time dependence may be
factored (in the Laplace domain) and the time dependence convolved
with the delta function response. Alternatively, each coupling co-
efficient may be multiplied by the time dependence term evaluated at
s =s; and extra terms included in the expansion to account for
singularities in the s-domain arising from the excitation [1]. The
forms of the excitation assumed are (cf. Eq. (4.5)]

- Zax
c

1]
i
@

i
EXOL (s) 0x

£,

1}
(e
-

-1l <qg <1 (5.3)
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from which the coefficients Ca are determined, and

BxB =0
S
N
2g = Egy © s <1 < g <l (5.4) 5
from which the coefficients CB are determined. \
For a step function plane wave having components Ee’ E¢ and
traveling in the direction 8,4, the field components exciting the v
structure are |
i —éz-sin 8 cos ¢
Ex = (B, cos & cos ¢ - E¢ sin ¢) ©
i -2Z cos B (5.5}
E-=-E sing e
Z 6
from which we find
o = sin 6 cos ¢
B = cos 6
EOx = Ee COS 6 Cos ¢ - B¢ sin ¢
EOZ = ~Be sin © (5.6)

Using these relations, the coupling coefficients may be found from
the graphs and one may construct the response by superposition of the
response due to the individual coupling coefficients Ca and CB using

Eq. (4.27).

Frequency Domain Results

Steady state currents due to time-harmonic plane wave excitation
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at three points on the structure are given in Figures 24 and 25 as a
function of the excitation frequency for a fixed angle of incidence.
Also shown is one case calculated directly from the integral
equation in the frequency domain. The currents are calculated using
Eq.‘(4.6) and it is seen that the resonance peaks are caused by the
fact that the denominator in Eq. (4.6) is very small in the neighbor-
hood of a pole. Furthermore, at positions on the structufe corres-
ponding to nodes in one of the modal currents, the corresponding

resonance is suppressed.

Time Domain Results

Figures 26 - 28 illustrate the time domain currents and charge at
selected points on an L-wire due to a 6-polarized incident step func-
tion plane wave traveling in the direction® = ¢ =45°. The time is
referred to the instant the wave first strikes the end of the wire at
x = -r. The various time delays as the wavefront passes along the
structure are clearly evident in Figure 26 using only eight poles.

The convergence of the solution as a function of the number of poles
included in the time domain is indicated in Figure 27. Figure 28 shows
the time domain charge at two points on the wire. It has also been
verified that the total charge on the L-wire is indeed zero at t = =,

Figures 29 - 31 show the corresponding results for the E, polarization.

¢
For comparison, Figures 26 and 29 also show one case computed by taking
the Fourier inverse of frequency domain results obtained from solving

the integral equation directly. The correspondence is seen to be

quite good.
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Time domain charge, step function plane wave
incident, 6 = 45°, ¢ = 45°, E,-polarization,
t=0at x=-r,
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APPENDIX A
REDUCTION OF A DOUBLE INTEGRAL TO A SINGLE INTEGRAL

In formulating the coupled integral equations (2.13),
(2.14) for the L-wire structure, there resulted double o

integral terms due to mutual coupling of the type

0 Z
t
{ i (x") ){ [S—X K, (0,x",a,,z)] cos k(z-z)dgidx'
xt=-r z=0
where -jer
! 1A)
KX(O,X',aZ,C) = 2—;;—— (1A)
x=0

Ty *= (x-x')2+a§+cz

The internal integral of the double integral (1A), can be

analytically evaluated.

We have
-jkr
! .k 1 0x
I K (0xthagn) = x{j5m v gt (24)
0x 0x
where 2 2
! 2 2
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Also )
-jk(r,. -t s .
s X . LS o) (3A)

3z f(r,.-C) 2 3

0x Tox Tox

In view of (2A) and (3A), the double integral (1A) may be written as

0
[ ix(x') G(x")dx'
x'=-r

where

Z
G(x') = J [%g Kg(O,X',az,ci} cos k(z-z)dz
z=0

-Jkr, | tik(z-5) + .-jk(z-7)
:[e Oxl:e > e j[dc

3
Y ——————
[\
e
<
»-eNI;x-'
4
B
(3] | ol

- ES [t cos k(-0) - jrgy sinkG-0)]| ()
X

z=0
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APPENDIX B

CALCULATION OF MODAL CURRENTS COUPLING VECTORS, AND COUPLING
COEFFICIENTS

In applying the Singularity Expansion Method (SEM) to obtain
munerical solutions for EMP problems, one typically encounters a

matrix equation of the form

T(s) I(s) = V(s) (1B)

where the matrix §:is an approximate representation of some integral
operator, the vector I is a set of coefficients for expanding the
induced current in terms of a suitable set of basis functions, and V
is a vector whose elements are related to the fields illuminating
the object [9]. At the so-called natural resonant frequencies, $=S15
there exist non-trivial solutions Ti to the homogeneous problem

where 7& = Z(Si)' There also exist non-trivial solutions to the

homogeneous adjoint problem

=T ~
Z; H; = 0 (2B
=4k

or Zi H.1 =0 (3R)
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where T denotes the transpose, the asterisk denotes complex conjugate,
and the dagger denotes complex conjugate transpose or adjoint. In

order for (2B) and (3B) to hold, the determinant

a(s) = |Z(s) | (4B)

must vanish at s = S, We will assume for convenience in the follow-
ing that A(s) has only simple zeros and that there is only one set of
solution vectors f} and ﬁ& of equations (2B) and (33) respectively.
The extension to the more general case when A(s) has multiple Zeros
or when (2B) and (3B) have a degenerate set of solutions is re-
latively straightforward [1]. |

The first step in the SEM is the determination of the zeros of
A(s) which in turn are poles of.fhe induced curreht I(s). These
zeros are the complex resonant frequencies and are found by a
numerical search&procedure.in the complex s-plane. One convenient
algbrithm for accomplishing this is MQller's method which is described
in detail eisewhere [12]. Essentially, the method begins with three
initial estimates of the location of the root and interpolates a
quadratic éurface through the three corresponding values of the func-
tion A(s). A root of the quadratic is then used as the next estimate
of the zero of A(s). Using fhe three most up-to-date estimates, the
algorithm continues iteratively to predict an improved value of the

root until some convergence criterion is satisfied. In order to
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prevent the algorithm from converging to previously found roots, the
known roots are divided out of A(s). To illustrate, suppose that at
one stage we have determined the roots Sqs Sps s S and are .
attempting to find the root Sl We then apply Muller's method to

the "deflated function"

(n) _ A(s)
2 (s) = (s-sl)(s-s;)...(s-sn]

{(5B)

which does not have roots at S1s Sps s Sy but otherwise has the
same roots as A(s). Since in the SEM, it is known a priori that roots
in the s-plane appear in complex conjugate pairs, the complex conjugate

roots are also to be included in the deflation of A(s).

It is also convenient to use a '"normalized" determinant obtained
by dividing each element in rows of %ks) by the magnitude of the vector
formed by the elements in.the row [12]. This "normalization" of the de-
terminant permits one to use a single criterion throughout large regions
of the s-plane for determining values of the determinant which are
acceptable as zero. Otherwise, one generally must gauge whether or
not a zero has been obtained at a point by examining the determinant
in adjacent regions.

We may write the solution of (1B) in severai equivalent forms; -
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v

T6s) = Z(s) ™! U(s) = T()T(s) = T (o) (6B)

The last expression is obtained by expanding the matrix ?ts) in a
partial fraction expansion in terms of its poles at S and their

corresponding residue matrices

F = sim (s-siﬁ(s) (7B)

S>S.
1

Since we assumed that A(s) has only simple zeros, %ts) has only
simple poles. The elements of ?Is) are all meromorphic functions of
the complex frequency variable and the numerical method discussed in
Appendix C may be used to evaluate the residue matrix ??.

If it were necessary to use the form of the singularity expansion
of T(s) given in (6B), SEM would be somewhat impractical for
numerical computation because the residue matrix ?? would have to be
stored for each resonant frequency. For most practical problems, this
requirement could quickly use up all available machine storage.
Fortunately, it can be shown that ?ﬁ is a dyadic; that is, its ele-
ments can be calculated as the product of elements taken from two
colum vectors. One of these column vectors is just the modal current

Ti of equation (2B). To show this we note that
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vhere U is the identity matrix. Hence

pim (s-s,) Z(s) Y(s) = 2im (s-s,) ¥(s) Z(s)
S"'Si 5->S

1l
3
~~
w
1
wn

[l
L —
=i}

or equivalently,

ey
e

and

W
W

=0 (8B)

Comparison of (8B) with (2B} and (3B) shows that the columms of %?

must be proportional to T& and the rows must be proportional to

HI. Hence 7? can be written in the form

?I‘ =B Tﬁ* (9B) 2
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where Bi is a constant to be determined. Using (9B), ?(s) may be

expressed as

Y(s) = ] I (
Y(s) = ) B, — 10B)
;i s-s;
To determine Bi’ we note that
ﬁ;’ Z(s) Y(s) f, = FI’J* T - ||Hj[|2 (11B)

where ||A|| denotes the norm of a vector A,

%] = /XX

With (10B) and (11B), we have

po, LI TER e
1 1
If we note that
H;“ 7T - ﬁ}“ 'z';f**fi
- ('z_'j“rffj)’ffi =0
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then we can write

We now take the limit on the left hand side as s approaches Sj and

note that

=t
where Zj is the derivative

and aij is the Kronecker delta. The result is

=l 2
s AT T |17 = [ 18]

from which we conclude

8. = ———g— (12B)

110




Hence %(s) is given by

Y(s) = [ =2  (13B)

Note that since T& and H; are solutions to the homogeneous equations
(2B) and (3B), they may be defined only to within an arbitrary con-
stant. That this constant is arbitrary can bé seen from the fact that
these vectors appear in (13B) in such a way that each term in the ex-
pression is independent of the choice of normalization.

There are several alternative approaches to the calculation of
the quantities T& and ﬁi. For‘the work in this report, these quantities
are found directly from %? which is determined by the method of
Appendix C. Sinée the columns of ?? are proportional to T&, the vector
formed by suming all elements of the rows of ?? is also proportional

to Ii and may be normalized arbitrarily by choosing the peak magnitude
of Ti equal to unity. Summing the elements of the rowé yields a
weighted average of the vectors T& formed by the colums of Y§ and
presumably reduces the deviation of the error in T& found in the
individual colums of %?. Similarly, the rows of ?ﬁ are proportional

_-f
to Hi

and summing the elements of columns of ?ﬁ yields a row vector
which when normalized is ﬁz. However, one must first determine the in-

terelement phases along a row (column) before adding the elements in
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the row (column) and then shift the phase of the élements in the row (coliin)
before ddding so they will add essenitially in phase. Otherwise, for odd
functions ﬁi or T&, the resulting sum may be zero.

An array of values for 8, can be easily obtained at this stage
by dividing the elements of the matrix T&ﬁz into the corresponding
elements of ??. Agaif, an averaging procedure can be used with these

values to reduce the deviation of the error in the individual values.

This method has the advantage that Ti, H;, and 8; can all be de-
termined once ?? has been calculated. In the following methods,
separate considerations are required for calculating each of the
quantities Ti, ﬁi, and B, -

B; may also be calculated according to equation (12B) once T,
ﬁi, and %1 have been obtained. The latter matrix may be calculated
by the method described in Appendix C. The vectors T& and Hi can also
be found by solving (2B) and (3B) directly. Probably the simplest and
most direct procedure for doing this is simply a modification of the
usual Gaussian elimination procedure for solving an inhomogeneous
linear system. If pivoting on the maximum element in the array is
used, the last pivot element will be zero, (or more likely, extremely
small) since the determinant is simply the product of all the pivots
in the elimination process and must vanish at the pole. Hence in the
diagonalized matri;, the element in the unknown column vector whose '

coefficient is the last pivot element cannot be determined, but can be

chosen arbitrarily. With a convenient choice for this element, all
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the other umknowns may be determined by back substitution as is
usually done in linear equation solving. The elements of the
solution vector will be proportional to the arbitrarily chosen ele-
ment. The resulting vector may then be renormalized appropriately.
Another method of solving for T& and ﬁi stems from the obser-
vation that equations (2B) and (3B) are eigenvalue problems with an

eigenvalue which is zero. That is, the eigenvalue problems

(14B)

Y
T
|

must have an eigenvalue Ain p... = 0 according to (2B) and (3B).

in

The corresponding eigenvectors are then just the desired vectors T&
and ﬁi. Any of the standard matrix eigenvalue methods, such as the
Jacobi method,.may be used to determine the Ti and ﬁi by choosing the
eigenvectors whose corresponding eigenvalues are smallest in magnitude.
An advantage of this method is that the magnitude of the smallest
eigenvalue may provide some idea of the extent to which the solution
vectors are accurate solutions of equations (2B) and (3B) since the
right hand side of equation (14B) is just the residual error. Further-

more, this method can easily be modified to handle the case wherein

there are degenerate solutions to (2B) and (3B). However, most of the
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eigenvalue methods are iterative rather than direct methods and are
hence more time consuming.

Another direct method for solving (2B) and (3B) permits one to
use standard linear equation solving routines with no modification for
SEM. Applying the method to an arbitrary homogeneous system of N x N

equations,

=0 (15B)

which might represent either (2B) or (3B), we first isolate an
element of X which is known to be non-zero. Designating this element

by Xj, we partition the equation into the form

= = X—
[K':Kj:K] X7 =0 (16B)
X

The vector E% is just the colum of coefficients of Xj‘ Since the
vector X is arbitrary to within a constant, we may choose, for example,

Xj = 1. With this choice, we may now rewrite (16B) in the form

AIX] |5 |= &, (17B)

which is a system of N equations in N-1 unknowns. For over-determined
systems of the form (17B), one often finds a solution which minimizes

the squared error,

114




+ K1? (18B)

But (17B) is not really over-determined; it is instead a set of
dependent equations since the determinant of the original matrix

R vanishes. Hence, in theory, the error in (18B) is reducible to
zero and the error minimizing solution is then the solution of (15B).
The solution is given by finding the ''generalized inverse" or

”pseudo-inVerse” of (17B) given by

L

[}

~
I =]
=11
s
=]
i

v |71 =1, =it
]:[ [A‘:K]”Kj (19B)

that is, both sides of (17B) are multiplied by the transpose con-
jugate of the matrix defined there and the resulting coefficient
matrix, which is a square matrix, is inverted to find the unknowns

(or the resulting system is solved by the usual linear equation
solving methods). This method is relatively simply to use; however,
it is somewhat inefficient in that it requires a matrix multiplication
on both sides of the equation before solving.

The method preferred by the authors is to calculate ?? since Ti,
ﬁi,and Bi can all be calculated from this matrix. Furthermore, since
all the colums are proportional to T& and all the rows proportional
to ﬁi, the redundancy permits checking the results and averaging to

improve accuracy.
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APPENDIX C
’ — =
CALCULATION OF Yl.l' AND T

In this section we consider a method for calculating the residue

= =t
matrix §§ and the derivative matrix Zi. The matrices are defined

as follows:
"f§ = 2im (s-s.) %(s) = gim (s-s;) [%(s)]—1 (1C)W
S+S. 1 S+S.
i i
and = =
— = Z(s) - Z;
Z, = & czlss = gim —— 1 (20)
_ S-S.
ST i

The 1limit definitions (1C) and (2C) certainly suggest that the
desired quantities can be found by numerical approximation to the
limit. The danger in (1C), however, is that as s approaches S
the matrix %Ts) becomes singular (by definition) and one could expect
to encounter serious numerical instabilities. In (2C), numerical
difficulties arise due to the subtraction of nearly equal quantities.

Hence, in approximating the limit in both cases, one has to carefully

choose an s which is ''close but not too close" to SIp In the following,

we consider a method for calculating the desired quantities using
values of s which do not have to be extremely close to s, and yet can

provide very accurate results. The penalty that one pays for this
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feature is that several evaluations of a matrix and, in the case of
(1C), its inverse are required.

In order to unify the discussion concerning the calculation of
6

=t -
i and Zi’ we introduce a matrix-valued auxiliary function A(s) which

= = . = =!
we associate with either Y(s) or Z(s) depending on whether ?I or Zi
is the quantity of interest. In either case, f(s) has similar
properties; namely, that it is analytic at s = S; and can hence be

written in a Taylor series about 3 in the form

- _ (s-s)? Ei(ses)?
A(s) = AO + Al(s-si) * A, Al + 7] + .., (3C)
where
= n =
A = — A(s) (40)
ds S=s,
i
The relation between A=(s) and ?(s) is
Y-:(s) = Als) (5C)
S-S.
i
so that using (1C), we have
=r _ s
Yi = AO (6C)
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We relate A(s) to Z(s) through the equation

Z(s) = I,

where

+ (s-5;) K(s)

(7C)

(8C)

(9C)

We emphasize here that the matrix-valued function Kks), when associated

with %ks), is not equal to that associated with %Ts). It simply has

similar properties; viz., that it is analytic at s

S; and that the

desired quantity, according to (6C) and (9C), is AD' This convention

merely enables us to consider properties of the function KIS) in the

= =!
following without regard to whether §§ or Z; is the desired quantity.

= =t
The method used here depends on the fact that ?§ and Z. may
be calculated alternatively from the following contour integrals, where

Ci denotes a contour enclosing only the pole at s

shown in Fig. 1C:
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=L ( T(s) ds = 5 [ RGs) 45 - & (10C)

i 27 21j $-S; 0
C. C-
i i
= _ 1| I
Z1 2m]j JC (s-s.)2 ds
i
= 21 { Zl ds + 21. J K((S) ) ds
] e V2 ) S-S.
Ci(s Si) Ci i
=7 11C
A, (110)

The use of (10C) and (11C) allows us to determine quantities defined
at the point of interest s = S; in terms of quantities evaluated at

some distance away from the point where the various matrix functions
are better behaved.

We approximate the integrals above by choosing the contour Ci to

I\

be circular, of radius r, and centered at s = S We then make

change of variables to polar coordinates (r,6) with origin at s = s_;

(s-si) = reje
The integrals become

2m
S5r_ T F je :
Y. ——J Y(s) .. le’"de (12C)
Lo 0 [ ‘s=si+rejej{
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2m
-1 x
=5 JO A(s)

de

2T
= 1 =
Zi = m JO Z(S)

2m 27
1 = -j@ 1 -

We note that the term involving %} in (11C) and (13C) should be
identically zero but we keep it to show its effect on error in the
numerical procedure. For computational purposes, we may approximate
the integrations in (12C) and (13C) by dividing the interval of
integration into N equally spaced segments and use the ''rectangular
rule,'" that is, we assume that the inteérand is constant over a

segment and evaluate it at the midpoint of a segment. The mid-points

are defined by

o, = LA 0 =1,2,3,.. N
for a segment length
b0y = 041 "8 W
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Hence we approximate (12C) and (13C) by

7.1} |%e | oo
=1 s=si+re3 %
) %gﬂ i s=s 1 %% e
L I§=l Z(s) L) o
) }%\‘T §=1-Z-ie—392 ) §1§=1 K(S) s=s.+re’ 02 (50

Let Uis éxamire the terms involving i(s) by employing the Taylor series

representation for K(s), Equation (3C);

N — N Jeo — (s-s.)n
1 =
¥ 1 AG) je =%Z L Ay n} je
2=1 s=s.+re’ % 2=1 EFO : s=s.+1e” L
N [e n .
1 = r° _jné
-+ | R Lo
N 2=1|n=0 ™ n!
[ J— n N N jne
- 7T 1 Q, -
= z An"T _z e (16C)
n=0 n N =1




We take note of the identity

N .
— e =
N L

Ig AN (2-1)2n/N
1 &=

1

2

_ jne(1-1/N) 3457
e NsinBNi 17¢)

Thus, the series (17C) sums to zero except when n is equal to

an integer multiple of N, i.e.,

= © = W
"Rt L A T (18C)

The remaining term in (15C) may also be evaluated using (17C) with

n= -1;
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(19C)

as

7Ty = AT o
error (Y;) %ﬁl N TN)T (20C)
=1 _ Zl . = rmN .
error (Zl) =T 61,N + z 1 AmN W (21C)
m:

It is seen by (20C) and (21C) that for a moderate choice of N, one
would generally expect a drastic reduction in error for r small. We
note also that for N =1 in (14C) and N = 2 in (15C), we have just the
simplest approximation to the limits (1C) and (2C) respectively.
Equations (14C) and (15C) are just averages of this simple one term
finite difference approximation to the limit taken from different
directions about s = S

The considerations above have neglected any error due to a lack
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of precise knowledge of the location of the natural resonant fre-

quency s = S..

; If N is such that the terms in (20C) and (21C) are

extremely small, the pole location error may be the most signi-
ficant error. In the case of ??, however, we note that the pole

is contained in the function ?Is) and it is not extremely important
to know its location accurately to get an accurate matrix of residues
(éompare (10C) and (11C)). Since the approximation (14C) converges
to (10C) as N tends to infinity, the procedure described should still
reduce the error as compared to using (1C) even when the pole

location is not accurately known.
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