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’ FIRST DISCUSSIONS ON GENERALIZING BABINET'S PRINCIPLE
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ABSTRACT: We present in this report our first efforts to thoroughly
understand Babinét's principle for electromagnetic diffraction and
the results of our initial efforts to extend the principle beyond
its usual range of application. Proof is given that the principle
in its present form is invalid for general two dimensional,
infinitely thin, perfectly conducting surfaces containing apertures.

The only case in which it is valid is the conventional one of an
infinite plane.
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I. INTRODUCTION

This paper contains the results of our first efforts to
investigate the scope of validity of a principle that has proven to
be of great value in electromagnetic diffraction theory. All
published proofs of Babin&t's principle have been limited to the
case when the diffracting surface is a perfectly conducting,
infinitely thin plane screen. Bookerl presented the first published
account of the principle for electromagnetic fields. Other early
references may be found in the review article on diffraction theory
by Bouukampz. Born and Wolf> and Jackson? present more lucid and
somewhat more recent discussions of Babinet's principle.

The principle states that if the solution of the diffraction
problem posed by a perfectly conducting, infinitely thin plane
screen with apertures of arbitrary size and shape is known, then
the solution of the diffraction problem posed by the complementary
screen, with the incident field suitably transformer, is also known.
Specifically, the following theorem has been proved:

Let the electromagnetic field Eor Ho be incident in the half-
space y > 0 on a perfectly conducting, infinitely thin screen M
with apertures A in the plane y = 0 as illustrated in Figure 1.
Let the total field in v < 0 be E, H.

W |

Replace the screen with its complement which we shall denote
symbolically as (M€?A). Let the incident electric and magnetic
fields be -H, and Eor respectively, and let the total field in
Yy < 0Dbe E" and §”. If the incident field is linearly polarized,
the transformation Eg>-H,, Hd—drEo is equivalent to rotating the

plane of polarization through a right angle counter-clockwise
looking in the direction of propagation. Then

E=H =E_, H-E =§H (1)

This is Babinéﬁs principle in its rigorous form. It is natural to
inquire if this principle can be extended to include perforated
diffracting surfaces of more general shape. The potential value of
such a generalization should be quite clear. Our conclusion is
that for two-dimensional diffraction problems (those independent of
one Cartesian coordinate) direct application of the principle does
not appear to be valid beyond the case of the plane. Whether

1



NOLTR 73-43

conductor ‘

aperture

X
it

i

E. N
%;)f ;k ' \*o

X LSS P Incident

Vi / e // ’ . 4 4 « .
oS ;/’////’///<//‘= Radiation
/// ‘ ' S / /,7

a) The Direct Diffraction Problem

ANS—
//,-’JV‘ = aperture
= conductor

He

>R

RN
=
A
SN
\
V<
=y
\
\

Incident
Radiation

—
—_—

’,§$V””

b) The Complementary Problem

Figure 1. Babiné%% Principle -~ The Plane Screen In z=0 Plane
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Babin&ts principle as it is known can be extended to special
surfaces in three dimensions (besides a plane screen with arbitrary
apertures) remains a completely open question. The null result for
the two-dimensional case does, however, make the success of this
program somewhat doubtful.

In Section II, we discuss the essential ingredients of Babinefs
principle. 1In Section III, we show that the necessary conditions
for an extension of Babindbs principle in its presently known form
are not satisfied for two-dimensional diffraction problems posed by
surfaces deviating from a plane.

I
II. ANALYSIS OF BABINETS PRINCIPLE

The bases of Babinéts principle applied to a plane screen are:

(A) The special symmetry of an infinitesimally thin plane
screen by which the total tangential magnetic field in its apertures
is exactly equal to the value of an incident field, and

(B) The unigqueness theorem.

In essence, one shows that the boundary value problems for
diffraction from the initial screen and its complement, with the
incident electromagnetic and Eor H, replaced with Bor ~o' are the
same. This correspondence is a result of (A). Hence, if one
problem has a unigue solution (condition B), the two mutually
complementary problems are simply identical, and Egq. (1) follows
immediately.

To see this, consider the diffraction problems defined in the
introduction. Let A denote the screen apertures of the initial
problem and M its metal surface. The surface current induced on M
by the incident field g radiates a field E_, H. in y < 0 that

=S s’ ~s =
satisfied the condltlons

(i) Maxwell's equations in y < O,
(ii) the boundary conditions

nxkE = -nxE on M,
o ~S e -0

n xH =20 on A,
"] ~>S

where n is a unit vector normal to the screen:
(1ii) the radiation condition in y < O.
The boundary condition R xH, =o0o0onA is simply a restatement of

3
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Condition A. Now consider the complementary problem with the
incident field -} , E . Here the roles of A and M are interchanged.
The total field g? ﬁ’?n v < 0 is the superposition of the new
incident field and the field radiated by the induced surface current
on A. This field satisfies the conditions:

(iv) Maxwell's equations in y < 0
(v) the boundary conditions

X (~§f) = -n x E on M,

[ZB 18]

X E=0 on A,
o~
(vi) the radiation condition in vy < O.

The boundary condition p x §f¥ nx E,onMis a restatement of
condition A. The last condition is an assumption. Physically,
this requirement insures that the diffracted field E%, H  is y < 0
can be calculated from knowledge of the field at y = 0 alone. 1If
we make this assumption, then we note that the two fields Esr Hg
and -H7, E” are both solutions of Maxwell's equations in y < 0 and
satisfy the same boundary conditions. If, in addition, we assume
that there is only one field Eqr Bs satisfying conditions (i) -
(1ii) in the source-free space v < 0 (condition B), then we can
write the identities

-

E_= -#* , Hg = E. (2)
These are equivalent to (1) since E = E, + Eg and H=H, + Hg-

Note that no mention has been made about the type of incident wave
(e.g. plane, spherical, cylindrical, etc.) or its state of
polarization. Secondly, no explicit mention has been made of
possible singularities in the fields at the screens infinitely
sharp edges. Nevertheless, restrictions on edge singularities are
implicit here, since they are required in the proof of the unique-~
ness theorem. The reader is referred to the literature for details,
(e.g. see the discussion of Wilcox5 or that of Jones6.)

We will now show by a rat@pr simple argument based on the
preceeding analysis that Babinét’s principle for the plane does not
generalize as is to the case of two-dimensional diffraction from
slotted surfaces deviating from a plane.
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ITII. DIFFRACTION FROM NONPIANAR SURFACES

Let the incident electromagnetic field Eg, Hy be diffracted
by an infinitely thin, perfectly conducting slotted screen as
illustrated by Figure 2. Let the screen be independent of one
Cartesian coordinate, say Z. Suppose the orthogonal curvilinear
coordinates £, 52, and Z, with scale factors hl, hy, and 1,
respectively, are appropriate for the diffracting screen under
consideration. The scale factors are defined by the square of the
distance ds between two infinitesimally separated points:

d52 = dx2 + dy2 + dz2 = hl2d€% + hi dgi + dzz.

The diffracting screen is assumed to be, for example, in the surface
E. = C. Let A denote the apertures and M the conducting surface.
T%en, we define the complementary diffraction problem by inter-
changing the roles of M and A and assume that M + A complete the
entire surface £, = C. The incident field is assumed to be in

E. > C. Our goa} is to relate the fields in E. < C when the roles
of M and A are interchanged and the incident field is suitable
transformed (not necessarily E_ — -H,, H—E,. See Eq. 4 below).
The surface currents induced on M by the incident field radiate a
field Ey, H, in §; < C that satisfies the conditions:

(vii) Maxwell's equations in §l < C,
(viii) The boundary condition

nxE = -nx Eo on M,
~ ~

~s P

where n is a unit vector normal to M; and also

(ix) the radiation condition at infinity in E_ < C.
Throughout this section, unprimed (primed) fields will refer to the
initial (complementary) diffraction screen. Following the analysis
of Sec. II, we seek a field g’ in 8. < C of the complementary
problem that satisfies condition (iX) and which, in conjunction _
with another field gf satisfies condition (vii). In addition, E
must satisfy the boundary condition

nx (F7+E ) =0 on M. (3)
r~ ~ ~o

The existence of such a field is certainly a necessary condition

for establishing a correspondence between the boundary value
problems posed by the initial and complementary screens. This
correspondence is required in order to invoke the uniqueness theorem

5
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by which the field Es in € < C for the initial screen is related to
E “for the complementary screen. For the case of a plane screen, we
Found in Sec. II that £”= -H We will now show that F“does not
exist when the diffracting screen deviates from a plane surface.

Consider the complementary problem. The incident fields E
H” are assumed to be obtained from the fields Eor Hy according %o
tﬁe transformation

E cos ¢ - sin @ E
e .

sin g cos ¢ H

~Q0 -~0

The fields E H' satisfy Maxwell's equations in free space if Eo

H0 do. When o= ﬂ/Z we obtain the incident field appropriate to
the complementary diffraction problem posed by a plane screen.

The vector potential Ag of the current J induced on A by EA:
5 is
{TdS < J (x) - ik[x—x’!

| x-x"|

és(X)=

Q=

where we have assumed a monochromatic incident wave with wave

number k. The integral is taken over the conducting surface of the
4

complementary screen, which now lies on A. The field E H

~s
radiated into gl < CbyJ is

HS = 7 % Ag (52)
] — 2
—1kES = k ,és + v (v-. As). (5b)
These fields obviously satisfy conditlons (v11) and (ix). However,
since the tangential components of E and H do not generally vanish
on M, they are not suitable candldates for the vector F ‘4 Eo To

show this, we first put A in a form more suitable for the two—
dimensional diffraction problem posed by an infinitely thin screen.
Since the complementary screen A is assumed to lie on the surface
El = C and the problem is Z-independent, £j§)-9g(§2). The element

of length dsl normal to the surface gl = C is hldgl. Thus, we
define a surface current K(£,) by

K(E,) = 3(g,)n ae,,

~
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. 3 _
and obtain (d°x = hlhzdildgzdz)
—_ 1 f s = ’ K(gz) ik|x-x"
» x-x |

Performing the integral over 7, we get
= Aim ’ s
2 /
where o = (x-x )2 + (y-y/)? and x = x(€.8,), v = Y(EI,EZ)-
The Hankel function in (6) is of the first kind. Let us now

calculate g;. Since R has no component normal to the surface
51 = C, this component of A likewise vanishes. Hence,

g’ =1 ald3de) i - L (i3 24) i, o+ L > hafardg) ;
~S (e 7~ o~

where in are unit vectors normal to the surfaces £, = constant and
53 = Z. Accordingly,

i ) h i . A
~ 1 5§l hlh2 o33

For E; to be a suitable candidate for'§/+ Ege the coefficients of
5” and £3 in (7) must separately vanish on M. Consider the

coefficients of 33:

0 (i3 * Bs) - imk f h,dg, H. (kp) Ry(gy) 22— (8)
c A 2 2 o 5 E
°51 1
The value of the integrand in (8) on M(E, = C) is, in general,

nonvanishing, since »p/2&, > 0 for a convex surface as can be seen
in Fig. 3. Thus, the Z-component of p x g;’is not identically zero
on M. For the coefficient of 22 in (7), we get
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28,

B, (ko)

Both terms within the square brackets of Eqg.

nonvanishing on M.

.
= im fA h,dE, K, (£7) [Ho(kp)

2hy(E1 £2)

o%l

sXo I
c%l

(9) are, in general,

The cancellation of the two terms everywhere on

M would involve an intricate relation between the screen geometry

and the frequency of the incident wave.
Since the integral
HZ cannot be a candidate for F+E

as unphysical.

We reject this possibility
is not identically zero on M,
Nor is E; a suitable

(9)

cgndldate. For we have from (Sb)
\ / 2,. 1 1 . .
-ik n x E" = - [% (132 ) + = 2 |— 2 (h.i ~§,i] i
~ s ~S h2 582 hlhz 552 1=2 ~s 2
2 .
kS (iyA) i, (10)
Agaln, the coefficients of 12 and i, in (10) must separately vanish

for E to be acceptable. The
component of A , is obviously
arbitrary pola%ization of the
coefficient of 52

coefficient of i,, the second
not identically zero on M for
incident wave. The vanishing of the

over M would again require the existence of a

relation between screen geometry and incident wave frequency, which

we reject.

The next possibility for F “r Eq

The most general comblnation satisfying conditions

ig a linear combination of
(vii)

Take, for example, the Z-component

g; and I-I
and (1x) above is
£ — 5/ E” + si u’
Eg Se < cos m‘“s sin ¢ H
B — Zf/ cos o H' in @ E
——— — — s
po s \o} = <] E ’
where ¢ is an arbitrary angle.
of n x &7
—~ ~ S

10
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. / A s -~
i; (o X:C: g) = ik (i,° A ) cosp = hi b("3—) sing = KT fA hpdg e
1 b§l c
[}Ho(kp) Kz(gg) cosgp - 1 Ho(kp) 00 K (g ) sinq):]
hqy (E1,E5) bE,

A necessary condition for this integral to vanish identically on M
is for

hy(1.8,) 0E, ° g, =

Such a constraint, for surfaces other than a plane, mixes screen
geometry with the incident wave fregquency and is, therefore,
physically unacceptable. Examination of the remaining tangential
field components indicates that they cannot vanish everywhere on M
without equally unacceptable constraints on frequency and geometry.

1 e} 1n H (kp) = %:independent.

The final nontrivial candidates for the vector F,+ E_, are the
total diffracted electric (E ) and magnetic (H ) fields in : < C,
where L,y j L, , -
E=E + E ,E=H +H,

lad ~0O ~S ~0

and where the fields E/ H , and E HS are given by Egs. (4) and
(5), respectively. We assume that E and H satisfy the radiation
condition at infinity, € < C, in order that they may be calculated

everywhere in El < C from knowledge of their value on the boundary
gl = C alone. We must now check the consistency of condition (3).

Take‘g/ for example:

- sin o n x H . (11)

Now is the limit when the screen A of the complementary problem
vanishes, E = 0. Therefore, the incident field on the aperture M
of the complementary problem, which is now the whole surface § = C,
must satisfy the constraint

n x Eo = tan & n X Eo on M (12)

if E:is to be a candidate for E‘+ E . The constraint (12) is
obviously too severe. Likewise, the condition that n x Ef = 0 on
M becomes, in the limit A = O,

11
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an=—cotc1an on M. .
~ ~0O

Slnce the requirement that the tangential components of E and
¥ 7 vanish on M leads to physically unacceptable constraints on the

Theident field ln the trivial case of no dlffractlng screen, we .
reject E and,g as poss1ble candidates for F “+ E Possible linear

comblnatlons of E and H that are ConSlStent Wlth (vii) and (ix)
are ruled out by argumegps SLmllar to that which lead us to reject
linear combinations of ES and H”

— ~s

s’
In summary, we are led to conclude that the vector F does not

exist when the initial and complementary surfaces deviate from a
plane.

IV, CONCLUSION

We have studied the bases of the conventional form of Babiné%%
principle applied to a plane. In essence, one finds two sets of
fields from the initial and complementary problems, respectively,
that satisfy the same boundary conditions on a common closed
surface S, and which satisfy Maxwell's equations inside S. The
interior of S is assumed to be source-free. Having found the two
sets of fields that pose identical boundary value problems, the
unigueness theorem is invoked to justify a strict equality between
them. The result is a well-defined set of rules for obtaining the
solution of the complementary diffraction problem from the
(supposedly) known solution of the initial diffraction problem.

We have attempted to generalize Babinéts principle to nonplanar
surfaces that are independent of one Cartesian coordinate. The
screens of the initial and complementary problems, together with the
points at infinity, are assumed to complete a closed surface S
whose interior is source-free. From our analysis of the plane, we
concluded that a necessary condition for a generalization of Babinéts
principle was the existence of a field Z’(E + E_ in the analysis of
Sec. III) whose tangential components vanished identically on the
apertures of the complementary screen. This field corresponds to
the vanishing of the total tangential diffracted electric field on
the screen of the initial problem. To complete the correspondence,
3 ., when combined with another field ¥ , must satisfy Maxwell's
equation in the interior of S and the radiation condition at
infinity on S. Our proof that Babinéts principle, as we know it for
the plane, cannot be generalized to nonplanar surfaces consisted in
showing that% does not exist. Our proof is independent of the type '
of incident wave (plane, cylindrical, parabolic, etc) and its state

12
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of polarization. In addition, the incident fields on the
complementary screen may be a rather general linear combination of
the incident fields on the initial screen (see Eg. 4). Finally, we
expect our proof to hold when the initial and complementary screens
cover a surface S that is infinite in extent, as would be the case
for a slotted circular or elliptic cylinder. In this case, the
reguirement that~g satisfy the radiation condition at infinity on

S is replaced by the condition that ¥ remains finite inside S.

We cannot, of course, rule out completely the existence of a
more generalized set of rules that enable one to calculate the
diffracted fields of the complementary screen from the diffracted
fields of the initial screen when these screens are nonplanar. If
such rules do exist, we suspect that what one defines as the
"complementary diffraction problem" will have to be somewhat
modified from the way it is defined here.

13



NOLTR 73~43

REFERENCES

H. G. Booker - J. Inst. Elec. Engrs. (London), Pt. IIIA, 23,
620 (1946).

C. J. Bouwkamp - Repts. Prog. Phys. 17, 35 (1954).

M. Born and E. Wolf - "Principles of Opties", Macmillan,
New York, 1964, p. 559.

J. D. Jackson - "Classical Electrodynamics", John Wiley and
Sons, Inc., New York, p. 288, 1962.

C. H. Wilcox - "Electromagnetic Waves", edited by R. E. Langer
University of Wisconsin Press, Madison, Wisc., 1962.

D. S. Jones - "The Theory of Electromagnetism", section 9.1,
The Macmillan Co., New York, 1964,

14




UNCLASSIFIED

Security Classification .

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a., REPORT SECURITY CLASSIFICATION
1 if]
. Naval Ordnance Laboratory ____Unclassified
Silver Spring, Maryland 20910
3. REPORT TITLE
. Scattering of Electromagnetic Radiation‘py Apertures VI.

First Discussions on Generalizing Babinet's Principle in Two Dimensions

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

5. AUTHORIS) (First name, middle initial, last name)

Michael P. Fry
Louis FP. Libelo

6. REPORT DATE

6 March 1973

78, TOTAL NO. OF PAGES 7b. NO. OF REFS

iv,1h 6

8Ba, CONTRACT OR GRANT NO.

b, PROJECT NO.

.. MAT-03L-000/2R011 01 Ol

9a. ORIGINATOR'S REPORT NUMBERI(S)

NOLTR 73-43

9b, OTHER REPORT NO(S) (Any other numbers that may be assigned

this report)

¢. MAT-034-230/2F52~-553~001

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Naval Material Command
Washington, D. C. 20360

13. ABSTRACT

We present in this report our first efforts to thoroughly understand
Babindt's principle for electromagnetic diffraction and the results

of our initial efforts to extend the principle beyond its usual range
of application. Proof is given that the principle in its present

form is invalid for general two dimensional, infinitely thin, perfectly
conducting surfaces containing apertures. The only case in which it

is valid is the conventional one of an infinite plane.

FORM

DD ~V..1473

S/N 0101.807.6801

(PAGE 1)
UNCLASSIFIED

Security Classification




UNCLASSIFIED

Security Classification

14. KEY WORDS LINK A LINK B8 LINK C
ROLE wT ROLE wT ROLE wT
Babindt's Principle
Electromagnetic
Generalization
Non-Planar
Radiation
Diffraction
DD "3&.1473 (eacx) UNCLASSIFIED
(PAGE* 2)

Security Classification




