INTERACTION NOTES
Note 191

15 September 1970

COMPUTER PROGRAMS FOR RADIATION AND SCATTERING BY
ARBITRARY CONFIGURATIONS OF BENT WIRES

by

Hu H. Chao
Bradley J. Strait
Electrical Engineering Department

Syracuse University
Syracuse, New York

ABSTRACT

The problem of e]ectromégnetic radiation and scattering
from thin wires with arbitrary shape and with arbitrary exci-
tation and loading is considered. This is treated as a boundary
value problem which is formulated as an operator equation. '
Matrix methods along with the method of moments are used to
solve the operator equation apéroximate1y. Computer programs
suitable for hand]ing radiation problems and plane-wave
scattering problems are presented and described. For the for-
mer, current distributions, field patterns, and input impedances
at the driving points are determined. For the latter, current
distributions and bistatic radar cross section patterns are
found. Examples are given to illustrate several applications of
the programs. Numerical results are compared with experimental
data and with results computed by other theoretical methods.
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Chapter 1

INTRODUCTION

Computer programs are presented and described for analysis of arbitrarily
bent wire antennas and scatterers. The problem configuration can involve more
than one wire and it is not necessary that the wires all have the same shape.
For example, a problem consisting gf a wire loop antenna radiating in the
presence of a linear wire radiator or scatterer could be handled with rela-
tive ease., The programs are very general and although they are limited here
to problems involving a total of four different wires or less to conserve
storage space there is no theoretical limitation on the number of wires that
can be tagken into account. The wires can be loaded continuously or discretely
at arbitrary points and also, they can be excited or fed at any arbitrary
point or points along their lengths, Finally, it is possible to include wire
junctions in the problem geometry enabling treatment of special configurations

such as wire crosses, supporting wires for long antennas, and so on.

For radiation problems the current distributions on the wires are
computed along with appropriate field patterns and input impedances cor-
responding to the driving points. For scattering problems the current dis-
tributions are again calculated along with the magnitude and phase of the
scattered field for each specified plane and appropfiate bistatic radar
cross-section patterns. The programs are presented in the Appendices of
this report with the first (Appendix A) suitable for radiation problems and

the second (Appendix B) applicable for scattering problems.

This report is a sequel to two éarlier reports which presented computer
programs for analysis and design of arrays of straight-wire antennas and
scatterers [4,13]. The method of analysis used is due to Harrington [1,2]
and is an application of the general '"method of moments.'" The method was
first applied to thin wire problems by Harrington and Mautz [3] and later
by Strait and Hirasawa [4,13] in présenting thé earlier programs mentioned
above. Other important applications of the method include Cummins [7] treat-

ment of circular arrays, studies of linear and plamar arrays by Strait and



Hirasawa [5,6] and Kyle's [14] treatment of arrays of log-periodic antennas. .

In this report all wires are assumed to be thin perfect conductors
with wire losses treated as a special case of wire loading. Within the
"method of moments" procedure a linear current approximation is used together
with the "method of subsections." Hence, triangle current expansion functions
are used where each function is non-~zero only over a relatively small portion
of a wire, Triangle functions are also used for testing functions (Galerkin's
procedure) . Théée choices were made because of the observation of Harrington
and Mautz [3] that this solution converges about twice as fast as the solution
resulting from use of pulses for current expansion functions and point matching
gimpulse testing functions) as used by Strait aﬁd Hirasawa [4-6,13] and also
gy Kyle [147. l

This application of the method of moments is presented in Chapter 2.
As mentioned earlier the computer programs are presented in the Appendices
with the corresponding descriptions included in Chapter 3., Several applica-
tions and typical results from the programs are discussed in Chapter 4. Of

particular interest is a novel wire cross scatterer which provides an interest-

ing example of a wire junction problem. The computer programs are written
in FORTRAN 1V for use with an IBM 360/50 digital computer. Results presented

in Chapter 4 are compared with those of other investigators wherever possible.




Chapter 2

THEORY

2-1. Introduction

In this chapter the integro-differential equation for the current
distribution of an array of thin wires is derived. Here, the term 'thin
wire'" implies a wire of length L and radius a, where L/a »>> 1 and a << A,
the wavelength. All wires are assumed to be perfect conductors, with
wire losses treated as a special caée of wire loading. Using the method
of moments [1,2], this integro-differential equation is reduced to a
matrix equation. The approximate current distributions on the wires are
obtained by solving this matrix equation using standard techniques. Then,
once the current distribution is known, other parameters of engineering

interest can be easily derived.

In the first sections of this chapter, it is assumed that all wires
are open wires, 1.e., no loops and/or junctions. Also, it is assumed
initially there is no loading on the wires. Effects of loading are dis-
cussed in Sec. 2—8.' Then, in Sec. 2-9, the general method of solution

is modified to handle loops and/or junctions.

2-2. Formulation of the Problem

The problem of finding the current distributions on the wire antenna
or scatterer elements is but a particular case of the general boundary
value problem involving conducting bodies in a known impressed field, ET.

The boundary condition at the surface of each perfect conductor is

where T is a unit vector normal to the surface of the conductor and in
the outward direction, and Et is the total electric field vector con-
sisting of both incident and scattered fields. The scattered field E° is
defined as the field produced by all currents and charges on the conductors.

The equations that summarize this boundary value problem are



E- = -juwh - 7% , (2-1)
rr . ~JkR
oL - , _
A= ?? J=F—ds (2-2)
S
'kR s
_ 1 L e
o= 7= 9_)60 = ds ,, (2-3)
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| o=-357V 7 (2-4)
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Finally, since E- = E~ + E~ the condition n x E- = 0 results in
- =8 - i
nxE =-nxE (2-5)

on the surface of each conductor. Here, A,@,m,u,e have the usual
meanings [2}, R is the distance from the source point to the point
where the field 1s evaluated, and S is used to denote the surfaces

of conductors.
For thin wires, the following approximations can be made:

1. The currents are assumed to flow only in the axial direction.

2. The current and charge demsities are approximated by filaments
of current I and charge ¢ on the wire axes.
3. The boundary condition (2-5) is! applied to the axial component

of E on each wire surface.

Using these approximations, (2-1) through (2-5) reduce to

- E_z' = -j0h - L%%Eg on S (2-6)
_ _ -jkR
A=1;;—7T f z(z)eR s (2-7) .
axis
. e dKR ’
¢ = Tre J o (L) 2 dg (2-8)
axis




where ¢ is the length varlable along the wire axis., If a wire terminates,
the additional boundary condition I = 0 at the ends of each wire must also
be satisfied.

It is convenient to define an integro-differential operator L as

L(I) = [juwA + V7<I>]tan (2-10)

where the subscript '"tan" refers to the tangential component. Then,

= _ =l
LI =E,_,  ons (2-11)

I=0 at the ends of the wires (2-12)

It is evident that L is a linear operator., The domain of the operator L
is the space of those functions I which satisfy the boundary condition
(2-12) and have first order derivatives., The range of the operator L is

the space of all possible functilomns Etan on the surfaces of the wires.

*
Using the method of moments , this functional equation can be reduced
to a matrix equation of finite order, which can be solved using standard

techniques.

2-3, Wire Configurations and Coordinate System

Figure 2-1 shows a typical configuration and coordinate system for
the wires. The origin of the coordinate system should be placed as near
the wires as possible. Point Pi,j is a typical point on the axis of a
wire which is used to define the wire geometry and where the subscript i
denotes the number of the wire and subscript j denotes the number of the
defining point of the wire. As in Fig. 2-2, each wire of a given problem
configuration is approximated by a piecewise linear wire. Each short
straight wire plece from point Pi,j‘to point Pi,j+1 is called a segment

A%, . and the length of the segment Ali

1,3 is simply the distance between
3

N

*
References [1] and [2] contain detailed descriptions of the general

"method of moments' procedure.



N

0
z
0

—O

— ~—z&(n

Fig. 2-1. Typical configuration and coordinate system.

Fig. 2-2., Approximation to the wire.




these two defining points. For the programs described in this report the
number of segments for each wire must be even. Also, as pointed out pre-
viously, the wire configurations to be considered are Trestricted to thin

wires.
{

2~4. Derivation of the Matrix Equation

In order to apply the method of moments, it is convenient to define

the inner product for this problem as

<W,F> = S‘d W+ Fds (2-13)
J

The next step 1s to choose a set ?f expansion or basis functions Fn and a
set of weighting or testing functions ﬁn‘ The expansion functions should
be in the domain of the operator L since it is this set that will form an
approximation to the current. These functions should be linearly indepen-
dent and should be chosen so that a reasonably good approximation to I can

be obtained by a finite series expansion of the form
) 1. F, (2-14)
n

where Ii o are the complex coefficients to be determined. The weighting
?

functions should be in the range of the operator L. These functions should
be linearly independent and should be chosen so that the product <ﬁj m,ﬁl>

—’ >
depends on relatively independent properties of EL.

Substituting (2-14) into (2-11) (noting the linearity of the operator
L), (2-11) reduces to

Y = _ =i .
é g Ii,n L Fi,n Etan (2-15)

Taking the inner product of (2-15) with each testing function Wj o results

H
in

LY 1.,  <W, ,LF, >=<W, , E_> (2-16)
in



=1, .. MW, m=1, .., NE(j), where NW is the number of wires, aud NE(3)
is the number of expansica functions on the jth wire, Now, define Lhe

gerneralized netwoerk matrices as

‘-W.}-’l,LFl ’l:) L Y <wl,l’LF1,NE(l)) ‘<w}-’}_ QIJFZsl?' I- & a “wl,l kLFNw’NE(NW)’
S S S iy AF, e e <@ LR
1,220 v 1,281 nE) V1,20 e 1 e Y ooy vpanny”
[Zj,m,i,n} R Te R T e "
W, oLF) . e
Mw, vy PFrLa e e
(2l
(- ~i ~
¥i.1° Bron
- =i
WI,Z’ Etan
- 3
= } ) 21 e
Ve wd "1 ey B ean (-1
- i
WZ,I’ Etan
- —i
thW,NE(NW)’ ¥ tan |
¢ \
11
2
1. 1 =% §E) (2-19)
J,m ?
I
I .
| ", Qo)
! /

10
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Equation (2-16) can be written as a matrix equation

[Z][1I] = [V] (2-20)
where [Z] is the generalized impedance matrix of dimension equal to
MxM (M is the number of expansion functions), [V] is the generalized
voltage matrix of dimension MXl,'and [T} is the generalized current

matrix, also of dimension Mxl.

The desired solution for [I] is obtained by inverting the matrix
[z]
-1
[I] = [2] "[V] = [Y][V] (2-21)

where [Y] = [Z]-1 is called the generalized admittance matrix. The
admittance matrix [Y] and the impedance matrix [Z] are basically functions
only of the geometry of the problem, completely independent of any ex-

citations.

So far, the impressed field is considered arbitrary and hence,

both radiation and scattering probléms can be included.

There are many possibilities for both expansion functions and
testing functions. Two typical types of current expansion functions are
triangle functions and pulse functions. A piecewise linear approximation
is obtained by using triangle functions where each function is non-zero
only over a portion of one wire (usually two or four segments). A step
approximation is obtained by using pulse functions where each function is
again non-zero only over a portion of one wire (usually one segment).
(These two types of expansion functions refer to the method of subsections
discussed by Harrington [1,2].) When impulse testing functions (usually
located at the center of a segment) are used, this is referred to as the
"point matching method" [1,2]. For "Galerkins Method" [8] testing functions

and expansion functions are the same set of functioms.

In choosing various sets of possible expansion and testing functions,
it is necessary to consider the ease of evaluating the matrix elements and

the realization of a well-conditioned matrix [Z]. It is known that for the

11
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Fig. 2-3. Subsectional bases and functional approximation.
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point matching method or Galerkin's method, subsectional expansions, using

pulse or triangle functions, give well-conditioned matrices [1].

Harrington and Mautz [3] have solved the single straight-wire problem .
using three different procedures. These include point-matching with pulses
as basis functions, point-matching with triangle expansion functions, and
Galerkin's procedure with triangle expansion functions. They found with
segments less than A/10 in length, no significant difference in results is
observed between the last two methods and also that the last two methods

converge about twice as fast as the first.

It appears the second method mentioned above should involve less
computation than the last. However, this is not true in the problem
treated here. It turns out that the second method requires calculation

e—ij
of the Green's function ( R
/
AL
n

d2 more times than the last. Hence, the

programs and descriptions of this report use Galerkin's method with triangle

(piecewise linear) current expansion functions.

The triangle expansion function is simply a triangle function of unit

height with peak at the point P as shown in Fig. 2~4, The direction

of Ti,n is coincident with the iéiz+if the piecewise linear (approximate)
wire and in the direction as shown in Fig. 2-4. Each triangle function

Ti,n is non-zero only over four consecutive segments. Successive triangles
overlap every two segments except at the ends of open wires. The overlapping
is illustrated in Fig. 2-3d. Boundary condition (2-12) is automatically
satisfied, since the current is indeed zero at each open end. Note that the
triangle function extends over four segments rather than just two. This is to

improve curve-fitting by the piecewise linear wire.

13
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Fig. 2-4, Triangle function Ti .
1

The only difficulty with using triangle functions as expansion

aT

functions is that the first order derivatives ——3%*E-do not exist at the

isolated points P

1,20-1" P1,2n° Pi,2041° Pi 20427 Fi,one3e Fence, the
triangle function is not actually in the domain of the operator L. This

difficulty can be avoided by using an extended operator [1,2}. By defining

a L ah + w0
&L @) - - (2-22)

the original domain can be extended to the space of those functions which
are continuous. The triangle function 1s a continuous function, and hence
there is no difficulty in using triangle functions as expansion functions

for the problems discussed here.

When the impressed field is well behaved, as in the case of plane-wave
excitation, the sclution is apparently quite accurate using as few as 10
expansion functions per wavelength. When the impressed field is sipgular, as
in the case of a lumped voltage source, convergence of the current near the

source is slower and more difficult to interpret. However, Harrington and

14



Mautz [3] point out that the current at a voltage source changed at most
by four percent as the number of expansion functions per wavelength changed
from 32 to 64, and usually much less than this amount,

Hence, triangle functions are chosen as expansion functions so that

. =T,
i,n i,n

where ii 0 is as in Fig. 2-4. Also, the testing functions Wi o are
H ]
- -
i,n i,n

where Ti n,is exactly the same as Ti o &¥cept these are located on the
b ’

surfaces of the wires instead of the axes of the wires.

2-5. Evaluation of the Generalized Impedance Matrix

The elements of the generalized impedance matrix (2-17) are explicitly

expressed as

PR Y - -
j,m,i,n - g? wj;m ) (JwAi,n + vcb:i_,n)tan ds (2-23)
S
where A and ¢, are calculated using (2-7) through (2-9) where I =F .
_ i,n i,n i,n
Ai n‘and ®i-n are simply the vector -and scalar potentials due to the current
- ? — * 4 ’ s -
I =F, and charge ¢ = - %‘-Ql on the wires. Since W, has a non-zero
i,n jw dg J.m
value only on a line C, (2~23) reduces to
= W . s A g ' -
Zj,m,i,n = J Wj,m : (J(»Ai’n + VQi,n)tan dt (2-24)

- C
where C is a line on the surface of the wire parallel to the axis of the

wire. Equation (2-24) can be reduced to

- - ok . ar ;
Zj »M,i,n J J,.m (JMAi,n + V(Di’n) d (2-25)
c .
since the direction of W, o is coincident with the direction of the line C.
)
From
d d @i 0 d W, 0
—_— o= .S 1LY
dl.(wj,mcpi’n).. wj’m‘ TR q’i,n ———1—*——d2,
15



it follows that

j d(wﬁ,m Qi,n) = f Wj,m d¢i,n + f ¢i,n de’m (2-26)
C c C
The left hand side of (2-26) is zero, since Wj m is zero at the ends of
1
open wires. Hence (2-24) can be reduced to
= A e do' - -
24 m,i,n = du f WymAg,n @ J‘éi,n aw, (2~-27)

C c

Equation (2-27) is more convenient for computation than Eq. (2-24) because

the gradient operator on ¢ has been eliminated.

Substituting (2-7) through (2-9) into (2-27) results in

| o ) W, ARy mIRR
Zymi;n - dt sz ondy o By oo ¥ Joe “@r ar ) iR (2-28)

axis C
where R is the distance from the source pbint to the field point.

In evaluating the integral of (2-28), Fi n is conveniently approximated
3>

dF
by four pulses as shown in Fig, 2-5, —a%fll:is also represented by four pulses
du, '
ag shown in Fig. 2-5, and Wj o and —ngm-are approximated by four impulses as
SR :
shown in Fig. 2-6. The pulse amplitudes are
1
= AL
2 _"i,2n-1
c, (1) = * (2-29)
i,n Azi,Zn—l + Azi,Zn
AL + lﬁl
i,2n-1 ~ 2""1,2n
A YY) + A% (2-30)
’ i,2n~-1 i,2n
l‘AE + AL
2 ~71i,2n+1 i,2n+2
ICASY) + A2 (2-31)
? i,2n+1 1,2n+2
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L AL

Cint® = 37 = 2nZ§ (2-32)
? i,2n+l i,2n+2
- 1 _
Di,n(l) = Di,n(z) = - Y (2-33)
i,2n-1 i,2n
Di n(3) - Di n(A) ) - l+ A% (2-34)
’ ’ i,2n+l i,2n+2
!
The impulse amplitudes are Az , 2m-1 J,m(l)’ AQ',Zm C. m(2), Aﬁ,  2ml Cj,m(B)
J,Zn&Z J, (42, & y 2m=-1 j,m(l)’ s 2m J m(z)’ ,2mt+l J, (3), and
j,2m+2 DJ’m(4). Also, it is convenlent to define
P, .
1 ¢ i,ntl e—JkR
W(Qj,m, Qi,n) T At J R dg (2-35)
i,n 3
i,n

where the point Qi n is at the center of the nth segment of the ith wire
b
and R is the distance from the point Qj o to d%. Equation (2-28) can be
?

written as

l —-—
) Zj:msi,n = JleZl-i— jwe 22 (2-36)
where
ég 4
= T o=
= Ail B‘-Z;l Cj 9m(A) s (B) AQ’J s 2m=-2+A AQIi,Zn—Z-FB
lMQ:’I,2m--2+A’ Qi,2n—2+B) (2-37)
4 % ’
72 = Azl L Dj’m(A) Dy o(B) By o ois 2% 20248
VQy omo4a® U, 2n-2+8’ (2-38)

Finally, the Green's function y is evaluated as described by Harrington [1].

17
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2-6. The Generalized Voltage Matrix

In this report antemna excitation can be treated either for lumped
sources or for distributed sources. The lumped source corresponding to
the mth triangle function of the jth wire is represented by a delta-function
at the top of the triangle. In this case the elements of the generalized

}oltage matrix can be evaluated as
' =<W, , E =1, (2-39)

where U, o is the voltage of the sourcq:at the peak of tHe mth triangle
function,on the jth wire. The distribﬁted source at the mth segment on
the jth wire is defined as a source corresponding to an impressed field
represented by a pulse function on the nth segment of the jth wire as
shown in Fig, 2-7. 1In this case the elements of the generalized voltage
matrix can be evaluated as (approximate the weighting function ﬁj o by

3
four pulses as shown in Fig. 2-5)

, &
/ = W .‘l'; = 240
Vj,m <wj,m’E Agl Cj,m(A) Uj,Zm*2+A (2-40)
7 I ig ) Tt e o SeEiner s
where 4, 2n=2+A is the voltage of the source ovn the 2m-2+A segmont ol the
“th wire.
=1
‘tan &
U, L
—l.0
AL,
J,m

j > Pj ,m+l

Fig. 2-7. The tangential component of the impressed £ield which
is used to represent a distributed voltage source with

voltage Uj o O the mth segment of the jth wire.
1

- 20




For scattering probleﬁs the elements of the generalized voltage matrix
are given by (approximate the weighting function by four impulses as shown
in Fig. 2-6)

() AL, i

jom  Ti,m A 1Cj,m j,2m-2+A ©3,2m-2+A (2-41)

<}

i

A

=l

=1l
(¥

vV

]

il o~

 where E; dmm24A is the tangential component of the impressed field at the
-
center of the 2m-2+A segment of the jth wire.

2-7. Radiation and Scattered Fields

It has been shown [2] that the radiation field corresponding to the
generalized current matrix [I] is given by

-jkr

. T o= o dep ° -
u 4"ro e [RI[I] . (2-42)

when a moment solution is used. Here r, is the distance to the field point

in question and [R] is a measurement row matrix defined by

H

[R] = [<Fl’1,Er> , <F1’2,Er>,... Fyw, NE QW) * EF>] (2-43)
Where
-jk_ - T
Ef=ue ¢ B (2-44)

is the unit plane wave produced by a current element <1§r in Fig. 2-8) at

the field point in question, u is a unit vector specifying the polarization
of the wave, Er is a wave number vector pointing in the direction of propa-
gation of the wave, and ;n is the radius vector to a point n on the antenna.
5 and ES
0 ¢’

From these, other scattered field

It is convenient to consider two orthogonal components of Es, say E
determined by letting u = Ge and u = E¢.

properties of interest can be easily calculated.
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Fig. 2~8., Wire antenna and distant dipole.

2-8. Loaded Antennas and Scatterers

A continuously loaded wire is one for which the tangential electric
field is related to the current I on the wire by an impedance function of

position n according to

=t =s =i =
- = 2-45
Bian = Bean ¥ Ban = N1 ( )

Now Eian is related to the current I by

E° = - L(D) (2-46)

where the operator L is given by (2-10). Combining (2-45) and (2-46)

results in

—_ _ ...i _ - -
L(I) = Etan nl (2-47)

22



Reducing (2-47) to a matrix equation by the method of moments yields
(z]{r] = [v] - [zL][1] (2-48)

where [Z], [I], [V] have the usual meanings and

[ZL] = [<ﬁj; , nfi’n>] ' (2-49)

m

The solution of (2-48) for the generalized current matrix is

[1] = [Z + zL] " V] (2-50)

In this report loads can be treated either as lumped loads or as
distributed loads. A lumped load at the mth triangle function on the jth
wire is defined as a load with the n function represented by an impulse
at the peak of the triangle. In this case [ZL] is a diagonal matrix. The

elements on the diagonal can be evsluated as
ZL = ZLL (2-51)
m -

where ZLL.’m is the impedance of the load at the peak of the mth triangle
function on the jth wire. The distributed load of the mth segment of the
jth wire is defined as a load with the n function represented by a pulse
function over the segment. In this 'case [ZL] is a tri-diagonal matrix. The
elements on the tri-diaéonal can be evaluated as (approximate the weighting

function by four pulses shown in Fig. 2-5)

4
Ly bosm Ci,m @ €5 n ) ZLLy oy o4 (2-52)
» !J’ =l
4
P AZS <, ’m(A) C ’m_'_l(A-Z) ZLL; om-24a if wmtI<NE(3)  (2-53)
2
2Ly mydmel = Aél Cj,m(A) cj’m_l(A+2) ZLLy one24a if m-1>1 (2-54)
where ZLLj Om—2+A is the impedance of the load of the 2m-2+A segment of the
»
jth wire.
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2-9. Boundary Condition at the Junction of Wires

Consider the antenna as shown in Fig. 2-9 the current on each arm is
assumed to be positive when it flows into the junction. Requiring that
there be no charge build-up at the junction of the wires yields the boundary

condition

I. +I,+I.=20 (2-55)

at the junction P.

It is shown in Fig, 2-~10 that any kind of current on the antenna can

be approximated linearly by using triangle functions F s ees F s
1,1 1,N1

as basis functlong. Here Fl,]’ - Fl,Nl—l’

are ordinary triangle functions as de-

Fa, 10 o Fawee Fi10 00 Fyng
Fooa0 o Foonooge Fgop0 oor Fyngg

fined in previous sections and F

1,y Faonge Fa,ms
that exist only over two segments. Because L is a linear operator, the
triangle functions Il,Nl Fl,N}’ IZ,NZ EZ,N%’ I3,N3 F3,N§ can be lelfed intao
. . . [ " 4 1 F
six triangle functions Il,Nl Fl,Nl’ Il,Nl Fl,Nl’ I2,N2 FZ,NZ’ I2,N2 2 N2°
I"

o N
T3 w3 F3,m3 » 13,833,583 such that

I Iy o+ It

1,N1 1,N1 1,N1 - (2-56)

I I} + 17 (2-57)

2,N2 2,N2 2,N2

= t, 1 _
Iyns = 133 ¥ 13w (2-58)

'By assuming

" = . T! -
Iy N1 I3 n3 (2-59)
. Tt -
I .N2 5 (2-60)
" - _ T -
T3z =~ fawe (2-61)

equations (2-56) - (2-61) reduce to
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Fig. 2-9, Antennd with three arms
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I"

1,n151,m1 ™ ACE
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" o
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! v
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Fig. 2-10. Piecewise linear approximation of current distribution

on the arms of the antenna.
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- A\l - t o
Lo =T 7 3,3 (2-62) Py

Ty ™ Tome ™ Um (2-63)

I3n3 = T3,n3 ~ 12,m2 (2-64) *
In this problem Il,Nl’>12,N2’ 13,N3 can be any values which satisfy

I + 1 + 1 =0 (2-65) -

1,N1 2,N2 3,N3 .

Equations (2-62) - (2-64) form a set of linear equations with Iier,
Y

I} , I! as unknowns. For this set of linear equations the ranks

2,N2 3,N3

of the coefficient matrix

1 0 -1

-1 1 0

0 -1 1

A
and the augmented matrix

1 0 -1 Il,Nl .
-t O Iine
0 -1 1 113,N3‘

are the same when (2~65) is satisfied. Hence, this set of linear equations

possesses a solution,

Since the rank of the coefficient matrix is one less than the order

of the coefficient matrix, one unknown can be chosen .arbitrarily and the

other two unknowns will be expressed in:terms of this one. Now, set 15 NBEO’
] ok
so that there exists only one solution of (2-62) - (2-64). Hence triangle
. - 5 Ttu b+ B T K k=l
functions Fy qoeee By npop Fawe Fo,10000 Fooweeae Flagmee F3,0000 Fagna-no

are a suitable set of expansion functions. Where

¥
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Fru - T - -
Fave ® Fium ~ Fan (2-66)

T ] -
Fax2 = Fame ™ Fyng

are ordinary triangle functions over P6PP2, PZPPA’ respectively. Hence
this problem can be solved using the method described in the previous
sections by treating it as a problem which consists of three open wires,
say P1PP2’ P3PP4, PSP as shown in Fig. 2-9. It should be noted, however,
that PPZ’ PP4, must each be exactly two segments.

It is very easy to extend this method to problems having more
complex geometrical configurations. Of course, the loop can be treated
ag an open wire with its ends overlapping by two segments. Examples

involving wire junctions are included in Chapter 4 of this report.

2-10. Conclusion

In this ch;pter, problems of radiation and scattering from thin
wires with arbitrary shapes, excitations, and loadings were considered.
Using arbitrary impressed fields, radiation problems and scattering
problems were included in the same discussion. Using the method of
moments the functional equation of the problem was reduced to a matrix
equation. Reasons for choosing triangle functions for both expansion
functions and weighting functions were pointed out. Formulas for numerical
evaluation of the generalized impedance matrix [Z], generalized voltage matrix
[V], and generalized load impedance matrix [ZL] were derived. A method for

handling wire junctions was also included.



Chapter 3

DESCRIPTION OF COMPUTER PROGRAMS .

3-1. Introduction

Computer programs for radiation problems or plane-wave scattering
problems for thin wires with arbitrary excitation and loading are pre-
sented in the Appendices. The programs are written in Fortran IV for
use with an IBM 360/50 digital computer. A,description of these programs
is given in this chapter. Particular emphasis is given to data input to
aid the reader in applying the programs to a specific problem of interest.
Complex variables are used since many variables in electromagnetic theory
are indeed complex. Use of common regi5n is made to save memory space.
Comment cards are included to ald the reader in understanding the pro-
grams, Program listing aiong with sample input and output data are given

in the Appendices.

3-2. Radiation Problem

A program suitable for solving radiation problems is presented in

Appendix A. This program ils appropriate for thin wire antennas with .
lumped sources and/or lumped loads located at the peaks of the triangle

functions. The restrictions on the types and positions of the sources

and loads can be removed by some minor program modifications as discussed

at the end of the next section. The méximum number of wires that can be

handled here is four. The maximum number of expansion functions for any

wire is fifteen. For antennas having more wires or longer wires requiring

additional expansion functions to obtain a good current approximation, the

dimension statements should be changed. All input data are provided for

in the main program, as there are no read statements in the subroutines.

All FORMAT statements are placed at the end of the main program,

The first data statement reads in the wavelength in meters, denoted

by WAVE in the computer program.
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The second data statement reads in the total number of wires in

the problem geometry. This is denoted by NWIRE in the program.

The remaining read statements are included in DO Loop 550. This
loop iterates a total of NWIRE times. Hence the set of read statements
included also executes NWIRE times.  Therefore, these five read state-

ments correspond to NWIRE sets of data cards, with each set correspond-

-ing to one wire of the total in the problem geometry.

The third read statement reads in BA(NW), NS(NW), NF(NW), and NL(NW),
where NW is the index of DO LOOP 550. BA(NW) is the wire radius in wave-
lengths of the NWth wire. NS(NW) is the number of segments making up the
NWth wire. (NS should be an even number.) NF(NW) is the number of feed:

points on the NWth wire; i.e., the number of segments to which excitation
voltages are applied. (If no excitation is applied on the wire, NF(NW) = 1

and the source is specified as a source with zero voltage.) NL(NW) is the

number of loads on the NWth wire. (If no loads are used on the wire then NL(NW)=1
and the load is specified as ZL(1,1) = (0.0, 0.0), a load with zerc impedance.)

The fourth read statement reads in the positions of the feed points on
the NWth wire. For example, if excitation voltages are applied to the peaks
of the third and eighth triangle Ffunctions on the NWth wire then IF(NW,1) = 3
and IF(NW,2) = 8.

The fifth read statement reads in the applied excitation voltageé at
the feed points which are specified by the fourth data statement as discussed

above.

The sixth read statement provides the positions of the loads along the
NWth wire. Thus if the first load on the NWth wire is applied at the peak
of the fifth triangle function, the second to the eighth, etc., then
LP(NW,1) = 5, LP(NW,2) = 8, and so on.

The seventh read statement reads in the load impedances to be applied
on the NWth wire at the points specified by the sixth data statement. These

are written as complex numbers, in ohms.
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As mentioned in Section 2-9, all prcoblems are treated as antennas
involving open wires. Hence, the number of expansion functions on the NWth

wire can be evaluated as
NE(WW) = NS(Nin/2 - 1

and the number of points on the axis of the wire which should be specified

can be evaluated as
NP(NW) = NS(NW) + 1

[X(1,NW,I),X(2,NW,I),X(3,NW,I)] correspon&s to the Cartesian coordinates of

the point P as shown in Fig. 2-2. Thgse points tan elther be specified

NW, I
by reading in the coordinates or by calculating them with a generating

function.

_ DO LOOP 560 obtains XX, XD, and TLEN, where the numbers XX are the
coordinates of the center points of the segments, XD are the direction

numbers of the segments, and TLEN are the lengths of :the segments.

The generalized impedance matrix [Z] is computed using :subroutine
CALZ. Modification of the matrix [Z] to include the effects of loads on
the wires is performed by subroutine TALZL. The generalized admittance
matrix [Y] is obtained by inverting the matrix [Z] -using subroutine TINEQ.
(Because we store [Y] and [2] in the same locations, the admittance matrix
is still named [Z] in the program.) The generalized voltage matrix [V]
(denoted by [U] in the program) is evaluated using subroutine BIGV. ©Once the
matrices [Z]—l and [V] are available, 'the generalized current matrix 117 can
be obtained by performing the matrix product in subroutine CRNT. DO LOCP 30
computes the magnitude and phase of ‘the current .and ‘prints them -out ‘dalong
with the real and dmaginary parts. The input impedances &t the feed points
and the total input power are calculated in DO LOOP 55. These also printed

out as parts -of the data -output.

The far-zone field is computed as described in Sec. 2-7. The polar
and azimuthal components of the electric field, Eefand‘E¢, are computed
using subroutines ROW and PATT to evaluate (2-43) and (2-42) respectively.

Ee and E¢ are labeled E(1) and E(2) respectively in the program. After
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computing the magnitude and phase of the electric field, the polar coordi-
nates of the point where the field is calculated, the real and imaginary

parts of the field, and its magnitude and phase are printed out. Finally,
the power gain GATHE and GAPHI are calculated for the two field components

E, and E, respectively.

9 ¢
3-3, -Further Details

The generalized impedance matrix [Z] is computed using formulas derived

in Sec. 2-5. Elements of [Z] are calculated in order by column. DO LOOP 60
computes the Green's function y (deroted by PSI in the program), which is
defined by (2-35), using the formulas provided by Harrington [1}. DO LOOP
70 corresponds to (2-36) - (2-38), where C(K), P(I), D(K), Q(I) and XDD in
the program correspond to Cj,m(K)’ (I) D (K), n(i) and

3,2m-2+K « AR i,2n-2+T in (2-37) and (2 38) respectlvely. Finally, the
"four subscript' array (denoted by [Z4] in the program) is changed to the

"two subscript'" array [Z] in DO LOOP 90.

Subroutine CALZL in Appendix A is developed from (2-51). It is cor-
rect only when all loads are lumped loads located at the peaks of the

triangle functions since (2-51) is only valid for this type of loading.

Subroutine LINEQ inverts a complex matrix by the Gauss-Jerdan method
with pivot selection. The input and output matrices are stored in the

same locations.

Subroutine BIGV in Appendix A is developed from Eq. (2-39) which
'is suitable for the case of lumped sources at the peaks of the triangle

functions.

In subroutine ROW, U(1,I) is the direction cosine of"ﬁe and U(2,I)
is the direction cosine of E¢. Hence R(1,I) or R(2,I) is the matrix [R]

defined by (2-43) whenever u is equal to ﬁe or G¢ respectively.

So far, the wire radius must be constant for any one wire. (It can
be different for different wires.) This restriction can be relaxed by
specifying the radlus of the wire in wavelengths at the center of each
segment as BA(NW, I), defining A(NW,I) = BA(NW I) WAVE in the main program,
and substituting A (NWF,NSF) in place of A(NWF) in subroutine CALZ.
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When excitation along the wire 1s represented by other than impulsive

sources, suﬁroutine BIGV must be changed. For example, when distributed
sources as described in Sec. 2-6 a}e used then (2-40) should be used to
evaluate the generalized voltage matrix. Appendix C presents the modifica-
tions which should be applied to Appendix A when distributed sources are

used.

When loading along the wire is represented by other than impulsive )
loads subroutine CALZL must be changed. For example, when distributed loads
as described in Sec. 2-8 are used then (2-52) - (2-54) should be used to
develop subroutine CALZL. Appendix D provides the subroutine which is suit-

able for use when loading is represented as distributed loads.

3-4. Scattering Problem

Earlier it was pointed out that when the wires are acting as scatterers
in an incident field Ei then the elements of the generalized voltage matrix
are evaluated using (2-41). Once the generalized voltage matrix is known the
analysis procedures can be carried out as before. The computer program pre-

sented in Appendix B is suitable for determining the current distributions

and bistatic radar cross-section patterns for loaded wires that are irradiated
by a plane incident wave. All loads along the wires should be lumped loads at
the peaks of the triangle functions. This restriction to the types and posi-
tions of the loads can be removed using some minor modifications as described
at the end of the last section. All subroutines, except BIGV, in Appendix B

are the same as those in Appendix A.

The main program before the instruction CALL LINEQ in Appendix B can
be made from the program in Appendix A by dropping NF(NW) in the third read
statement and dropping the fourth and fifth read statements entirely.

Sometimes there is interest in the behavior of the scatterer
for several angles and polarizations of the incident wave. If
the number of different incident waves is NOSET, the DO LOOP 794 will
execute NOSET times. There are two read statements in DO LOOP 794 to specify
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incident wave

scatterer

X

Fig. 3-1. Thin wire irradiated by a plane incident wave.

the incident wave., The first reads in angle Bi and ¢i designating the
direction of propagation of the incident wave. These are indicated in
Fig. 3-1. The second data statement reads in the 6 and ¢ components of
the incident electric field where phase is with respect to the origin of
the coordinate system. (Ee is denoted by EI(l) and E
EI(2) in the program.)

o is denoted by

The generalized voltage matrix [V] (denoted by [U] in the program)
is computed using subroutine BIGV, Once this matrix is known, the

analysis procedures are carried out as before.
3-5. Conclusion
In this chapter computer programs suitable for handling radiation and

scattering problems involving thin wires of arbitrary shape are described.

In the next chapter these programs are applied for analysis of electromagnetic
properties of several frequently encountered wire configurations.
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Chapter 4

EXAMPLES

4-1, Introduction

In this chapter several examples are presented to illustrate certain
applications of the programs described in the previous chapter, and numerical
results are compared with experimental ddta and/or results obtained by other

theoretical methods.

4-2, Radiation Problems

As a first example consider a half-wave straight wire antenna that
is centerfed with a unit voltage. The wire configuration and coordinate
system are shown in Fig., 4-~1, where the antenna length L = A/2 and the
wire radius a = 0.00702x., It is evident that in the input data NWIRE = 1
and BA = 0.00702. The wavelength is given as 1.0 meter so that WAVE = 1.0.
The analysis 1s carried out using 28 equal-length segments with the computer

program as presented in Appendix A. (Hence, NS(NW) = 28 in the program.)}

DO LOOP 1510 in the main program is used in this case to generate the
coordinates of the points on the axis of the wire. This is in lieu of
specifying the points individually as data input. These points are speci-
fied in order from the lowest point to the highest point on the wire. Hence,
the positive current reference is the positive direction of the z—-axis. The
excitation is represented by a lumped voltage source at the peak of the
seventh triangle function. (Since the peak of the seventh triangle function
is located at the cénfer 6f”the wire.) Therefore, NF(1) = 1 and IF(1,1) = 7
in the program. There is no loading on the wire, so that the data input pro-
vides one lumped load at the peak of the first triangle function with im-
pedance equal to zero. Thus, NL(1) = 1, LP(1,1) = 1, and ZL(l,lj = (0.0,0.0)
in the program. Numerical results for current are plotted in Fig. 4-2 with
the solid line. The field and the power gain are calculated im the plane

¢ = 0 at intervals A9 = 20°, and the gain pattern is plotted in Fig. 4-3.

These results compare very favorably with the experimental data measured

34




‘ by Mack [9] and with the results computed by Strait and Hirasawa [4] using

pulses for expansion functions and point-matching.

Y

L

2

o
_L._ |

Fig. 4~1. Straight wire and coordinate system.

Next consider the same problem with the excitation represented as a
distributed source with gap length A/14 (the length of two segments), i.e.,
the unit voltage source is thought of as two half voltage sources over
the fourteenth and fifteenth segments. Here NF(1l) = 2, IF(1,1) = 14,
IF(1,2) = 15, v(1,1) = (0.5, 0,0), and V(1,2) = (0.5, 0.0). Numerical
results of current are plotted in Fig. 4-7 with the dashed line. There is
no difference in the real part of the current but a little difference in
the imaginary part is noted near the source. This difference is expected

since the singularity of the source is treated differently in the two
methods. '
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Fig. 4-2.
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Current on a half-wave straight wire antenna that 1s
centerfed with a unit,voltage. (example 1, see page 32).
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Fig. 4-3. Gain pattern for a centerfed half-wave straight wire
antenna. (example 1, see page 32).
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Fig. 4~4., Current on a loaded half-wave straight wire antenna.

(example 2, see page 36).
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The next example (example 2) considers a half-wave straight-wire
antenna that is excited with a unit voltage one quarter wavelength from
the end of the wire and loaded at the center point with Z, = j 100 ohms.
The configuration and coordinate system are shown in Fig. 4-1, when
L = A/2 and a = 0.00674X. Excitation is at z = - %-and the wavelength is
given as 1 meter. The analysis is carried out using 24 equal-length
segments with the computer program as presented in Appendix A, The points
cn the axis are specified by the same method used in the first example.
ﬁence, the current reference is the same as before (positive in +z direction).
The excitation 1s represented by a lumped voltage source at the peak of the
third triangle function., The load is treated as a lumped load at the peak of
the sixth triangle function. (NL(1) =1, LP(1,1) = 6, 2L(1,1) = (0.0, 100.0)
in the program.) Numerical results for current are plotted in Fig. 4-5. This
compares favorably with results computed by Strait and Hirasawa [4] and earlier

by Harrington and Mautz [3].

The third example is a five-wavelength wire antenna that is centerfed
wlth a unit voltage. The configuration and coordinate system are again shown
in Fig. 4-1 where L = 5\ and a = 0.00639x. The wavelength is given as one
meter. One hundred equal-length segments are used along with the computer
program of Appendix A, The dimension statements were changed, however, in
order to permit use of large number of expansion functions. The generating
function which was used to evaluate the coordinates of the points on the
axis of the wire in the first example is again used after changing the

statement

HH = 0.25 % WAVE

to

HH = 2.5 * WAVE

The excitation is represented by a lumped voltage source at the peak of the
25th triangle function. Current is plotted in Fig. 4-5 and this compares
favorably with the results computed by Strait and Hirasawa [4] using pulses

and point-matching.
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Fig. 4-5. Current on a five-wave length straight wire antenna
that is centerfed with a unit voltage. (example 3,
see page 36).
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Fig. 4-6. Circular-loop and coordinate system.
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As a fourth example consider a circular loop antenna with wire radius ‘
a = 0.00106) and c¢ircular radius b =1/21 as shown in Fig. &4~6. The wavelength
is given as 1 meter. Excitation is a unit voltage at ¢' = 0, This problem is
treated as an open wire with two segments overlapping at the ends of the wire

as shown in Fig. 4~7. The analysis is carried out using 34 segments for the .

Fig. 4~7. Cdircular loop antenna.

open wire. The cootdinates of the points on the axis of the wire are

determined in the program using the following generating function:

RID = WAVE/(2. * PI)
DPHI = 2. * PI/(NSQNW) - 2)
NPNW = NP (NW) - 3
DO 1510 I = 1,NPNW
X(1, NW, I) = RID * COS ({(I~1) * DPHI)
X(2, NW, I) = RID * SIN ((I-1) * DPHI)

1510 X(3,NW,I) = O.
DO 1511 J = 1,3
X(J, NW, NPNW) = X(J, NW, 3)
X(J, NW, NPNW-1) = X(J, NW, 2)
1511 X(J, NW, NPNW - 2) = X(J, WW, 1)
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where DO LOOP 1511 is used to provide the overlap of the two segments at the
ends of the wire. Positive current reference is in the direction of increas-
ing ®. The excitation is represented by a lumped voltage source of unit
voltage at the peak of the 16th triangle function. Numerical results for
current are plotted in Fig. 4-8 and those compare reasonably well with results
evaluated by Iizuka [10]. Radiation field and power gain are calculated in
the plane ¢ = 0.180° and the plane & = 90°. These results are plotted in

Fig. 4-10, As expected, the 6-component of the radiation field is zero.

The fifth example to be considered is the same as that above except
there is a load 22 = 100 ohms at ¢' = 180°. This load is represented as a
lumped load at the peak of the eighth triangle function. Numerical resulfs of
current are plotted in Fig. 4-9 and again, these can be compared with those
evaluated by Iizuka [10]. Gain patterns in the plane ¢ = 0, 180° and the

plane 8 = 90° are plotted in Fig. 4-11.

Next, consider an example involving a parasitic element. The wire
configuration and coordinate systém are shown in Fig. 4-12 where L = 0.5A,
a = 0,00702x», and d = 0.5A. (Here, NWIRE = 2 in the computer program.)
Wire "1" is centerfed with a unit voltage and wire "2" is a parasitic element.
The wavelength is given as one meter. Thirty-two segments are used in the
driven antenna with twenty-four segments on the parasitic antenna. (NS(l) = 32
and NS(2) = 24 in the program.) In the computer program the points on the

axes of the wires can be evaluated using the following generatiﬁg function:

DWAVE = 0.5 * WAVE
HH = 0.25 * WAVE
NPNW = NP (NW)
DO 1510 I = 1, NPNW
X(1,NW,I) = DWAVE * (3./2. - NW)
X(2,NW,I) = 0
1510 X(3,NW,I) = 2*HH/NS(NW) * (I - 1) - HH

Current is assumed to be positive in the +z direction. Excitation is
represented by a lumped unit voltage source at the peak of the 8th triangle

" function on the first wire. Currents on the wires are plotted in Fig. 4-14.

41



ma/volt
!
!
(9]
O
angle in degrees

1ol e ~-120
1 ettt
0 90° 180°
H'—

Fig. 4-8. Current on a circular loop antenna with circumference
2mb=X. (example 4, see page 38).
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Fig. 4-9. Current on a loaded circular loop antenna with

circumference 2mb=A. (example 5, see page 39). ‘
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$=90°

&=180°

®=270°

in the plane ® = 90°

(example 4, see page 38)
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"
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/
D
g\‘Q
8=90° . \ 8=90°
& =180° | d=0°
§=180° in the plane ¢ = 0, 180°
D =90 °

d=180°

®=270°
in the plane 6 = 90°

Fig. 4-11. Gain pattern of the loaded circular loop antenna.
(example 5, see page 39).
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Fig. 4-12., A centerfed wire with a parasitic element.
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Fig. 4-13. A centerfed wire with two parasitic elements.
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Fig. 4-14. Current on the parasitic array of two elements.
(example 6, see page 39). ‘
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¢ =180°

g

$=270°

Fig, 4-15. Gailn pattern of the parasitic array of two elements
in the plane 6 = 90°. (example 6, see page 39).
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) ,
Power gain for the plane © - 90° is plotted in Fig. 4-15. These results compare

with the experimental values measured by Mack [9] and show excellent agree-—
mgnt.

Next consider a parasitic array with three elements as shown in Fig.
4-13, where L = 0.75%, a = 0.00702x, and d = 0.5\. Wire "1" is centerfed
with a unit voltage. Wires "2" and "3" are parasitic wire elements. The
'wgvelength is given as 1 meter. The analysis is carried out using 20
segments on each antenna. Current is assumed to be positive for the +z
direction. In the computer program the points on the axes of the wires

can be determined as follows:

0.5 * WAVE/SQRT(3.)

DWAVE =
HH = 0.375 * WAVE
NPNW = NP (NW)

DO 1510 I = 1, NPNW
X(1,NW,I) = DWAVE * COS ((NW-1) % PI * 2,/3.)
X(2,NW,I) = DWAVE * SIN ((NW-1) * PI * 2./3.)
1510 X(3,NW,I) = 2%HH/NS(NW) * (I-1) - HH

it

i

Excitation is represented by a lumped unit voltage source at the peak of .

the fifth triangle function on the first wire. Numerical results for cur—
rent are plotted in Fig. 4-16. The radiation pattern in the plane 6 = 90°
is plotted in Fig. 4~17. Once again, the agreement of this solution with the

experimental values measured by Mack [9] is excellent.

The next example (example 8) considers a folded dipole antenna. The
wire configuration and coordinate system are shown in Fig. 4-18, where
H=0.54, d = 0.01X, and a = 0.001x. The wavelength is given as one meter.
This problem is treated as an open wire with two segments overlapping at
the ends of the wire as shown in Fig. 4-19. The analysis is carried out
using 46 setments for“the open wire. Points on the axis of the wire are
specified for this ex;mple by a read statement in DO LOOP 550

NPNW = NP (NW)
READ (1,2) (X(J,NW,I), J=1,3), I=1, NPNW)
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current on the parasitic antenna
Fig. 4-16. Current on the paraéitic array of three elements.

(example 7, see page 46).
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$=180°

P =270°

Fig. 4-17. Gain pattern of the parasitic array of three elements in the

plane © = 90°. (example 7, see page 46)
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Fig. 4~18. The folded dipole antenna.
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Fig. 4-19. The folded dipole antenna.
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Fig. 4-20. Current distribution on the folded dipole antenna.

(example 8, see page 46)
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Forty-seven data cards correspond to this read statement. This number,
of course, points out the advantage of using a generating function

whenever possible. Current for the folded dipole'is plotted in Fig. 4-20.

4-3, Scattering Problems

Now, consider a full-wave, center-loaded (Zz = 75 ohms), straight
wire that 1s irradiated by a plaﬁe Yave of unit amplitude with angle of
incidence §, = 90°, ¢, = 0°, (Hence, THET = 90.0 and PHII = 0.0 in the

program.) The polarization of the wave is the u, direction, so that

E(1) = (~-1.0, 0.0) and E(2) = (0.0, 0.0). Note,ehere phase is with re-
spect to the coordinate origin. The wire configuration and coordinate
system are shown in Fig, 4-1 where L = X and a = 0.00674X. The waveleﬁgth
is given as 1 meter. The analysis is carried out using twenty segments,
Points on the axis are determined in the computer program in the same
manner as in the first example discussed earlier: Current is assumed to
be positive for the +z direction. Numerical results for current are
plotted in Fig. 4-21 and the bistatic radar cross-section pattern is shown
in Fig. 4-22. These results can be compared with those of Strait and

Hirasawa [4].

The next example considers a circular loop that is loaded with a
resonant load and irradiated by a plane incident wave of unit amplitude
with angle of incidence ®i'= 0, ei = 90°., The polarization of the wave
is the G¢ direction so that EI(1) = (0.0, 0.0) and EI(2) =(1.0, 0.0) in
the program. The wavelength is given as one meter. The wire configuration
" and coordinate system are shown in Fig. 4~6 where a = 0.00159x, 21b = x and
the load is located at ¢' = 0. A resonant load is defined as one for which
YL has a susceptance equal to the negative of the input susceptance of the

loop. In this problem the resonant load is Z. = j 232.558 ohms. The loop

L
is treated as an open wire overlapping two segments at the ends of the
wire (Fig. 4-7). The points on the axis of the wire can be specified as
discussed in example 4. Positive current reference is in the direction of

increasing 9. The analysis is carried out using 34 segments for the open
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Fig. 4-21., Current on a one-wavelength, center-loaded, linear

scatterer. {example 9, see page 51)

g=0°

| 8=90°

| incident
wave

6=180°

Fig. 4-~22. Bistatic radar cross-section a/xz pattern for the full-wave,

center-loaded, linear scatterer. (example 9, see page 51)
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Fig. 4-23. Current on a loaded circular loop scatterer.
(example 10, see page 51)
&=90°
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Fig. 4-~24. Bistatic radar cross-section c¢¢/A2 pattern in the

plane 6 = 90° of a loaded circular loop scatterer.

(example 10, see page 51) 55
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8=180°

Fig. 4-~25. Bistatic radar cross-section 0¢¢/A2 pattern in the
plane & = 0°,180° of a loaded circular loop scatterer.

(example 10, see page 51)
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wire. Current distribution is plotted in Fig. 4-23. Bistatic radar

*
cross section oy /X pattern in the plane 6 = 90° is plotted in Fig.
4-24 and.0¢¥A pattern in the plane ¢ = 0,180° is plotted in Fig. 4-25,

The results can be compared with those of Harrington and Mautz [11].

The eleventh example considers a wire cross that is irradiated by
a plane wave of unit amplitude with angle of incidence 8, = 90°, o, = 90°.
The polarization of the wave is the U, direction. The configuration and

8

coordinate system are shown in Fig. 4-26 where Ll = L3 = L4 = 0.11x, L2=O.22A,

a=0.002224. The wavelength is given as one meter. This problem is treated

(

2a

T
i HZH
Fig. 4-26. Wire cross scatterer.

*
The bistatic radar cross-sections are denoted by c¢¢/kz, ce¢/kz, 0¢6/A2
and Og /Az Here, the first subscript denotes the polarization of the

scattered field and the second subscript denotes the polarlzatlon of the

incident wave. For example, in this problem o l&w (4mnr ]—31 ) and
ES E
- 2 1282 ¢
08¢ = %ig (4rr ‘ il ).
T
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3s a problem with four open wires as in Fig. 4-27. The analysis is carried

out using 14 segments for wires "1", "3", 12 segments fer wire 4" and 28

for wire "2", where all segments are of equal length. The computer program
for this problem is presented in Appendix B. DO LOOP 1512 and DO LOOP 1517
in the main program are used to generate the coordinates of the points on
the axes of the wires. Current references in the computer program are shown
in Fig. 4-27. Current distributions are>plotted in Fig. 4-29. The current
reference in Fig. 4-29 is different from that used in the program. Current
is positive in the -x direction for the horizontal wire and the +z direction
for the vertical wire. As expected the current on the horizontal wire has
odd symmetry. Bistatis radar cross-section 068/)\2 pattern in the plane

$ = 90°, 270° is plotted in Fig. 4-30 and o¢e/x2 pattern in the plane

6 = 90°, is plotted in Fig. 4-31, G¢G/A2 in the plane ¢ = 90°, 270° and

oee/k2 in the plane 6 = 90° is circular.

The twelfth example is the same as example 11 except the horizontal
5 = 0.165x in Fig.

4-26.) This problem is solved in the same manner as the previous example.

wire crosses the verticular wire at its center (Ll =L

Current distributions on the wires are plotted in Fig. 4-32. As expected

there is no current on the horizontal wire.

The last example (example 13) again involves the wire cross except the

horizontal wire is located at the top of the verticular wires, i.e.,
Ll = 0 and L2 = 0.33% in Fig. 4-26. This problem is treated as one with
three open wires as shown in Fig. 4-28. The analysis is carried out using
the same segment length as in the above two examples. Points on the axes
of these wires can be specified in the program as follows

AENOS = 0.22%WAVE/24.

NPNW = NP (NW)

DO 1518 I=1,NPNW

IF (NW.LE.1) X(1,NW,I) = 0

IF (NW.EQ.2) X(1,NW,I) = 0.11%WAVE-AENOS*(I-1)

IF (NW.EQ.3) X(1,NW,I) = -X(1,3,I) -
X(2,NW,I) = 0

IF (NW.GE.2) X(3,NW,I) = 0

IF (NW.EQ.1) X(3,NW,I)
1518 CONT INUE

AENOS*(I-1) - 0.33*WAVE
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Fig. 4-27. Wire cross of examples eleven and twelve,

Fig, 4-28, Wire cross of example thirteen.
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Current on the wire cross scatterer. (example 11, see page 55)
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Fig., 4-~30. Bistatic radar cross-section ¢ 2 pattern in the

96/)\
plane ¢ = 90°,270° for the wire cross. (example 11,

see page 55)
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Fig. 4-31. Bistatic radar cross-section c¢e/)\2 pattern in the

plane & = 90° for the wire cross. {(example 11, see

page 55)
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Current on the wire cross scatterer. (example 12, see
page 56)
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Fig. 4-33. Current on the wire cross scatterer. (example 13, see page 56) c
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Do 1519 J = 1,3
X(J,1,38) = X(J,3,12)
X(J,1,39) = X(J,3,11)
X(J,2,14) = X(J3,1,36)
1519 X(J,2,15) = X(J,1,35)

Current reference in the program is as shown in Fig. 4-28. Current distri-
butions are plotted in Fig. 4~33. The current reference in Fig. 4-33 is
positive in the -x direction for the horizontal wire and in the +z direction

for the vertical wire.

Scat?ering by a wire cross was also treated by Taylor and McAdams [12].
Their solution correctly regards both KCL (Kirchhoff's current law) and the
continuity of potential condition at the wire junction as is true with the
method presented here. However, they comment that these currents appear
continuous from left to right and from top to bottom across the junction
which is a condition not required by KCL. The results reported.here show
that these currents are indeed ﬁot continuous in this manner across the

wire junction.
4-4, Conclusion

In this chapter several examples were presented to illustrate certain
applications of the programs described in Chapter 3 and presented in the
Appendices. Numerical results compared favorably with experimental data

and/or results computed by other investigators.
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Chapter 5

CONCLUSION

In this report computer programs were presented and described for
handling analysis problems involving radiation and scattering by arbifrary
configurations of straight and bent wires. The wires can be fed or loaded
continuously or discretely at any point or points along their length, and

the problem geometry can involve wire junctions.

The method of analysis used was originally presented by Harrington
[1,2]. A piecewise lirear approximation to the current was used in a
Galerkin solution that provides rapid convergence for most problems of
engineering interest. Results were obtained for several typical configu-

rations and were compared with those of other investigators.

The treatment of wire junctions presented here has special significance.
Only very limited results were heretofore available for radiation and
scattering by configurations of this type, and these were somewhat mislead-
ing as discussed in this report with regard to the wire cross problem.
The programs presented here are equipped to handle wire junctions in such
a way that all appropriate boundary conditions are satisfied without re-~

quiring any additional or incorrect constraints.

Hence, the real significance of the programs presented in this report
is that a wide variety of problems and wire configurations can be treated.
YAnd, although the programs as shown in the Appendices are limited to a
total of four different wires, this limitation can be removed easily by

simply changing appropriate dimension statements.
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This program 1s suitable for radiation problems for thin wires

APPENDIX A

with excitations represented by lumped voltage sources at the peaks

of the triangle functions and loading represented by lumped loads,

also at the peaks of the triangle functions.
wires that can be handled here is four.

pansion functions for any wire is fifteen.

first.

the analysis of example one.

SURROUTINE CALZ(

MATRIX 7 .
CUMPLEX Z( 60,4 60),
1.RTy CEXP,y CI,
DIMENSTON

1XD{344432),
2771443244),

TLEN(4

CMPL X,
A(NWIRE ) yME(NWIRE) JNNINWIRE) $XX(344,32),
R{4493244)4sRX(3444932,4),

Xl)[)(403?ql*)vALP(‘+)QC(LF)7()(4)1':’(47)790(4)

This program is described in Sec, 3-2.

The maximum number of
The maximum number of ex-

Subroutines are listed

The sample input and output data listed here correspond to

| WAVE,NNIREyA,NEyNN)
THIS SUBRRQOUTINE IS USED THO CALCULATE THE GENERALIZED

Z4(4415444315)4PST(4,32,4)

HOLD1,

132 ),

HOLD?2

COMMON /COA/ XX XD TLEN /COR/ 7

CI={0.0,41.0)
PT=3.14159265
BETA=2.0%P1/WAVE
EPSLN = 8.854E-12

OMEG = 2.0%P1%?,997928FEB/WAVE

XMU=4, OF=T%P ]
DO 10 NWS=1,NWIRE
NENWS=NE (NWS)
DD. 10 NES=1,NENWS

TRFINES.EQ.1) GO TO 11

DO 17 NWF=1,NWIRE
NNNWF=NN (NWF )
N 17 NSF=1,NNNWF
XDD (NWF 4y NSF 1)
XDD (NWF o NSF 4 2)
PST(NWF,NSF,1)
17 PST(NWF,NSF,2)
KK = 3
GO TO 18
11 KK=1
18 CONTINUE
Of) 60 K =KK,4
. NESK=23%NES=2+K
DO 60 NWF=1,NWIRE
NNNWF=NN (NWF )
DO 60 NSF=1,NNNWF

{13 | B (A
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XDD(NWF ¢NSF43)
XD (NWF 4NSF 44 )
PST(NWF,NSF,3)
PST(NWFNSF,4)

TMPEDANCF



15

33

AB

41
42

31

R (NWE, NSk K) =0,
D15 J=1,.3 ‘

X(JaNWEGNSEGK) = XX (J NWF,NSF) = XX({JyNHSsNESK)
RINWE JNSF,K) = R(NWF,NSF,K) + RX(JoNWF yNSF 4K ) #%2
RONWFMSF oK) = SORT(R(NWF,NSF4K)}

ALP(K) = TLEN(NWS, MESK) /7.

77 (NuWE NSF LK) =0,

(033 =13

77 (MWE G NSE G K) = 77 (NWFEoNSF oK) +RX (S o NWF 3 NSF oK) %X (J s NWSyNESK }/
1(7.%ALP(K))

77,(NWF yNSF LK) = ABS(ZZ(NWF,NSF,K))

X1 (MWE JNSF oK) =0 .

Py A J=1,3
XD {MWE qNMSF oK) = XDDINWF ¢NSFLKY+XD({J,NWSNESK PRXD S o NWE s NSF)
Al = SORT(ARS(R{NWF ¢NSF K )#2=77 (NWFyNSFyK)%x2})

AL=SORT (AL=E2+A{NWF ) %x2)
T (R{NWF,NSF.K)GEL10.%ALP(KY) 6& T 31
R(NHF,NSF,K) = SORT(R(NWF yNSF K )®RE2+A(NWF }#%2)
RI = COS{-RETAXR(NWF NSFsK)) + CI%STN(—-RETA#R(NWF,NSF4K))
78 = 77 (NWFGMSFL,K) + ALP(K) '
A = Z7ENWFEGNSFKY-ALP (K}
SZA=SORT(AL®%DP+7 A%%2 )
S7AM=SORT (AL%%24+7 AMsik2)
T (ZZ(NWFNSF.KY.GTLALP(K)Y) 6O TO 41
ATI=ALOG({7A+SZAY (=7 AM+STZAM) /AL%%2)
GO TO 42
ATI=ALOG((ZA+SZA)Y/{(ZAM+S7 AM))
AT2=2 %ALPL  K) '
AT3=(7A%STA~7 AM*S7 AM+AL %% 25AT1 ) /2
DTGz ATPHALR%2+ (2 o %ALP(  K)%%3+6,%ALP{  KI®R7Z({NWF NSFKIY%®%2) /3,
PSTI=AT1~RETA®%2/2 % (AT 3=2 %R (NWF ¢ NSF¢K)RAT2+R (Nink y NSF¢K J3%2%AT1)
PSI2= —RETAR(AI?2=R (NWF 4NSF K) AT +RETAME3 /6% {AT4~3 %R (NWF, NSF,K)
PHAT 343 %R (NWF g NSF yK )5k 2%AT 2=R (NWF yNSF,K ) kx3%ATT)
PSTINWFEGNSFLK) = RT/(8%PI%ALP(K))*CMPLX(PSTI1,PST2)
61 TO 59
XKD=BETAXALP( K)
RI = COSI=RETA%R(NWF NSFoK)) + CI®*STN(=RETA*R(NWF NSF4K})
TR=Z7 (NWE g NMSF oK) /R (NWF ¢ MSF 4K}
NR=ALP(K)/R{NWFNSF LK)
FRP?=7Rxip
JR&4=7RPxxD
NR2=1Rsk==2
Hz (=1 .043,0%7R2)/6.0
H1=(3.0=30.0%ZR2+35,0%7R4)/40.0
AO=1 O+HEDR2+H T (DR D 3% D
Al=H*NR+HI%*DR2%DR
A2==7R2/6.N=DR2/40.0%(1.0=-12.0%ZR2+15,0%7ZR4)
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AB=DR/60,0%(3,0%7R2=5,0%2R4&)

A4=7R4/120.0

PSTIL=A0+XKD#&E2 A2+ XKDHRLHAL

PST2=XKD*AL+XKD#%3%AS

PSTINWF ¢NSF4K) = RT/(4%PT#R(NWF ¢NSF K} )*CMPLX(PSTL,PST2)
59 COMTINUF b
AN CONTINUE

ARCA=TLEM{NWS 4 2xNES~-1)

ARCR=TLEN(NWS 4 2%NES)

ARCC=TLEN(NWS,2%NES+1)

ARCD=TLEN{NWS 4 2NES+2)

Cll) = 1/2.%ARCA/(ARCA+ARCR)

C(2) = (ARCA+1/2.%ARCR)/ (ARCA+ARCR)
C(3) = (1/2.%ARCC+ABCD)/(ARCC+ARCD)
Cl&a)y =1/2.%ARCH/ (ARCC+ARCD)

(1) = 1./(ARCA+ARCR)

B2y =D(01) ,

D(3}) =-1./(ARCC+ARCD)

f1¢4) =n(3)

) 10 NWF=1,NWIRE
NEMWF=MNE (NWF)

DO 10 NEF=1,NENWF
ARCA=TLEN{NWF ,2%INEF~1)
ARCR=TLEN{NWF, 23NEF)
ABCC=TLEN{NWE , 2=NEF+1)
ABCD=TLEN(NWE , 25%NEF+7)

P(1) = 1/2.%*ARCA/(ARCA+ARCR)

P(2) = (ABRCA+1/2.%ARCRB)/(ABCA+ARCR)
P(3) = (1/2.%ARCC+ARCN)/(ARCC+ARECD)
Pl4) =1/2.%ARCD/ (ARCC+ARCD)

0{1) = 1./(ARCA+ARCR)

NE2) = 0(1)

0N(3) =-1./(ARCC+ARCD)

0(4) =0(3)

ZA(NWF,NEFqNNS,N&S) = {(0e+0,)
DL 70 1=1.4
DO 70 K=1 44
L=2%NEF-2+1
TO 74 (NWEGNEF gNWSZNES) = 74 (NWF o NEF NWSGNES) + CTROMEGHRXMU=RC (K)kP(T)%
1XDD(NWF,LqK)*PSI(NWF.L,K)+1./(CI*UMEG*EPSLN)*D(K)*O(I)*PST(NWFqL,
PKIETLEN(NWS 3 2%NES=2+K ) STLEN(NWF L)
10 CONTINUE
NOF =0
N0 90 NWF =1,NWIRFE
MENWF=NE (NWF)
) 90 NEF=1 NENWF
MF = NNF +1
NS = 0
DO 90 NWS=1,NWIRFE
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D

DO D

90

11

20

NEMWS=NE(NWS)

Nl 90 NES=1,NENWS

NS = NOS+]

7ONOF«NMOSY = Z4(NWFNEF MRS NES)
RETUIRM

)

SUBROUTINE CALZL (NLyNEJNWIREY

fHIS SUBROUTINE IS USED TD MUDIFY THE GENERALIZED TMPEDANCE
MATRIX Z TO INCLUDE THE EFFECTS UOF LUADING ON THE WIRES
CUMPLEX 7(60460)471L(4437)

DIMENSION LP(4,37) yNL(NWIRE) NE(NWIRE)

COMMON /COR/ 7 /COC/71.LP

JJ=0 .

DY 20 K=1,NWIRE

IF (K.EQ.1) GO TO 11

JU=JJ+NE (K=1)

CONT INUE

NLK=NL(K)

Dy 20 T=14NLK

J=JJ+LP (K1)

70y )= 00,V +ZL (K, T)

RETURN

)

SUBROUTINE LINEO(N, LsM)

THE STANDARD GAUSS—JORDAN METHOD IS USED TO INMVERT A COMPLEX
MATRIX IN THIS SURRUUTINE
N=ORDER OF THE MATRIX

A=THE INPUT AND QUTPUT MATRIX
L. M=WORKING VECTOR

COMPLEX A(60,60) ,RIGAHOLD
DIMENSTION LN} M(N)

COMMON /COR/ A

DI BO K=1,4M

L (K) =K

M(K) =K

RIGA=A(K,K)

DO 20 J=K,N

NN 20 T=K4N
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10
15

19
20

25

30
35

38

40

45

50
55

60

62
64
65

70
5
80
100
105

108

110

I (CARS(RIGA)-CARS(A(I,J)})
RIGA=A(T J}

L{K)=1

MIK)=J

CONT INUE

CONTINUE

J=L(K)

IF{J=K} 35,35,25
CONT INMUE

Ny 30 I=1.N
HOLD==A(K,1)
A(K,I)=A(J.T)
A(J.1)=HOLD

T=M(K)

IF({I-K) 45,45,38
CUNTINUE

DO 40 J=1,N
HOLD==A(JsK)
ACdyK)=A(d,1)
ACJde1)=HOLD
CONTINUE

N 55 I=14N

FF(TI-K)Y 50,455,50
AT K)=A{IK)Y/(=-RIGA}
CONT INUE

NN 65 I=1.N

DD 65 Jz=1,N

IF(I-K) 60.64460
IF(J=K) 62,64462
AT e J)Y=A(TK)RA(K J)+A(T o)
CONT INUE

CONTINUE ;
DO 75 J=1,4N

TF(J=-K) 70.,75,70
A{KyJY=A(K,J)/BRIGA
CONTINUE :
A(K K)=1./RIGA
CONTINUE

K=N

K=K=-1

TF(K) 150,150,105
I=L(K)

IF(I-K) 120,120,108
COANTINUE

NO 110 J=1.N
HOLD=A(J,K)
A{JKY==A(J,T1)
ACJ,1)=HOLD
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120 Jd=m(K}
ITF{J-K) 100,100,125
125 CONTIRNUE
DI 130 T=1eN
HOLD=A (K, 1)
AMKeTYy==A(Jy1)
130 A(J.1)Y=HOLD
Gl Ty 1600
150 RFTURN
Ewib) .

SURRNUTINE CRNT (1, CINS)
THIS SURRODUTINE IS USED Tl PERFURM THE PRODUCTTINON UF A MATEIX AND
A VECTOR ]

U = THE IMPUT VECTOR
Y = THF INPUT MATRIX
C = THE RESULT VEGTOR

NS = NRDFR OF MATRIX
CAMPLEX UINS)sY(60.60)4C(NS)
Cihvapiyn /COR/ Y
11 5 T=1,NS
ClIN=(04 40}
NIt 5 L=1,NS
5 COIY=ClIY+Y(TI,L)%U(L)
RETHRN
Enn

SURRUUTINE BIGY (U NF.NWIREJNEJNER)

THTS SURRQUTINE 1S USED TO CALCULATE THE GENEQALIZED VOLTAGE MATRIX V

COMPLEX VI(4,32) +U(NEP)

DIMENSTION TF{(4,32) JNFINWIRE) NE(NWIRE)

COMMON /CON/VLIF

DY 5 I=1,NEP : .
5 I = (0900 ) ‘

JJd=0

DN 10 K=1,MWIRE

IF (K.EOL1)Y GO TO 11

JI=JJ+NE(K=-11}
11 CONTINUF
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NFK=NF (K) )

NO 10 I=1,NFK

\" = Jd + IF{(K,I)
10 U((J) = V(K,T)

RETURNM

BN

SURROUTINE ROW(RD ZATHE ¢APHT yNE NN ,RETAZNWIRE (NEP)
THIS SURROUTINE IS USED TO CALCULATE THE MEASUREMENT MATRIX RO
CUMPLEX RO(?.NEP),CEXP,CI

DIMENSTON NE(NWIRE) JNN{NWIRE) 4 TLEN(4432) 1 XX{344432),
1XD(3,4,32) U2 e3) 3 TKI3) « TKRPT(4) 4C (&) XNDULG)
COMMON /COA/XX XD 4 TLEN -

THE=ATHE/57.2958

PHI=APHI/57.2958

J{1,1) = UNIT VECTOR OF THE THETA DIRECTINN
1{1s1)=COSITHE)®=COS(PHIT) '
(142)=COS(THE)®*STN(PHI)

J{1s3)= =SIN(THE)

HE2,1) = UNIT VECTOR OF THE PHI DIRECTINN
U(241)==SIN(PHT)

H(242)= COS(PHT)

Ul2,3)=0.

TK = -(WAVF NUMBER VECTOR)*(UNTT RADIUS VECTONR)
TK(1)=SIN(THE)*CUS(PHI)*RETA
TK(2)=SIN(THE)*STN(PHI )%RETA

TK(3)=CNS(THE)=REFTA

N=0

DY 20 NWS=1 ,NWIRFE

NENWS=NE(NWS)

DO 20 NES=1,NENWS

N=N+1 )

ABCA=TLEN(NWS, 2%NES=1)

ARCR=TLEN(NWS, 2%NES)

ARCC=TLEN(NWS, 2:NES+1)

ABCND=TLEN(NWS ¢ 2%NES+2)

C(l1) = 1/2.%ABCA/(ABCA+ARCB) .
C(2) = (ABRCA+1/7.*ARCR)/(ARCA+ARCR)
C(3) = (1/2.%ABCC+ABCD)/(ABRCC+ARCD)

Cl4) =1/2.%ARCD/ (ARCC+ARCD)
DA 30 M=1,4
TKRPI(M)=0,.
DO 30 J=1,3
30 TKRPI(M)=TKRPI(M)+XX(JyNWSy2*XNES~2+M)%xTK(J)
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OO0

40

O 20 I=1,2

DO 40 M=1,4

XIMH{M)y=0,

DY 40 Jg=1,3
XOULM)=XOUIM)+XDEJ o NWS s 255NES=2+M)%U{ T, J)
RO(TWNY = (D.,0.)

- 50 M=1,4

50
20

>0
10

CI={04sla)

RO(TAN) = ROLTSNI+CIM)EXDU(MIR(COSITKRPTI{ MY )+CTHSTNITKRPI (M) ))
COMT INUE

RETIHRN

i

SUHRROUTINE PATT(C RO GE,OMEG, XMU4NEP)
_THIS SUBRNUTINE IS USEN TO CALCULATE THE SCATTERED FTELD
JOMPLEX RN{2.NEP)E(2),C(NEP),CT,CEXP,EE(2)
CI=(0.0,1.0) .
DY 10 I=142
EF(T)={0as0.)
D20 J=14NEP

EF(I)=EELTII+RMD(T«dI=C(I)

F(I)= —CI#=OMEGHXMU/ (4 .%3.14159 y%xEE({T)
RETHIRN

ENTY

MATN PROGRAM , ,
CUHMPLEX ZL( 4432) sV( 4432),7( 60,60 }+U( 60),C(H0)4RO( 2,60),
1E(2) 4 ZTNGCONIGCT+YINGATHLCRELLC v v v o - .
PDIMENSTON RA(l?)»A(l?IvNSA%?ﬁqF‘NE(DEho NHEL2Y. 3 :NCLOSE(T2)
1X(3, 4433}, NE(12), NP(12), NNUT244 BRE)4&Y32)y.LP( 4432),
2XX‘31 4932), XD(B, 4732)9 TLEN( 4932)1 LMNUP(H@),MMNﬂp(ﬁo)q

1EPHA(2) ,GPHA(2) ,GMAG(2) Si¥miint et
COMMON /COA/ZXXX[Ds TLEN /COR/Z /COC/TLsLP JCODIVEF 0E oo
(LINTHR (M Qe USNT , 2W, L LK+ LM T ANT =M T nw il
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DD

oo

PT =3.,14159265

XMi) = THF PERMEARILITY OF FREE SPACE
XMl = 4 OF=T%P]

FPSLN = THE PFRAITTIVITY OF FREE SPACE

FPSLN = B,8b4F=-17
L o= (0asla)
WAVE = THFE WAVFLRWNGTH

100 RPEAD (147, Erh=500) WAV E
VIRTTE (3,11) WAVE

MMEG = THE ANGLE FREAOUENCE

MEGS? e 99TYPRER/WAVE D 5P| .
KETA = THE WAVFE niIMRER (JF FREF SPAGE
RE[A = 2,%PT/WAVF

NWTRE = THE TOTAL NUMRER (IF WIRES TN THE PROBLEM GENMETRY
REAY (143) NWIRE
WRTITE (34172) MWk
WRTITE (3.4191)
DL 550 M= MW RE
WRTITE (3,413} i
RA (N THE WIRE RADIUS OF THE NWITH WIRF ( I WAVELEMNGTH)
NS (N ) THE NUMRER (OF SEGMENMTS MAKTNG UP THR NWYTH WIRE
M (N THE NUMRER OF EXCITATTONMS (N THE NWETH WIRE
NL{NW) MUMBER (OF LUADS ON THE NWITH wTw¥
READ(141) BA(MIM). MSINWY, ME{MW), NU ()
WRITE (3+5) RACME) gNSINW) o ME (NW) g ML (M)
TE(NW,T) SPECTIFIED THE POSITION 0OF THE EXCITATTIONS ON THE WTRe
NP AW =ME (W)
READ(TI ¢3) (TF(NWaT) o T=14NFMNW )
WRTITE(346) (TE(NWLT) o T=1MENY )
VINW,T) IS THE VULTAGFE OF THE SOHRCE AL THE PEAK (F THE T'IH
FXPANSTOIN FUNCTINNS N THE NWYTH WIRE
RE AL (1e4) (VI NwgT)aT=1NFNW )
WRITE(3,7) (V{nWeT ) e T=1 o NENW )
LP(NMWeT) SPECIFTED THE PUSITIONS (OF THE LNADS ON THFE WIRES
WL AN =N (N
READ (143) (LP(nweT) ¢ T=1 oMLK )
WRITE (3458) (LP(NW,T) T=14NLNW ) X ‘
7L (NW,T) = LOAD IMPEDANCFES AT THF POTNTS SPECIFIED RY LP{NW,T)
READ  (T44) (ZLAIMW,T)eT=7 ¢NLNKW )
WRITE(3,9) (7L (e T}y T=1 o LNMK )
WRTITE (3,152}
NE(NB) = THE NUMRBER (OF EXPANSION FUNGCTTIIMS OIN THE NW'TH WIRE
NP (NW) = THE NMIVKER (OF POINTS DM THE AXTS (iIF THE NW!'TR WIRE
WHICH SHOULD BRE SPFCIFIED
ME{NWY = NS(NW)/2-1
NP (W) =NS(NW) +1
27 MMINW) = 2%NEF(MW)+? .
( XULoNWeT) o X (2 NWeT) o X(3gNWyI) } IS THE CARTESTAN CHORDINATE

OF THE T'TH POINT ON THE AXIS OF THE NWITH WIRF

nou
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o,

1510

550

15

20

5A0

28

30

HH =0,25%WAVE
NPNW = NP (MW)
B 1510 I=14NPNW
X{14NW,T) = 0.
X(2yMWeI1) = 0,
X(B34NWy T )=2%HH/NS{NW)YR(I=~1)-HH
WRITE (34310)
NPNW = NP({NW)
WRITE(3+300) ((X(JyNW,T)}sJ=1¢3)sTI=1+NPNW)
WRITE (34152)
CONTINUE
DY 560 NW=1,NWIRE
NAMNW=NN(NW)
{ XXCLoNWeI) o XX (2 eNWaT ) o XX{(34yNWsI)Y } IS THE CUOORDINATE OF THE
CENTER POINT OF THE T'TH SEGMENT (OF THE NW!'TH WIRE
N 15 T=14NNNW
P15 J=1.3
XXA{JeNW,T1) {(X{TyNWy T ) EX(JyNW T+ ) /2
XD(JeNWy T X JyoNW,y I+1)-X(JyNw,I)
TLEN(NW,T) IS THE LENGTH OF THE I'TH SFFMENT OF THE NW'TH WIRE
N 20 T=14NNNW
TLEN{NW.I) = SORT(XD{I N, I)**?+X)(?,wa1)~m?+XD(3 NN,I)**?)
A(NW) = RA(NW)=WAVE
CONTINUE
WRITE(3,151)
NEP=0,
NO 28 NW=1,NWIRE
NEP =NEP+NE(NW) A
NEP = THE (ORDER {IF THE GENERALIZED IMPEDANCE MATRIX 7
CALL CALZ(WAVE NWIRE A ,NE,NN)
CALL CALZL(NLNEJNWIRE)
CALL LINEQ(NEP +LMNOP,MMNOP)
CALL RIGV(UJNF.NWIRENESNEP)
th TS THE GENERALTZED VOLTAGE MATRIX
C IS THE GENERALIZED CURRENT MATRIX
CALL CRNT (UL +NEP)
WRITE(3,200)
WRITE(3,205)
IHY 30 I=14MNEP
CMAG=CABS(CI(1})
CPHA=ATANZ(ATMAG(C(T} ) REALIC{T)Y})I®180./3.1416
WRITE (3450) I1.,C(1)4CMAG,CPHA
WRITE(3,151)
PUOWER =0,
JJ=0
NIl 55 K=1,NMWIRE
F{K.EQ.L1) GO TU 37
JJd=dJ+NE(K=-1}
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37

b

37
33
40)

35

7941

PN —

CONTINUE

NEK=NF{K)

DT he J=14NFK

[=dJ+TF (Ked)

ZIN = INPUT IMPUNANCE

YIN = INPUT ADMITTANCE

ZIN=U{T)/C(T)

YIN = (0440,

ABSZIN = CABS(7Ti)

IF (ARSZINL,GE.O.1E=6) YIN=1,/21N

POWER = POWER + 1 ./2.3%REAL{UCTIIR®CONJIG(C{(T)Y))
WRITHE(3,53) JeK,Z21n

WRITEF(3,54) JeK.YIN

WRITE(3,201)

WRTITRE (3.7203)

D 35 TPHT = 1,1

N 35 ITTHE = 1,181,20

ATHE = TITHF ~ 1

APHI=TPHI=1

RN IS THE MEASUREMENT MATRIX

CALL RNOW( RU,ATHEQI\PHI9NE.NI\HRETAquAIIREqNED)
CALL PATTICROGF JMIHEG e XMUNEP)

ECLY TS THE THETA COMPONENT OF THE SCATTERED FIELD
F(2) IS THE PHI COMPONENT OF THE SCATTERED FIELD
Dy 40 K=1,7

HH = CARS{F(K))

IF(HHFOL0L) GO T 32

FPHA(K) = ATANP?(ATHAG(E(K) ) +REAL{E(K)))

G TO 33

EPHA(K)Y=D,

GPHA(K)=EPHA(K)®1RN,0/3.1416
GUAG(K)I=CARS(E(K))

TE(IPHT . FO, 1) GMAGM=GMAG(1T)

WRITE(3,44) ATHEv/\pHIvE(])9GMAG(])QGPHA(I)’F(?)vGMAC(?)QGPHA(?)
GATHE = GMAG(1)%%2/30,./POWER/?,

GAPHT = GMAG(2)%x2/30./POWER/2,

WRITE (3,206A) GATHE 4GAPHI

CONT TNUF

WRITEF(34151)

CONT TNUE

GO TO 100

FORMAT ( F10.5.415)

FORMAT (3F10.5)

FIRMAT(1615)

FORMAT( RF10,3)

FORMAT (Y RA=Y JF1(0eB ! NS=4,T5,1 NF=V,T5H,! NL=1,T15)
FORMAT (' TF(T)=%,1,15)
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7 FORMAT(E V(I )= ,R+10,3)

8 FORMAT(Y LP(I)=%, 1615)

9 FORMAT(Y ZL(T)=4',8F10,.3)
10 FORMAT (' '4,3F10.5)

11 FUORMAT{! WAVE =1t,F20.5)

17 FORMAT(Y NWIRE = ',15)

13 FORMAT(Y DATA FOR THFE ',I5,'TH WIRE?')
44 FUHRMAT(' *42F5,048E13.5)
50 FORMAT(1543E12.4,F10.3)
53 FNRMAT(! CINPUT IMPEDANCE AT', I5,'TH

1 WIRE 7IN=',2E10.,3)
54 FORMAT (! INPUT ADMTITTANCE AT',I5,'TH
WIRE YIN=1,2E10.3)

FEEDING POINT OF 1915, 1TH

FEEDING POINT OF %515, 'TH

_____________ ')
MAGNTTUDE  PHAS
_ PHASE')
MAGNTTUDE PHASE ")
GATHE =',E10.3,"

LOGARITHMIC GAIN ='4yE10.3)

151 FIIRMAT (1 sk siok stk st sk sk e e s oo ik s il sk s ok SR eokox e § )
152 FORMAT(? —m—mememmm e e m e m e e m e e
200 FORMAT(Y CURRENT DISTRIRUTIONT)
2017 FORMAT(Y FIELD PATTERNY)
203 FORMAT(V-ATHE ARHI E(THE)
1F E(PHI) MAGNTITUDE
205 FORMAT (! I C{I)
206 FORMAT (Y GAIN PATTERN
1 GAIN PATTERN GAPHI = 1,E10.3,:"
300 FORMAT(Y ',12E10.2)
310 FORMAT(Y  THE COURDINATE OF THE WIRE!)
500 STOP :
)
$HATA
1.0
1
0.007022 728 1 1
7[
10; 0-
1 ‘
0. O
$STNP

/%
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WAVF
NWIPE

1

PDATA FR
BA=
[F(T)}=
vi(l)=
¢ LP(I)=
IL{i)=

THE
UUPRARS N SR

7
LN
1

1.0000N0

LTt

N© =

A10F

2% NF=

s ok e oo e et de o e o e Yo ot v W ke e ok T e e TROYE e o o ol e ol i e e M o e ok

THC CHORDINATE )
JdeCOE O D.N0F
CeaC0E 0O Q,UNF
0.6G0F 0400

CLONF DO D .00

NgIOE (i} T INE

()07 N AL O0NE

CLONE OO 0.10C

0.GOF 00 9.909F

DLO0E 00 DLODF

, DLOOF €O 0.0CE
¢ ML DO A nnE

CLO0F
2. 0E
M e NOF
i ¢ NNF

00 A
ek
JDQQE
N, 10k

LN

Forde Wit
(7 =1420F N0
Nl =04 21F 0G
=Y, 1BE OC
fN =014t NG
60 =1, 118 N0
Cl= TLE=0)
T = 36E-01
70N

o Ve 6GE~-TT
! JeR6FE-C1
T . 71E-1

SRR S § S
EA RS R A
Ch .18 09
7 C a7 1E 0

H T 25F U

el D
U.0F 20
CeOUGE 0D
Geu(F O
Lol 05
a0 AN
Ge*C T VD
[GIRTAT IR TS
C.2CH Qo

0.0(Ck
v, O
(.: .7""{\‘7
Gatk

U0+ 0

02
[ARA!

a0

- 1
K . ’r. ;-“:’
T e iYE I
TeME OO
Del DE AN
Te 1. F O
R
ie TOE TD
Je 32E OC
Deongono

oo

(N
AR S
St E 7T
N, TNE 6

s o e st e sl e o e s e s s v e Y Sl I s e 9 o ok e sk i ok e e s e e v
CURRENT NDISTRIQYTILN

i , ceI
D284 =02 =", 21A4T7E=02

AAGHITUDE
0.3529E=(7

iy

SR TR Fe
—3,27F C0
—ill6f o0
—LaV3E 7r

—eF =
—C L hAF= T

S10L-71
Cal -1
fuR4T =01
CeEIE-T1
HL12F 00
:\-]"“t o
Ceesfo2t

cL23t B

PHASH.

T4 46580F=7)
Teb1lE1E=-T?
NegT435F="p
N, 33TBF—-20
e RGH G =i 2
J.9155F=12
T e BYHQE~T2
T eRB3TBE-C2
e T4 A4E -0
Va6 lG1E-N?
Ve 4 5AQE~CY
TFe28L4E-02

wlier 20 X~N NP WNPE

= el et e

=" e 3325F=-02
- e4?2%10-02
— G4 YIE—()
=T AQTTE-0D
=5 482617 =02
R L VL
- L 4326F=07
- 4Q7T7E=ND
=0 ARIZE=0P
= e 42411 =072
=7 e 3320007

=0 ?21%75-02

U eBKR9F-12
T e T48UVE-T2
GeB351F-77
R
Ve lVL8F=D1
49T75QL~-02
1s 1001 8F =N
Q.QIQSFTJZ
flg 43670 =17
G TAPAF =0
NebAsat =P
Na35390 732

-25,974
-34,540
- 32,867
-3..713
~23.311
-20.274
28310
37 7TY3
37,8672
14,541
15,978
37.345

1

e e e o e ook o s oo s st o e ol sl ek et ool sk ol ok o ok ok o
INPUT IMPEDRANCF AT  1TH FEEDING PHOINT
JIN= 0,961k G2 C.355E (2
INPUT ADMITTANCE AT 1TH
YIN= - G3.515b=-0"/7=0,328E-02

dk

FEEDT NG,

81

EARBIRY

X%

Ot

O

1TH Wk

1TH Wi [



FIFLD
ATHY
Ve
25
4,
61,
Bl
LUG .
127,

1(1-\"1 -

PATTERN
APHI E(THL) MAGNITUDE
Te =G CINNCE ) = NNNONNT DU DL, 00N00E N0
GATN PATTELN GATHE = 0.000 o0
e TeQl3ACE-N] GalOhesar 00 Ne18133F O
SATMN PATTE ™ GATHE = T.120F N0
Mo 74138523F 07 J.RIBTIF OGN J.37231F 00
GAIN PATTERN GATHE = 0D.499F NO
Do  Je?8L4SF 09 N.A4H8USE 00 N.54695E 00

GATN PATTCRY GATHF = 0.109F 01
Co  TL34161T D0 O,556415F 00 NGAS5952E 0N
GAIN PATTERN
Te. 0,34161E 0

1.56415E 0C Nebbv9Y52F 00

GAIMN PATTEPY GATHE = 0.1%38" 71
Ce Da2814°9F 00 0O.46896F 00 2L.546C5C Q0

GAIN PATTHEN GATHE = uv.1C09F N1
Dot NalH33%3F 0D 2.31873% 00 DL,3T7031+ 0O

SAT' PATTEDN GATHE = 0.,433E 00

fe D.91338B8E-"1 0 DL 1H664E OC
GATN PAT TN
Ce 1440831 F-05
GATIHN

N.18133E 0N
GATHE = C.12NnE 90
OJ7TCLGRF=06  J3.81089t-04
PATTERN GATHE = 0.239E-11

BB e s v ol v s ol e o R e o o sl Vil YR e R e oo o e ek ok ol ok

82

OATHE = 0.158F 7L

Je DR 390E

PHAS v .
N.CNC02F A0
LALLM
MeDRIH3F D7
GA N
n2
GAIN
N.B59025E 22
CATN
D2
GAIN
o
GAIN
0.59025F 22
GCAIN
e
GAIN
.‘\2
GAIN
0. 59955E "2
GATN

11459395¢L

D¢ 513041

0.5880¢4E

"L T54E
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APPENDIX B

This program is suitable for scattering problems of thin wires
with loading represented by lumped loads at the peaks of the triangle
functions. The maximum number of wires that can be handled here is
four and the maximum number of expansion functions for any wire is fif-
teen, All subroutines except subroutine BIGV are exactly the same as
those in Appendix A, hence, are not repeated here. Subroutine BIGV is
listed first. The sample input and output data correspond to the analy-
sis of example 11 This program is described in Sec. 3-3.

CHRROWT TNE RIGV Y oMW TR E g MN G NEF g NFP o F T o THET ¢ PHITT o BRETAY

THTS SHRROUTINE TS USED TO CALCULATE THE GENEWALTZED VOLTAGE s} e T

CimiPLEX UVINMEPYV(4, R32)EI(2), C1
1] Wl"‘j!\lSI”N i'\H\)(NHIRE) vNF(f\H"‘fRE)QXX(Bq‘fs 3?),)’“(394’ 37)’]‘LF'V\'(4'
]Il(%)op(‘i’) 9“(71’5)

Crimmping /CIIA/XX « XTh g TLFN

L = (()-ylo)

LTI=3,1415926

THE = PIXRTHERT /180,

PHT PI=PHTTI /180,

N 26 Ni=1 NWIRE

BN = MM

N 2A NSS=1 o NNNW

V(e o ISSY = (Ne o1, )

{1 1) =COSITHEY®RCNS{PHT )

(Y« 2)=COS{THE ) =STN(PHT )
H{143)= =SIN(THE)

24 1) ==ST(PHT )

HE242)= COS{PHT)

”(293)=()o
IKELY=STIN{THEY=CHIS{PHT }==KRETA
T2 Y=STrM{THE ) =STNLPHT ) RETA
TKRA)=CNS(THE)Y=RETA

[KRPT=0O,

A 27 d=1 .3 :
TKRPI=TKRPTAXX{JetWNSSYRTK(JY)
i 2A T=142

Xiii=0,

iy 28 J=1,3

tt

XDU=XDURXI e N g NSS )k T 4J)
VMW NSSH) = VINWMgpMSSY+XDUsFT(T) = {CUOS{TKRPTY+CTITxRSTINMIKRPT Y)Y
Ja=0 .

P 10 NWRF=1 NWIRE
NERBE = NFNWE)
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OO SO0

10

100

N 10 NEF=1,NENWF

Ja=Jdd
Uv(J3d
ARCA=
ARCR=
ARCC=
ARCH=
P{1}
piz}
P{3}
Pi4)
Hry 10
Hv(dd
RETUR
ki)

MATN

COMpL
LE(2),

DIMEN
1X(3,
2XX3,
BEPHA(

+1 .
) = (0.40.)
TLEN{NWF, 2%NEF-1)
TLEN({NWF 4 2%=NEF)
TLEN(NWE 4 2%NEF+1 )
TLEN(NWF 4 23NEF+2)
1/2.%ABCA/ (ARCA+ARCR)
(ARCA+Y /7 .2ARCR)Y/ LARCA+ARCR)
(1/2.%ARCC+ARCD)/ (ARCC+ARCD)
1/2.%ARCH/ (ARCC+ARCI}
K=19‘4"
b= UVIJI)+P(KYRV(NWE ¢ 2%¥NEF=2+K)
N

woH ou

PROGRAM

EX ZL{ 4432) LET(2) 20 60460 YUl B0 sCLANYLROT Z,60),

ZINJCONJIGLCT Y IN

STON FACLZ) +A(12) NS(L2Y, NF{12},

4,33}, NE(I2)s NP(12)s NN(12),
4e3201 ¢ XD{(3, 4432), TLEN( 44371}«
2)+GPHA(Z) GMAG(2)

NLE12),
LP( 4,321,
LMNOP (A0) 4MMNOIP(A0]) ,

COMMON /COA/XX XD, TLEN /CNOB/Z /COC/ 7L 4LP

PI =3
XM =
Xtagy =
EPSLM
FPSLN
CI =
WAVE
READ
WRITH
NMEG
OMEG=
RETA
RETA
NWIRF
REAM
WRITE
WRITE
Ny 55
WRITE

14159245

THE PFRMEABILITY NF FREE SPACF
4 OE=-T7%pP]

= THF PERMITTIVITY OF FREE SPACE
= R.854FE~17

(Deslal)
= THE WAVELENGTH

(1472, END=500) WAVE

(3,11) WAVE

= THE ANGLE FREOQUENCE
2.99T797RER/WAVERD, %P]

= THE WAVE NUMRBRER (IF FREE SPACE
= 2.%P1/WAVE

= THE TOTAL NUMBER 0OF WIRES IN THE PROBLEM GEOMETRY

(1+3) NWIRE
(3,12) NWIRE
(3,151}

0O NW=T1,NWIRE
{3,13) NW

RA(NW) = THE WIRE RADIUS OF THE NW'TH WIRE { TN WAVELENGTH)
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R eNe

22

1501

16512
550

1517

MS (N ) THE NUMRER OF SEGMENTS MAKING HP THE NW!'TH WIRE

([

NLONW) NUMBRER OF LUADS UN THE NWPTH WIRE
READ(Ls1) RA(NW) s NSINWY, NL (NW)
WRITE (345) BAINW) ¢NSINW), ML (N

LP(NW,T}) SPECIFIEN THE POSITIONS OF THE LOANDS ON THE WIRES

NE MW =NL (Muwy

READ (1,3) (LPINW,T),T=1,NLNW )

WRITE (3438) (LP(NWeT)sI=1,NLNW )

ZLINW,T) = LOAD TUPEDNANCES AT THE POINTS SPECIFTED RY LP(INW,I}
READ  (144) (ZL(MWeT)eT=1,NLNW )

WRITE(3,9) (ZLINWLT) o I=1 4 NLNW )

WRITE (3,152)

ME (NWH) THE NUMRER OF EXPANSINN FUNCTTNINS ON THE NW'TH WIRE
NP (NW) = THE NUMBER OF POINTS ON THE AXTS (OF THE NWITH WIRFE
WHICH SHOULD RE SPECIFIED

NE(RW) = NS(Nw)/?2-1

MEPINW) =NS(NW)Y +1

NN {MW) = 25NE (Ni) +2 )

( XCD gNWaT Y s X (20U T ) X(34NW,I) ) TS THE CARTESTAN COORDINAILE
OF THE T'TH POINI ONM THE AXIS OF THE NW'TH WIRE

AENOS = 0.22%=WAVE/24,

NPNW = NP {RW)

N0 1512 T=1,NPNW

1F (NW.LF..Z) X(lq‘\lh',[) = (O,
IF (NW,EQ.3) X(LoNWyI) = O411xWAVE~AENOSH(T-1)
IF (NW.EQ.‘P) X(l,NW,T). = -X(1939I)

X(2¢NWwyT) = 0
ITF{NW.GE3) X{3.NbisaI) =
ITF (NW,EQL?) X({3.NW,T1)
TP (NWEOLL) X{3,NW,T)
CONTINUE

CONTINUE

NO 1517 J= 1,3
X(Jalels) X(J+3,412)
X{(Jelal5) X{Jd¢3.11)
X{Je2¢726) X{Jelrol1?)
X{Je24+427) X{Jebyell)}

X{Je3414) X{Js2424)
X{J+3,15) X(Js2423)

D) 56U NW=1,NWIRE

WRITE (3,310)

NPNW = NP{NW)

WRITE(39373) ({X(Jy WLl ) gd=143)41=1,3NPNA)

AVITE (3,152)

NANW=NN(NW)

{ XX(LoNWeT) oXXU2 NWoI) ¢XX{3,NWyI) ) IS THE COORDINATE OF THE

AENOS*(T=1) = 0.?72%WAVE
Do 11HRWAVE~AENNSH(T=1)

[ | ]

i og nonn
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b

20

560

30

CENTER POINT OF THE _I'TH SEGMENT OF THE NW'TH WIRE
tifl 15 T=14NNNW

DiL 15 J=1,43 : ,
XX JalNUWyT) (X (JSoNWy T Y+X(JyNW, T+11)/2,

SIS e NW S T ) X o NWeT+1)=X(JyNW,T)

[LEN(NWeI) IS THE LENGTH 0OF THE T'TH SEGMENT OF THFE NW'TH WIRE
N 200 T=1 e NNNW

TLEN(NWyI) = SORT(XD(LyNW,T)#x24XD{29MW,y 1) %x2+XD (33 NWyT)x%2)
A(NW) = BA{(NW)*®WAVE "

CUONTINUE

WRITE(3,151)

NMEP=0,

DM 28 NW=1.NWIRE

NFEP =NEP+NE(NW)}

NEP = THE DRDER OF THE GENERALTZED IMPEDANCE MATRIX 7

CALL CAL7Z (WAVE NWIRE.A,NENN)

oLl CALZL (ML +NEJNWIRE)

CALL LINEO(NEP ,LMNOP,MMNOP)

READ (1,3) NOSET

WRITF (3,3} NOSET

Ny 794 TKA=1,.NOSET

READ {1,4) THET.PHIT

WRTTF (3¢6) THET PHFII

THET,PHIT = THF ANGLES DFESIGNATING THE DIRECTION OF PROPAGATION OF
THE INCIDENT WAVE ~

READ(Ly4) ET(1).EI(2)

WRITE (3,7) EI(1).EI(2)

E1(1) = THE THETA COMPONENT OF THE INCIDENT ELECTRTIC FIELD
ET(2) = THE PHI CUOMPONENT OF THE INCIDENT ELECTRIC FTELD
WRITE(3,4151 )

CALL RIGVI U NWIRE yNNyNEJNEPET,THET yPHITLRETA)

) 1S THE GENERALIZED VOLTAGE MATRIX

C IS THF GENERALIZED CURRENT MATRIX

CALL CRMT(U,CyNEP)

WRITE(3,200)

WRITE(3,20%)

0 30 I=1,NEP

CMAG=CARS(C(T))
CPHA=ATAN2(AIMAG(C(T})RFAL(C(T)))I*1R0./3.1416

WRITE (3,50) I,C(1),CMAG,CPHA

WRITE(3,151)

WRTITH(3,201)

WRITE (3,203)

DN 3% ISTA =1,2

IF (ISTALEO.1) IKPHI = 180
JF (ISTA.EQ.1) IKTHE = 10
TF (ISTA.EQ.2) IKTHE = 300
IF (ISTAL.EN.?) TKPHI = 10
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(3% 1PHI 9147271 TKPHT
N 35 T THE 1,181, TKTHE
APHIT = JPHT =1 :
ATHE = 1THEF=] :
1E (ISTALEG,?2) ATHE = ATHE+90.
POTS THE  MEASHIEMENT MATRIX
CALL b DH,A[HV.APH],NF,NN,HFTA,Nm]pp,AFp)
E(1) 1S THE THETA CUMPONEMT W THE SCATTrRED FTELD
F(7) 1S THE PHT CHHPONENT OF THE SCATTERED FIFLD
(VRIS PATTC RO oF «t1F G o XMU «NEP)
] 40 K=1,7
elo= CARS({R(KDY)
TE(HM FO 0L ) (e T 32 :
EPHA(KY) = ATAMP (ATHAG(E(K)),REAL(E(K) )
o TN 33
30 FPHA(K)=0,
33 GPHA(K)=EPHA(K)XTRN,N/3.1416
400 GMAG(K)=CARS{F(K))
FRITF{3444) ATHE-APHI,E(]),CMAG(1)~GPHA(1)qE(?).GMAC(?),GPHA(Q)

Wt

SIGMA = THE  FCHO ARFA/WAVE:RKRD

Frip = FT(1)3ep+rT (2)3%%2

CIOMAT =4 2P TRGMAG( 1)k / (FUPRWAVEXRND)
STOMAP=G (kP TRGMAL (D)% / (EO2RWAVERRD )

WRITE(3,20A) SIGHATLSTGMAD
Wi CIMT Ttk
We T TF(234101)
TR oMl Itk
TaL CHNT TNUE
- wl T | (39]‘71)
WRITE(3,157)
WRTTIE(3,101)
Ciy o Ter 100

EORMAT(Y LP(I)=v. 1615)

EGRMATEY 71L(T)Y=',8F10.3)

17 FORMAT (v YL,3F10.5)

11 EFUHRMAT(! WAVE =1',F?20.5)

12 FORMAT(Y MWIRE = V,[h)

13 FORMAT(Y DATA FOR THE '3 15,'TH  WIRF")
GLi FORMAT(Y ' 2F5.04,8F13.5)

50 FORMAT(T5,3E12.4+F10.3)

151 FURMAT (! ****$****************************************')

] OFORMAT ( F10.54415)

2 FHRMAT (3F10.58)

3 FRMAT(16AIH)

4 FEORPMAT( BFI10.3Y

5 FURMAT(Y RA='  F10.A,! NS=1yTh,y! NL=t,15)
A ENEMATIY THEI='YF12,72,1 PHIT=t,F172.7)

7 FORMAT (Y  ET(1) = '42E12.4,! ET(2) = '4y?2F12.4)

=

Q
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155 FORMAT (1 s ——————— e vy
200 FORMAT(* CURRENT DISTRIBUTIONT)
201 FORMAT (Y FIELD PATTERNT')

2703 FORMAT('=~ATHE APHI E(THE) MAGMTTUDE PHAS
1E E(PHIT) MAGNTTUDE PHASE V) |
205 FNRMAT (" o ClI) MAGNTTUDF PHASE ")
206 FlLxMAT (! STGMAT = 1,E20.5,! ' SIGMA? = 1, E20.5)
300 FOREAT(Y 1V, 12E10.2) , B
310 FORSMAT (Y THE COUORDINATE tIF THE WIRE)
500 STip ’ 4
i)
/,:
F/GNGSYSTH DD o=
1«
4
G.N0G222 14 1
O, 0.
0.00222 26 1
|
(t. 0. )
G.0N22 14 1
1
O, 0.
a0 277 i2 1
1
). 0.
[
90. XS IN
-1. IR 0. 0o
/3%
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WAVE = - 1.00000

NWIRE = 4

5 e ok ot % R kR s Kt s ok ok o o Rl B o ok e K R ok
TATA FDOROTHE 1TH WIRE )
RA=  0.,002220 NS = 14 NL= 1
LP{I)= 1

L{l)= 0.0 0.0

LATA FOR THE 2TH NIRF

BA=  Q.(022220 CN= 26 . ~ NL= 1
LP(I)= 1

Ll )= 3.0 0.0

PaTA FOR THE ITH  WIRE

HA=  (.C02220 NS = 14 : NL= 1
L P(l)= 1

ZLil)= (a0 0.0

IATA FYR THE 4TH  WIRE

VA= 0.002220 NS = 12 ML= 1
1 P(T )= !

ZLA{TY = .0 0.0

THE CODORDINAYE (JF THE WIRE

Ce0 0.0 Jel1E 00 0.0 0.0 C.10E 0C
0.0 " 0092E-01 0.0 7.0 D.826-01
00 0.0 J.73E-01 0.0 7.0 0.64E-01
GeC Te JeS5FE-01 T oD el N.467=01
0.0 2.0 2.376-01 0.0 N.0 0.27F-01
oL S 0.18k-01 ©.0 e N.32F-02
0.9 0.0 JeD 0.925-02 0.0 0.0
CL18F-CY o p 0.C
THE COORDINATE IF THE WIRE

7.0 0.0 -0.22E 00 0.0 0.0 -0.21E 00
THE CUORDINATE OF THE WIRE :

Ne117 00 D0 Jel 0.10F 00 (.0 OeD

THE CUORDINATE OF THE WIRE

-0.117 €0 0.0 0.0 -0.10F CO 0.0 0.0

. . . . . . . . . . . .
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: Ao ok ok o ook A sk R 3 ok ok ook ol o ook A e e e ok e o ok ko ok e s e ik e e ok ke

1

. 1
C THEI= 30.09 YLl = 30,00
FI{1) = =0.1CCYE 01 0.0 Fr{z2y = 0.0
kKRR A R ok kAR kKR ke ke Ak kKK
CCURRFNT DISTRIBUTICN A
I cln MAGNITUDE PHASE
1 =00 39l9E-04 -(.20376-03 0.2074E-03 -1C0.889
£ = Te6443E-(4 —{1,3340E-03 0.34C01lF-13 -100.919
Ch = W98 T7IE-C4 —7 L 4436E=03  J.45191—-23 —100.942
G = LU 2RE=N3 =7 ,5310F-03  2.54C80-03 -100.961
5 = sI1196E-03 =.5962F-03 (.6073[-)3 -100.975
_Hh = 1.12150-03 = .h266E~03 (.6383F-03 -100.982
7 .5 T¢5E=04 (.2942F-03 0.3018F-03 78.949
3 e 7074F=C4 0 .4946F-03 (L ,5039F-03 78.932
Yo N, 1313E=03  F.HTI5F=03 1 .58320-03 73.918
I SLAL3FE-C3  La82250~02 (,8385F-13 78.997
1l "ol 77E=(3 (.2530F~-03 0.9712F=33 73.899
12 T.Z20E3E-C3 0 1061E-02 2.1D8LE-02 78.892
13 1 e2283E-03  (.1147E-02 .1169E-02 73.887
14 (.2373E-03 (CL.1211E-02 C.1234E-02 78.885
IS o245 0F=C3  0L12%52E=-02 C.1276£-02 78.883
& CCLNGFE=C3 T I2T72E=02 CL.1296F-)2 73.8R3
17 W40 TE=(3 [ G1271E=C2 T .1295F=-32 78.884
__ 18 1.e313F-(4 0.3175€-02 0.3237E-03 73.753
15 —7.1741F-04 —C.8638FE-04 N.8861E-24 -1C1.330
20 = 7a25528-C4 —(J1477E~-03 0.1506E-23 =101.304
Ll = e4095E=C4 ~( J2032F-03 $.20720-03 =-101.283
27 — «50Z4E~(4 =0 2522E~03 C(.2572F=73 =101.266
23 = JSBRAE=C4 =0 J2942F-03  1.2999F-03 =101.253
24 =1 1B4TE-C2 —(.3441E-03 (.9620E-03 -101.0T71
T 2% = 17418-C4 —~(.3638F-04 (.B8861F-04 ~101.330
26 = .7952¢=04 =C.1477E-03 Q.1506E~-03 =101l.304
Pl = 4US3E=C4 = 2032E-03 {(:.2072E-03 -1D1.284
PR —1.5325C6-C4 —(.2522F-03 0.25726-03 -101.266
29 —N.5883F-C4 -0 42942E=03  (C.2999F—33  ~101.253
A% RN R R ¥ ol e ok ol S o k3 vk o o e o e s o o ok e o o e R o oo A ik et ek ofe ok ok
FItL) PATTERN '
CATHS APHI F{THT) MAGNITUDE
Ce G0« =0.23640F=12 0.19327F-13 1,33896F-12
! SIGMAL = Ne14268E-23 . SIGMA2 =
10, 90. =0.62333E-02 D3.41524E-02 0.74897E-02
SIHMAL = Y. 7N493E-03 SIGMA2 =
20. G0. =0.1285326-01 02.80242E-02 N.14381F-01
. SIGMAL = Y.27823F=-02 . SISMA? =
30. 90. =-N.18312F-0L D.11333E-01 0.22048E-01
. SIGMAL = Y.61084F-02 SIGMA2 =

-

.
-

3

90

PHAS E
0.17671

0.14633E 03

0.14737

0.14907

E 03

¢« o o o a @

F 03 02.26TQ0
083940E-12
0.2670C
Ne890AKGE-]1?
0.26F&
0.39532F-12
E 03 0.2662
0.89426E-12

L3

-




170, 90. =D,73437F=-02 ~N.14944F-32 0.74937E-07 -0.16850F 03 0.247
SIGMAL = De7056TE-D3 SIGMAZ = 0.RAGHIE~12
180, 90. =0,665950-07 ~0.,13977E-07 0,6B04H6E-07 ~0,16815E 03 0.267
SInMAL = D+581R5F-13 SIGMAZ2 = 0.89%940F-12

G 270. 0.50338E-12 -0.29082F=-13 0.50422F-12 -0.33065E Q1 -0.267
SIGMAL = Je3194RE-23 SIGMAZ = 0eRQ040F-12
10 2706 =0D6€2733E~02 0.41524F-02 D.74897E-02 0.14633F 03 -0.267
SIGMAL = Ve TD4I3F-03 SIGMAZ = © 0.ROQI2F-12

. . .

180, 270. =N.66595F-07 =0,139776-07 (0.68046E-07 -0.16815F 03 -0.267 .

SI5MAL = Ne581RKE~-13 SIAMA? = SPNEPTIRA G S )
G0. 90. =De46562GF=01 0.91300E-02 0N.47514E-01 0.16892FE 93 C,264
SIsMALl = Ve28370F-11 SIGMA? = 0e576525-12
GO, 100. =0.4662CFE=01 NL,O1300F=02 N.%7514F-0]1 0.168G2F 3 0,679
5 I35MALl = Je2R837DE-I1 SIGMA? = 0.15%011E-05
90, 110. =0.46629:+01 D.91300F-02 0.475145-01 0.16892E 03 0.127
SIGMAl = De28370E-21 SIGMA? = O,SZ??SE—DS
90, 7250, =0.46A2C0=01 0.913006-02 0N.4751640-01 0.16892€ 03 -0.127
SIHMAL = 3.2R370E-01 SIGMAD? = 0.52776F-05
G0, 260. =0.4662GF=01 0,913000-02 0.,47514E~-01 0.16892E 03 -N.AT9
SIGMAL = N.28370F-91 SIGMA? = 0.15C12E-05
GO, 270. =Ne4662CE=01 0.913008-02 0.47514F-01 (0.16892E 03 -0.267
S 16GMAL = )e283TOE-0OV SIAGMA2 = 0.39RO2E-12

R ok e oK dod o o o ok e ko e o ol ok R K K e ok ok ok SRR ok KRR R
s o ok e e ol e ok e stk i ok ok e ok e SRR A kR R K ok ok R ok kR ORIk kR Kk
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APPENDIX C

The following modifications to the radiation program listed in
Appendlx A are sufficient to make theprogram suitable for problems of
thin wires with excitations represented by distributed voltage sources

as described in Sec. 2-6. In the main program the statement

CALL BIGV(U,NF,NWIRE,NE,NEP) !

is replaced by the statement
CALL BIGV(U,NWIRE,NN,NE,NEP,NF)

and DO LOOP 55 is replaced by

DN 55 K=1,NWIRE
IF(K.EOLL) 60 TN 37
Jd= Jd+NE(K=1)
37 COMTTNLE
NEK=NF (K)
NAB5 =1 MER
[FKJ = TF(Kqd)
1Eh = TE(K.J)/2.
TFH = TF(KsJ)/?
TEF(IFALENLIFR) G TN R1R

CAT = (04,0, .
T € IFR.GTL0) CAT = C(JJS+IFRY
CRI = (0.,0,)

IF (IFRJLECNE(K)I=-1) CRI = ClJJ+TFR+1)
CC = CAT + (CRT-CATI®RL./2¢%TLEN(K, ITFKJ)/(TLEN(K,TFKJY+TLEN(K,

TIFKd+1))
Gy Tl R1Q
18 CAT = (0.,0.)

IF (TFR.GT.1) CAI=C(JJ+IFR=1)

CRT = (N.,0.) )

IF (TFR.LF.NE(K)) CBI = C(JJ+IFR)

CC = CAT + (CRI=CAT)®( TLEN(K,TFKJ=1)+14/2 . %TLEN(K IFKJ 1))
L/Z{TLEN (K TRKI=1)+TLEN(K, TFKS )

819 71k = VIK,1)/CC N
71N = INPUT IMPUDANCE
YIn = INPUT ADMITTANCE

YIn = (N,,0.)
ARSZIN = CARS{ZIN)
TF (ARSZIM.GE.OLTE-6) YIN=1./Z1TN
POWER = POWER+1./2.%REAL(V(K,,JIRCONJG(CCY)
WRITF(3,53) JsK,ZIN
55 WRITE(3,54) JyK,YIN

02 ®



The subroutine BIGV is replaced by

SHBRROUTINE RIGV UV Ml TRE gNN¢NE ¢NEP 4NF)
CHMPLFX UVINEP) V{4, 32).Ul(4432)
DTMENSTON NN(NWIRE) M (NWIRE S 3 XX (344, 32) 93X {344, 32),TLEN{4, 3210,
PL&) e TF(4a32) o NF (L TRE)

CUMON JCOA/XX o XDy TLEMN /CON/S V,y1F
M & Piwz=] yNWIRE

MRMAA = NN MW

N1 8 T=1 ¢ MNNW

H{NW,I) = (Dee0.)

MENMW = nNF{NW)

PV A K=1 o NFMNW

Jo= TR (NRWeK)

UiNWe ) = VINW,K)

Ju=0

il 10 NWE=1 ,NWIRE

MEMLE = ME(NWE)

D10 NEF=T1 (NENWF

Ja=g0+1

DVEIdY = (0,,0.)
ARCA=TLEM{NWF { 25NFF=1)
ARCR=TLEN{NWEF , 2%NEF)
ARGCC=TLEN(NWF , 25NFF+1 )
ARCOD=TLEN (MWE § 23MEF+2 )

P(1) = 1/2.%ABCA/ (ARCA+ARCR)
P2) = (ARCA+1/2%0RCR)Y/ (ARCA+ARCRH)
P(3) = (1/2.%ARCC+ARCD)/ (ABCC+ARCD)

Pl&) =1/72ARCD/ (ARCC+ARCD)

1] 10 K=144

UV EAdY = UVIIS)Y+P K Y= (NWE § 25NEF=2+K))
RiETUHIRIN ;

N
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APPENDIX D

The following modifications to the prbgrams listed in Appendix A
and Appendix B are sufficient to make the programs suitable for problems
of thin wires with loading represented by distributed loads as described

in Sec. 2-8. In the main program the statement

CALL CALZL (NL,NE,NWIRE)
is replaced by the statement

CALL CALZL(NL,NE,NWIRE,NN)
arid the subroutine CALZL is replaced by

SHRBOITTHE CTAL7LINL yNESNWIRE NN

ClimiPt EX Z060s60) 71 (4,32),7LL {4432} -
BImEMS TN LP(4432) SHNLINWIREY S NE{NBUTIRE] »XX1B9%4377 4
IXY LR eGa32) S TLENTG IV NNINGTRE P (41 4PR{2) 4FML?P)
Crhaw (N /COA/XX o XTI, TLEN /COR/ 7 /CHC/ 7L LP

Py A N o= 1 ,MWTIRE

MBI = AN N Y

IHY 9 T=7 4 NNNW

ZLIL(NK,T)Y = (04404)

M R = WL (WY

D A K=1 e niL

Jo= LR (NW,K)

LMW, d) = 7L(NWaK)

Ja=0 -

Ml 10 vk =] (N RE

ME R = i (MWE )

1010 NER=ST s NENWE

JJd=00+1

ARCA=TLENM(NEE  2%NEF~T)

ARCR=TILEN(MNWF 4 25%NEF)

ARCC=TLEM{NWE g 2uEF+1)

ARCD=TLENM{MWF 4 23NEF+2)

PL1) = 1/2.%ARCA/{ARCA+ARCHR)
P{Z2) = (ARCA+1/2 ,%ARCRY /(ARCAFARCRH)
P{3} (1/2%ARCC+ARCD) / (ARCC+ARLED)

Pla) =1/2,%ARCND/ LARCC+ARED)
PP{1) = 14/2.%ARCC/(ARCC+ARCD)

PE(2) (ARCC+1 . /72 %ARCH) /7 {ARCTC +ART)
Pl 1) A Ya /2 ¥ARCA+ARCR) /{ARCA+ARCR)
PYl2) = 1./7FARBCR/TARCA+ARCR)

iy 1h K=144

70ddsdJ) = 70JdsJd) + PK)%k2%ZLL (NWF,2*NEF-2+K)
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g

20
VA

3h
21
10

ITF (NEF.EQ.NENWF) GN Ti) 16

DY 20 K=3,4
70ddedd+1y =
CONTINUFE

TF (NFFJEDLY)
N 35 K=1 9?.
7(ddeJdd-1) =
CUNT INUE
CONTINUE
RETURN

Fd

Z(JJedJI+1) + P(K)RPP(K=2)%7LL (NWF,2%NEF=24K)

60 Tu 21

Z{JdJedd=1) + P(K)HPM(K)*7LL(NWF 4 2%NEF=2+K)
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