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ABSTRACT

In this work a new integral equation is employed to calculate
the current distribution on a rectangular plate which is illuminated
by a plane wave. Numerical results are also obtained for the radar
cross section of the plate for different angles of incidence and
different dimensions of the plate. These results are compared with
other RCS computations using GTD, physical optics and variational

methods.




INTRODUCTION AND FORMULATION

In a recent paper [l] the authors have examined the question of the

" failure of the H-integral equation for thin, planar structures, and have
derived a new integral equation by manipulating the E- and H-integral equations.
The purpose of this note is twofold: to present a direct method for deriving
the above-mentioned equation and transform it to an alternative form which is
preferable for numerical computation; to compute the current distribution and
RCS of a thin plate and compare the RCS results with other methods. .

Let a plane electromagnetic wave with arbitrary polarization be incident
upon a thin perfectly conducting rectangular plate of dimensions a and b.

, t ., .
Assuming the Juw time convention, the incident wave may be written:
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where kx = k sin 8 cos ¢, ky = k sin 6 sin ¢, kz = k cos 6, k = 27/), and 6

and ¢ are the elevation and azimuthal angles of incidence, respectively.
Let us denote the induced current on the structure by 36(2) and the
vector potential by . Expressing the scattered E-tangential field in terms

of j and K,and applying the boundary condition on the plate, viz.,

-
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E = - 1
Scatt E”, we obtain

VxVxA- 35(2) = -V x ﬁi . (2)

Similarly, requiring that the total normal -H on the plate to be zero
leads to the equation:
z - (VxA+H) =0, (3)
As a first step toward deriving the desired integral equation we substitute the
tangential (x and y) derivatives of (3) into (2) to 6btain
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where ¢ = (4n)—1 exp{—jkl? - ?']}/[? - ?'[. In deriving (4), A has been
replaced by fés Jo dx' dy' and the defining equation for Z, viz.,
(V2 + kz)K = —36(2),has been used. The same type of integro-differential
equation has also been derived by Van Bladel [2] following Bouwkamp's method [3]
for an aperture in an infinite screen.

It should be noted that, as indicated above, the range of validity of -
(4) is strictly restricted to 0 < x < a and 0 <y < b, Specifically, the above
equation is not complete at the edges of the plate, i.e., x = 0, a and y = 0, b.
If (4) were to represent a complete description of the problem, it would have
implied that the two current componentstX and Jy.are indeed uncoupled with
respect to the incident polarization. It is well-known that this situation is
true for an infinite planar structure only and that two components of the
current are always‘coupled in a finite structure. This coupling phenomenon
becomes evident, however, when (4) is transformed into an alternate form, shown
below, and when appropriate boundary conditions are imposed on JX and Jy at’
the rim of the plate. Incidentally, (4) is not valid at the rim because the
tangential derivative of the l.h.s. of (3) is meaningful only when the rim is
excluded.

The alternate equation is derived by integrating the differential operator
(SZ/BX2 + 82/8y2 + k2) in the l.h.s. of (4) in an extended domain which leads to
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where Cl(i) and CZ(E) are two arbitrary functions. We note that the second
term in the 1l.h.s. of (5) is a homogeneous solution to the two-dimensional
Helmholtz operator (82/8X2 + Bz/ay2 +'k2). It has been pointed out [1] that

the inclusion of the homogeneous solution is necessary to obtain a complete



solution for the finite plate problem. Another point to note is that the
limit of integration of the homogeneous term in (5) is chosen to be from 0 to ‘
27, which obviously corresponds to the visible range of the spectral angle £,
By considering the asymptotic low frequency limit of the problem , the authors
have shown [4] that this is the appropriate range of the integral in question.
Since (5) is also required to satisfy the boundary conditiom (3), i.e.,
0 on the plate, one can relate C, and C, as
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%C; (8) + ¥C,(8) = (x cos & + ¥ sin £)C(Z) (6)
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where C(%) is a known function yet to be determined.

An even more desirable form of (5) may be obtained by representing C(£)

in a Fourier series as
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Using (6) and (7) in (5) and employing the well-known representation for

Bessel's function, viz.
s H
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where (p,¢) are the polar coordinates of the point (x,y).
The unknown currents JX and Jy can now be obtained by solving (9) in con-

. . . 3 . ‘+ ~ .
junction with the auxiliary condition J « v = 0, where v is a unit normal to

the edge of the plate. Note that in contrast to the E-integral equation there

are no differential operators in the kernel of (9) which makes it rather
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convenient for numerical processing. In fact, the moment method [5] may be used
to solve (9) with accuracy using simple pulse functions for basis and
§ functions for weights. Applying the moment method as indicated, (9) is

transformed into a discretized form:
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By (10)

2 =1, . . ., Mpp=1, ..., N
2 2 ‘
where p =%, + yp) , § = arctan (yp/xz), and L, the upper limit in the
summation in the r.h.s. of (10) corresponds to the total number of matching
points on the rim. This is done in anticipation of the application of the
> A
boundary condition J - v = 0, which is eventually used to determine the unknown Cn's.
The far field scattered by the plate may be readily computed once the
current distribution on the plate has been determined from the solution of (10).

The radar cross section (RCS) may then be computed by using the definition [6]:

W

g = lim 47 rz‘wz (11)
1o i .

where Wi is the scattered power flux density at a distance r from the scatterer

and Wi is the power flux density in an incident plane-wave field.
NUMERICAL RESULTS AND DISCUSSTIONS

A general program has been written for the IBM 360/75 system that computes
the current distribution and radar cross section for an arbitrary incident angle,
arbitrary polarization, and arbitrary dimensions of the plate. Figures 1 and 2

show the distribution of the two components of the current sampled along the
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principal axes, for an obliquely incident plane wave with Ey polarization. Note

that the two components of the current exhibit correct behaviors at the edge of
the plate, and that they are significantly different from the results given by
the physical optics approximation.

In the process of analyzing the numerical behavior of (10), it has been
found that this matrix equation gives better approximation to (5) than the form
used in our earlier paper [1]. Also,it has been noticed that even when the
condition j ¢ V=0 is applied at only a fraction of subsections around the rim,
this condition is satisfied at the in-between points as long as the separation
between the matchpoints is not too large. Furthermore, this separation distance
can be estimated from the behavior at two neighboring match points of the
highest order Bessel's function appearing in (10). The behavior of the

solution is shown pictorially in the three-dimensional plots of Figures 3 and 4.

Figure 3 shows the Jy component of the current distribution due to a normal ’

incident field only prior to the incorporation of the contributions of the
homogeneous terﬁs in (10). It is obvious that by itself this current distribution
does not have the correct behavior at the rim since it exhibits a singular
behavior all around the rim. This was to be expected, however, since the

solution of (5) is not complete without the hoﬁogeneous terms. Using the
homogeneous terms and requiring that the normal component of the current goes

to zero at the center of the dashed regions as indicated in Figure 4, one

obtains the current distribution as shown in the same figure. It is seen that

the current distribution now has the correct behavior around the entire rim,

even though the condition 3 . G = 0 has been imposed at only a third of the

subsections around the edge. It may be of interest to mention that the above

numerical results have been obtained with a matrix size of 81 x 81 for the 1A

square plate; however, no substantial loss of accuracy results if the size .

is reduced to 36 x 36.



Figure 5 shows the RCS vs. the angle of incidence for a 1A x 1A plate
illuminated with an Ei—polarized plane wave. We have compared the present
results with those derived by using the physical optics approximation (PO) and
and the geometrical theory of diffraction (GTD). For this comparison we have
used the formulations given by Ross [7] and have plotted fhe results of
these computations in Figure 5. For angles of incidence less than 20° from
the normal, all three methods are seen to be in good agreement. Even better
agreement could have been obtained by imposing the boundary condition
j « V = 0 at precisely the physical edge of the plate rather than at the center
of the edge sections., For angles of incidence between 20° and 65°, we observe
that our results are in much better agreement with the GTD than with those
obtained by using the physical optics approach. For angles greater than 80°,
the results computed from the GID formula given by Ross [7] appear to become
increasingly inaccurate; however, the results obtained via the present
approach appear to be good for the entire angular range.

Figure 6 shows the plots of RCS computations of a square plate for normal
incidence and different plate sizes and a comparison of these curves with the

corresponding ones reported in the RCS Handbook [8]. 1In this figure, the solid

curve has been computed via the present formulation; circles indicate the experi-
mentally measured data [8]; and the dashed curve has been obtained by applying the
variational te;hnique [8]., It is evident that our results exhibit a closer
agreement with expérimental data than those computed via the variational approach.
Finally, the complementary problem, that of coupling through an aperture
in an infinite screen,has also been investigated [9] successfully using this
approach, both with and without a back plate. It may also be worthwhile to
mention that the decoupling of the E-equation is currengly under study for

cylindrical structures and the outlock appears to be quite promising.
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Figure 1. Amplitude of Current Distribution omn a 1A x 1)\ plate.

x = A/2 and y variable



Figure 2. Amplitude of Current Distribution on a 1A x 1)\ Plate.

y = A/2 and x variable
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Figure 5. RCS of 1A x 1A Plate vs. Aspect Angle
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Figure 6. RCS of a Square Plate for Normally Incident Plane

Wave.
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