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Abstract

The problem of EMP excitation of cavities through small
apertures 1s discussed. Of particular importance are the study
of radiation damping and the resonant frequency shift of an
open cavity. Some fallacies in the literature are corrected.
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1. Introduction

The main purpose of the theoretical study of cavity exci-
tations through small apertures is to understand the shielding
of a hollow conducting box, inside of which are some electronic
equipments, against the external electromagnetic radiation.
Small apertures are holes from which these equipments are con-
nected to other systems or antennas. It is important that the
transient response of the cavity field be known, when the aper-
ture is illuminated by an electromagnetic pulse.

In general, the transient response of a cavity coupled
through a small aperture on a conducting body can be studied in
two stages in time: (1) The first stage reflects the structure
of the scatterer. The induced surface charge and current den-
sities decay according to the natural modes of the scattering
body .’ (2) In the second stage these surface charge and cur-
rent densities drive the cavity fields. Afterwards, the reso-
nant modes of the cavity fields dominate. They decay according
to the conductivity of the cavity wall and the aperture size.
To study such a complex problem, it is convenient to simplify
it into three separate problems, just as in the study of
braided shield cables given in [2]. They are (a) the exterior
EMP scattering problem of determining the induced surface
charge and current densities of the scatterer with the aperture
short circuited, (b) the problem of calculating the eguivalent
static electric and magnetic polarizabilities ag and ay of the
apertures, and (c) the interior problem of determining the res-
onant modes of the cavity.

In this note we treat problem (¢}, assuming problems (a)
and (b) to have been solved. To study such a problem in the
most expedient manner, we make extensive use of references,
Among them are Stratton's famous book,’® Bethe's original paper,®
and tables of mathematical functions.® Throughout the analysis,
known results are not derived rigorously, but presented in an
easily acceptable form., For instance, the well-known integral
equations for the fictitious magnetic charges and currents for
a circular aperture are not solved, only the solutions are
quoted. In Section 2 we briefly review Bethe's diffraction
theory by small circular apertures in a conducting plane. Equiv-
alent electric and magnetic polarizabilities ag and &M for a
circular aperture are given. Stress has been given on how a
magnetic dipole in the plane of the aperture produces fields
satisfying the boundary condition on the conducting plane.
Similarly, fields of an electric dipole normal to the plane
satisfy the boundary conditions on it. Electric and magnetic
- -fields on and near the aperture are given. However, Boukamp's
improved result® of the fields near the aperture up to the
first order in k is not reproduced here.

In Section 3 we give a self-contained analysis of the cav-
ity field. Special emphasis is placed on the solenoidal part




of the fields, First, the coefficients of the normal modes ex-
pansion are obtained through a self-consistent scheme. That is,
in obtaining the equivalent dipole moments, we assume the aper-
ture field as the difference of the external short-circuited
fields and the cavity field. This leads to the shifting of the
resonant frequencies from a corresponding closed cavity. How-
ever, this does not give rise to the radiation damping of the
energy inside the cavity. In order to calculate the damping
due to the aperture radiation, we obtain the total power of the
radiated field, from which the radiation damping is derived.

The general theory is then applied to a hemispherical cav-
ity with an opening on the plane wall in Section 4. Detailed
calculations for the expansion coefficients of the solenoidal
fields are carried out. Finally, in Section 5 we study the re-
mote sensing of small cavity backed apertures. Transfer func-
tions are discussed in a block diagram.

Although the problem of an open cavity has been treated in
most textbooks on EM theory, some confusions arise due to their
mistreatment. In Appendix A, we point out the most common al-
gebraic fallacy in the literature. For completeness, we include
a treatment of cavity fields via scalar and vector potentials.

A rectangular cavity field is included as an example. Appendix
C treats some improvement on the derivation of radiation damping
via energy conservation. ’



2. Bethe's diffraction theory by small apertures in a
conducting plane

The diffraction problem of electromagnetic waves by a cir-
cular aperture small compared to the wavelength in a conducting
plane is solved by H. A, Bethe,® Based on the use of ficti-
tious nagnetic charges and currents in the apertures, which in-
duce fields satisfying the boundary conditions on the conducting
plane, he adjusted the charges and currents to give the correct
tangential magnetic, and normal electri¢ fields in the aper-
ture. These fictitious sources are then approximated by a mag-
netic moment in the plane of the aperture, and an electric di-
pole perpendicular to it. His theory has been popularized by
various textbook authors.’’®’® The readers are advised to read
Bethe's original article and these fine textbooks. For com~
pleteness and convenience, a brief discussion of Bethe's theory
is given.

Consider a conducting plane under the illumination of elec-
tromagnetic radiation. Then surface charge density, pg, and
current density, Jg, are induced on the conducting plane. If a
circular aperture is cut on the conducting plane, the field is
perturbed so that the incident normal electric and tangential
magnetic fields do not terminate as pg/2e and 1/2(up x Jg), but
enter through the aperture. For an aperture small compared to
the wavelength, the fields in the aperture can be considered as
essentially constant. Thus, a quasi-static approach may be
adapted. Further relationship between the incident plane wave
and short circuited currents and charges are discussed later in
the section,.

Since magnetic surface charges and currents are the
sources, it is expedient to use the magnetic scalar and vector
potentials ¢* and A* described in Appendix B. Thus, the elec-
tric and magnetic fields in the cavity can be expressed in
terms of

B =,__3£_3 x R
(2.1)
i = -V¢* - sk*
Since p% and J& are the only sources, one can have®
832
Zx = = [Fx(2ey & gar
B = L[S S—s—aa (2.2)
|t - |
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o% = £ [or(x') & —da (2.3)
[z -

Furthermore, the quasi-static assumption enables us to let s = 0
near the aperture. Therefore, from the second equation of
(2.1) we have near the aperture

H = -Vo* | | (2.4)

Tangential H and normal E can be shown to be approximately con-
stant in the plane of the aperture, based on the usual tangen-
tial magnetic fields associated with the Babinet decomposition
for symmetric and antisymmetric parts with respect to an infi-
nite plane. Since tangential H is assumed to be constant, o¢*
can be expressed as

. |
¢*=—f ﬁ-d§=—ﬁ*t-?
o .

(2.5)

Here ﬁta is the tangential incident magnetic field at the aper-
" ture based on a Babinet planar approximation.

Note that ﬁta and Ena are strictly speaking half the re-
sultant fields at the aperture; for an infinite plane (in gen-

eral only so) they are half the incident fields. Remembering
that s = 0, (2.3) and (2.5) give

o> = SN X * da'

On the other hand; the magnetic vector potential is given

by
Rx(3) = Z%f&’;(“f') —da2__ (2.7)
lr - ¢

Here, the constancy of Epgrmal gives
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X* (1) =::,;-'E’ x ¥, E =5 (2.8)
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En, is the Babinet normal incident electric field at the aper-
ture. Bethe solved the integral equations (2.6) and (2.7) with
{2.8) to give

¥ o o 4u ) Ty . O
o = 5 5 172 r Hta (2.9)
m(a® - r'%)
- B 2 - > S
Jg = - 173 r' x En (2.10)
Tr(a2 - r'z) a

Here a and r' are the radius and the distance from the center
of the circular aperture.

Alternatively, it is a fairly well known result from elec-
trestatics® that a constant inside field is produced by a uni-
form distribution of dipoles in an ellipsoid, the dipoles hav-
ing the direction as the field. A uniform dipole ellipsoid of
dimensions a, a, h with h - 0 gives rise to the fields which we
are solving. Assuming the aperture is small, we can approxi-
mate the field due to a uniformly distributed dipole ellipsoid
by a point dipole at the center of the aperture.

Since the magnetic moment and electric dipole are, by def-

inition, given by

m o= %f?p;da (2.11)
P = -j;:f"f x Jrda (2.12)

It is easy to substitute (2.9) into (2.11l), and (2.10) into
(2.12}) to vield

> 16 3= _ _8 32

m = —3—a Hta 3a un X 38 (2.13)

E'= %§a3En i)l.n = %aBEQEn (2.14)
a




‘ Theréfore',’ we canvexﬁréss (2.13) and (2.14) as

- = e
m=o_ « H o - - (2.15)

(2.16)

T¥
[
e

Here oy and ce are magnetic and electric polarizabilities.  For
a circular aperture _

= _ 16 3> = '

o, = - F-atuug 7 (2.17)
_ 8¢ _3

o, = Fa (2.18)

with Ut as the unit vector along Hi.

In order to see, the fields due to the magnetic moment m
and electric dipole p satisfying the boundary condition, they

‘ ~are given as?®

> 1 > 1 - 7 7
B = 4= ¥ [m ‘v’<f)] o (2.19)
> 1 > el |

BE_o= g2 V1B - V(D] (2.20)

The directions of the fields of (2.19) and (2.20) are
shown in Figs. (2.1) and (2.2). We can see in Fig. (2.1) that
the magnetic field is constant on the circular aperture. The
field oytside the_ aperture is the same as that of a magnetic
moment m., Since Hp lies in the conducting plane, it is easy to
see up * Hp = 0. In Fig. (2.2) the electric field of an eleg-
tric dipole in a meridian plane through an axis of a dipole p
is shown. Furthermore, we approximate the fictitioug magnetic
current, J§, on the aperture by an electric dipole, p, perpen-
dicular to the aperture. Therefore, Fig. (2.2) can be consid-
ered as a static electyic field due to an aperture in a plane
with its normal along p.

It is noteworthy that egns. (2.19) and (2.20), and there-
fore Figs. (2.1) and (2.2), do not give accurate results for
fields near the aperture. Perhaps the most important discrep-
ancy is that the approximate field does not exhibit a singular-

. ity at the edge. This can be seen from a uniform distribution



FIG. 2.1,
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circular aperture

Directions of magnetic field of a small circular
aperture on a conducting plane. The field on the
aperture is constant as shown by straight line,
while the field on the conducting plane is approxi-
mated by that due to a magnetic moment m in the

direction as shown,




aperture

FIG. 2.2. Directions of electric field of a small circular
aperture in a plane perpendicular to it. The
electric field is approximated by that due to an
electric dipole D in the directions as shown.



of dipoles inside an elllp501dal model dlscussed earlier. Us-

ing a well known solution in electrostatics® mentioned earlier,
we can obtain ¢* and H = V¢* from its electrostatic counterpart.
They are given in the ellipsoidal coordinates as

. e (e
o* () = ﬂ_‘lp as (2.21)
87 £ Rg 7
1| = a¢* _ L 39* _ q* 1
T 3x h ax 5 5 1/2 > >
‘ D 4n@a“+E) (h” +E) r . z°
2 2 2 .2
(a“ +¢) (h® + &)
(2.22)

To find the tangential magnetic field near the edge, we
let z = 0, and make use of the coordinate surface

2 2
a” + & . & : '

Thus, for small & we have

*
H L9 el (2.24)

tan -
im a/Z 47 a Yr® - a

Before expressing g* in terms of short circuited Js, we also
obtain normal magnetic field on the aperture. They are ob-
tained by letting £ = 0, and h -~ 0 as follows:

*
# = 2 2 (2.25)
471 a“h 2 2
r z
Z*t 7
a h
and
2 2 ,
2 2
h a

The substitution of (2.26) into (2.25) and limit of h + 0 gives
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H] = ——8 (2.27)

4ﬁa a2 - r2

However, the limiting ellipsoid has two sides, which gives

*
H d . ' : (2.28)

? 2ﬂa'Va2 - r2

The normal magnetic field can also be derived from the ficti-
tious magnetic charge on the aperture (2.9) and (B.16) as fol-
lows:

4¥ .« H
& F e
Hn = T = 5 5 1/2 (2.29)
T(a®” - ")
Comparison of (2.28) and (2.29) gives
B _+ + ! -
g* = 8ar « H (2.30)

t
a

We thus determine the tangential magnetic field near the edge
as

(2.31)

is

= a (2.32)

(i3
it
Sy
X
Gy

*
tan n (]

Near the edge, the normal electric field can be approximated by

2 ' (2.33)
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To summarize, the fields on the aperture are

P
E, =By = 52
a
N (2.34)
B - s
tan 5 5 1/2
en{a® - r7)
- = _]_-> >
Htan =H  =3zu, xJg B
a
2¢ + 4. x J (2.35)
q = n S
n 5 5 1/2
t{a® - r7)

Here og, 35 are the short circuited surface charge and current,

Near . the edge, we have

Etén =0
l;!ps (2.36)
E ~
n 5 1/2
2em (r® - a“)
and
H =0
n
2.3 x3 (2.37)
q - n
tan 2 2 1/2
mT(r® - a“)

Let us also relate the short circuited currents and
charges to the incident plane wave. Consider a plane wave in-
cidence on a plane perfectly conducting sheet. The current Jg
induced on the sheet is given by

P +>3
s n ) = -2u x H (2.38)
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Here ﬁn is the normal to the sheet pointed away from the field
as shown in Fig. 2.3. Let us perturb the field by a small open-
ing on the plane conducting sheet as shown in Fig. 2.4. Since
there lS no current on the aperture, we add a compensation cur-
rent Js such that

or

- 3 - (2.39)

The compgnsatlon current Js induces perturbed magnetic fields
Htz and Hta- They satisfy

>
= J

_—)'l '
n £ Hta) s (2.40)

a

and are+shown in Flg. 2.5. Because of the geometrical symmetry,
Hta = -Hta, which leads to

g =‘% W x 3 =1 (2.41)

Therefore, for a plane wave incidence l/2(3n X 35) has to be
replaced by Hf. Similarly,

E = = = E- _ (2.42)

This conclusion can be arrived at by the decomposition of
fields into symmetrical and antisymmetrical components as given
by Neugenbauer.!®? However, in a typical measurement one closes
the aperture and measures the magnetic field near the surface.
The measured value is

(ﬁtot) = ﬁi + ﬁi = 2H?T (2.43)
t

(Bpoy) = E + B = 25 (2.44)
n

13
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It is desirable to express the dipole moments, polarizabilities,
. and fields on the other side of the aperture in terms of these
measured quantities. Thus, the dipole moments are

>
m= -

) (2.45)

ot Gn ‘ (2.46)
n

a“(E

oY
il

3

which give modified polarizabilities aof and od for circular
apertures as follows:

_%a3 (2.47)

1l

'
m

(2.48)

W] >
V]

ol =
e

The static fields on the other side of the aperture are then
given by (2.19) and (2.20).
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3. Cavity fields and their matching to an aperture

In this section we concentrate our attention on the sole-
noidal cavity fields. We give the expansion coefficients of
the eigenfunction expansions., In particular, the shifting of
the resonant frequencies of the cavity due to the aperture
opening is studied in detail., Furthermore, the aperture radia-
tion effect on the cavity is critically studied. It is found
that for small apertures the radiation damping is negligible
compared to the conducting damping. In brief, we first derive
the driving term from the external short circuited surface cur-
rents and charges. We then obtain the shifting of the resonant
frequencies due to the aperture opening. Finally, we study the
aperture radiation effect through the far field radiated field.
The formulas obtained for shifting in resonant frequencies and
radiation damping are useful for calculating the first order
effect of a slightly larger aperture.

In addition to the solenoidal fields, the equivalent elec-
tric and magnetic dipocles of the aperture excite electrostatic
and magnetostatic fields inside the cavity. They can be calcu~
lated by these dipoles and their images in the case of a rec-
tangular cavity; and by solving a boundary value problem in the
case of a general cavity.

For a small aperture, the static fields fall off suffici-
ently rapidly that (2.19) and (2.20) give good approximations.
Because of the minor algebraic error which appears in most text-
books in treating the cavity field expansions, we give some
discussions'!! in Appendix A on common fallacies. In Appendix B,
a derivation of normal modes by the use of scalar and vector
potentials is presented.

As shown in Appendix A the solenoidal part of cavity
fields can be expanded as follows:

- > :
E = E a B (3.1)
m
Here Em is a normal mode which satisfies

- ->
u_ X E_ = 0
n m

on the boundary. Also,

16




2
_ - . —> = _c -> . —>
a —fE E dV = |E V x ¥V x E_dv (3.2)

m
]
m
since
2
3- X 3 X E = Sm+
0= - —=Eg (3.3)
C
- ->
fEm ° Endv - 6rnn (3.4)

Employing a curl version of integration by parts, which is
i« 2= fox8 -Zavs [GxB - waa (3.5

one can proceed as

2
S
e o fEevxtcgav e foxE txBav e [EATE G b
m m m m n
C a
=f$x$x§~§dv+ f(§x§x§.+§ xVxE) +uda (3.6)
m a m m n
Furthermore,
= 52+
VxV xE = —-7§E (3.7)
e
> > -
Jg(Em x U x E) - unda = { (3.8)

The second formula follows from the fact that

> -+
E xu =20
m n

Therefore, one arrives at a well known formula for the expan-
sion coefficients:

17



) ,
az__é_E__f(ﬁxfixEm)-EdE (3.9)

This is the cornerstone for the rest of the analysis. First,
we apply (3.9) to calculate the coupling of fields outside the
cavity to inside. This is carried out with the electric and
magnetic dipole approximation of a small aperture discussed in
the previous section.

. - - >y _'3_ > .
'Since up X E = J§, one can expand X Em in terms of
Taylor series as follows:

4 oeen (3.10)

Here we have assumed § X Em and % x ¥ x Em as constant on the
aperture. We can conveniently use the values_ at the center

the aperture, which have been denoted as S Ema and % % X Ema
We have also made use of

Fx = /;' . J%da = - J[+
_/}éda rV Jsda S rpgda

i

) (3.11)

= -sym = -spa'! - (H
m tot e

%f?'x3;da=— = ol (B 3 (3.12)

(Rl eRs

tot
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(Htot)t and (Etot) are the short-circuited tangential magnetic
and normal electrlc field on the aperture. They are previously
given in (2.43) and (2.44) in terms of short-circuited surface
current and charge as :

ﬁ - « >

t

0

Beoe) =& " (3.14)

Here we temporarily ignore the reflection of the cav1tyé which
Wlll be taken care of in (3.16). In (3.11) and (3.12) oy and
0e are the magnetic and electric polarizabilities defined in
(2.47) and (2.48). One can further simplify (3 10) by the Max-
well's equations and (3.3) to give

> ' > - 2 > = -
X . ES) . ' .
./:E x ¥ x Em unda ss nu X JS o Hm
a a
s2ueor 8% LB . (3.15)
m"¢% E Un m :

Next, we attempt to use (3.9) to study the damping effect
of the aperture radiation. We adapt a procedure similar to
that used for studying the effect of a conducting wall.’ Clear-
ly the tangential electric field of the cavity leaks out of it
through the aperture just like the coupling of external field
into the cavity. Here the short circuited tangential electric
field of the cavity is given by

> > - - :
u, % By = otu, X (Zn:anEn} (3.16)

Note that we have a minus sign on the right hand side of (3.16),
because the reflected wave has -up direction. On using (3.16)
in (3.10), one arrives at

G x E . 3 X E da = sp%' . § X E
o B tot m m,

+%g’ n%X%X_E)m +...— (3.17)
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Here

mro= Gl ;an(ﬁn) (3.18)
...._].:_.')*‘ = Q'Za (E )
e P e&w n'n (3.19)

The simplest way to derive the above two equations is to sub-
stitute

-5
E a_ kb
nn
n
and

22,y

for B and H in (3.11) and (3.12).

As in deriving (3.15) one can simplify (3.17) further to '
give
> > S > - _ 2 > .Sy, >
ngun X B € X Emda ssmu :;;aana o Hma
1 * 0 0
+ ues o Za (E_) (Em)n + (3.20)
Na a

However, we still have not obtained the damping. To obtain the
damping, we can study the higher order terms in the quasi-
static expansion. Here we rely on the physical nature of the
radiation. We calculate the total power flow away from the
aperture and infer from the law of energy conservation that the
same power also flows out of the aperture.

Let us proceed with the calculation of the radiated field.
To begin with, we summarize the fictitious magnetlc current
sources as follows.

20




. 1 o (2.9)

= ¥ x B (2.10)

As before, these fictitious sources can be gpproximated by the
magnetic and electric dipole moments m and p located at the
center of the aperture,

The radiated fields due to these dipoles can be calculated.
ea51ly w1th the aid of scalar and vector potentlals They are
given by?

-sR/c
Zosugpe~""
E=275 % (3.21)
- >
o = s*ﬁlE v .2 | (3.22)

for the electric dipole, and

-sR/c
> sy, > e
A = Z—ﬂ_—c—:' (m x uR)————R——- (3.23)
_ -1y
o) = e \ A ‘ 7 » (3.24)

for the magnetic dipole. As a result, the radiated fields for
the electric dipole are

> sz -> - - e—SR/c
E_ = [u, x (4 x p)l=—g— (3.25)
el R R
4dmec
2 -sR/c
- _ s -> =)
Hel = ZFE(uR X p)“—T?_— (3.26)

Here GR is the unit vector along R. The radiated field for the
magnetic dipole is given by
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2 -sR/c

- _ s - - -> e
Hma = 2[uR x (m X uR)]‘"TT'_ (3.27)
4drmc
2 ~-sR/c
Ema - 4ﬁc(uR X m) R (3.28)

Observe symmetry in the radiated fields of electric and magnetic
gipolgs. Ignoring € and Y in (3.23) ~ (3.28), one can replace
m by p to obtain Em, and Hmy from Hel and Eel. Equivalently,
one can derive these radiated fields by the use of the magnetic
scalar and vector potentials:

-sR/c
A% = - sz?ne - (3.29)
4nc
(}‘)* = ._.E._. 6 'y A* (3.30)
and
. -sR/c
-> SE - - e
A% Z.T_T_E(P uR) " (3.31)
.—cz > .
b* = — Voo Ax . (3.32)

Let us calculate the Poynting vector of the radiation

$ =% x it = —5— 1 x 1)

54 - [l(->
3 Ugligtt

(4ﬂ)2€c R

-

-> > 2 1
- up * (ug x p)] ;7 (3.33)

Here T is the complex conjugate. Note that (3.33) is not ana-
lytic. The way to circumvent such a difficulty is discussed in
Appendix C. Also, we assume the aperture on a plane conducting
sheet. However, if the curvature of the exterior conducting
surface, on which the aperture is located, is small compared to
that of the interior resonating cavity, the approximation is
very accurate. Therefore, the total power radiated is
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N m/2 27 5
Siot =J[s * u da = sin® deJE doR“|S| (3.34)

=N

=

~ 1
>

M

Q

]

3“\

where

S| = (m/c) cos?s cos?a

+ [sin® p - (m/c) sinoc]2 (3.35)
On carrying out the integration in (3.34), one arrives at

4

s = =
tot 12ﬂ€C3

2 2

[(m/c)” + p7] (3.36)

From the law of energy conservation, (3.36) gives the radiation
loss at the aperture. One substitutes the magnetic and elec-
tric moments from (3.18) and (3.19) to give

> >
Re(J£|E X H o unda) = S.0¢

4

= ' + (a'E_ ) ‘ (3.37)
12ﬂ€c3 _ c? - © Mg

Specializing to the mth mode of the cavity field, one has

m n

4 -
re [ B x B+ U da = —2—
a' 127ec

' Z
+ }ae(Em)n } (3.38)
a

Finally, in order to use (3.20) and (3.38) to derive am includ-
ing damping, one begins with (3.9), which is equivalent to
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- ss %%, < T, -Gy - 0
- vy, s “m m
a
2
=] P
- n_ 8% . 2 = LS L ©
5 &8 T u, Em + ss_1u Zan(Hn) OLm Hm
c a ‘n t a
a
2
Sm
- e t
2 dez an (En) (Em)
n n n
a a
. > - -
+ 1Im£2n:anEn X (57 X Em) . unda (3.39)

Equation (3.39) is a system of equations for ap. Since the di-
agonal terms do not vanish simultaneously, we can apply a per-
turbation scheme to solve for ap. The result of such a calcu-
lation is

s p
2> e 3' + O R L A
SSmLl Un X js 0Lm Hm 2 OLe € Yn Em
A = i a c o a
m S2
= 2
J§<s§ - s?) - ss pf(E) -G - (H) o+ 3 al(E) +D
c a a c n,

(3.40)

Here D represents the damping due to aperture radiation, and is
given by

D = -iT B x H a
= 1 mSle A m m U.n a
. ey )P
SmS H ta 2
= - 3 5 + {ué(Em) } (3.41)
l12nc™ ¢ c n
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In concluding, the expansion coefficients of solenoidal
cavity field are obtained in this section. Of particular in-
terest is the analysis of shifting in the resonant frequencies
because of the aperture opening. The aperture radiation damp-
ing is studied in detail. The damping factor as given in
(3.41) is of order s3ab/c3r3, and therefore can certainly be
ignored in future investigation unless the aperture size is
large, or unless the wall damping is neglected.
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4, Hemispherical cavity with an opening on the plane wall

—

Figure 4.1

In this section we apply the general theory developed pre-
viously to a geometry of interest to an EMP system. Such a
geometry of a hemispherical cavity with a circular opening on
the plane wall is shown in Figure 4.1,

Assuming the opening as closed, we, first of all, study
the closed hemispherical cavity. To obtain their normal modes,
we follow the procedure given in Appendix B. However, since
care must be exercised in the use of differential operators in
spherical coordinates, we give a detailed analysis. We adopt
the convention in [5].

The time harmonic Maxwell's equations

V x B = -sul V.BE=0 (4.1)

i

¥ x H = scBb v . BE=0 (4.2)
can be solved by the scalar and vector potentials. Let

-+ 1 -
= = x
H, = 3 v A, (4.3)

>
D p o . (4.4)

Il

i
<N
W

|
n
e

5
E
Substitution of (4.3) and (4.4) into the first of (4.2) gives
Vx¥x2& = -Vo_ - sk
o sue ( B S p) (4.5)

In spherical coordinates,
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d°A
YV ox V ox (A_u.) = | - L (sine 3 r} - 1 2 Y
rr r2 sin® 38 o8 r2 sinze 8¢2
2 2
+laArE'+ 1 L3
r 0rsB "6 r sin® 9¢or ¢
= ~L(A_)Q Vo 4.6)
= ~La, u. - sge | ( -6)
Here ,j i .
2 | 2
3°A 9A 3°A
. r 1 3 . r 1. r
L(A) = + ==(sin® ) o+ (4.7)
r or r? sing °°° 38 r2 sins 3¢°
3A
=1 r
Egquations (4.5) and (4.6) lead to the usual result.
- 2. _ 2 _ .2
L(Ar) + k Ar —.9 ’ k® = -s ge (4.9)

Equation (4.6) is

The solution

the new gauge condition.

to (4.9) satiszihg the boundary conditions

3Ar
R = (
or r=r

o

’ Ar(rl g‘r ¢’) =0

is
_ ; m Vcosm¢
Ar = krwé(kr)Pz(cose){sinm¢}
by (kE) = == Ty ) (ko)
vkr
e _ *an '
k = kln = —r—_: 7 k = iS/C

(4.10)

(4.11)

(4.12)

(4.13)



Xon in the last equation is the nth rcot of the transcendental
equation o ‘

X =
I“l/z(x) -7 Iy =0 ) - (4.14)

which is derived from the first equation of (4.10).

Some explanation of notations is in order. Ig+1/2 is the
Bessel function of order % + 1/2, and PJ are the associate
Legendre polynomials. Here £ is odd so that the second equa-
tion of (4.10) can be satisfied. 7

Tn order to derive fields from (4.11), we proceed as fol-
lows:

B =-L3x% =-L%_ xa1
p M P Hoor r
11 aArG +_£_3Ar;; s
- U r sinfB 9¢ 6 Hr 36 ¢ *
_ _ Ik 1 m ~sinm¢
He = Twz(kr)m PQI(COSQ) {cosmq) } (4.16)
_k d .m, cosmé R '
The scalar potential ¢p is
-1 Ay d m cosmo
%5 = e 3r - Cax [xy, (k) 1Py (cos8) { ;o) (4.18)
- >
E = 'v - SA 4,19
P b T 5% (4.19)
d2 2 m cosmo
Er = -ic g;i[rwz(kr)] + k rwz(kr) PQ(COSG){sinm¢}
s A+ 1) m cosmd
= —ic ===y, (kr) P (cos8) {j; n} (4.20)
- 3. 4 4 .m cosmd '
By = 1c:af[rw£(krd] depz(cose){sinm¢} | (4.21)
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—sinm¢}

o d m
E¢ = um:ag[rwg(kr)]PZ(cose){cosm¢ (4.22)
where
x
_,e _ Tim
kK =kKin=7
o
Similarly, one can generate Eq and ﬁq from Ag.
. m cosmo, | .
A¥ krwz(kr)PZ(cose){sinm(b} (4.23)
Here A¥ is subject to the boundary condition
o |
o 2

The second4equation of (4.24) requires that 2 be even, while

the first equation defines the eigenvalues k% . It is related

to the nth zero of the Bessel functions as f6T1lows::

m _ _ 1 _ =
vy (kgna) = ¥y lvgn) = Tor1/2Wan) =0 (4.25)
'Yln
The fields can be obtained as follows:
> 1 : - _]_ -
Eq—--g"v’xigl- ZVAx x U,
S S s SR O W (4.26)
£ r sin6 3¢ 6 e r 386 ¢ :
_ _mk 1 m ~-sinm¢
Bg = =5 Vg ¥ 53yp Py(e0s®) fogamy (4.27)
_k d m cosmé
E¢ =z wz(krﬁ ang(cose){sinm¢} | (4.28)
ox = =L e - [ry, (kr) 1P (coss) {SOST9) (4.29)
g Sue or. cgr vy 2 sinm¢ )
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fx = ~vox - skx
q gq

q

H = -icfﬂfléi§ﬂlw2(kr)9§(cose){giiﬁg} | (4.30)
Hy = ic g [ry, (kr) g%pﬁ(cose){giigﬁ} (4.31)
Hy = imcé§-hw%}kry]Pﬁ(cose){giig$¢} (4.32)

In contrast to the rectangular cavity, these are the only
normal modes supported by hemispherical cavity. This differ-
ence lies in the fact that its cavity wall consists of two
smooth surfaces, while the rectangular one has six smooth sur-
faces.

Having obtained the normal modes of the hemispherical cav-
ity, let us normalize the fields.

To do this, we integrate, for p modes,

> > 2 2fcn2 2y.2 .
./ém»- E AV = -u c./kﬂe + H¢)r dr sin8ded¢

' ry T 2 2 ap™
_uzczj' [wz(kr)lzrzdrj. m2 (P? + (?ﬁ?)

o] o |sin”®6

o 27
sinedef d¢
o}

_ 2,23 2
= etk r (Y, _(kr )b, (kr)) - ¥, (kr )"]

2 L+ m)t
T+ %z - 2%1 L&+ 1) (4.33)

Letting (4.33) as 1/A2 and multiplying (4.16) to (4.22) by A,
we have thus normalized the p mode. For g modes, one arrives
at a similar normalizing factor, B,
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2

B = {Trzz £y _q (KTg) ¥y, (Ky) = wg(kr0>21
. For later use, we also write
A = |SPmelrln, ) )y, (ery) - by 6 )]
- i-l) Eﬁ i g;i 2(% + 1) E (4.35)

'
i

Having obtained the orthonormal modes for the closed cav-
ity, we are ready to treat the open cavity with a circular
opening at (raz, ¢a) on the plane wall. We thus apply (3.40) to
calculate the expansion coefficients.

a_ = ‘ eq "eq (4.36)
m Sz
1 m
—(s_ = s7) = ss_u"8 — B, + 1D
c c
For p modes,
- 8 3 2(k 2‘coszm¢a
By = %J W, (kr, )de Q(cose)' e
i sin“mo
6== a
2
coszm¢
= - 347 2(k) [, (kr ) 1200 + 12 al (4.37)
a .2 ‘
sin m¢a
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2
2 (cos“mo
_ 4 322 d a|
Be =-3za’c A [rw (kr)]‘ de 2(cose); { 2 f
_m sin“mg
-2- a
4.3 2 274 2 2 cos2m‘ba
=-3a’c A af[rwg(kr)]l (2 + 1) 5 (4.38)
r=r sin“m¢
a
For g modes,
L2
2(sin"mo
By = - §a332m2c2 ad—[r%(kr)}l p (cose)l % , 2
6=1 cos m¢a
2
.2
sin“m¢
= §a3B2m2c2—~f[rt,b2,(kr)] { 5 a} (4.39)
r=r_{cos“m¢ i '
a a
4 3.2 mk> sin’mg,
B = ~-=2a"B P, (kr_) (4.40)
e 3 2 a coszm¢a}

To recapitulate the result here, we have studied a small
hemispherical cavity backed circular aperture shown in Fig. 4.1.
The shift in resonant frequencies is of the order a3 with a as
the radius of aperture.

The radiation damping, Db, is given by (3.41) of the pre-
vious section and is of the order ab®.

32




5. Remote sensing of properties of small cavity backed
apertures

One additional application of the preceding theory is the
determination of the properties of a small cavity backed aper-
ture from the far zone. As mentioned in the introduction the
transient field can be separated in two stages in time because
of the difference in decay constant of the natural modes of the
scatterer and that of the cavity fields. Since the decay of
the cavity field is much smaller, the late time signal exhibits
the properties of the open cavity through its resonant frequen-
cies and decay constants. However, in order to completely de-
scribe the far-zone response, it is necessary to study the
transfer functions between the far zone and the aperture on the
scatterer. We shall study the problem in six steps. :

(1) When a plane wave is incident on the scatterer, the
short-circuited current and charge induced on it with the aper- —_—
ture closed are given by JX, Jg and p%, pg. Superscripts y and
z refer to the direction of polarization of the incident plane
wave. We can relate the induced current and gharge on the same
Scatterer due to a dipole in the far zone to J, J%, and p¥, pZ.

To explain further this relationship, we study Figs. 5.1 and
5.2. The far field due to an electric dipole is given by

2 l—sR/c
_ S > - - e
Eel = s uR X (uR X p) - — (3.25)
2 -sR/c
= _ 8 - > e
He1 = g7 Ug X P —x¢— (3.26)
Let
> - > -
P = p.u, * pyuy + pou, (5.1)
and

- , -
Up in (3.25) and (3.26) bglux

then py radiates a far field near the scatterer with electric
field polarized along the y-direction as shown in Fig, 5.1.
Similarly, in Fig. 5.2 pp radiates a far field with polariza-
tion along the z-direction. Therefore, the induced short-cir-
cuited current and charge on the scatterer due to a far-zone
dipole are given by

33



R

Figure 5.1

Figure 5.2
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A G N P (5.2)
s 4ﬂ€cz R y s zZ s '
‘ S2 e-sR y z : :
Pg = 4 2 R (pyps T PyPg (5.3)
TEC :

Equations (5.2) and (5.3) are the transfer functions of the
short-circuited current and charge on the scatterer from a far
zone dipole source. Small—wavelg§gth limit has been assumed in
deriving (5.2) and (5.3). Here JY, of, and J%, pZ are assumed
to have been calculated. They are the first of the three de-
composed problems mentioned in the introduction. These induced
currents and charges can be numerically computed. They can
also be obtained through the measurement of tangential magnetic
~and normal electric fields; since

> -+ >
(Htot)t =u x Jg | (5.4)

Etot)n = pgle . (5.5)

(

Gn is as shown on Fig. 2.3.

(2) Having obtained the short-circuited currents and
charges, let us proceed to discuss the equivalent polarizabil-
ities of the aperture. In general, these electric and magnetic
polarizabilities de  and oy are determined by the geometrical
shape of the aperture. The effect of surface curvature on these
polarizabilities has been discussed by Latham.!'? Usually, these
polarizabilities are computed numerically. They can also be
measured by an electrolytic tank.!?® However, the more conven-
ient polarizabilities are

OLe
@,' f—f———
e 2 7

o 2!

(5.6)

=31}

!
m

They are discussed in Section 2, and have the advantage of giv-
ing the fields behind the aperture directly. Thus the equiva-
lent dipole moments are given by

< ( ) (5.7)

- =,
m = o
m

35



P = o (E ) u (5.8)

(3) With these dipole moments at hand, the static fields
behind the aperture (or inside the cavity) can be obtained by
using the simple dipole formulas (2.19) and (2.20). The cavity
also supports solenoidal fields:

-+ >

B= D af (5.9)
m - R

§=-.1 v x B 5.10)

R ke m (5.

Here ap is given by (3.40) and Em the normal modes of the sol-
enoidal cavity field. Because of the complicated derivation
which led to (3.40), we devote the next two steps to a brief
discussion of (3.40).

(4) The basic identity used for deriving ap is

2 2,2 [ty .2
am(s - sm)/c = L(E X V X Em) unda (3.9)

The contribution to the RHS of (3.9) consists of three parts.
Firstly, the contribution due to the fields entering the cavity
is

- . - - - . =l . ~=
fEX(%XEm) u_da ss_uu XJS o Hm
a a
2 A T (3.15)
Sm“psaeun m ¢

Secondly, the contribution due to the leaking of cavity field
through the aperture is
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2 =
= -ss_u a_(H_ ) ca ¢ H

m QZ; non g m - Ty

2 e 2:
+ S HECL an(En) (Em) + e (3.20)
7l n n n
i a a
However, these two contributions are reactive. Using (3.15)

and (3.20) in (3.9) results in a solution for cavity fields.
Such a solution oscillates forever if excited. Therefore, it
is necessary to consider the radiation damping.

- (5) Radiation damping cannot be obtained easily by using
(3.9) only. Since the order of magnitude of radiation damping
is quite high, we calculate it via the radiation of equivalent
- dipoles of the aperture to infinity. For mth normal modes of
the cavity field, it is given by

{a! « (H)

»Refﬁxa.ad“ 5 a
,m

a m n l2ﬂ€C3 c

+‘{aé(E ) 32| = -p ©(3.38)

With the aids of Poyhtind theorem described in Appendix C, we

can show that the contribution of radiation damping to the RHS
of (3.9) 1is

-; . > -+
m n 1Im/;;an§n x (V x Em) © uyda

U
e
=

X

b

o

jol)

o]

i

=D | o (3.39)

Therefore, (3.15), (3.20) and (3.39) lead to (3.40).
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(6) Finally, the formula for the radiated field from the
aperture can be used as the transfer function of the far zone
from the field inside the cavity via a small apeyxture.  Denoting
the equivalent electric and magnetic dipoles as p' and m', we
have the radiated field from these dipoles given in (3.25)
through (3.28). For the radiation of the cavity field these
equivalent dipoles are :

> .

p' = gézn;amEm (5.6)
- _ ___~_]_-__=l . > 7 o

m' = SUVVOL, Zm:amv X Em | (5.7)

In conclusion, the transfer function from an electric di-
pole source to the far field via a far zone cavity backed aper-
ture on a scatterer can be obtained in steps. They are best
illustrated in the following block diagram:

T transfer functions fields near the
electrli dipole ) scatterers
P (3.25) and (3.26) BT, Bt

short-circuited

e ranst £ ions
transfer functions current and charge transfer functi

S

-+ on the scatterer N
(2.19), (2.20), (5.9)
(5.2) and (5.3) 35, Pg and (5.10)
cavity fields transfer functions far field of dipole
z % = via cavity backed
! (3.25) through (3.28) aperture

Note that in the block diagram the transfer functions in the
first step are the same as those in the last step for dipole
fields. This is because of the reciprocity theorem as is well-
known.
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Appendix A

A Direct Treatment of Cavity Fields
due to Teichmann and Wigner '

Teichmann and Wigner'" showed that a complete expansion of
cavity fields consists of not only the solenoidal fields origi-
nally given by Weyl, but also zero-frequency fields. They con-
sider a simply connected cavity with perfectly conducting walls,
which is excited through holes in these walls. To solve such a
problem, they found the set of normal vectors with holes short-
circuited. Firstly, the solenoidal part of normal vectors sat-
isfies

V xE = -s pH
m m m
R (A.1)
- -> .
7 x B = s eE_
in the cavity, and the boundary condition
4. xE_ =0 - (A.2)

n m

on the wall.

As usual, (A.l) can be reduced to the vector wave equation

2z 2> 2 _ __2
v E_ kmEm =0 , km = =S_Ue (A.3)
with boundary condition (A.2). After Em has been found, ﬁa can
be obtained from one of (A.l). However, with the presence of

holes the set of solenoidal normal modes no longer is complete.
To see this, we write the Maxwell's equations

V x B = -sufl Ve-E=0

V x H = scB ved=o0

It is easy to see that the right halves of these equations are
satisfied by the gradient of scalar functions. Therefore,

E, = Vo Hy = T : (A.5)
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These are the static fields, since the substitution of these
fields into the left halves of the Maxwell's equations requlres
the frequency to be zero.

It is further shown by Telghmann ang Wigner that the nor-
mal modes, Eg = 0, Hg = V¢ and Eg = V¢, = 0, are orthogonal
to the solenoidal field. Also, the actua fields are not or-
thogonal to

E, = 0 H, = V A6
B - ’ B - w ( . )
but are orthogonal to

B, = V¢ , H, =0 (3.7)

B

Let us follow their proof first, and then point out the
fallacy in the procedure. Here only the second fact is dis-
cussed. '

|
f

1
0l
=
=5

w
X
Ey
[oF
<
+
=

<N
X
=H
[o7}
<

~ 1 > - -

= =z (un X H) Eeda

_ 1 > > . >

-y (U.n X EB H)da o (A.8) 7

They claimed that (A.8) vanishes, since EB ‘[Gn. Similarly,

- - _ =1 - > x
JrHB.' HAV = gﬁlllun x E) HBda (A.9)

3n x E is zero on the wall, but not zero on the holes.

Therefore, they gave a complete set of normal modes as
follows:
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By
i
L]
)]
Q
b
Q

(A.10)

Here

Egn. (A.9) appears to be non-zero on the holes. However, on
analyzing it more closely, it turns out to be zero. To see
this, we study a special case of small circular hole. The
field on the hole has been calculated by Bethe. The tangential
electric field is

rx B
G X B o= © (A.11)
n 5 9 5 1/2
2m7(a” - %)
where EO is in the direction of normal to the hole. The static

magnetic field on the hole is constant

ﬁB = constant - (A.12)
Therefore,
B . fav =22l xB) . f.a
8 = su ) (4 gda
+ H

-1 1 o - Hg 2

= S—’J 2 2/ 175 r'! dr'dq} (Aol3)
m ( 2 _ r,z)

Here 5 is the unit vector of polar coordinate of the hole. It
is easy to see that the integration in ¢ from 0 to 27 vanishes.
- Let us also look closely at (A.8). Again from Bethe's quasi-
statig theory of small holes discussed in Section 2, we note
that Eg is not perpendicular to the surface at all. However,
if one carries out the integration, (A.8) is found to vanish.
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These regults are not surpélslgg, since in substituting E
by (1/se)V x H and H by (~1/su) one essentially eliminates
the static electric and magnetic fields. Therefore, only the
solenoidal field remains in the expansion. The correct expan-
sion coefficients should be

[z, - 5av - e

;;fcbg + U _da (A.14)

3
o
<
I
<
o
b
[ol)
<

o
(3]
Y
[o N
<
i
=
=
fusd
Qs
<
it
=
=
=
Qs
<

=./Lﬁ . anda (A.15)
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Appendix B
On the Expansion of Cavity Fields through

Scalar and Vector Potentials

As is well-known, Maxwell's equatlons with electrlc cur-
rents and charges

._).
V x B = —u:?% V.8 = p/e
(B.1)
3E , = |
?XE=E—%—+J V.8 =0
are solved by scalar and vector potentials. Let
B =17 x3
€ 3
(B.2)
> b R
Be = =V - 3¢
Tt can be shown® that ¢ and A satisfy wave equations
2
V2K—3——§=U3
st
(B.3)
2 .
2 .
vPo - 22 = —o/e
3t
if X ang ¢ are related by the Lorentz condition
VeE+ucoe=0 | (B.4)

Similarly, Maxwell's equation with magnetlc currents and
charges, which is obtalned by removing J and p/e in (B.1),
while inserting ~J* and p*/1u into the other halves of Maxwell s

equations, are solved by
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m
R 12 (B.5)
= - L -
Hm %¢ ot
Here A* and $* again satisfy
n2
v2R* - —§—2A* = eJ*
ot
2 32 o* (B.6)
vq)*____zqg*:..__. *
At "
*
¥ o« B* + ue iﬁ: =0

A superposition of (B.2) and (B.5) then forms a most gen-
eral solution of Maxwell's equations in terms of potentials.
To employ such a solution, it is important one determines the
boundary conditions for the potentials.  They are derived from
the usual boundary conditions for E and H. For a conducting
surface, such conditions are -

-> > >
u. X H = J
n S

n
-+ > (B.7)
u x B =0
n
- - 'Os
u e B o=
n €
where 35 and pg are suxface electric currents and charges.
Thus the source terms J and p can be considered as
> ->
J = Jsé(xn - X, )v 7 (B.8)

o}
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p=p0(x, - xno) ' (B.9)

Xn 18 the coordinate perpendicular to the conducting surface,
and xne gives the location of the conducting surface., By inte-
grating the second of (B.3) as follows: :

+6 | % +6

X ,
n n
o 2 2 - _ _1 o -
f [VT¢ + k qb]dxn = 8_[ psé(xn Xno)dxn
Xn -8 x =8 .
o Yo
we obtain
P
%% = _.éi , , (B.10)
xn '
4

Here the contribution from the lower limit of integration is
zero, since it 1s inside the conductor.

In a similar way A = Anan + A}|El| + Alﬁl can be shown to
satisfy the boundary conditions

I | 3A 32
e A “no_
o HIg s 5%, - 0 3% 0 (B.11)

n n

Ai"is the compgnent;df 2 parallel to 35, §l is that perpendic-
ular to Jg and un, An is that parallel to ug.

Furthermore, from the first halves of (B. ),

Go=d xE=LF 7 xR
i aAn‘ BB\ L R DA\ |
e R
A 9A -
2 -l -
. B = - =0
gn Bgil Bxi
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Since A is quite arbitrary, we can conveniently set

oA oA SA
0 _ L _y

Sx-l_ ! aXll ! - BX-L =0 (B'l3)

Finally, we study the last boundary condition:

> > > -

u, x E = -u_ x (Vo + sX) =0

Again we can set
vl¢ =0 (B.14)
and

3 xA=0 (B.15)

n

In summary, the boundary conditions for ¢ and 2 are

-0 -
3¢ _ s —
n
BA]i 3A .BA]!
= pJ 7 =0, =0
ax S 9x X
n | -l

VAn =0 , VAi = 0
(B.17)

A =0 A, =0

N ’ 1

Likewise, the boundary conditions for ¢* and A* can be derived
to give

. % o) * :
0¢* _ s e vl¢* =0 ’ ’(B.l8)

X !
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oA >8A SAF
_aj_]_ = gJ¥* ' __I_|_ = 0 ’ = 0
X s Ix , ax
- R %)
VA; =0 , VAI = 0 (B.19)

af| = 0 L AI =0

Here J% and pf are the surface magnetic currents and charges.
AT] is the component parallel to 3;.
AI is the component perpendicular to both 3; and 3.
A; is the component parallel to n.

They can be derived from

-> >
u x H =20
n

(e
Ty
]
O
0n *
~
=

n
(B.20)
-+ > >
u X B = =-J%*
n S
I < E=o0
n

These are the boundary conditions for the fictitious magnetic
conducting surface.

Finally, let us apply the results to study the cavity
fields. To begin with, we seek the normal modes of the cavity

field We let ¢p and A, be the eigenfunctions with eigenval-
3 P P
ues k& of
P
) 2
) + k =0 B.21)
q5}? P¢p (
and
R o+ k%X =0 (B.22)
p PP
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satisfying , : - o . -
u X A =0 (B.23)
. on the boundary, and
1 7 e ' 7
= -V ¢ A .
¢p siE D , (B.24)

everywhere inside the cavity. Then,

> > -
E_ = —(V + s_A
P ( ¢P P P) -
(B.25)
i = L v ox R
P H p
are the normal modes of the cavity. Also,
E =—-g‘.$ KX K* 7
q € g
(B.26)
- - Lo
H = —-(Vo* + s A¥*
q ( ¢q d q)

are the normal modes where ¢% and ji$a satisfy equations identical
to (B.21) ~ (B.24). Normal modes (B.25) and (B.26) form a com-
plete set for the cavity fields.,.

Finally, let us discuss the case when kp = 0. Obviously,
Vi =0 7 : (B.27)
and

> > :
E_ = -V ' H =0 B.28
D % ( )

However, (B.l8) is not the boundary condition for such a case,
since this would lead to ¢p = 0 inside the cavity. These
fields exist only in open cavities or multiple-region cavities.
Also, :
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Vigx =0 _ : (B.29)

B = V4% E_ =0 ' | (B.30)

Figure B. 1

Let us illustrate the use of these potentials by a closed
rectangular cavity shown in Fig. B-1. Since the rectangular
cavity has some symmetry, one can conveniently begin by study-
ing a particular solution to (B.22) with (B.23). Such a par-
ticular solution is :

> . - \ . -
Ap = A u, = sink x 51nkmy cosknz u, (B.31)
-which satisfies

a x X =0 - | (B.32)

or
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Az(o, v, 2y = 0 , Az(a, v, z) =0
, ) (B.33)
Aé(x, o, zy =0, Az(x, b, z) =0
Here and henceforth
_&m o _ mm _nmw
kg = = km =5 kn = = (B.34)
Thus,
F o=-L9xZ =-Lva xu
P U P U z
oA 3A
- -1 __23 1 _z3
= . % a + T uy (B.35)
. K—kn'k ink ink (B.36)
¢p = Sue D = sue sink x sin my sin nz .
E = -(V¢_ + s_A)
P P PP
30 3¢ 3¢
X S g (.37)
X X 3y Y Pz 9z z

S%milarly, one can generate Eq and ﬁq by a particularrsolution,
Agy which is : :

—>* — *—>- = . >
Aq Azuz coskzx coskmy 51nknz FZ (B.38)

Note that A} satisfies A} (x, y, o) = A¥(x, y, c) = 0. However,
a superposition of fields generated by (B.31) and (B.38) is not
complete. The symmetry of the geometry allows us to generate
more normal modes by assuming

> - > -
A=A + A B.39
P xx vy | ( )

_ *0n *0 '
q Axux + Ayuy ( (B.40)

o
I
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where Ay, Ay, A%, A§ can be obtained from (B.3l) and (B.38) by
rotating as” follows: ' ' .

X >y =+ 2z B “ ,,‘ | (B.41)

Note that a previous study'® did not include all these sym-
metric modes. ,
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Appendix C

On Poynting Theorem with Advanced
h and. Retarded Fields

In this appendix we study the removal of a limitation of
our derivation of the decay constant for an open cavity in Sec-
tion 3. In that section we noted that the derivation of the
decay constant is made through the use of the complex Poynting
theorem. Thus, we had to restrict s to be imaginary (or w to
be real). Here we shall derive a Poynting theorem with ad-
vanced and retarded fields. Application of such a theorem does
not require any restriction. The exposition of generalization
of the conventional Poynting theorem and reciprocity theorem
has been given by Baum.!® We limit our study to the special
physical problem treated.

The basic vector identity for deriving the Poynting theorem
in its various forms is

T . ZxB) =B  -TxE-%.7x3 | (€.1)

Let Ea, Ha and Er, Ar be the advanced and retarded fields sat-

isfying the source-free Maxwell's equations (A.l). We easily
obtain ,
Voo (F x5 =B - VxEY - EY .V x B
za r L
= - uE - L B (C.2)

A similar equation is obtained by switching advanced and re-
tarded fields to yield

>r >a >a dﬁr >Y dﬁa -
6'(E XH)=—UH‘EE-+€E°FE— <C3)

On averaging (C.2) and (C.3), one arrives at

. >
(ﬁa X ﬁr + Er X ﬁa) = —-%;ggtﬁr . B2 Uﬁr . Ha)(C.4)

<3
Noj

Equation (C.4) gives
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Lolafize . wm . m. way |
_, 5 dtﬁEE E + WH H™)dav (C.5)

Consider an infinite conducting plane with a small aper-
‘ture in the center as shown in Fig. C.l1l. Let the electromag-
netic wave enter the left ha;f space via the aperture and then
radiate to infinity. P and M are the equivalent electric and
magnetlc dipole moments of the small aperture. One can show,
by using the far field expressions due to B and M (3.25)
through (3.28) that the volume integration on the left hand
side of (C.5) diverges. However, if R is kept constant, the
left hand side of (C.5) vanishes; because the energy stored in
a fixed volume is constant. One can thus separate the right
hand side of (C.5) as follows:

/k:ole

+3 >1 >1 >
(E% x 2)

= Jf . Eﬁda _ : ' (C.5)
hole 8 ‘ ‘ ,

The last equallty follows from the fact that at a small hole
the advanced and retarded fields are equal. Eguation (C.5) can
replace the usual complex Poyntlng theorem, which involves com-
_ plex conjugation in the formula.
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Figure C.1
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