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ABSTRACT

The problem of electromagnetic radiation and scattering
from perfectly conducting bodies of revolution of arbitrary
shape is considered. The mathematical formulation is an
integro-differential equation, obtained from the potential
integrals plus boundary conditions at the body. A solution
is effected by the method of moments, and the results are
expressed in terms of generalized network parameters. A com-
puter program for computing the generalized impedance matrix
of an arbitrary body of revolution is included.

The expansion functions chosen for the moment solutions
are harmonic in @ (azimuth angle) and subsectional in t (con-
tour length variable). Because of rotational symmetry, the
solution becomes a Fourier series in p, each term of which is
uncoupled to every other term. Hence, the problem reduces to
a set of independent modes, one for each harmonic term.

ITlustrative computations are given for radiation from
apertures and plane-wave scattering from bodies of revolution.
The impedance elements, currents, radiation patterns, and
scattering patterns for a conducting sphere are computed both
from the general program and from the classical eigenfunction




ABSTRACT (Con't)

solution. The agreement obtained serves to check the general
program. Similar computations for a cone-sphere illustrate

the application of the general program to problems not solvable
by classical methods.
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I. INTRODUCTION

Determination of the behavior of a conducting body in a known impressed
field is a fundamental problem of applied electromagnetic theory. Specific
examples are scattering by conducting objects and radiation from conducting
antennas. A general procedure for treating such problems is given by the

[1,2]

method of moments. This is a procedure for reducing the functional

problem to a finite dimensional matrix problem. In electromagnetic theory,
the resultant matrices can be identified as generalized network parameters.[5]
Once the generalized impedance matrix of a body is known, the behavior of
that body for arbitrary excitation is easily calculated by matrix manipula-
tions. Furthermore, the effect of impedance loading can be accounted for by
constraints on the matrix equations.[e’u’s]

The problem is formulated in the conventional way as follows. Let Ei
denote the known impressed field and ES the scattered field due to currents
on the body. Then the total field E is the sum of the impressed and
scattered fields, that is,

E=%F +L (1)

The scattered field can be expressed in terms of a vector potential A and

scalar potential ¢ as

E° = -juA - @ (2)
where
- jkR
e
A =4 §§§; L g ds (3)
1 ° e~ JER
®=z§ig> © TR % M)
S



Here S is the surface of the conductor, R is the distance from a source point
to the field point, J is the surface current on S, and o is the surface

charge on S. The current and charge are related by the equation of continuity

The boundary condition requires that the tangential component of total E

vanish on S. Hence,

g oo oS (6)

where the subscript tan denotes tangential component on S. The problem can

now be stated succinctly as

i
L(2) = Egy, (7)
where L is the integro-differential operator

L(Z) = [jwa + w) (8)

~"“tan

A solution of (7) gives the current Jd on 8. Usually we are interested in
some functional of J, which can be computed once J is known.

This report considers the special case of bodies which are rotationally
symmetric about an axis. Because of this symmetry a Fourier series expansion
in the angle of rotational symmetry reduces the problem to a system of inde-
pendent modes. This is important from the standpoint of computation, because
it is faster to invert several small matrices instead of one large one. The
particular case of scattering by conducting bodies of revolution has been

6]

treated previously by Andreasen.[ His solution is éonceptually similar to

ours, but differs in detail.



II. METHOD OF SOLUTION

To effect a solution of (7) we use the method of moments, which is

(1,2]

closely related to Galerkin's method. This procedure approximates (7)

by a matrix equation, which can then be inverted by known algorithms. The

(3] The

matrix so obtained is a generalized impedance matrix for the body.
excitation of the body is represented by a voltage matrix, and the resultant

current on the body is represented by a current matrix.

For the method of moments, let the inner product be defined as

<E:sl>= # W-Jds (9)
S

where W and J are tangential vectors on S. A set of expansion functions

(ij] is next defined, and the current on S approximated by
= I. d. 10
) Ea‘la (10)
J
where Ij are constants to be determined. Equation (10) is substituted into

(7), which, because of the lineafity of L, reduces to
E I, LJ. = E: (11)
J J ~tan
J
A set of testing functions {ﬂi] is defined, and the inner product of (11)

with each ﬂi is taken. The result is

j..-.



"\

N

i=1,2,3,... . The subscript tan has been dropped from El because the inner
product involves only tangential components. We now define the generalized

network matrices

[z] = [< Wy, L >] (13)

vl = [<u, E' >] (14)

(1] = [1,] (15)
and rewrite the set (12) as

(z] (1] = (V] (16)

(2] is the generalized impedance matrix, and [Y] = [z]7% is the generalized

admittance matrix. The inverse of (16)
(1] = [¥] [v] (17)

gives the coefficients Ij of the current expansion (10), and hence is an
approximate solution to the problem.

The impedance elements of (13) are explicitly

- &b ey as (18)
S

Z, .
1J

where we have used (8) and (9). The subscript j denotes that Aj and.dbj
are the potentials due to ij and cj. If the two-dimensional divergence
theorem is applied to the vector @Hi on a closed surface, the following

identity results:

. ds (19)

I
g
=
X

=



If W is thought of as a current, the charge associated with it is
0. == v i (20)

Now (18) can be written as

Zy5 =3 @ (4, * &5+ 05 @) ds (21)

S
Equation (21) is more convenient for computation than (18) because the
gradient operation on ¢ has been eliminated.
So far the discussion has been for an arbitrary conducting body.

Henceforth we restrict consideration to surfaces S generated by revolving
a plane curve about the z axis. The surface and coordinate system are shown
in Figure 1. Here p,¢,z are the usual cylindrical coordinate variables, and
t is a length variable along the curve generating S. We desire the expan-
sion (10) to be general enough to approximate an arbitrary J on S. Hence,
independent sets of functions are defined as

Q;j =u, fj(t) ejm¢
(22)

’lﬁj =y £5(¢) I

where 1, and g¢ are unit vectors t-directed and ¢-directed, respectively.
We have chosen the fj in both sets to be the same, but it is not necessary

to do so. The current expansion (10) now becomes
_ E LS R
J = (Imj Ty * Ty ) (23)
m, J

For testing functions, choose



Figure 1. Body of revolution and coordinate system.



Hﬁi g, *;(¢) &9
(2k)

I!

¢
s

uy £ (¢) & Ing

which differ from (22) only in the sign of the exponent. The En are orthogonal
to g, m # n, over 0 to 2x on ¢, and also to LI (the field from J ). Hence,
all impedance elements are zero except those for which m = n, and each mode
can be treated separately. This is the major simplification introduced by
the rotational symmetry of the body.

The use of (22) and (24) to evaluate the elements of (21) results in

the partitioned matrix equation

tt t@q ] t t
(2% 2P| [ [oh
- (25)
t
CANNCD [I?;]d _[v?l]‘
Here the elements of the Z submatrices are
tt t
(Zn )ij = W5 Linj>
(Z§¢)ij = <wti’ L~gj>
(26)

T
(th)ij = <Eii’ L£$j>
(Zg¢)ij = <Hgi’ Ligj>

the elements of the V submatrices are

10



t t i
(Vy); = U, E o
27

and the elements of the I submatrices are the coefficients in (23). Note
that, for N terms in the Fourier series on @, there are N sets of matrix
equations (25).

The solution to (25) can also be written in partitioned form as

(v | 1 ] [t
_ (28)
(V) W || o

The Y submatrices must in general be obtained after inversion of the entire
Z matrix, and are not the inverses of corresponding Z submatrices. However,

the -n mode matrices are related to the +n mode matrices by

o] - [t

(29)

ISRl N SO N

Hence, only the n > 0 mode matrices need be inverted. The proof of (29)
follows from the fact that the Z matrices satisfy the same equation (see
next section), and this symmetry survives matrix inversion.
Finally, for an explicit solution we must choose the fi(t), the t expan-
sion functions. It is known that subsectional expansions, using pulse functions

or triangle functions, give well-conditioned matrices.[e] The current must be

11



differentiated to obtain the charge; hence it is preferable to use triangle
functions. Furthermore, a triangle expansion gives a piecewise-linear
approximation which converges about twice as fast as a step approximation.[l’e]

Finally, if pd is expanded in triangles instead of J, the divergence formula

and the treatment of the end points of t become simpler. Hence, we chose

£.(t) = = T(¢-t,) . (30)

© I

where T is the triangle function

1= |t], It] < 1
T(t) = (31)
0 [t] > 1

When using these functions, distance and frequency are scaled so that the ti
are one unit apart. As in Figure 1, t is zero at the lower pole and N at
the upper pole. There are (N-1) triangle functions with peaks at 1,2,3...N-1.
Numerical evaluation of the impedance elements is quite difficult be-
cause of the complexity of the formulas. An approximate evaluation was
obtained by approximating each triangle function by four steps. The potential
integrals due to each step are evaluated at the center of all steps by a
numerical integration. The second integration, represented by (18), is then
approximated by the value of the integrand at the center of each step,
summed over the four step approximation to the testing triangle. The details
of the solution are given in the next section, and the computer program and

instructions for using it are given in Appendix A.

12



III. FEVALUATION OF THE IMPEDANCES

The generalized impedances for a body are given by (21), which can be

written in greater detail as

- jkR
_ : . : Loy 1] ¢
S S

(32)
This is valid for bodies of arbitrary shape. For bodies of revolution,
N {ﬂ2ﬂ

éi% ds = j\ dt j d o(t) (33)

S 0] 0

19 1 9

Y == <z (pd,) + = J L
R=yo? + 0 - 200" cos (9 - §) + (2 - 21 (35)

Four types of impedances are defined by (26). To evaluate them, we use (22)

and (24) to obtain the W - J terms in. (32) as

Ngl . Q-EJ - ejn(¢-¢') fl(tv) fJ(-L) % . y:q (56)

where p and q represent permutations of t and ¢. The unit vector dot products,

in terms of the body coordinates defined by Figure 1, are

13



= sin v sin v' cos(@-@') + cos v cos v'
-sin v' sin(@g-¢')

(37)
= sin v sin (@g-¢')

cos(¢-¢")

£ £ £
F & F

Yoy
Here v is the angle between the t direction and the z axis, being positive

if n, points away from the z axis and negative if points toward it.

2,
Changing (@-@') to a new variable, and expressing the sine and cosine terms

of (37) as exporentials, one ¢ integration in (32) can be performed. The

remaining ¢ integration defines the Green's function.£6]
b1¢ e-JkRO
g, = ag —f— cos ng (38)
o o}

where R, is given by (35) with ¢' = 0. With fi given by (30), the resultant

expressions for the impedance elements (26) are

14



N N

tt €1 " Enq
(Zn )ij = at! dt [juw(t'-i) T(t-j)(sin v sin v' —
0 0
' L o) T (e q
+ cos v cos Vv gn) + Te T'(t'-1i) T'(t J)gn]
. : g .1 -8
(zf?)ij = _( dt' § dt [-um(t'-i) T(t-3j) sin v' —nil—z—n'—l
0 0
IR S s
+ Geg T'(t'-1i) T(t-3) gn]
N N o (39)
(zgt)i‘_j = g at y at [+WT(t'—i) T(t-j) sin v &2——3—'—1
0 0
_ n 1o ' o=
Begr T(t'-1) T'(t-3) gn]
N N e 4 g
(Zg¢)13 = \g\ at!' S‘ dt [j%T(t"‘i) T(t'j) _—n+12—n-]:
0 0
2
- i
Soe T(t'-1) 2t-3) g, |

Here T' is the derivative of a triangle function

1, -1<1t<o0
T (t) = 4 -1, 0<t<1 (40)

0, |t] > 1

which is a pulse doublet. Further evaluation of (39) is done by numerical
methods.
The integrations of (39) involve many different integrands, and to re-

duce the number of integrations the following approximations are made. For

15



the t integration, the T function is approximated by four pulses of amplitudes
1/4, 3/4, 3/h, 1/h, as shown in Figure 2(a). The derivative of T is repre-
sented exactly by‘four pulses of amplitude 1, 1, -1, -1, as shown in

Figure 2(b). ‘The functions p, 8in v, and cos v are assumed constant over

each pulse, equal to their values at the midpoint of the pulse. For the t'
integration, the T function is approximated by four impulse functions, of
strengths 1/8, 3/8, 3/8,1/8, as shown in Figure 2(a). The derivative of T

is approximated by four impulse functions of strengths 1/2, 1/2, -1/2, -1/2,

as shown in Figure 2(b). We now define the numbers

T, = 1/8 T) = 1/2
T, = 3/8 T! = 1/2
Ty = 3/8 Ty = -1/2
T, = 1/8 T, = -1/2

the midpoints of the pulses

t=i+P__;__2_'2 t=j+9—:—2—é (1;2)

and the pulse Green's functions

.4 Q-2
I+ 75 x -3RR
G =2 \Y at \{ ag e R cos n@ (43)
2 2 2
= - - i
R, 1/; * p, = 2ppy, cos @+ (z-2) (Lh)

16
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Figure 2.

(b)

(a) Triangle function (solid), four-pulse approximation
(dashed), impulse approximation (arrows). (b) Derivative
of triangle function (solid), four-pulse representation
(dashed), impulse approximation (arrows).

17



In terms of these definitions and approximations, the matrix elements (39)

reduce to

4
tt
(2, )y = E
p=1

+
Gn+l

M-

j TT sin v_ sin v
[Ju“ prq (81n v, a

fle]
[}
=

+ cos v, COS v G ) + L qeg G ]

L L
G, -G T
iy . § \ ., ol "m-1.n ., g
@)= ) [~ 1,7 sin v 5 * o T . ]
o=l =l : (45)
L N
- T
AT oyt %1 n Tp o,
(Z%), 5 = [+ T sin v, 5 " T ¢ |
p=1 q=1 P
L L
— G, +G 2T T
g8, . ntl  “n-1  n° "pq
(275 = | [Ju“ TpTq 2 " Gue Pp Pq Gn-]

hol
il
H

i
’—l

Here A v_ are the and v evaluated at t_and t respectively.
Pp? Y P> Vg . p q %P v
Finally, we evaluate the G of (43) by a combination of analytical and

numerical techniques as follows. The interval O < ¢ < x is divided into M

equal intervals, and (43) approximated by

L a2
M JF 75 - jkR
G- S cosng, [ at (16)
n M m R
m=1 i+ 952 P

where ¢m = (m - %) n/M. The Rp of (46) is evaluated at ¢ = ¢m' Define

> 2 5
R = \// + -2 + - n
pq Pp ¥ Py T Peppg o8 (22 ) (+7)

18



Then lRp - qu| < 1/k. If the distance between peaks of the triangle functions
is a tenth of a wavelength, then klRp - qul < n/20, and exp (-ijp) may be

represented by two terms of its Taylor expansion about qu. This gives

Mo 5+ B2
o O -ijpq 1 - jk(RP-qu)
G, = 4 2 cos n¢m}e \(A at Rp (L8)

For the final integration, we approximate t by a straight line between

t=J+ gééand t=J+ g%g . Then z and p are linear in t, and the integrand

of (48) can be simplified by completing the square. This gives

t o+ 1/b
, M - 5kR ° 1-jk(/t2+d° - R )
G == cos nf_ e Pq dt P (49)
n M ) m £° + d
m=1 t = 1/k4
o
where
t, = I(zp-zq) cos v, + (pp cos ¢m - pq) sin vql (50)
2 2 2
d =R -t 1
2 -2 (51)

{7
The integration of (49) is now straightforward, and one obtains''

M
¢ =% y cos ng_ £(¢ ) (52)

m=1

where

19



(53)

[2, 2
+
t, + tzd-jk]

- jkR
(g )=e P4 [2(‘1+ij ) log ————x
m rq +
t +\/t21 a°

1

and

1
t=t-zl t, =t + (54)

This completes the evaluation of the impedances.
Some computational details will now be discussed. In (54), if t, is
larger than 1/L4 both t, and t, are positive, but if t_ is less than 1/k, ty

is negative. 1In this case the log term of (53) should be replaced by

(t, + Vtg + d°) (-t +1/t§ + d%)
g
2

d

1o (55)

Gn is the scalar potential due to a charge distribution on the lateral sur-
face of a frustum. The approximation (46) supposes line charges at ¢m' If
the source point is very close to the field point, the granular nature of the

line charges may be too restrictive. When the source and field points

coincide on the first interval 0 < ¢ < X, the line charge at ¢ = 5% is spread
out into a uniform surface charge. Furthermore, if the surface of this first
p.T
interval is approximated by a plane rectangle of dimension 1/2 by —%r—,
1/h Pg™ M

_ 4 M 1-jkw/x2+;£2 cos 1
G = Dqg dyj(; ax Ve i os nf_£(g). (56)

m=2

Now, since

2 s
aiay [x:log(y +‘V;2 + x ) +y log(x +1/y2 + xg)] = ;7§%:;§ ’ (57)

20



one can reduce (56) to

N y 4-\/y2+x2 X +\/y2+x2 -Jjkx M
G = —|x 10g<u“‘2>+y 108(0 = o) 2+ é cos ng (@ )
n o} X o m m
Pq o Yo Pq -
m=2
(58)
where
o
x, = o, y, = /b (59)

A more elgborate method involving a localized increase in the density of
line charges was attempted but was abandoned when the results did not differ

appreciably from (58).

21



IV. COMPUTATION OF IMPEDANCES

Equation'(h5) for the impedances has been programmed in Fortran IV for
execution on an IBM System/560 Model 50 computer. Appendix A lists the com-
puter program and all its printed output for the first mode (n=1 in (45))
for a sphere of radius l% and radius to wavelength ratio 0.2. Also included
in Appendix A are instructions for the use of the computer program along
with some explanatory notes to facilitate possible modifications. In the
interest of simplicity, the progfam is written to compute one mode at a
time. Input data consists of the mode number, the total length (an integer
determining the size of the impedance matrix desired) of the curve that
generates the surface $, an integer telling how many times to subdivide the
@ axis between 0° and 180° for the G, of (52), the wave constant §§, and some
arrays defining the angle between the tangent to the generating curve and
the z axis, the cylindrical coordinate radius p of the generating curve and
z the axial distance from the start of the generating curve at the lower
pole. The output consists of some of the,Gn of (52), the impedance matrix
Z, and its inverse the admittance matrix Y, as explained in Appendix A.

To check the accuracy of the program, the impedance for current on a
sphere has been evaluated by spherical mode expansions. The details of the

[13]

solution are given in Mautz's thesis. The final result for any mode

with e‘)m¢ variation on a sphere of radius a is

o]
(Ztt).. = E L | \TE b+ A o . ]
m ‘1j Dmm | n ni nj n ninj
n=|m (60)
[oe]
(%), . = ; L KTEc.b.+>\TMb.c.]
m ‘ij D n ninj n ninj
mn “
n=|m|

22



tg Pt
- 29, = -,
N - 1 TE ™
(Zg¢)13 4 ™ 5;; [ n ninj n ni n31
where
ba® (n) (n+1) (ntm)!
mn ﬂ(2£2%§?n-m§? - (61)

The eigenvalues are given in terms of alternate spherical Bessel functions

. as
ATE ~(2)
o =nd (ka) H (ka)
(62)
™ ~(2)
A= Jn(ka) H (ka)
The b and ¢ coefficients are
N—
b . = -2na°m § P"(cos @) £.(t) de
nj n dJ
0
) (63)
o dP" (cos 0)
Chy = 2na g\ —__—35_"__ sin & f, (t) de
0

where fj(t) is the jth expansion function as defined in general by (22) and
in particular by (30). The Pﬁ in (63) are the associated Legendre polynomials.

The evaluation of (©53) was done numerically.

23



Table 1

Comparison ofAimpedance elements on a sphere of radius 0.2\, using

9 expansion triangles, n = 1 mode.

Impedance | Formula (45) 18 TE and T™ 9 TE and TM

element of Section III modes in (60) modes in (60)
AN 53.46 - J2W77. 53.36 - 31908 53.36 - 3616.5
z;; 26.80 - j768.9 26.83 - j701.0 26.83 - j567.9
Z;; 10.26 + j52.28 10.08 + j52.36 10.08 + j151.8
Z?? 57.67 - j2641 57.36 - 32236. 57.36 - J175k
Zgg 32.90 + j9.467 32.93 + j11.05 32.93 + 39.903
zgg 29.26 - j34.36 29.27 - j34.32 29.27 - j40.57
zig 1569. - j54.88 1100. - j55.08 321.6 - 355.08
tg ' . - . -5 . -5
255 (-1.68 + j.343)x10 (=2.12 + 3.405)x1077| (~2.48 + j.405)x10
Zg [ -37.15 - 327.17 #-57.13 - j27.25 -27.87 - j27.25

24




Table 1 shows representative computations for a sphere of radius a = 0.2\,
using 9 equispaced triangles. 1In other words, the expansion functions are
(30) with the t; = 1,2,...,9, and the z axis cuts the sphere at t, = 0 and 10.
The M appearing in (52) is twenty. The mode chosen is n = 1 in (45), and
correspondingly, m = 1 in (60). Column 1 of Table 1 gives the computatidn
using the general solution (45) of Section III. Column 2 gives the solution
using 18 terms of the infinite series (60). Column 3 uses 9 terms of the
series (60). Notice that the real parts of Ztt and Z¢¢ and the‘imaginary
part of Zt¢ are identical for the 18 term and 9 term solution of (60)
and are only slightly different from those of (45). The imaginary parts of
z*% and Z¢¢ and the real parts of Z¢t and Zt¢ of (60) are converging very
slowly in the modal solution, but are converging towards the corresponding
parts of the general solution. Z;g is supposed to be zero, and the non zero
values of Z;g in Table 1 are so small that all the significant figures are

probably meaningless. On the basis of comparisons such as Table 1, it

appears that our general program is sufficiently accurate for most purposes.

25



V. MEASUREMENT MATRICES

Any linear measurement of the field from a current J on a body S can

be expressed as a linear functional of J, that is
measurement = §§§. E - Jds (64)
S

where E? is a known function. If the excitation-measurement system is viewed
as a two-port system, it can be shown that E in (64) is the field on S when
the measurement port is excited.[5 : For a moment solution, the current is

given by a superposition J = I Ijgj , and (64) reduces to
measurement = [R] [I] (65)
where [I] is the matrix (15) and [R] is a measurement row matrix
(R] = [<g,, E™] (66)

Note the similarity of [R] to the excitation matrix defined by (14). 1If

the matrix solution (17) is now substituted into (65), one has
measurement = [R][Y][V] {67)

The symmetry of (67) with respect to [R] and [V] reflects the reciprocity
theorem of electromagnetic theory.

For bodies of revolution, the expansion for J can be separated into t
and ¢ directed components, according to (23). It is then convenient to

partition [R] into t and @ component terms as

26



(Rz)l - <Q£i’ E?>
(68)
<Rgl)l = <§I?;i) -E.r>

The analogous partition for excitation [V] is given by (27). Now one can re-

write'(67) in partitioned form as

measurement = [[Rﬁ] [Rg]:' [Ytt] [Y§¢] 1 [Vz]_

1w [of

where the Y submatrices are obtained after the Z matrix is inverted, and are
not the inverses of the corresponding Z submatrices.
An important special case is that of radiation field measurement. It

(8]

has been shown that the radiation field from currents J on S is given by

E-u-= 13—% ¢”JET [R] [1) (70)

nr
where the elements of [R] are given by (66) with

r -Jjk -

E =npes £

(71)

This is a unit plane wave with polarization vector u and propagation vector k.
An arbitrary plane wave is a superposition of two orthogonal components, say
and E¢ Hence, one can treat the general case as two applications of (71),

one for uy = Y and the other for u = g¢. To distinguish between the two cases

let

27



te . T
= >
(Rn )i <£ni’ Eb
(72)
de g _r
= < >
(R = <hy» B
for the 6-polarized case, and
td t r
= >
(Rn )i <SIni) ,E¢
(73)
9, _<f &
(Rn )i - <)I'[11, ,E¢>
for the @-polarized case.
The excitation matrices can now be evaluated as follows. Let
. . -
T eJk(p sin 6  cos ¢ + z cos e.) (1)
o 7
where er and ¢r = O are the angles to the field point of measurement. The
dot products required in (72) are given by
R O . O ed
L " ¥y = cos er sin v cos ¢ - sin er cos v
r . (75)
Ry " 4 = - cos 6 sin ¢
Using the integral formula for Bessel functions
2n
7 (o) = P cos @ ~ind g (76)
n‘P’/ = 2x :
0
one can now evaluate the ¢ integrations in (72), obtaining
N jk2z cos © )
to .n+l r . n+tl "n-1
(Rn )i = 2nj S dt o fi(t) e [cos 6, sinv 5
o
+j sin ® cos v J ]
r n
N
jkz cos © J_,.tJ (77)
go, _ N+l r n+tl “n-1
(Rn ); = -an] 5 at o fi(t) e cos 6 55
0
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where

J, = Jn(kp sin er) (78)

Similarly, to evaluate (73), let

. . +
r r jk(p sin 6, cos @ + z cos er)

E¢ = g¢ e (79)

The required dot-products are then

r . .
o5 2¢ = sin v sin ¢
(80)
uy - g; = cos
and the ¢ integrations in (73) can be performed. The result is
tf ntl ' Jkz cos er Jn+l+Jn~-l
(Rn )i = 2nj g dt p fi(t) e sin 53
© (81)
N Jkz cos 6_ J_,.-d
¢g, _ ,_.ntl r ‘ntl “n-1
(Rn )i = 2nj f at o fi(t) e —
0

where (78) again applies. For computation, the p fi(t) in (77) and (81)

were the triangle functions (31). The remaining integrals must be evaluated
numerically for bodies of arbitrary contour. In general, Rze and Rﬁ¢ are

even in n, while Rge and R§¢ are odd in n. As shown by (22) and (24), the
excitation matrix [V] differs from the measurement matrix [R] only by the sign

of n. Hence, for plane-wave excitation of the body,

(oY), =&, (82)
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where pg represents t6, ¢$©, t@, or ¢¢. Equation (82) means that the v, are

given by (77) and (81) with n replaced by -n and 6, by 6., and does not imply

t)

equality of excitation and measurement.

For axial incidence of plane waves, equations (77) and (81) reduce

considerably. In this case e = n and all Rn = 0 except
(R?_e)i = ( -l 1 = \{ at p fi(t) eI gin v
0
] e -Jk
(Rgi ); = -(R?l)i = \Y dt o £,(t) e JEZ
0
0
®P), - -&®), - 3P, (83)
99y _ 9% _ i
(Rl )i - (R_l) = -J(Rl )i

Hence, only the n = -1 and n = +1 modes are excited by axially incident plane

waves.
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VI. APERTURE ANTENNAS

An aperture antenna is a radiating system consisting of a conducting
body with apertures through which electromagnetic energy is supplied. For

analysis purposes, it is assumed that the tangential electric field Et is

known over the aperture. It is, of course, zero over the conducting bogy.

. . s i, .
This known field Et corresponds to Et = -Et in the general analysis of

Section I. Figure 3 represents the general problem, showing the body S,
the aperture, and radius vector to a distant field point.

In terms of a moment solution, the excitation is the known Et in the

aperture, from which the excitation matrix may be computed by (14) by setting

El = -Et' In general, this results in an excitation of many eJn¢ modes, each
of which can be treated separately. The current on S for each mode is found

by inverting (25), and the total current is the sum of the modal currents,

J = E (2] (v,] (v ] (84)
n

where ndenotes the mode. Similarly, the radiation field for each mode is

that is

found from (70), and the total radiation field is the sum of the modal

fields, that is

E = 24 o Jkr é [R] (¥ ] (v ] (85)

where u = 6 or ¢, and n again denotes the mode.
For simplicity, illustrative computations have been made only for the

case of excitation independent of @, which excites only the n = O mode.
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Figure 3. An aperture in a conducting body of revolution.
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This results in a further simplification in that [zg¢] = [zgt] = 0, that is,
there is no coupling between the t-directed currents and the ¢-directed
currents. From symmetry considerations, an excitation having only an Et
component produces only a Jt current, and an excitation having only an E¢
component produces only a J¢ current. Hence, the problem reduces to two

independent ones,

tyrott t
J, = [JO][YO ] [VO]

t
(86)
5y = U0 091 1)
for the current, and
-3 -3k te tt t
B, = —ﬂﬁ% e ¥ IR [YQ 1 [v,]
(87)

ndt -3k 997 (v ()

by

g

for the radiation field. The [Ygt] and [Yg¢] in (86) and (87) are tihe inverses
of [th] and [Zg¢], respectively.

To check the program, radiation from anequatorially slotted conducting
sphere was computed both by the classical eigenfunction expansion and by the
general program. Figure 4 shows the current density on a sphere of radius
a = 0.2\ excited by an E, = 8(6-n/2)/a in the equatorial slot. This gives
rise to Vtgj = 2n if tj is on the equator, and zero otherwise. The eigenfunction
solution was computed using 18 terms of the Fourier series. The real part of

the current converged very rapidly, and can be considered as exact. The

imaginary part of the current does not converge at the source, and converges
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slowly elsewhere, and hence the imaginary part computed from 18 terms of the
Fourier series is not exact. As can be seen in Figure 4, the N = 10 solution
using the general program is in good agreement with the eigenfunction solution.
Computation of radiation field patterns for the two solutions agreed to within
less than one percent accuracy, and hence are not shown.

Figure 5 shows the current density on a sphere of radius a = 0.2\ excited

by an E, = -5(€-n/2)/a in the equatorial slot. This gives rise to V¢¢ an

0j =

when tj is on the equation, and zero otherwise. Again the eigenfunction
solution was computed using 18 terms of the Fourier series, and the real part
of the current converged very rapidly. However, the imaginary part of the
current does not converge. The real part of the current computed from the
N = 10 case of the general program again agre€s well with the eigenfunction
solution. It is difficult to say anything about the imaginary part because
of the divergent nature of the solution. Computation of the radiation field
patterns for the two solutions again agreed to within a few percent.
Evidently the radiation pattern does not depend strongly on the non-converging
imaginary part of the current.

As an example of a body of more complicated shape, computations were
made for aperture excitation of a cone-sphere. This body is formed by wedging
a conducting sphere into a conducting cone, resulting in a shape similar to
that of an ice cream cone. The radius of the sphere is a = 0.2\, and the
cone half angle is lOo. The aperture is a narrow slot near the cone-to-sphere
junction. Figure 6 shows the current density when the excitation is an
impulsive Et in the slot. An N = 20 solution is shown, but smaller values of

N give reasonably accurate solutions.
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Figure T shows the same cone-sphere excited by an impulsive Eb in the
slot. Again an N = 20 solution is shown, but usable results could be obtained
with a smaller N. Note the extreme oscillatory nature of the imaginary part
of the current. Theoretically, the imaginary part does not converge, as dis-
cussed previously for the sphere.

Figures 8 and 9 show the power gain patterns for the two cone-sphere
excitations discussed above. For a given polarization, the power gain normal-

(9]

ized to omnidirectional radiation 1is

hnrelE |2
u

gu N Prad

(88)

where n =vp/e and P ,q is the power radiated. From (70) and (17), the
numerator of (88) can be expressed as

hnre |E
u

7 = ggen 120 11 1| (89)

[10]

In general, the power radiated is given by

P, = -Re é E* - g ds = Re [V [Y] (V] (0)
S

where the elements of the row matrix [V] are

v, = - §§ Ex - J; ds (91)

S

For the excitations used in Figures 8 and 9, only one Vi is nonzero, and
~

V, = V. = 2n. Hence (90) reduces to a single element of the [Y] matrix. In
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particular, for Figure 8,

2

N-1

te tt
E (R, )‘.j (v, )J.i
j=1

C]
n

nk2

&g (92)
by Re(Y

)

ii
where ti is the point of excitation. Similarly, for Figure 9,

N-1

Z COMUOM

g, = =1
p P Re(Yg¢5ii

2
ik

(93)

where again ti is the point of excitation.
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VII. PLANE-WAVE SCATTERING

The radar scattering problem consists of a plane wave incident on a
scattering body, plus measurement of the far-zone scattered field. Figure 10
illustrates the geometry of the problem for conducting bodies of revolution.
In general, the incident wave Ei can be expressed as a superposition of the
two orthogonal components Ei and Ei, and similarly the far-zone scattered

%]

wave ES as the superposition of ES and E;. These are related by the scattering

matrix [s] of the body according to

e-jkr

t!:lj
O w

©6 6¢ i
r S S e

(9%)

s¢e s¢¢ E;J

]
‘GEdm

The elements of [s] can be expressed as a summation over the modal components

pq _ Prq
§T % = E s (95)

where pq denotes 60, €¢, @0, or ¢f. The scattered field is given by (70),

and hence

- [P ] [t ) [t

n
(96)
|25 || P

where the R, elements are given by (77) or (81), and the V_ elements by the
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scatterer

Figure 10. Plane-wave scattering by a conducting body of revolution.
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same formulas with n replaced by -n and er by et.
Radar scattering data are often presented in terms of the radar cross

section, defined as

5 E° |2
P2 = Lgr -2 (97)
gl

q
As indicated, o depends both on the received polarization p and the incident

polarization q. It follows from (94) and (97) that for a given polarization,
oFd = hn]qu|2 (98)

An incident wave of arbitrary polarization can be expressed as the super-
position

i i
E = (Ee QY + B¢ a¢)E (99)
2 2 .
where |ae| + |a¢| = 1. The matrix

[a] = 0 | (100)

%9
is called the polarization matrix. Let [a®] ve the polarization matrix of the
incident wave when the transmitting antenna is excited, and [a"] be the trans-
pose of the polarization matrix of the incident wave when the receiving antenna
is excited. Then the component of scattered field that is polarization-
matched to the receiver is
s e"’jkr r r .t i
E = =——[o][s]1Ta"] E (101)

and the radar cross section is
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2
o = brx |[oF] [s] [a'] (102)

where [s] is given by (94). Equation (98) is a special case of (102).
For simplicity, only excitation by axially incident plane waves is

considered for computation. Let

E} - -u e-sz

u (103)

which can be considered a 6-polarized plane wave from a transmitter at
coordinates et = w0, ¢t = 0. The excitation matrix elements are thus given
by the first two equations of (83) with R replaced by V, n by -n, and er by et.
Only the n = +1 modes are present in the excitation, giving rise to only

the same two modes in the current. The symmetry relationships (29) and (82)

can now be used to obtain the simpler form

d = QtJt cos ¢ + g¢J¢ sin ¢ (104)

where
N-1

gt oo Z (Ij)i £, ()

i=1

(105)
N-1

2y (b, 1)

i=1

2

and fi(p) = T(t-ti)/p. Hence, the current is completely specified by its
n = 1 mode coefficients.

To check the program, the current on a sphere excited by the plane wave
(103) was computed both by the classical eigenfunction method and by the

general computer program. Figure 11 shows the magnitudes of thand J¢ of (104)
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for a sphere of radius a = 0.2\, using N = 10 for the general program. The
eigenfunction expansion converges very rapidly and can be considered as exact.
The current density is normalized with respect to the incident magnetic field
intensity, giving a dimensionless quantity which is 2 for a plane conductor
covering the z = 0 plane. The radar scattering patterns computed by the
eigenfunction method and by the N = 10 general solution were almost identical,
and are not shown.

Figure 12 shows the current on a cone-sphere excited by a plane wave
axially incident on the tip. The radius of the sphere is again 0.2\, which
is the same as used in the antenna examples. Again Jt and J¢ of (104),
normalized with respect to Hi, are plotted. To illustrate convergence, both
the N = 20 (circles) and the N = 30 (solid line) solutions are plotted. The
Jt current converges fairly rapidly, but the J¢ current converges more slowly.
Even the N = 30 solution cannot be considered accurate for ¢. Apparently
the rate of convergence is affected by the sharp tip of the cone. For better
convergence one could include a term in the current expansion to properly
represent the singularity at the tip. However, radar scattering patterns
are insensitive to small oscillations in the currents, and more accurate
solutions are not needed in most cases.

Figure 13 shows the current on the same cone-sphere excited by a plane-
wave axially incident on the spherical end, that is, the end opposite to the
point. The above comments concerning convergence apply also to this excitation.

Figures 14 and 15 show radar cross section patterns for the cone-sphere
excitations corresponding to Figures 12 and 13, respectively. The plots were
made using the N = 20 solution, but the corresponding N = 30 solution gave

almost identical results. The only difference occurred in the vicinity of
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forward scattering where a change in o of the order of a few percent was
obtained. This region is most sensitive to inaccuracies because all parts
tend to radiate in phase in the forward direction. All plots are normalized
to k? to make them dependent only on length/wavelength dimensions, not on
absolute dimensions. The curves labeled 099/%.2 are in the ¢ = O plane, and
are the radar cross sections measured by a ©-polarized receiver. The curves
labeled 0¢9/X2 are in the ¢ = n/2 plane, and are the radar cross sections
measured by a @-polarized receiver.

Because only the n = 1 and n = -1 modes are present in the excitation,
these are the only modes present in the scattered field. From (95) and the

symmetry relationships (29) and (82) one can show that

e0
s

00 ‘
2s]” cos ¢r

(106)

e LY/
s¢ 23 sg sin ¢ |

where sig and s?e are the n = 1 modal solutions evaluated at ¢r = 0. Hence,

from (98) and (106) it follows that the radar cross sections are given by

2

®® = 16x |s cos® ¢r

1}

(107)

2
c¢e = 16n s¢e sin® ¢r

Hence, the graphs of Figures 14 and 15 are proportional to the coefficients

of cos® ¢r and sin® ¢r in (107).
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VIII. DISCUSSION

This report develops a solution for the electromagnetic behavior of con-
ducting bodies of revolution with arbitrary excitation in terms of generalized

(3]

network parameters. Basically, this involves the application of a moment
method to the superposition integral representation of the problem. Because
of the rotational symmetry, a Fourier series expansion on ¢ is used. To
facilitate the handling of arbitrary body contours, a subsectional expansion
on t is used. The simplest subsectional function is the pulse function, but
it is not in the domain of the original operator because derivatives must be
taken. The derivative can be replaced by a finite difference approximation,
thereby approximating the operator. However, it was found that difference
approximations did not yield as good accuracy as desired. The next simplest
subsectional function is the triangle function, and this was used for the
general program. Its derivative is a doublet pulse, and hence no approxima-
tion of the operator is necessary.

Three types of singularities are encountered in the general solution:
(a) a singularity in the coordinate system along the z axis, (b) singularities
of curvature in the body contour, such as at a cone tip, and (c) singularities
in the excitation. The first type introduces difficulties in the numerical
evaluation of the impedance elements, but can be overcome by careful analysis.
The second type could be taken care of by special subroutines at points of
discontinuity in body curvature, but would be difficult to implement. No
attempt has been made to do this in the general program. The third type of

singularity is impractical to include in a general solution, because then the
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impedance matrix would depend on the excitation instead of being a function

of the body geometry alone. It could, however, be incorporated into particular
solutions. For example, the singularity in the current at feed point of a
slot-fed antenna can be accounted for by including the proper singularity in
the expansion functions.

If only the radiation and scattering patterns are wanted, but not the
current, then less accuracy is required in the solution. This is because
such patterns are continuous linear functionals of the current, and, as shown
by the calculus of variations, are accurate tc the second order when the
currents are accurate to the first order. For example, if the current has an
error of the order of ten percent, the radiation field has an error of the
order of only one percent. Furthermore, the radiation depends primarily on
the current moment pJ instead of the current itself. Hence, inaccuracies at
the poles (p = O) of the body have little effect on the radiation pattern.
Finally, rapid oscillations in the current about the correct value also have
little effect on the radiation field. They contribute mainly to near-field
Stored energy.

The generalized network parameters of a body are basically a matrix
approximation to the functional operator equation for the problem. Hence, so
long as the computational approximations are valid, one can compute the
response of the body to arbitrary electromagnetic excitation. Aperture
antennas (Section VI) and plane-wave scattering (Section VII) are but two
examples. Another problem of interest is excitation by current dipoles in
the vicinity of the body. Still more generally, both the excitation and
measurement can be taken in the near-zone if desired. Radiation by loaded

aperture antennas and scattering by loaded scattering antennas can also be
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treated by known methods.[u’ll]

Other problems can be treated by modifications or extensions of the
theory. For example, the internal resonances of a cavity of revolution can
be found by a procedure similar to that used for waveguides of arbitrary cross
section.[lel The problem of scattering by a homogeneous dielectric or magnetic
body of revolution can be treated in terms of equivalent electric and magnetic

surface currents. Hence, an extension to include both electric and magnetic

currents could be used to solve such problems.
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APPENDIX A

THE COMPUTER PROGRAM

This appendix provides a description, in terms of Fortran IV language,
of the computer program that finds the generalized impedance and admittance
matrices for a conducting body of revolution with surface S. Section A-1
gives instructions for using the computer program while Section A-2 gives some
explanatory notes to facilitate possible modifications. Section A-3 lists the
computer program along with the data for the first mode (n=1 in (45)) of a
sphere of radius 10/n and radius to wavelength ratio 0.2. Section A-k gives
the printed output for this same data.

A-1 Instructions for using the computer program

The program, written in Fortran IV level G and tested on an IBM System/360
model 50 computer, accepts punched card input data and outputs the generalized
impedance and admittance matrices via both the printed line and a direct
access storage device.

The direct access storage device was assigned the data set reference

number 4. Statement number 1 early in the main program
1 REWIND 4

returns the data set number 4 to the first record if it is not already there.
Each unformated WRITE (4) statement defines a new record on data set number k.
If the first n records have been written previously, it may be desirable to
skip them and start writing on the (n+l) record. This is effected by following
statement 1 with n identical READ (4) statements. There are no such READ (k)

statements in the listing of the program in Section A-3.
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All the punched card data are read early in the main program according

to the statements

50 READ (1,51,END=52) NN, N, NPHI, BK

51 FORMAT (3I3,E1k.7)

KG = 2%N
61 READ (1,53)(vs(J), J = 1,KG)
62 READ (1,53)(zs(J), J = 1, KG)

65 READ (1,53)(R(J), J = 1, KG)

5% FOEMAT (10F8.%4)

in that order. According to statement 50, several sets of data may be pro-

cessed with control going to statement 52 when the data are exhausted.

Statement

NN

=
1}

NPHI =

52 is a stop.

the mode number the same as n appearing in (45). NN must be
either zero or a positive integer. If NN is large, NPHI must also
be large for the numerical integration (L46) to be accurate.

‘total length of the generating curve. N is a positive integer.
There will be N-1 expansion functions for the t directed current
and N-1 expansion functions for the ¢ directed current. Conse-
quently, the Z and Y matrices will be 2%(N-1) by 2%(N-1). For N
larger than 20, present dimension statements must be altered.

the number of equal subdivisions of the ¢ axis from 0° to 180°.
NPHI corresponds to the positive integer M appearing in (46).
NPHI must be large enough so that —Z_ % NN is less than a radian.

NPHI

The maximum electrical length corresponding to an excursion

L in
NPHI
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@ should also be less than a radian. If NPHI is larger than 40,
present dimension statements must be altered.
BK = propagation constant k appearing in (46). For reliable results,
BK should be less than one.
VS(J), 2zS(J) and R(J) are arrays that describe the geometry of the sur-
face S of revolution. The J indicates evaluation at t = 2152, where t is

the arc length along the generating curve, zero at the lower pole of the body

of revolution. J runs from 1 to 2*N.

VS = the angle (radians) between L the unit vector in the t direction
and the axis ( z axis) of the body of revolution. VS is positive
whén 1y is diverging from the z axis and negative otherwise.

ZS = axial distance z from the lower pole

R = distance p from the z axis.

All of the above data are printed after they are read in. Statement 58
58 WRITE (3,64)(G(K), K = 1, NG)
prints some Gés of equation (52). The Z matrix is printed by

95 WRITE (3,88)(Z(K), K = K1,K2)

88 FORMAT (1X, 12G11.4)

inside DO loops 89 and 90. The impedance matrix is stored columnwise in the
linear array Z. The submatrix (th)ij of (45) is labeled Z1 and printed

columnwise. The first element of each column begins a new line. For a

tt)

column of the submatrix (Zn i3 the "source point" j is fixed and the "field

point" i runs from the lower pole to the upper pole. Similarly, Z¢t, Zt¢ and
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Z¢¢ are labeled Z2, Z3, and Z4 and printed. The impedance matrix is put into

direct access storage by
33 WRITE (4)(z(1), I =1, NZ)

Next, the admittance matrix (inverse of the impedance matrix) is calculated
and put into the same array Z. The admittance matrix is outputed exactly

as the impedance matrix was. The printing is by
96 WRITE (3,88)(z(K), K = K1,K2)
in DO loops 93 and 92. The direct access data set 4 is written by
34 WRITE (4)(z(I), I =1, NZ)
Throughout the program, the sequence

CALL CLOCK (I1,I2)
WRITE (3,99) I1,I2

99 FORMAT (1X,2I7)

appears many times. CLOCK is a subroutine which, perhaps not available on
all 360 computers, can be called as easily as SIN or COS. The first argument

I1 becomes the time in seconds while the second one I2 gives the year and day.

A-2 Explanatory notes on the computer program.

LINEQ(LL,C), the first subroutine to be compiled, accepts an LL by LL
complex matrix stored columnwise in the linear complex array C and returns
the inverse of this LL by LL matrix into the same array C. Of course, the orig-

inal elements of the matrix are destroyed. Although the dummy array C is only
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dimensioned C(1) in the subprogram, all the space of the corresponding array

in the calling sequence in the main program is available. Because of the

statement

DIMENSION LR(58)

early in the subroutine, LL must not exceed 58. LINEQ(LL,C) uses the sub-
program CABS. Also, since the matrix elements are complex, complex addition,
subtraction, multiplication and division routines are tacitly assumed.

The second subroutine POT(AC,GS) computes f(¢m) of (53). The variables

in common are

RRl = p_sinv_ - (z -z ) cos v
q q p aq q
RR2 =- sin v
p
2 2 2
RR3 = + + (z -2
3= e *oep t(252)
RRk = -2
PpPq
BK =k
The arguments of POT are
AC = cos ¢m
6s = £(g )

GS is the only output of the subroutine POT(AC,GS). RR1, RR2 and AC are com-
bifif_f? give t_ of (50). RR3 and RR4 are used to find qu. When in (53)
V/t§+d2 is much larger than 1/4, the argument of the logarithm becomes close

to one. Then, the series expansion for log(l+x) could possibly have been

used in the subroutine POT(AC,GS), but was not. The subroutine POT(AC,GS) uses
the subprograms ALOG, SIN, COS, CMPLX, ABS, and SQRT.
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First of all, the main program reads the punched card data and then
prints it to be certain that it was entered correctly. The constants m and 7
are inserted just after statement 47. The DO loop 2 puts ¢j appearing in

(46) into ANG(J) and cos ¢j in AC(J). The DO loop 10 puts = cos (n-l)¢j,

M
J running from 1 to NPHI, in CSM(1l) through CSM(NPHI), ﬁ cos n ¢j in CSM(NPHI+1)
through CSM(2*NPHI), and ﬁ cos (n+l)¢j in CSM(2*NPHI+1) through CSM(3*NPHI).

The nested DO loops 16 and 17 compute the G, of (52). Actually, for the

fixed n appearing in (h5), Gn-l’ Gn and Gn+l are needed. All are put in the

linear complex «rray G. The G ., are put in G(1) through G(NG), G, in G(NG+1)

1

L in G(2%NG+1) through G 3*NG). G, _, is a KG by

KG array. (KG=2*N and NG=KG*KG). The complex number Gn_l((J-l)*KG+I) is

through G(2*NG), and Ge

for the field point at I and the source in the vicinity of J. In DO loop 5,
the subroutine POT is called upon to put f(¢K) of (53) into GS(K). If (I=J),
the logarithm expression of (58) instead of f(¢l) is put into GS(1). The DO
loop 13 performs the summation (52). The outer DO loop 68 obtains the cases
(n-1), n,and (n+1).

After the G's are printed by statement 58, the numbers of (41) are in-
serted into the arrays T and TP. The impedance matrix (45) is computed in
the nested DO loops 30 and 31. I and J correspond to the i and j of (L42).
The subscripts for Ztt, Z¢t, Zt¢,and Z¢¢ are respectively L1, L2, L3, L&k so
that the impedance matrix with the submatrix arrangement of (25) is put
columnwise into the linear complex array Z. The nested DO loops 70 and 71

perform the double sum in (45). II corresponds to p and JJ to q.

The logic between statements 84 and 89 is a routine to print Z. The

statement
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CALL LINEQ (NM2,Z)

inverts the impedance matrix. The admittance matrix now occupying Z is printed

in DO loop 93. The data included at the end of Section A-3 is for a sphere

with
NN = 1.
N = 10
NPHI = 20
BK = 0.3947842

BK is the propagation constant for a radius of 0.2 wavelengths. The portion
of the data defining the geometry of the sphere was actually computed and
punched on cards by a short auxiliary computer program.
If N or NPFHI 1is too large, the dimension of some arrays must be increased.

All the arrays whose dimension depends upon N or NPHI are listed below.

COMPLEX Z(NM2*%2), GS(NPHI), G(12%N*N)

DIMENSION VS(N*2), Sv(w*2), cv(n*2), zs(N*2),

R(N*2), ANG(NPHI), AC(NPHI),

CSM(3*NPHI)

Here, as in the program,

NM2 = 2%(N-1).
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A-3. The computer program

//REV1T0 JOB {(0034,EE,11,03),'MAUTZ,JOF' {MSARLEVFL=1
// EXEC FORTGCLG,PARM FORT='MAP!' PARMLKFED="XREF"
//FORT ,SYSIN DD %
SURRDUTINE LINFO(LL,.C)
COMPLEX C(1)4STOR,STD,ST,HS
DIMENSIONM LR(58)
DO 20 I=1,LL
LRI =1
20 CONTINUE
M1=0
DO 18 M=1,LL
K=M
DO 2 I=M,LL
Kl=Ml+]
K2=M] +K
IF(CARS(C(K1))=CARSIC(K2))) 24246
6 K=1
2 CONTINUE
LS=LR (M)
LR(M)=LR(K)
LR(K)=LS
K2=M1+K
STOR=C(K2)
J1=0
0DQ 7 J=1,LL
Kl=J1+K
KZ2=J1+M
STO=C(K1)
C(K1)=C(K?2)
C({K2)=STO/STOUR
J1=J1+LL
7 CONTINUE
Kl1=M]1+M
C(K1)=1./STOR
DO 11 I=1,LL
IF(I-M) 12,111,172
12 Kl=M1+1
ST=C(K1)
C(K1)=0.
J1=0
DO 10 J=1,LL
Kl=J1+1
K2=J1+M
C(K1)=C(K1)=C(K2)*%ST
Jl=Jl+LL
10 CONTINUE
11 CONTINUE
Ml=M1+LL
18 CONTINUE
J1=0
DD 9 J=1,LL
TF(J=LR(J)) 14,48,14
14 LRJ=LR(J)}
J2=(LRJ=1)*LL
21 DO 13 I=1,LL
K2=J2+1
Kl=J1+1]
S=C(K2)
CtK2)=C(K1)
C(K1)=5§
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13 CONTINUE
LR(J)=LR(LRY)
LR(LRJ)=LRY
IF(J=-LR(J)) 14,8414
8 Jl=J1l+LL -
9 CONTINUE
RETURN
END
SUBROUTINE POT(AC.GS)
COMMON RR14RR24RR3,RR4,BK
COMPLEX W3 ,W&4,GS,6
YS=RR1+AC*RR?
Y=ARS(YS)
RD=RR3+RR4*AC
RK=BK*SQRT(RD)
D2=RD~-Y*Y
Y1=Y-.25
Y2=Y+,.25
R1=SORT(Y1x%Y1+D2)
R2=SQRT(Y2%Y2+D2)
IF(YL) 64747
6 TIN=2,%ALOG((=YY1+R1)%(Y2+R2)/D2)
GO 70O 8
T TIN =2.%AL0G((Y2+R2)/(Y1+4R1))
8 SN=SIN(RK)
CS=COS(RK)
S=BK-RKXxTIN
W3=CMPLX(CSy=SN)
W4=CMPLX(TIN,=S)
GS=W3%xW4
RETURN
END
COMMON RR14RR24RR3,4,RR4,BK
COMPLEX A3,A4,2(3364)4,GS(40)4G(4800)
DIMENSIONVS(A0) 4SVIB0)4sCVI(60)+2S(60)4RI60)3ANG(40)+AC(40),CSM(120)
DIMENSION TP(4),T(4)yJKI(4)
1 REWIND 4
50 READ(1451,END=52)NNyN,NPHI,BK
51 FORMAT(313,E14.7)
KG=2%N
61 READ(1,53)(VS(J)sd=1,KG)
62 READ(1+453)(7S(J)eJ=1,KG)
63 READ(1453)(R(J)yJ=14KG)
53 FORMAT(10F8.4)
- WRITE(3,54)NNyNyNPHI 4,BK
54 FORMAT(L1X//' NN=',13,0 N=?,]3,¢ NPHI=',13,' BK=',FEl4.7)
55 FORMAT(L1X/* VS?)
56 FORMAT(1Xx/' 2S¢)
57 FORMAT({(1X/?" R?)
WRITE(3,55)
WRITE(3446)(VS(J)yJ=1,KG)
46 FORMAT(1X,10F8.4)
WRITE(3,56)
WRITE(3,46)(ZS(J)ysJ=1,KG)
WRITE(3,57)
WRITE(3,446)(R(J)yJ=1,KG)
DO 47 J=1,KG
SVIJ)I=SIN(VS(J))
CV(J)=COS(VS(J))
47 CONTINUE
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11

10

99

21

13
68
17
16

P1=3,141593
ETA=376,707
NM=N-1

NM2=NMx*x2
NZ=NM2%NM2
NG=KG*KG

M5=NN+2

M6=NN+4

Fii=NN

FM2=NN*NN
DP=PI/NPHI

00 2 J=1,NPHI
ANG(J)=(J=o.5)%DP
AC(J)=COS(ANG(J))
CONTINUE

M3=0

DO 10 MM=M5,M6
Ml=MM=3
M2=M3%NPK]

DO 11 K=14NPH]I
Kl=M2+K
CSM(K1)=DP*COS(M1%*ANG(K))
CONTINUE

M3=M3+])

CONTINUE

CALL CLOCK(I1,12)
WRITE(3,99)1I1,12
FORMAT(1X,217)

DO 16 J=1,KG
AA=DP%R(J)*%*,5

DO 17 1=1,KG
13=2S(J)=2S(1)
RR1=SV(J)*R(J)I+CV(J)%Z23
RR2==SV(J)*R(1)

RR3=R(JI*R(J)+R(T)*R(1)+23%23

RR4==2 %R (J)*R(1)

DO 5 K=2,NPHI

CALL POT(AC(K) o GS(K))
CONTINUE

TF(TI=J) T48,7
X=R(J)*DP
XX=SORT(1ls/16.+X%X)

W1=(2.,%X®ALOG((+25+XX)/X)+.5%ALOG((X+XX)/e25))/AA

W2=-BK
GS(1)=zW1l4(0eyle)%W2
GO TO 67

CALL POT(AC(1)4GS(1))
M3=(J=1)%KG+1

DO 68 MM=1,3

Ml=MM~1}

M&4=M]=NPHI
M2=M]1%®NG+M3

G{M2)=0.

DO 13 K=1,NPHI
K2=K+Mé4
G(M2)=G(M2)+GS(K)%CSM(K2)
CONTINUE

CONT INUE

CONTINUE

CONTINUE
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CALL CLOCK(I1,12)

WRITE(3,99)11,12

WRITE(3,48)
48 FORMAT(1X/* POTENTIALS FRUM THE CIRCULAR RIBBONS OF CHARGE!)
58 WRITE(3,64)(G(K)K=1,NG)
64 FORMAT(L1X/(1X410Glle4))

CALL CLOCK(Il,12)

WRITE(3,99)I1,12

TP(1)=,5

TP(2)=,5

TP(3)==,5"

TP(4)==,5

T(l)=.125

T(2)=.375

T(3)=,375

T(4)=,125

CA=BK*ETA

CO=CA/BK/BK

DO 30 J=1,4NM

Jl=2%(J=1)

JL=(J=1)%NM2

DO 31 I=1,NM

Li=JL+I

L2=L1+NM

L3=L1+NM2%NM

L4=L3+NM

Z(L1)=0,

2(L2)=0,

Z(L3)=0,

Z(L4)=0,

Il1=2%(1-1)

D0 70 JJd=1l,4

J2=Jd1+JJ

KAl=(J2~1)*KG

KBl1=KA1+NG

KC1=KB1+NG

DO 71 11=1,4

12=11+11

SS=SV(12)%SV(J2)

CC=CVI(I12)%CV(J2)

KA2=KAl1+12

KB2=KB1+12

KC2=KC1+12

A3=,5%(G(KC2)+G(KA2))

A4=,5%(G(KC2)=-G(KA2))
T4 Z(L1)=Z(Ll)+(CA*T(I[)*T(JJ)*(SS*A3+CC*G(KBZ))-CO*TP(ll)*TP(JJ)*G(K

1B2))%(0.91.)

Z(L2)=Z(L2)#CA*SV(J2)*T(II)*T(JJ)*Ak-FH*CO*G(KBZ)*T(lI)*TP(JJ)/R(I

12)

Z(L3)=Z(L3)~CA*SV(I2)*T(I1)*T(JJ)*A4+FMRCOXG(KB2)*TP(TT)*T(JJ)/R(J
12)

ZIL4)=2(L4)+(CA*A3=FM2%CO/R(T12)/R(J2)%*G(KB2))*T(IT)*T(JJ)*(0esls)
71 CONTINUE
70 CONTINUE
31 CONTINUE
30 CONTINUE

CALL CLOCK(Il,12)

WRITE(3,99)11,12
84 JK(1l)=1

JK(2)=N
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49
95
88

90
89

24

96
92

93
34

52

/*

JK(3)=NM2=NM+1
JK(4)=JK(3)+NM

DO 89 J=1,4

Kl=JK(J)

WRITE(3,49)J
FORMAT(1X/" Z1,11)

DO 90 I=1,NM
K2=K1+NM=-1}
WRITE(3,88)(Z2(K),K=K1,K2)
FORMAT(1X412G11.4)
Kl1=K1+NM2

CONTINUE

CONTINUE

WRITE (4)(Z(1),1=1,N2)
CALL CLOCK(I1,12)
WRITE(3,99) I1,12

CALL LINEO(NM2,2)

CALL CLOCK(Ily12)
WRITE(3,99) 11,12

DO 93 J=1,4

Kl=JK({J)

WRITE(3,24)J
FORMAT(1X/t Y*,11)

DO 92 I=1,NM
K2=K1+NM-1
WRITE(3+88)(2(K)yK=K1yK2)
K1=K1+NM2

CONTINUE

CONTINUE

WRITE (4)(2(1)y1=1,NZ)
CALL CLOCK(I1,12)
WRITE(3,99)11,12

GO0 TO 50

sTOP

END

//G0.FT04F001 DD DSNAME=EE0034.REV,DISP=0LD,UNIT=2314,
VOLUME=SER=SU0004+DCB=(RECFM=V,BLKSIZE=1800,LRECL=1796)

//

//GO.SYSIN DD =*

001010020 0.3947842E+00
1.4923 1.3352 1.1781 1.0210

=0.0785 -0.2356 -0.3927 -0.5498
0.0098 0.0879 0.2423 0.,4691
3.432R 33,9262 4,4012 4.8463
0.2497 0.7431 11,2181 1.6632
3.1733 3.,0951 2.9408 2,7140

/%

0.8639
=0.7069
0.7627
5.2504
2.0673
2.4204
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0.7069 0.5498 0.3927
-0.8639 -1.0210 -1.1781
1.1158 1.5199 11,9650
5.6035 5,8971 6.1239
2.4204 2.7140 2.9408
2.0673 1.6632 11,2181

X

0.2356
-1.3352
2.4400
6.2782
3.0951
0.7431

0,0785
-1.4923
209334
6.3564
3.1733
0.2497
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