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Abstract

Tn this report, transmission lines in the form of two copldnar parallel
conducting strips with arbitrary widths are studied. This kind of coplanar
strip limes finds application in many aircraft antennas. The geometrical
impedance factor, which relates the characteristic impedance of the transmission
line to the intrinsic impedance of the medium surrounding the strips, is plotted
and tabulated. The field distributions of the strips are also plotted. When
compared to a two-cylinder transmission line with the radii of the cylinders
being equal to the strip widths and the eylinders being separated by the same
distance as the strips, the geometrical impedance factor of the strips is

larger than that of the cylinders by approximately a constant (%n 2)/m.




Table of Contents

Page
Abstract 1
Section
I Introduction 5
IT Mathematical Formulation and Results T
III Coplanar Strip Lines and Two-Cylinder Transmission Lines 30
v Other Configurations Related to that of the Present Problem 4o
v Conclusions L
Acknowledgement
References

.~



Figure

10

11

12

13

14

15
16

Illustrations

Cross-sectional view of the two coplanar strips of unequal
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(a) The z-plane containing the two coplanar strips of unequal
widths and, (b) The z,-plane containing the transformed
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Figure

17 The geometrical impedance factor of a strip transmission 3k
line of equal strip width and of a two-cylinder line with
the cylinder radii equal to one quarter of the strip width.
The percentage difference of the two factors is shown as

the dashed line.

18 A comparison of the strip transmission line with a two- 36
cylinder transmission line.

19 The geometrical impedance factor of a strip transmission 38
line of equal strip width and of a two-cylinder transmission
line with radii equal to one half of the strip width. The
percentage deviation of the difference of the two factors
from (n 2)/% is shown as the dashed line.

20 The pervcentage deviation of the difference of the two 35
ceometrical impedance factors (of the strip line and the
two-cylinder line with radii being equal to one half of the
strip widths) from (&n 2)/m.

21 (a) The coplanar strips configuration and its related L3
configuration such as (b) one section of an infinite stack
of parallel strips, (¢} a strip between two infinite ground
planes and (d) the conventional strip line.

22 The biceonical transmission line and its stereographic ko
projection - the coplanar strips.

23 Problems related to the coplanar strips by inversion 43
(a) a strip inside a eylinder (b) a cylinder inside a slit
(c) a strip inside a slot.

Table I The geometrical impedance factor for a/d £ 0.1. 16
Table II The geometrical impedance factor for 0.1 < a/d < 1. 17
Table III The geometrical impedance factor for 1 < a/d - 10. 18
Table IV The geometrical impedance for a/d > 10. 19
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I. Introduction

In the course of analyzing deliberate aircraft antennas, transmission
lines in the form of two coplanar parallel conducting strips with unequal
widths have been encountered. Such transmission lines are used in the glide
slope track antenna {1} and the VHF communication antenna no.l [11], both
being on an AABNCP ; and also in the HF antenna on a B-1 [2]. Therefore,
it is necessary to study this kind of transmission lines to obtain the
characteristic impedances that are essential in the antenna analyses. In
this report, two coplanar parallel strip conductors of arbitrary widths are
studied, and the geometrical impedance factors and the field distributions
of various configurations of the structure are presented in graphical and/or
tabular forp,

The configuration under study is shown in Fig.l, where the widths of
the strips are a and b, and they are separated by a distance d. Since,
in practice the thickness of the strips are small compared with the widths,
we assume & zero thickness in our analysis. This greatly simplifies the
analysis without sacrificing too much accuracy. Related problems have been
studied by Baum [3], Carlisle [4] and Hayt [5]; the latter investigated the
problem of three symmetrical staggered plates of finite widths (i.e., the
conventional strip line) using conformal mapping techniques. In this report,
the problem is solved by using conformal mappings different from those of
Hayt and simpler expressions are obtainéd. Because of the popular usage of
two-cylinder transmissions lines, we also make a comparison between the co-
planar strips with the parallel cvlinders.

In section II, the conformal mapping procedures are detailed and the
expressions for the geometrical impedance factor and for the field distribu-
tions are presented. Numerical results of these two quantities are given in
graphical and tabular forms for a few geometric configuraticns. The comparison
between the coplanar strip line and the two-cylinder transmission line is
presented in section III. Finally in section IV, we outline some possible

extensions of the results in this report to other geometries.



Fig.1l. Cross-sectional view of the two coplanar
strips of unequal widths.
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II. Mathematical Formulation and Results

It is known that by using a Jacobian elliptic function transformation [6],
two coplanar strips of equal width can be conformally mapped into a rectangle
in the transformed plane from which the potential distribution is readily found.
The first step in our analysis is to map the two strips of arbitrary widths into
two strips of equal width, using a bilinear traﬁsformation.

The two coplanar strips are shown in the z-plane in Fig. 2a. One strip
isat y=0 from x=-a to x =0 and the other is at y =0 from x = d
to x=d+b. By symumetry of this structure, the remainders of the x-axis
apart form the two strips are field lines, on which d¢/dy = 0 with ¢ being
the potential.

The bilinear trsnsformation is of the following form:

z+cO
z,(z) = ——— L
1 clz+c2
where
z = x + iy, (2)
zq = %y + iyl. (3)

The three values ¢y ¢ and ¢, are determined by selecting the locations of

three transformed points in the zl—plane. In Fig. 2b, we choose point D in

the z-plane to be mapped into point Dl in the zl*plane such that

z] >z [ = -1.
D 1 Dl
Similarly,
z[ >z l =1
F 1 Fl
e l | l I
z > z and Z > 2z
B 1 Bl G 1 Gl
such that
z1lg =-zl3 =h (4)
1 Gl 1 Bl
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Fig.2. (a) The z-plane containing the two coplanar strips of unequal
widths and,

(b) The zl~plane containing the transformed coplanar strips of
equal width.
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where h is a positive real number. The transformation now becomes

z+co
Zl(z) - (l+2co/d)z—co (3
where
e = {-ab+d) tlab(a+ Db+ D] (a-5  for a#bd (6a)
- a=b>b (6b)

-d/2 for

The infinity points A and H in the z-plane are now transformed into point

Al, where

_ -1
zl!Al = (1 + ZCO/d) (7)

and, in the symmetrical case a = b,

The mapping of Fig. 2b into a rectangle can be achieved by means of a
Schwarz~Christoffel transformation. It can be shown that the mapping is of the
following form:

2

w(z;) = P f [ =35 - m®] ™% + g (8)

0

where

m = 1/h2 = 1/[21{—a)]2 (9)

and P and Q are constants to be determined. The integral in (8) is an

inverse Jacobian elliptic function [7] and (8) can be re-written as
-1
w(zl) =P sn (zllm) + Q (10)

We first chocse the plus sign (in the sign of ambiguity) in (6a). It

can be readily shown that this selection results in a value of m, as defined
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in (9), such that
0Sms1 ‘ (1)

This is the range of m values within which values of the elliptic functions

are available [7]. We then select the transformed lccation of Al (i.e. the
infinity of the z-planme) such that the potential there is zero. Physically, this
means that we define the potential at infinity of the original problem to be
zero., This automatically imposes the condition that the total charges on the

two strips are equal but opposite. This condition ensures the probklem to be

a well-defined one. We select the following transformation conditions (see Fig.

3)

z | +wl, =-u (12a)
1 D, D, o
zllF > WIF =’2 - U (12b)
1 2
zllcl > w[G =2 -u + iv (12¢)
2
,zl[Al+w]A2=0+ivl' (12d)

These conditions are chosen so that the equipotential lines are at u = constant
inside the rectangle. The resulting mapping is in Fig. 3b. The first three

conditions in (12) yield the following values:

P = 1/K(m),
v, = K(m;)/K(m) (13)
and
Q=1-u (14)

where K(m) is the complete elliptic function of the first kind and

=] 0w
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Fig.3. (a) The z,-plane containing two strips of equal width and
(b) The w-=plane resulting from the Schwarz-Christoffel transfcrmation.
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m, =1 -m

1

The value u and hence Q depends on the condition (12d). Equations (6)

and (7) show that =z is a real number less than -1, Hence the value

|
|
1 Ay

sn—l(zllA m) in (10) is complex and is given by
1
sn—1 S — m} = sn_l([l + 2c¢ /d]m—%[m) + iK{(m,)
l+2co/d o 1
Thus
~1 -
Q =sn ([I+ Zco/d]m 2Im)/K(m)
-1 - -1l
w =1+ sn QL+ 2e /dlm 2]m)/x(m) (15)
and
V1% Y%

The transformation is thus
- - -1
w(zl) = {sn l(zllm) - sn 1([1 + 2co/d]m ﬁ]m)]/&(m) (16)

Transformation (16) maps the upper half of the z-plane into the interior
of the rectangle in the w-plane. The transformation corresponds to the
condition of two strips being biased at a potential difference of 2 units:
one at potential -u and the other at 2 - U with respect to infinicy,

The geometrical impedance factor fg [2] is defined such that the characteristic

impedance Zc of the transmission line is given by
Zz =f 2 (17)

where Z 1s the intrinsic impedance of the medium., The capacitance C of the

transmission line is related to fg by

C = e/fg (18)

«lDm




where ¢ 1s the dielectric constant of the medium. Thus the geometrical
impedance factor can be found by evaluating the capacitance of the configuration;

for this problem, it is given, in the w-plane, by
£ =L au/av
g 2

where Au is the potential difference between the two strips and Av 1s the
change in the field line function on a path encircling one strip. The factor
1/2 accounts for the fact that only half of the zl—plane maps into the interior

of the rectangular region in the w-plane. Thus
fg = K(m)/K(m;) (19)

For the two strips biased at a potential difference of 2V, the relevant

equations are summarized as follows:

’ Z+Co
zl(z) B (1+2c /d)z-c (20)
o o
SN = {—a(b + d) + [ab(a + d) (b + d)]%l/(a - b) for a#b (21a)
= -d/2 for a=> (21b)
w(zy) = V{sn—l(zllm) - sn_l([l + 2co/d] m—%]mi]/%(m) (22)
fg = K(m)/K(m ) (23)
where
m = [zl(-a):}-2 (24)
and
m = l-m (25)
‘ The strip with width a i1is at a potential



-1 -
Va =~V sn ([1+ 2c0/d]m Im)/&(m) -V (26)

and the strip with width b 1s at a potential

. v, =~V sn’l([l + 2co/d]m“1”5!m>/z<(m) +V (27)
In Fig. 4, fg is plotted versus a/d with b/d as a parameter for
two ranges of a/d (0.1 1 and 1 - 10). The case a =b 1is also presented
(the dashed curve). For small values of a/d, fg values are large, implying
small capacitances. For large values of a/d, fg values quickly approach the
limiting values for a/d + =, Because of the symmetry in a and b, the
curve b/d =+ « can be used to specify these limiting values of fg: €.8.,
the fg value at a/d =5 and b/d + « indicates that the limiting value of
fg for b/d =5 is 0.351.
The fg values are alsco tabulated in Table I to Table IV for four ranges
of a/d (0.01 - 0.1, 0.1 -1, 1~ 10, and 10 -+ 100). As expected, when both

strips are infinitely wide, fg + 0, i.e., there is an infinite capacitance

between the tfwo strips. ‘
The field and potential distributions of the two coplanar strips can be

obtained by evaluating (20} - (27). As mentioned earlier, the two strips have

equal but opposite charges. However, the potentials of the two strips are

given by (26) and (27), and they are not equal in magnitude with respect to

infinity except in the equal width case. The potential difference is given by

In Fig. 5 to Fig. 14, we present the plots of the field and potential distri-
butions for ten different geometries., 1In these plots, the solid curves (——)
represent equi-potential lines and these curves are plotted in potential
increments of 0.1V, The dashed curves (— — —~) represent the field lines,

and the dash-dotted curves (—--— .-} represent the zero potential lines. These
ten plots cover a wide range of strip widths and strip separation and provide

an understanding of the field distributions in this kind of structure.
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Table I, The geometrical impedance factor for a/d = 0.1

b/d i 0.00001 0.2 0.5 1 2 5 10 ®
a/d

0.00001} 4.10595 2.55876 2.44844 2.38390 2.33812 2.,30260 2.28875 2.27358
0.010 3.00812 1.46082 1.35037 1.28571 1.23979 1.20414 1.19023 1.17499
0.015 2.94438 1.39701 1.28649 1.22177 1.17578 1.14007 1.12613 1.11086.
0.020 2.89937 1.35194 1.24136 1.17657 1.13052 1.09474 1.08078 1.06546
0.025 2.86463 1.31714 1.20650 1.14164 1.09553 1.05969 1.04569 1.03034
0.030 2.83639 1.28884 1.17813 1.11321 1.06703 1.03113 1.01710 1.00172
0.035 2.81263 1,26501 1.15424 1.08926 1,04302 1.00705 0.99299 0.977537
0.040 2.79214 1.24446 1,13363 1.06859 1,02228 0.98625 0.97216 0.95671
0.045 2,77416 1,22642 1,11553 1.05042 1.00405 0.96795 0.95384 0.93835

0.050 2.75815 1.21035 1.09940 1.03422 0,98779 0.95163 0.93749 0.92196

0.055 2.74374 1.19588 1.08486 1.01963 0.97314 0.93691 0.92274 0.90717
0.060 2.73064 1.18272 1.07165 1.00635 0.95980 0.92351 0.90930 0.89371
0.065 2.71865 1.17067 1.05954 0.99418 0.94756 0.91121 0.89698 0.88135
0.070 2.70760 1.15956 1.04837 0.98295 0.93627 0.89986 0,88560 0.86993
0.075 2.69736 1,14927 1.03801 0.97254 0.92580 0.83932 0.87503 0,85932
0.080 2.68783 1.,13968 1.02837 0.96283 0.91603 0.87948 0.86516 0.84943
0.085 2,67891 1.13071 1.01934 0.95374 0.90688 0.87027 0.85592 0.84015
0.090 2.67055 1.12228 1.01086 0.94520 0.89828 0.86161 0.84723 0.83143
0.095 2.66267 1.11435 1.00287 0.93715 0.89017 0.85344 0.83903 0.82319

0.100 2.65523 1.10686 0.99532 0.92954 0.88250 0.84571 0.83127 0.81540

=] 6



Table II. The geometrical impedance factor for 0.1 = a/d 51

b/d | 0.00001 0.2 0.5 1 2 5 10 ®
a/d

0.10 2,65523 1.10686 0.99532 0.92954 0.88250 0.84571 0.83127 0.81540

0.15 2.59777 1.04887 0.93678 0.87044 0.82281 0.78541 6.77070 0.75448
0.20 2;55876 1.00937 0.89677 0.82989 0.78171 0.74373 0.72874 0,71218
0.25 2.52974 0.97990 0.86682 0,79944 0.,75072 0.71218 0,69693 0,68004
0.30 2.50697 0.95671 0.84318 0.77532 0.72610 0.68701 0.67150 0.65429
0.35 2.48844 0.93779 0.82384 0.75554 0.70582 0.66621 0.65044 0.63291
0.40 2.47297 0.92196 0.80762 0.73889 0.68871 0,.64859 0.63257 0.61473

0.45 2,45981 0.90846 0.79375 0.72461 0.67398 0,63337 0.61711 0.59896
0.50 2.44844 0,89677 0.78171 0,71218 0.66113 0.62004 0,60354 0,58509

0.55 2.43849 0,88652 0.77112 0,70123 0.64977 0.f0321 0,59148 0.57273

~

0.60 2.42969 0.87744 0.76174 0.69149 0,63964 0.59763 0.58067 0.56163

[y

0.65 2.42185 0.86934 0.75333 0.68276 0.63052 0.55807 0.57089 0.55156

0.70 2.41481 0.86204 0.74576 0.67486 0.62226 0.57938 0.56199 0.54237

0.75 2.40844 0.85544 0.73889 0.66769 0.61473 0.57144 0,55383 0.53393
0.80 2.40265 0.84943 0.73262 0.66113 0.60783 0.56414 0.54632 0.52614
0.85 2.39736 0.84393 0.72688 0.65511 0.,60148 0,55739 0.53937 0.51891

0.90 2.39251 0.83887 0.72159 0.64955 0.59561 0.55114 0.53291 0,51219
0.95 2.38804 0.83421 0,71671 0.64441 0,59016 0.54532 0.52689 0.50590

1.00 2.38390 0.82989 0,71218 0.63%964 0.58509 0.53988 0,52126 0.50001




Table III. The geometrical impedance factor for 1 = a/d = 10

b/d| 0.00001 0.2 0.5 1 2 5 10 ©
a/d
1.0 2.38390 0.82989 0.71218 0.63964 0.58509 0.53988 0.52126 0.50001
1.5 2.35489 0.79944 0.68004 0.60546 0.54840 0.50001 0.47962 0.45588
2,0 2.33812 0.78171 0.66113 0.58509 0.52614 0.47517 0.45327 0.42730

2.5 2.32714 0.77003 0.64859 0.57144 0.51101 0.45793 0.43472 0.40669

3.0 2.31937 0.76174 0.63964 0.56163 0.50001 0.44515 0.42078 0.39085

3.5 2.31358 0.,75554 0.63291 0.55421 0.49161 0.43524 0.40984 0.37815
4.0 Z2.30910 0.75072 0.62768 0.54840 0.48499 0.42730 0,40098 0.36763
4.5 2.30552 0.74687 0.62348 0.54373 0.47962 0.42078 0.39364 0.35872

5.0 2.30260 0.74373 0.62004 0.53988 0.47517 0.41533 0.38743 0.35104

5.5 2.30017 0.74111 0.61716 0.53666 0.47143 0.,41069 0.38210 0.34431

6.0 2.2%9812 0.73889 0.61473 0.53393 0.46824 0.40669 0.37747 0.33835
6.5 2,29636 0.73698 0.61264 0.53157 0.46548 0.40321 0.37341 0.33302
7.0 2.29484 0.73534 0.61082 0.52953 0.46308 0.40015 0.36981 0.32820
7.5 2,29350 0.73389 0.60923 0.52773 0.46096 0.39743 0.36660 0,32382

8.0 2.29233 0.73262 0.60783 0.52614 0.45907 0.39500 0.36371 0.31982

8.5 2.29129 0.73149 0.60658 0.52472 0.45739 0.39282 0.36110 0.31613

%.0 2.29035 0.73048 0.60546 0.52345 0.45588 0.39085 0.35872 0.31272

9.5 2.28951 0.72956 0©.60445 0.52230 0.45452 0.38906 0.35655 0.30955

10.0 2.28875 0.72874 0.60354 0.52126 0.45327 0.38743 0.35456 0.30660
~18-



Table IV. The geometrical impedance for a/d ¢ 10
b/d| 0.00001 0.2 0.5 1 2 5 10 ©

a/d

10 2.28875 0.72874 0.60354 0.52126 0.45327 0.38743 0.35;56 0.30660
15 2.28386 0.72341 0.59763 0.51451 0.44515 0.37653 0.34102 0.28492
20 2,28135 0.72068 0.59459 0,51101 0.44090 0.37067 0.33351 0.27116
25 2,27983 0.71901 0.59273 0.50888 0.43828 0.36701 0.32871 0.26131
30 2.27880 0.71789 0.59148 0.50743 0.43651 0.36450 0.32538 0.25375
35 2.27807 0.71709 0.59059 0.50640 0.43524 0.36268 0.32292 0.24768
40 2.27751 0.71649 0.58991 0.50561 0.43427 0.36129 0.32104 0.24264
45 2.27708 0.71601 0.58938 0.50500 0.43351 0.36020 0.31954 0.23835
50 2.27674 0,71563 0.58896 0.50451 0.43290 0.35931 0.31833 0.23464
55 2.27645 0.71532 0,38601 0.50410 G.43240 0.35859 0.31733 0.23138
60 2,27621 0.71206 0.58832 0.50377 0.43198 0.35798 0.31648 0,22847
65 2.27601 0.71484 0.58807 0.50348 0.43163 0.35746 0.31576 0.22586
70 2.27584 0.71466 0.58786 0.50324 0.43132 0.35701 0.31513 0.22350
75 2,27569 0.71449 0.58768 0.50302 0.43106 0.35662 0.31459 0,22134
80 2.27556 0,71435 0.58752 0.50284 0.43083 0.35628 0.31411 0.21936
85 2.27545 0.71422 0.58737 0.50267 0.43062 0.35598 0.31369 0.21753
90 2.27534 0.71411 0.58725 0.50252 0.43044 0.35571 0.31331 0,21583
95 2.27525 0.,71401 0.58713 0.50239 0.43028 0.35547 0,31297 0.21425
100 2.27517 0.71392 0.58703 0.50227 0.43013 0.35525 0,31266 0.21277
e 2.27358 0.71218 0.58509 0.50001 0.42730 0.35104 0.30660 0
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Fig.9. TField distribution of the two coplanar strips. a/d = 2, b/d = 1.
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Fig.10. Field distribution of the two coplanar strips.

a/d = 2,

b/d = 2.
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Fig.11l. Field distribution of the two coplanar strips.
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Fig.12. Field distribution of the two coplanar strips. a/d = 10, b/d = 1.
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ITI. Coplanar Strip Lines and Two-Cylinder Transmission Lines-

The geometrical impedance factor of the coplanar strip transmission line
is compared in thils section with that of the transmission line of two parallel
circular cylinders.

The configuration of the two-cylinder line is shown in Fig. 15. The
cylinders, having radii r, and Ty have their centers separated by a distance

s. The geometrical impedance factor fé is given by
v o -1 2 _ 2 2
fg (1/2w)cosh [ (s r] - r,)/2rr,] (28)

The first case to investigate is that the two cylinder radii are one
quarter of the strip widths, and that both transmission lines have their centers

equally separated, i.c.,

r, = (1/4)a ' (29a)
r, = (1/4)b (29b)

and
s =d+ %¥(a + b) (29¢)

This configuration is shown in Fig. 16. The reason that conditioms (29) are
imposed is prompted by previous knowledge that a strip antenna can be represented
by a circular cylindrical antenna with an equivalent radius being equal to one
quarter cf the strip width, However, computed results show that the agreement
between (23) and (28) is good only if the strip widths are small compared to

the separation. Im fact, in the limit of vanishingly small strip widths, the

two geometrical impedance factors are exactly equal. This can be shown
analytically by taking the asymptotic expressions of (23) and (28). For the
strip case, we first find the values of m and my for a/d -~ 0 and b/d » 0,

From (24) and (28), we have

lim o 2 ’
afd 0 w=1{[1- 2vab/d]~ =1 (30)
b/d -+ 0 ‘



»n

Fig.15. The cross-sectional view of a two-cylinder
transmission line.
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Fig.16. A comparison of the strip transmission line with
a two-cylinder transmission line.
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and

lim
a/d +0 m = 4/ab/d = 0 (31)
b/d + 0

The asymptotic values [7] of the two complete elliptic integrals are

lim K(m) = ln(4/ml)
m>0

and

lim K(ml) = 7/2
w0

Thus, the geometrical impedance factor for the wvanishingly small strips is
lim , , 9
af/d >0 £ = (1/m)[22n 2 - % 2n(ab/d7)] (32)
b/d » 0 B

For the cylinder case, using the identity

cosh-lx = ¢n(x + /xz - 1)

and
. 2 2 2
lim s -r,-r, 5
a/d =~ 0 T = 8d7/ab
b/d > 0 172
we obtain
lim 2
a/d >0 f£'=1/7{22n 2~ % 2n(ab/d™)] (33)
b/d >0 &

EQuations (32) and (33) show that when the strip widths are vanishingly small
compared to the separation, then for equal characteristic impedances, the
equivalent radii of the two-cylinder transmission line are equal to one quarter
of the strip widths.

In Fig. 17, we present a plot of the two geometrical impedance factors
versus a/d for the condition a = b. In the same diagram, we also present

the percentage difference Afgﬂfg of the two factors, where

=33
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Fig.17.

The geometrical impedance factor of a strip transmission line

of equal strip width and of a two-cylinder line with the cylinder
radii equal to one quarter of the strip width. The percentage
difference of the two factors is shown as the dashed line.
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Af /£ = (£' - £ )/f x100%
g 8 ¢ g 8> 8

We observe that for a 5% difference in the two factors, a/d is about 1.6.
For large values of a/d, the two-cylinder configuration with conditions (29)

is not a good representation of the strips.

The second case we investigate is that the cylinders have diameters

equal to the strip widths and are separated by the same distance, i.e.,

r, = (1/2)a (34a)
r, = (1/2)b (34b)

and
s=d+ % (a2 +b) (34c)

This configuration is shown in Fig. 18. Computed results show that the two
geometrical factors differ approximately by a constant value over a wide range
of a/d and b/d values. We can calculate this constant value by finding
the difference of the two factors at small values of a/d and b/d. With

conditions (34), we have

. 2 2 2
1im s --rl—r2 2
a/d ~ 0 T T = 2d"/ab
b/d - 0 172

The geometrical impedance factor is thus given by

lim
a/d >0 f£'= (/M 2-% 2n(ab/d?)] (35)
b/d + 0

The difference D0 of the two geometrical impedance factors is
lim

D, =a/d >0 (f - ) =@/r)ln 2 = 0.220636 (36)
b/d >0 & g '
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Fig.18. A compavrison of the strip transmission line with
a two-cylinder transmissicn line.
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In Fig. 19, we present a plot of fg and fé versus a/d for the case a = b.
We also present a plot of the percentage difference of DO and fg - fé, as

defined by
= — - ! 3 y
8 = [Do (fg fg)] /DOXIOOA (37)

We observe that Gf is small, i.e.,, the two factors, fg and fé differ
approximately by the value Do given by (36). In Fig. 20, we present a graph
of Gf versus a/d with b/d as a parameter. For a/d < 8, Sf is within
about 5% even when b/d + », We thus conclude that for one strip being less
than eight times the separation between the inner edges of the strips, the
geometrical impedance factor of the two coplanar strip line is approximately
equal co that of a two-cylinder line plus a constant value cof 0.22064. The ~
two-cylinder line satisfies conditions (34),i.e. the cylinder diameters equal
to the strip widths, and the cylinders have the same separation as the strips.

We summarize this in the following expression

+ 0.22064 (38)

= |
fg‘strips fg'2-—cylinder

This above formula is useful because the geometrical impedance factor of the

two-cylinder transmission line can be easily calculated or found in references.
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Fig.19. The geometrical impedance factor of astrip transmission line of ¢
equal strip width and of a two-cylinder transmission line with
radii equal to one half of the strip width. The percentage
deviation of the difference of the two factors from (&n 2)/m 1is
shown as tnhe dashed line. 0
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IV. Other Configurations Related to That of the Present Problem .

There are many useful configurations that are related to the two coplanar
strips of arbitrary widths by simple transformations. We briefly describe these
problems in this section.

A logarithmic transformation of the two coplanar strips shown in Fig. 2la
results in an infinite stack of parallel strips. One section of the stack is
shown in Fig. 21b, where the solid lines denote conductors and the dashed lines
denote field lines. In the case that V1 = —VZ =V and the two strips are of
the same width, one can introduce infinite conducting planes between the center
strip and the outer strips. This is shown in Fig. 2lc where the dotted lines
denote the images. Hayt [ 5] shcwed that the coplanar strips problem is also
related to the conventiounal strip line of Fig. 21d. It has to be noticed that
Fig. 21b and rig. 214 deal with different problems; the latter is for an
ordinary strip line. |

As pointed out by Baum [10], the coplanar strips case is useful in the
study of planar bicone transmission lines (or antennas) —--- the use of stereo-

graphic projection transforms the planar bicone into two coplanar strips. When

the two cones have different cone angles, the sterecgraphic projection results
in two coplanar strips of unequal widths. This is shown in Fig. 22.

The use of inversion [ 8] indicates that the following problems are
related to the two coplanar strips case: a strip inside a cylinder (Fig. 23a),

a cylinder inside a slit (Tig. 23b), and a strip inside a slit (Fig. 23c).

0w
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Fig.21. (a) The coplanar strips configuration and its related
configuration such as
(b) one section of an infinite stack of parallel strips,
(¢) a strip between two infinite ground planes and
(d) the conventional strip line.
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Fig.22. The biconical transmission line and its stereographic
projection - the coplanar strips.
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(k)

0 V o}

(&)

Fig.23,

Problems related to the coplanar strips by inversion
(a) a strip ineide a cylinder

(b) a cylinder inside a slit
(c) a strip inside a slot.
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V. Conclusions

The TEM properties of two unequal widths coplanar strips are obtained by
means of successive conformal mapping method. The geometrical impedance factor
of such a structure is tabulated, and the field distributions for various
cases are presented. The coplanar strips are compared to two parallel circular
cylinders. It is found that if the separations between the centers for the two
cases are the same and the cylinders have diameters equal to the strip widths,
the two geometrical impedance factors differ approximately by a coanstant
(1/%)1n 2. This relationship is true over a wide range of strip width, and is
useful because the two-cylinder formula is more readily available in literature,
and is also easier to calculate.

We also point out the various possible extensions of the present work in

section 1V,
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