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Abstract

In this note we present a description of the analysis necessary to
develop a large EMP coupling computer code. The analysis for two mod-
els of the wing is contained in this note; however, the code was only de-
veloped for the simpler wing model. The code calculates EMP induced
surface current densities on the attached structure as well as aperture
excited voltages and currents on a cable or cable bundle that is interior
to the circular cylindrical portion of the structure. Also contained in the
code is an option to isolate the circular cylinder and calculate new numer-

ical results for this well studied and useful model.
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SECTION I

INTRODUCTION AND SUMMARY

The work reported in this note is a continuation of the effort
presented in AFWL Interaction Note 148 (ref. 1) with essentially the
following additional new tasks completed, Detailed solutions for sur-
face current densities have been determined for a class of attached
structures and the corresponding computer code has been developed.
Solutions for aperture excited currents and voltages on a cable or cable
bundle contained within the circular cylindrical portion of the attached
structure are also presented and these solutions are contained within
the computer code. In order to obtain an operating computer code we
simplified the model of the wing and represented it as an infinite flat
plane; however, the detailed analysis for the infinite elliptic cylinder

model of the wing is also presented in detail,

In the process of completing the required work we made a
significant discovery that will now be described. While debugging our
computer code we built options into our program that would allow cer-
tain portions of the structure to be present while other portions could
be made to vanish, In this manner we tested our program by calculat-
ing the surface current density induced on a finite circular cylinder with
the intention of comparing our solution with the ones presented in refer-
ences 2 and 3. In references 2 and 3 the total axial current is calculated
and consequently we were required to integrate our calculated current

density to make the comparison, We obtained excellent agreement for

1. Sancer, M., L., and A, D. Varvatsis, "Surface currents induced on
structures attached to an infinite elliptic cylinder, Part I, Detailed
magnetic field integral equation for an attached structure having an
arbitrary shape, " AFWL Interaction Notes, Note 148, December 1973

2, Sassman, R. W., ""The current induced on a finite, perfectly conduct-
ing, solid cylinder in free space by an electromagnetic pulse,'' AFWL
Interaction Notes, Note 11, July 1967,

3., Sancer, M. I., and A. D. Varvatsis, ' Calculation of the induced

surface current density on a perfectly conducting body of revolution, "
AFWL Interaction Notes, Note 101, April 1972,
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the total current but observed that for essentially all frequencies in the

EMP spectrum, including those whose associated wavelengths are much
larger than the diameter of the cylinder, the surface current density
was far from uniform around the circumfcrence of the cylinder. The
erroneous assumption of uniformity has been widely used in the past to
justify the calculation of total currents in order to simply obtain current
densities which are the necessary quantities for EMP coupling calcula-
tions, These debugging results have significant consequences and will
be published as a separate AFWL Interaction Note. We have left this
option in the code developed for the total attached structure problem
with the additional option to calculate aperture excited currents and

voltages induced on cables within the isolated cylinder.

In order to use the isolated cylinder code it is necessary to
choose the appropriate source option, since there are two different
sources one can choose in the attached structure code. One comes from
a formal integral equation analysis and corresponds to the total field,

incident plus scattered, in the presence of the infinite plane. This is the

option presented in the text because it arises naturally in the derivation
of the integral equation for the half plane model of the wing., The second

option for the source term does not appear in the text because it is intro-

duced based on physical rather than mathematical arguments. This —

source option is jwt the incident field and it should be used with.the
isolated cylinder option as well as with the total structure code for
certain angles of incidence. The major part of the total code is inde-
pendent of the form of the source; therefore, a useful continuation of

this problem would be to include additional source options.

Thus far we have discussed the flexibility of the code developed
for this problem in terms of options. There is another type of flexibility
built into the code that enhances its usefulness. This is the large number
and general character of the input parameters. These input parameters

as well as the desired output parameters will now be listed.
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Appropriate

Input Variables Definition Figure(s)
0 ;8 o incidence angles for the EMP 1,6

o
:pp polarization angle for the EMP 1,6
ap Semi-major axis of the pylon 1
bp semi-minor axis of the pylon 1
hp height of the pylon 1
ay radius of the attached body 1
Ly partial length of attached body 1
LZ partial length of attached body 1
k wavelength of Fourier transformed

© EMP

k . th 7
®, angular location of the k™ aperture

k s th _
X X coordinate of the k= aperture 9

k . . o1 ] th
SN electric polarizability of the k' aperture
dri magnetic polarizability of the kﬁh aperture
a radius of the interior cable 7
8 displacement of interior cable 7
®., angular location of interior cable 7
ZR inpedance termination of interior cable 9
ZL -impedance termination of interior cable 9
x X coordinate of point where the voltage 9

€ and current are measured on the in-

terior cable

Output Variable Definition
JSF(l), JtF(l) two components of the surface current

density at center of i zone on the
z > 0 side of the attached structure
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J n(i), Jp (i) two components of the surface
sB B .
current density at center of
1" zone on the z< 0 side of
the attached structure

Vix )}, I{x ) values of the voltage and current
¢ induced on the interior cable
at the specified location

Two comments regarding the input parameters are appropriate.
One is that both ko and all linear dimensions can be specified numerically
as being normalized to some convenient length, d. That is ko can be
specified as kod, as long as all linear dimensions are divided by d when
they are given numerical values. Finally, we note that the self zoning
aspect of the code is a powerful capability in that a wide class of attached
structures can be modeled by choosing different ratios of ap’bp 12 hp’ Ll
and LZ'

In Section II, the existing symmetry of the attached structure

about the xy plane is utilized to reduce the matrix inversion time,and the
appropriate analytical symmetry considerations are explained in detail.
In Section III, the integral equations for the 'reduced' current densities
(introduced in Section II) are cast in component form and some prelimin-
ary calculations necessary for the next Section are performed. In Sec-
tion IV, the integral equations for the two surface components of the 're -
duced' current densities are cast into a matrix equation form and the

1 neident! field components and matrix elements are presented in detail.
In the final Section V, the necessary analysis is presented to obtain the
aperture excited voltage and current on a cable or cable bundle contained
in the circular cylindrical portion of the attached structure. In Appen-
dix A, the numbering scheme of zones and subzones is developed along
with detailed expressions for their coordinates and areas; and in Appen-
dix B, the self-contributions to the matrix elements are cast in forms

suitable for accurate numerical calculations.
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SECTION II
SYMMETRY CONSIDERATIONS

In this section we use certain symmetry properties of the ker-
nel of the magnetic field integral equation to derive a pair of integral
equations defined only over half of all the surfaces involved. This is
possible because the structure under consideration (fig. 1) possesses
a plane of symmetry xy. This procedure is useful for numerical cal-
culations in that it reduces the size of the matrix that must be inverted
as will be discussed later. We start by recalling the integral equation

derived in reference (p. 8, (21))

£(Q) J(z) = I (z) +f K(x,r )« Iz ) dS (1)
SA
where SA is the sum of all surfaces except the surface of the infinite

elliptical cylinder (fig. 1) (this is so because of the specific choice of
the Green's function as it was explained in reference 1) and J(r) is the -
unknown surface current density equal to Q x H (ﬁ is the unit outward

normal on the surface and H the unknown magnetic field). Also

where Hi(_r_) is the incident magnetic field, gs (r) is the magnetic field
scattered by a perfectly conducting infinite elliptical cylinder illuminated

by _I:Ii(g‘) in the absence of other surfaces,
f(Q) =1 - Q/4n (3)

and Q is the solid angle subtended by the surface S If we don't choose

A
r to approach at a discontinuity in curvature, then Q = 2m and £(Q) assumes

the value of 1/2 which is usually seen in the magnetic field integral equation.
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The kernel in (1) cdn be written as

K@z )=K (zr)+EKl(zz) (4)
K, (zry) = 8 x [ VG (zz,) x [ (5)
K (z.x)) =8 () x [V x Gy (r,x)] (6)

where GO is the free-space Green's function

exp[ikoiz- EOH

Go= 4ﬂ|£-£o| (7)

Iis the unit dyadic, ko is the free-space wavenumber and G s<£’£o)

is given by (154) of reference 1 ,

«©0
- L dh (e) 4 yy=1
.—.—gls(r’ro) A K 2 hZ Z (Nm ()
C "o m=0

+ (Nm(o)(x)) { ¢ 0ng, Mo P, o Pien, )
+p_n, g ) Eom(3)(h’5)§°m(3)(-h,;o)] )
where
ihz . !
_1\_{Iorm(3)(ﬂ,_r) = ec;? [G Rcm(3)(k,§)8am {k,n)-CRcrmC’) (N E)Sam(k,n)] (9)
(G- =€, O)
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Na,_ o, x) = k—%—g——-[{}Rcm(E}) (o, Bse__ (%, m)+vRg_ P, %)Srocm()\,n):l

+ -%— eihzzRgm(3)()\, €)sa_ (X, ) (a = e, 0) (10)

(0]
8-8108 +19) (11)
$ =81 p8 +ah)

The rest of the quantities in the above relationships are defined in ref-
erence 1 (Section V) and will not be given here because their specific

form is not important to our symmetry considerations.

In reference 1 we considered the problem of finding the surface
current density induced on the attached structures by an incident plane
wave when the airplane wing is modeled as a perfectly conducting infinite
elliptical cylinder. In this report we are still interested in the same
problem, but we give numerical results for the surface current density
for the case of a wing modeled as a perfectly conducting flat plate of in-
finite extent (fig. 2). For this reason we will present our symmetry
arguments for both cases. The integral equation for the case of the flat
plate has the form of (1) except that Es(z) in (2) is the scattered magnetic
field by the flat plate rather than by the infinite cylinder. (However, as
we mentioned in the introduction, using _I—_IS for the elliptical cylinder is

a better approximation.) Also 51 in (6) now has the form

1=

A
] =-nXx [VGO(E’EOi) xg:l (12)
where GO is given by (7),

R :eI--ZQ

A
Y (13}
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is the reflection operator on the xz plane and

I =R I, (14)
The coordinate vectors I and r correspond to a point P and its image
(with respect to the xz plane) respectively. )
Before proceeding with our analysis we refer the reader to reference 4 .

for an earlier application of symmetry considerations for electromagnetic field
interaction problems. We startwitha general perfectly conducting body pos-
sessing a plane of symmetry xy (fig. 3). The z <o halfisthenegative side and

the z >0 half the positive side. We write (1) for points on both sides

£§0) 367 = T o) +f Ke'r, ") g Nas,” +f§(£+,10-). I, 7)ds,” (15)
+ -
S S
£0) I ) =T+ K@ ) tyas * e T 16
==77=7 K.z, ) I s, +p Kz ,x ) Iz, )dS (16)
S s~

We choose rT and r~ such that (fig. 3)

+ - - I
I =Ryt T.r SRTL
(17)
Bl =1- ZQ é\
_I_{l is the reflection operator on the xy plane and is such that
Ry- B =1 (18)
Also notice that for symmetric points about the xy plane the surface ele-
ments have equal areas i. e, dSO- = dSO+ = dSO. Next we define
- + *
R, Iz)=R " IR 'z)Ei(f,) (19) 7
4, Baum, C. E., "Interaction of electromagnetic fields Iwith an Q
object which has an electromagnetic symmetry plane," AFWL

Interaction Notes, Note 63, March 1971.
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%
+ U N (20)

+ = =
5(?_:50 )_:z—If (E ,__51 _I:_o )"= (E-'_ » _1_'_0 )
- - + LA L D +
K ,r, )=RR "z ,Rr V=K (&,x,)

If we now scalar multiply (16) by R, and take (18}, (19) and (20} into

account we obtain

TORAC IS MY +f R, - K ,r.h) - 3 ") as
S+
%, 4+ + % 4
+f+ Ry K (z,zr ) By« 3 (x, )45, (21)
s
where
(22)

* ] -
Jp @) =Ry I

Notice that the second surface integral is now evaluated on S . The reason

is that all the functions in the integrand can be thought of as functions of r

+
and consequently we can perform the integral over S because of the point-

+ -
wise symmetry between S and S .

Using (18) and (19) we can rewrite (15) as

(@) 35 = I+ / ) K,z ") 3,
S

We will shortly prove that

- + + -

Ry Blr) =K,z )k (24)a
- ey + 4+

R, " Kz ',z )" R, =KG@',z;7) (24)b

or
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. - ¥ F + - (o), + +
Ry" Kz, ) =K (@hz, ) B =K (,r ")
T L et ot
R *E @,z, )" Ry =K,z )

s
o)
™
'. N
éw
|

(0 36" = 1.0 + f K, r Y3 Has+
+

1) 3 = 1.

From (25) and (26) we now obtain

f(Q)[_{(_x_'-'-) + _{*(_1_‘_+)j| = JT(3+) + JT*( ¥

We now define

e %—[ 15 + 7=

fy
)
I
[\)lv—-
e |
<
I
+
1
[
'
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o
s
[l

e
;..3
=
|
noj
r~—
l
H
—
e
_+
[}
[
!
2
—
H
+
[ Wl |

(31)a

3Ll
© Iz, s (32)
Iz Das (33)

The advantage of having to solve (32) and (33) rather than (1) is the

following.

Our integral equations must be cast into a matrix equation form

in order to numerically calculate the current density at the centers of zones

into which we have divided our body. If the number of zones for the whole

body is N then solving (1) would require the inversion ofa 2N % 2N matrix

(J has two curvilinear components on the surface).

(33) requires N/2 zones and consequently the inversion of a 2( -ZN) X 2 (

matrix for each case.

The solution of (32) or
)
2

To obtain the current density at points on both sides

of the body we must solve (32) as well as (33) and use (29) and (19) to solve

for £(3_+) and J(x ).

Recalling that the inversion of a M xM matrix requires

computer time proportional to M3 we understand that solving (1) would

coorespond to a time proportional to (ZN)3

whereas solving (32) and (33)

would correspond to a time proportional to 2(2 §)3= % (ZN)S. Thus we save

a factor of four in computer time for matrix inversion which is rather

significant.

Next we show that the symmetry relationships (24)a and (24)b are valid.

call that
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where KO is associated with the free-space Green's function GO and K

depends on the manner we model the wing.

(24)a and (24)b for K, and K, separately. We start with X

__K(_I:: r)=K (1‘,

)+ Ky(z,r)

C')H

-—o =o—

(24)a and (24)b can be rewritten as

Thus

where

+ -
s T
0

0
1=

(r )" R

o 1

- - LN
1 T2 e,

g
1=

K (r,r) = f(z) x I:VGO(E,r ) X 1=]
expliko|r-r_|]
C"o(-ll’-lio 41 |r-r |

o dR 4nR
A A
= Rk -—IR)G = R F(R)
N
2= R
R=zr-r , R=! R
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and
A AA A
QX[BX_I__]=Rn-(R'Q)l

Next we introduce the following definitions (fig. 3)

R(x 1 I, )E—xy +Bz
ﬁ (1-'—.’50-) = —xXy T =z
R (", r") =0, +2,
R(-?5--*-’-1—'0-) =—xy ey

r v E n (r)
Q(r+) =n (r+) +n (r+) =n +n
=y = z = =y -z
a(z”) =£1,xy(r+) -n(x) = By 2y

Equation (37)b is derivable from (37)a, (37)d from (37)c and (38)c
with the aid of figure 3.

Using (7) and (35) through (38) we have

(£+,r-) "Ry = F(R) [(g-xy-Q o, +n ) - (Q_XY",QZ) ’ (_f_lxy"'éz)l.]

BN

o = =z Xy =z =

F(R) [L%Y-Qz)(axy-az) T By By2 ) ?\__1]

[F(R)(Q Q.. -n
“xy 2=y —z' xy =%y —z %z

O
=

]

o
g
=)

)

O
1tg

—
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We can see that (39) and (40) are identical and (34)a is true. We can

show the validity of (34)b in a similar manner. Next we show the truth

of (24)a and (24)b for K, given by (12)

K, (r,r ) = F(R) [ﬁ(é- R) - (R+ 0) g] (41)

The reflection operator R is given by (13)
R=1-2%9¢ (13)

and should not be confused with R = r -

(y‘t

Again we calculate Kl(r+, r )* R and R, " K (r ,r +) with the aid of
— — 20 ...1 — — -0
(41), (13), (37), and (38).

+ - . -—
K (,r ) R -F(R)[<

"Gy 28 ) B R (2)

-Gy 2y 8 2) B B 3,
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where

n {(r)=n (r)+n (r) (44)
Noticing that
B' B:L—ZQ{T\—ZQ/Z\
AA A A
Bl‘ R=1-2z 1%z -2y ¥
Equation

we understand that (42) and (43) are identical and (24)a is true.

(24)b can be shown to be valid in a similar manner.

Finally, we show that (24)a and (24)b are true for I=<l given by (6).
First we calculate V ¥ 915 by recalling that (ref. 1 , (164) and (165))

t

v X MO (3)=k Na (3)
— m o-— Im
(45)

7 % No (3)=k Mo, (3)
— m o— m

Thus,
iko dh = (@) 4111
VXS T Zﬂf Kk p? I;O az=:e ol M)
C. o ’
h
[Cm(a)()\’gl') thm(3)(h,£)M (3)(h,r )+ Dm(a)(x, ?1*)M&m(3)(h:£)1i(3)('h’50)] (46)

. 1
I_\/Iam(3)(h,£) = eth_ m -—T) (47)
. 1
No i, p) = P a0 O,z (48)

="m —"m =

and define
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(@), ,y-1 (o) *®0_
(N \), "€ (NE ) = Ca (49)a

o oyt o, e % =oa (4975
1 1

(3) and gotm(B) are obvious and _r_T is a transverse

The definitions of l_\_/IOLm

coordinate vector

(50)

by =x§+y9
T

(3)}

We also decompose ]IEOL
, (3)t ™
in the form (_I\_/ICLm is purely transverse)

into longitudinal and transverse components

1
I
Ne (h,r) = Nee b, zo) + Ne (b, r.) (51)
_ dih A 3 (3)
_NocmT = k_——ocB [uSc.mO\,ﬂ)BE ch,m N, 8)
A 3 A :
+ v re_Pln, ) = Sam(x,n)] (52
}\2 A (3)
Ny = 2, z R (N, 9 Sa_ (A, ) (53)
o
With the above definitions, (46) can be rewritten as
. iko eih(z-zo dh hd 3 1
v = m —— _ ( ) 4
X Gig Zﬂ'! w212 Z Z Ca_ [N'O“mT (h,zp)Ma (h,x )
h © m=0 a=e,o0
3)" 3)"
+ Nocmz (h,;_T)Monm (h,on)] + Dam[Mom (h’—rT)EGmT (h,_r__OT)
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taken as

where ¢

As it was explained in reference ! the contour Ch should be

the one in figure 4 and with this understanding we can rewrite {(54) as

8

vXG flhqf h)dh

-0

5

I

1

Assume now that z < z i,e. g =

lh
-0

= z-2 and the definitions of f

=]

=l

=2

and f

(h) dh (55)

are
=2

[Co No (h, r, )Mo (3) (h

m— mT

h -» -h,the first integral can be rewritten as

I

©

From (9) through (1

function of h whereasiz(h) is an even function of h. Thus

[-=3

-

1 =feih‘qlil(h) dh ._.f

-]

JNo. (h, roT)]

-1gl. By making a change of variable
eiBlg \_il(-h) dh q<0

=-]

1) and (51) through (53) we can see that £, (h) is an odd

eih‘qi () dh

q<?©

The true contour C, includes two bumps as shown in figure 4, but because

of their position we still haveil(—h) = -il (h}). When q > 0 we have g= ‘ql

and
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q>0

Thus
[~~]
Z-2z
_ 0 ihlz-z |
I1 = T_z_--z:] fe o él(h) dh (56)
-0
When z = z , I1 = 0 and we can define a symbol g(z, zo) such that
e(z, zo) =1 z >z
=-1 z <z (57)
=0 Z = Z
o
Following the same procedure we can show that
. i
_ ih|z-z |
I2 _fe o iz(h) dh
-

for any q and (54) becomes

[==]

@
ik ih|z-z |
- o e o'dh
vxG,_ =- f C
ls 27, . 2.2 m; > { *m
0g=e, 0

= k
[0}

1
[e(z’ 2o N0, T (h’—r'r)l-\—’mm(S) oz o)

— Nz ,_I)_’ I ,—OI
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We are now in a position to show the validity of (24)a and (24)b.

We start with (24)a by first recalling _I_(l

”
= 6
) n(_r)x[vxgls] (6)
From (24)a we see that the argument of K, involves the pairs 5'--’£o+’

_r_+,_ro-. From figure 3 we see that

z -~z +<O, z+-z >0
0! 0

Y

lz"-z, ") = 12727

o

Thus the proof of (24)a depends on the quantities inside the angular brac-
kets in {59) and we should prove (24)a for _Igll(f_,zo) defined by

I__<l(, )=/r}(1)x[vxglls] (60)a

1
where 7 X le is given by

1 -
vxGr =¢C f(z’ 2o Ny (T )M(x ) ﬁz(r"r)—l‘-é(ro’r)]
#D e o M@ N o) ¢ M@T)ﬁz@‘-or)] (60)b

Notice that we have simplified the notation in (60)b to avoid unnecessary

writing. Now we calculate
1, + -, _ + - + -
__I;Il (r .1, ) Ry = {c [e(z » 2 )(-ley+5z)xl\IT(3T) 1\_4(_1;0T)
+n _+n ) x N (r

+ -
—Xy —Z ~z<=T )M(EOT) ]

#D [elz’ 2, Mo, 40 X ML) Nyl

-_— ——7, -

* (EXY+EZ>XM<I:> Bl “’Sﬂ]}' 21
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It

c [(p-xy+-};lz) * Nop(@p )Mz, p)

-+

-rixy ><--1\--Iz(-?:-‘"I')I:‘—/I(EO’I’)}

r
+D L(Efcy+r—1-z) X M(iT)-l\—IT(EOT)
- () X MEDN, )] (61)
. + - + -
where we have taken into account that: e€(z , z ) =1, Lo TXp T Ig
-r—o+T = E'C;T =X T M is a transverse vector lying in the xy plane and

Bl is given by (17). Next we calculate
R, * K, xr )= CR, {lezz D -0 ) x N (@M.
=1 =l="=0 =1 ' “o ~xXy —2 = T=T'="=0T
i) X, (e M )]
- 4
#D[el7 2, M0 mn) xME N )

tlayn,) X —M(ET)EZ(EOT)]}

= C %-—B-l '[Exy X Nplzpl-a, x -I\-IT(E-T)]-IXI(E-OT)

“xy = “t'%T
F21 .['BXY xMlzg) -2, X I3-/“—:"'1"):[i\I.z(ioT)} (62)

We now observe that n ¥ N (r..)and n ¥ M(r..,) are vectors in the z
=y = T=T —xy = = =T

direction whereas n, X ET and Ez x M are vectors in the transverse di-

rection. Noting that 51. leaves a transverse vector unaffected but changes

the sign of a vector parallel to the z-axis, (62) can be rewritten as
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[y * Mt Mz, T>}
' D{[Exv * M) ¢ 2, Mag)| Nty )
‘[flxy ¥ Mlzp) +a, % M@_T)} N, (x T)} (63)

We thus see that (61) and (63) are identical and (24)a has been shown to

be true. The validity of (24)b is shown in a similar manner.

We conclude that the symmetry relationships (24)a and (24)b are
true for K corresponding to a wing modeled either as a perfectly conduct-
ing infinite elliptical cylinder or a perfectly conducting infinite plate and

consequently integral equations (32) and (33) are valid.
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SECTION III

INTEGRAL EQUATION FOR CURRENT COMPONENTS

In order to solve (32) and (33) we decompose the vector current
densities _J_+ and i- into their components along two orthogonal surface
tangential directions defined by the unit vectors % and % such that (fig.

5)
Axt=4 (64)

A . .
where n is the outward unit normal on the surface,

hAICIEE SCOR I A COK: (65)a
I =T @8+ @1 (65)b

__I§+(£_:£O) = {‘\1(3) X _]_3+(£_,£o) (66)a
Kr) =28 xD(rzr) (66)b

and use (64) through (66) to rewrite (32) and (33) in component form

f(Q)Jg (x) = J%S(E) -deo{[/t\ -EQ(E,EO%QO] JS(E_O) +[%.2Q(£:£O)-%O]Jg(£o)} (67)
5
£(0) 3x) = 1%, (2) +fdso {['s\-ga(f_,}_'_o)'go] Tz )+[8- D%,z )'%o]J’S(EO)} (68)

S

where r,r_ are position vectors of points on S+ (which is now denoted

by S) and a stands for + or -, ’
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Figure 5: The unit vectors Q- and & on front (z>0) and back (z<0) surfaces of the attached structure



Next we calculate J_E} (x} and _Da(_z:_,zo) for a wing modeled as an

infinite elliptical cylinder and alsoc as an infinite plate.

From (66), (30), (24) and (20) we have

p'ehrd) =petr)) +pe’i )R, (69)

D'z =pe’x) - D)) R (70)
where 51 is given by (17), 2 from

Dz, ) = VG, (mr ) xL+ 9 x G (71)

and Vv ¥ gls is given by (46) for the infinite elliptical cylinder and by

v X gls = 'VGO(E-’E-OJ’_) % (72)

It

for the infinite plate (see (12)).

The position vector r_is equal to R, - r" and has the same x and y co-
-0 =1l =o

. + . . .
ordinates as x, but opposite z coordinates, i.e.

r = (x .y ,z)
) o’’0’ "o
- +
I =Ry, s (xo’yo’-zo)

To calculate the components of D in the ? and & directions we use

(69) and (70). For example,

+ +

A
t -

ilw)

Q+sr+)'/s\ =%'I_)(_1;

).4 +%.D’,
-0 o] =

- - A
)-8, + 4 pe ) By 8 73)

The reflection operator Bl acts on éo and transforms it into a unit vector

such that
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where

For the

(71) and (72

).

)

S 35 _ 48
o ox’ "oy’ "oz

case of the infinite plate, (73) can be simplified by using

For example

A+ 4 A + _+ + _+
tD'(x ’Eo)'go :t-{[vGo(_l; I )X _I__] - [VG (& g, X 5]
+ - + -
# (196, 20) x 1 - [v6, x5 x BRI Ry |4, (74)
and
A A A + _+ B
t-[vGoxé]-soﬂc [vG xs =-[Jf§>< so]'VGo(i’r )
. A A _ A + +
t [VGOX_R;,]'SO =t [VGOX (B SO)] == [t X (B g )] ¢ VGO(T 3_1101)
X . f (75)a
t'[VGOXL_J'__lf'SOD{tX(El'? )]-9G _(x',z)
- . lA - . . 3 + -
t [VGO XEJ l-_31 ®0 T [% % (_B_- §1 eo):l VGO(£ ’50) _)
8 =(s_,s ,s 7
o ox’ "oy’ Toz
B8, = (su =S oyr Soy) (75)b
A = -
B 5= (Sox’ oy’ Soz)
R gl.go = (5 g “Soy? "S55
For the case of the infinite elliptical cylinder we can see from
(46) that we have dyads of the form NM, MN and NM-R,; MN-Bl and the

calculation of (69) or (71) is straightforward.

Next, we calculate the "incident' current densities i%. From (31),
(22) and (2) we understand that
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sheh = Hoeh « Boeh + B BE) x B (76)a

) x Hp@) - By BET) x Hp@ Ol (76)b

To simplify (76) we recall (38)c and the second term in (76) can be writ-

ten as

1 1
! ]
B> H5>

is;
=
= ~—

Jau =

o
+
s}
o
>
I
w
1
o
)
>
o
o

1]
l
)
B
=
[ir]
3
v
o
I
a

AE’) x By Hplz)

and (76)a can be used to obtain

s = - o) - Ry Ho )] (77)a
s = 2 H ) - Ry HpE )] (77
I ) = - R Eo )+ Ry Hoe )] (78)a
J

=488 + Ry Ho)] (78)b

The '"incident!'' field E_{T(E_) is given by (108) of reference 1 for the case of
an infinite elliptical cylinder, or in the case of a flat plate by
ker  p.pg e

+ e
e}

e

Ho(x) = Hz) +H @) =He xor (79)

I
s

where R is given by (13). (Equation (79) evaluated at r = 0 gives a mag-
netic field in the xz plane, i.e. the normal component of the magnetic

field at points on the plate is zero as it should be. )
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Assume now that we have solved (67) and (68) and wish to calculate
the true surface current density components Jt and Js at any point on a
given surface, i.e. on both the positive (z > 0) and negative (z < 0) sides.

From (29) and (19) we obtain

jeh=3eh+ehH (80)a

B .

R; -3 @) (80)b

From (80)a it is straightforward to obtain the com,poneﬁts of the current

density J on the positive side. From (80)b we find

+

fJ (r+) -J

et - eh={uteh- st et +{[f<; RN R ACEY

and
) =8 R8T - e h) + 8 R T - e (83)a
T ) =8R8Tl - st 87 R T ) - e ) (83)b

To simplify the above equations we consider the case of the pylon
and body separately. We start with the pylon surface. From figure 5

where the orientations of & and % are depicted we see that

A -
t+:% :-?
+ -
s = -8

X

+ -

S = 8

z
s+=s—=0
y y

and consequently
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A

t -_B:I-s =0
ot =
87 R8T = 2
8" r T =0

In view of the previous relationships, (83) give

T = T - 3 (84)a

T )= -7l - Tl (84)b
whereas from (éO)a

5, =3 @ v 5" (85)a

T eh=3leh o) (85)b

To derive the corresponding relationships for the body we refer

to figure 5 from which we obtain

S
+ -
v T "% Cylindrical
+ - Surface
s =8
Z
+ -
- = O
°x T ®x y
- N
t =t

o

N o b M N
I
[ d
]
i
(e}

> End Caps

0]

0

0}
®o+
I
N

'
1l
o
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One can easily see that for both the cylindrical surface and the end caps

we have

t R;'S =0
torptt =1
A I:={l~fs\+ = -1
é"-gl-ff =0

and (84), (85) are true for the body as well as for the pylon,

We conclude this Section by repeating that (84) and (85) give the
surface current density components T, and J’S at any point on the pylon
or body in terms of J:, J: and Jt-’ J'; evaluated only on the positive

(z > 0) side of the structure under consideration.
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SECTION IV

MATRIX EQUATION

In this section we cast (67) and (68) into a matrix equation in order
to numerically solve for the two surface components of £+ and i— at the
centers of zones on the positive (z > 0) side of the pylon and body. The
components of the real surface current density J at any point can be ob-
tained with the aid of (84) and (85). As we explained in Section III, the
centers of all zones have been chosen away from surface intersections,

and consequently, according te (3), £f(Q) = ¥ since Q = 2m.

In matrix form {67) and (68) can be written as

-[35] = [ [1%] (a =+, -) (86)a
or
2
o8 NF a X . . - h
Si =Zl le JJ 1,1 = 1: 2:" i ZNF (86)b
3:

where NF is the total number of zones on the entire structure (pylon and
body), and

a _ -« @ _ L0
JE-JS, Sz = J’I’s 1<y SNF (87)a
a _ L0 o _ L0

Jz —Jt , SL = ‘TTt NF+lszSZNF (87)b

[r%] = [[Aa] [Ba]} (88)

[ [D%]

To determine the above submatrices we notice that the current density
components will be calculated at the centers of the zones and also that the

interaction between zones involves a more detailed division, that is a
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division of each zone into a number of subzones. To calculate the inte-
grals in (67) and (68) numerically we assume that the current is cénstant
over a zone and equal to its value at the center of the zone. This allows
us to factor the current out of the integral and write the remaining sur-
face integral as a sum over the subzones of the zone. (We have chosen
nine subzones as we explain in Appendix A.) In what follows we will de-
scribe the interaction of any two zones by the interaction between their
respective subzones. In the course of determining the accuracy of this
procedure we established that it was necessary to consider such detail
interaction for adjacent zones only. Even so it is only the free-space
part of the Green's dyadic that should be rendered to such detailed treat-
ment because of the existing singularity, whereas the scattered part is
free of singularity with the exception of points near the wing-pylon inter-
section. For this reason the interaction between adjacent zones in the
vicinity of the wing-pylon intersection involves subzone interaction for the
entire Green's function. Special care should be taken for interaction with-
in a zone and this point is examined in detail later in this section. Thus

A, B, C and D can be defined as follows (i # j)

Al
1]

ij 10 i

1€14,jS N, i #] (89)

i o

ij * by .
k=0 - P

and
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a -
Tij—Aij lSl,JSNF W
a . .
= B . <
Bl,J.-NF 1 ISNF’ NF+lst2NF
_CG‘
1-NF,J NF+151s2NF, ISJSNF
_DG’
1-NF,J—NF NF+ISJ.,JSZN

F J

As we mentioned earlier, summation over the subzones is necessary for

adjacent zones only, i.e. for i and j non-adjacent

>

It

!

o>
lv)

OL(r.,r.) .

However for generality in the rest of this section we will use the detailed

subzone interaction for any two zones.

r, are the 3,% and position vectors at the center of the ith zone, gjk’ t

In the above relationships, ’s\i, '1\:.,

/\1

jK’

T are the ‘é,% and position vectors at the center of the kth subzone of

the jth zone, ASJ.k is the area of the (jk)th subzone and _D+, D are given

by (69) and (70) respectively.

The areas of subzones and coordinates of

the centers of zones and subzones and also the numbering scheme of zones

and subzones are given in Appendix A,

When 1 =j it is obvious from (32) and (33) that a term éé i should be in-

cluded, due to the well-known delta-function singularity of the kernel of

the integral equation as the observation point approaches the surface.

it was mentioned in reference 1, the above singularity is integrable

As

as long as both the observation and integration points lie on the surface.

From the numerical point of view this integrable singularity should be

treated carefully in order to secure sufficient accuracy of the numerical

results.

At this point we should recall that the singularity under consider-

ation is due to the free-space part of the Green's function and consequently

it is only the terms involving G, that should be treated separately. (Notice

that because of (4), (5) and (6) the treatment of the singularity is independent

of the particular form of the Green's function, that is independent of the

manner we model the wing. ) To be more specific it is only the free-space
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part of the _D(_1;+,£:) terms in (69) or (70) that will be treated differently

because none of the other terms involves a singularity. This part has the

form

20(5:5_0) = VGO(E’E-O) X (91)

-

and we should first calculate its components along the t and s directions

as indicated in (89). To that effect we rewrite 1_)0 as

A % A %
t J o) Y. 1) 2) q o
(3 2oz () () PV ezp 2] () o
o o

The first term on the right-hand side is chosen free of singularity and the
second term can be integrated analytically to a simpler form. In performing
the integration we assume, as before, that the current components do not

change over a zone and from (67), (68) we have integrals of the form

A 3
1= f dso<i)' p®e,r ) ( °) (93)
s s - 's\o

These integrals have been evaluated in Appendix B. The results in this

Appendix show that

a) for all zones the self-contribution to BiOLi is zero,

b) for all zones on the end caps all self-contributions are zZero,

c) for all zones on the pylon and body, except near surface inter-
sections, the self-contribution to C(i:; is also zero.

Thus, we can complete the list of submatrix elements by writing

8
o« _ AL A A A 1 w
A = 'EO ! Ty Zype) - Sy S * 25 - 3

o

8
a _ A . sk . A
B/ = -kzo £ g (T30 Zy) * B85 l<isN (94)
= {cont. ) ¥
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o Z A o LA C .
Cu= Tt B (2 )" S S ¥ 24 l1= Np (94)
8 :
o _ A : . IS D _L
Dy = kz_:o ;0 Dy Ipd tbSpe %y e J
where
Pax = EQ—EOZ)

and Z are terms defined in Appendix B. We can collect (89) and (94) under

a single mantle by writing

8 N
o _ e}
i Eoti g (rl, rjk) SjkASjk
A 1
T (23 - 3) by
8
o _ AL RO - ‘
Byj = —kE::O 6 0D It S A5 %
1<i,j <N (95)a
o F
o A ~0 C
Ci; = 1:[::0 S; 0 DUz - SpcdSht %y
|
8 |
a _ A =0 A D 1
Dy; = k{:o §; 0 D7y zp) * 8bS HE -2
where
~a N 4 _ (2}
D (Ei’ijk) “g (E-i’z-jk) 6ij=Do (.I;i’.r_jk) (95)b

Before we proceed to give detailed expressions for the elements of
the submatrices we first present the 'incident' terms S% in an expanded
form. To accomplish this we assume that the true incident field has the

form given by (100) and (101l) in reference 1
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"
Q
=1
_
+
w®
It
o
o
o~
&

1
__i=0tﬂ( )+B_Ij(2) : (96)b
A
E(l)——sine (cos @ cos & £ + sin os & § - sin 8 Q)elkok.1
= - o "o o TSIMY,co8 By -8 o
A
ik ker
) _ 1 . A ay ot TR
E =-3 sin Go(sm ®_X - cos cpoy)e
A
H(l)—-Y in 6 (si A 8 lkok.£
= sin 6 (sin @ X - cos o _y)e
A
(2) A A A lkok°£
H = sin eo(cos ® cos eox+sm ®, cos eoy— sin eoz)e
(97)
OL_Eocoscp
T sin I
" _EoY sin ¢
- sin 8
k,
k =I.(_—
o

EO is the magnitude of the incident electric field, Y the free-space admit-
tance and ® eo, ¢ _ are relevant angles defined in figure 6 . In order
to calculate Sz we recall (87), (77) and (78) and notice that __13_1 acting on
ET(.IL ) changes the sign of the z-component and that the components of I_—IT
at r can be calculated with the aid of H

T at £+ by changing z to -z,

The ''total' magnetic field EIT for the case of a wing modeled by an in-
finite elliptical cylinder is given by (108) through (112) of reference ] and

for the case of the flat plate H,., is given by (79). From these expressions

T
we observe that the z-dependence exp(—iko Z COS eo) factors out for both

the incident and scattered parts and the source term s% can be written as

L

+ ..
Sz = - isin (2k0z2 cos 80)[tszTx (X,e’yjl)+ tZYHTy(XJZ’ v, )]

+ cos (Zkozf, cos eo)tf’ ZHTZ(XZ’YJ?,) l1<4< N (98)a

F
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Figure 6: Incident plane wave description,




where HT(

92}
n

fsin 2k 2 cos 8 )[s, Hy (g.5)) + 5, Hyy G vyl

o4 Lz Tz

- cos (2k _z, cos 90) s, H (xz,yz) Np+lS 4 < ZNF

S, = cos (Zkozz cos 8_) [tszTx(Xz’ yz) + tﬁ,yHTy(Xz’ YE)]

- isin (Zkoz cos eo)tzzHTz(Xz’Yz)] 1<4 <N

L ¥

S, = -cos (Zkozﬁ, cos 90) [SEXHTX(XE’ yz) + s 1, ( Xy YE)]
+1i sin (Zkozﬁ, cos 60) SEZHTZ(XJ&’ Yz) Nn tl<s 4= ZNF
x z) is the x,y dependence of ET(I.)'

For the case of the infinite elliptical cylinder

-ig

sincppcoscpo cos eo - coscpp sincoo)e

_ L

-ﬁg_g— sin cppcose [z 4<q': gz,'ﬂz)-bﬂsgj(q',%ﬂ,ﬂg)]
q
)

- ! _ t

-it
_ : y
HTy(XfZ,’ Y)?,) = (smcop cos o cos eo+cos cop cos cpo) e

i [ ,
- -(;'-;%B_z\l smcpp cos eo[bzsél(q’, gz’”z) 'a,e,SS (g ,gﬁ:ﬂz)]

- , z
+ COSCQ [b SZ q 3%23'“2) azS3(q ’Sz’nﬁ)]}

_iﬂ;
L . ¢ . . ,
HTZ(XJL’ Y,@) = 51ncpp sin eoe +2sin cpp sin GO S1 (q,gz,'ﬂz)

\bz =k (cos @, sin eox +sing  sin eo yz)

2
\

/

J

'Hl OWN o
')
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(99)a

(99)b

(100)a

(100)b

(100)c

(101)



; ™
L smh"’;‘z cos nf,
4 8

4

COShgﬁ, sin nﬁ’

b, = 7, | (102)

o)

™
|

2 2
2 (cosh «‘:',z— cos nﬁ) J
The elliptical coordinates &, n are related to x,y through

x=ccosh & cosm

c sinh & sin n

]
i

1
where c is the semifocal length equal to (aL2 - bz)z. More on the definition
of the elliptical coordinates can be found in reference 1. The Si's
i=1,2,--+,5) are defined in terms of Mathieu functions and are given

by (125) and (135) through (138) in reference 1 . For the case of the flat

plate the expressions for I_‘IT(XE, ) ) are considerably simpler,

-id

- : . 4

HTx(Xﬁ,’ yz) = 2 (sin ®_ cos®  cos 90 - cos cpp sin cpo) e cos @, (1037)a
-i%
HTy(Xz, yz) = -2i (smcpp cos®_cos 90+cos cpp cos Qﬁo)e sin, (103)b
-i@z
HTz(Xz’Yz) = -2 smcop sin eo cos cpp e (103)c
& = 1
¢, ko x, cos ¢ sin 80
(104)

©, =kO y, sin @ sin eo )

Next we calculate the A, B, C, D elements by considering the t,s
components of -"):on in detail. At this point we should be reminded that :DG
where o= 4, or_-, is given by (69) or (70) and that D is given by (71). _The
2(()2) appearing in (95)b is defined in (92) and was c;-lculated in Appendix B 0
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((B-14)). We start by calculating the t, s components of D (r s T

@) e
- D} (-Jii,.l;J ) in terms of the cartesian components of the quantltles in-
volved

ik Rijky sk ™ ta i)

* Rijkz(tiysjkx-tlx Jky) +R1]kx(t1z jky ~ 1ysjkz)] (105)a
-t [D (r.,r )—DZ)( r.)]- %, =-P R (t, t., -t t.. )
i '=moH’4k' =Zo ‘=’'Hk jk ijk* T ijky Vix jkz iz jkx
Ry iyt ™ Py T Rk tin iy ™ byt )] (105)b
Q'[_D(r r )—D( (x.,r..)]- 8. =p [R (s. s - )
i ‘=oH'—|k' Zo ='Hk jk ijk' T ijky UixTjkz  Tizjkx
ijkz(siysjkx - sixsjky) +Rijkx<sizsjky } siysjkz)] (105)c
[D (r.,r. )- DZ)( )] =P,.. [R (s. t -s, t., )
~i'=~jk’ =o —Jk jk ijk*ijky Tix jkz iz jkx
Rijkz Ciytikx ™ Sixtiky! T Rijkx Biztiky  Siytiks )] (105)d
where
ikoRijk 3
Pip = [k Ry - 1)e +1] (1/47R5) (106)
R =|R I— x-x )2+( -y )2+(z-z )2]% (107)
ik 1By ik 717 Y5k i” %k
_ - - - A
A A
and t, s have the following cartesian components
Pylon
t =0, t_ =-1, t =0 o
L i
s = - zaz(aé}z2 +b4x2)-2, s =0, s :xbz(a422 +b4x2) 2
X p P P y z p P p -



Body (Cylindrical Surface)

n

1

&)
»
0
il

L _L
2[ly - 2)% + 22172 = -yy-0%+2°72 ) (10)

b

L' =b +h +a
w p

Body (End Caps)

N
o+

fc= (v - 0y - 9% +2°7°Z,

L _1
sx=0, s =z[(y—,@)2+zz]—z, sz=(£-y)[( - )2 2

1 . 1)
ftx=o, ty:(,@—y)[(y-z)z-f-zz]-a, tzz-z[(y-z)z-}»zz] 2
x <0

1 L
IS;% sy=z[<y-z>2+z21‘a, s, = - y)ly - )% #2172 (112)

£ =b +h +a J
w p b

The next calculation involves the z-reflected free space contribution

n (69) or (70), i.e.

— + = — =
D (R;) =D &',z ) R, =[vG (z ) x1- B (113)
here r=r r =1, =R, rt =R, ool or and R, is defined
where I=Ispy o4k =10 -—Jk e =k "~k =1 ' ¢
by (17).

To derive the t, s components of I_)O(Rl) we recall the third equa-
tion in (75)a, (75)b and (105) to rrrive at the following expressions

A LA z)
-ti -BO(RI) sjk ljk.[ leky(tlxs_}kz+tizsjkx)
(z) (z)
+R13kz( iy ka 1xsjky)+R13kx( iy sz 1zsjky)] (1l4)a
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) ti ) QO(RI) _}k ljk[ 1Jky 1x jkz +tiztjkx)
(z) . r(2)
Rijkz(tiytjkx tixtjky) 1ka( iz Jky 1ytjkz)] (114)b
A A (@) o (2)
5;" Do (Ry) “ik T Pijk[ Rty (8ixSikz T 81255k
+R(z) (s. s -Ss. s )+R<Z) (s. s +s. 8., )] (114)c
ijkz'"iy T jkx  Tix jky ijkx ' ‘Tiz jky iy Tjkz
8D (®,)- 8 =PZ)-R . 4s. t. )
i Zo''l j 1Jk 1Jky‘ Six jkz  Tiz jkx
(z) r (%)
t. -s. ¢t . L.
+R13kz(siy jkx Slthky) 1_]kx( iz Jky 1yt3kz)] (114)d
where
ik R(Z)
(z) _ () “oTijk (z);-3 (115)
P1J (1kOR1Jk 1)e (l/4ﬁ)[Rijk]
(2) _ 1R - o )2 4 (v - v )2 :
Ri% = RU = L6 =05+ by - vy +(zi+zjk)2] (116)
(z) _ A A A
Bljk (x. -xjk)x+(yi - yjk)y + (zi +zjk) Z (117)
To complete the calculation of the t, s components of _']53 (_I_'_i,_l_'_jk)
in (95)a we should now refer to the specific manner we model the wing.

Thus for an infinite elliptical wing we consider V¥ X(_}is(_l‘_+, Ef_:) and

VxG (r+,r ) Rl’ where 21 = ngis is given by (46, or more specifi-
cally by (167) in reference 1 . In order to derive the expressions for the

t, s components of _Dl we start with

A A
Dy zad) S = 8 Diy sk Sikx T ik Dix, jky Siky T ixPix, jkzSike
+ t

iy iy, ji ik Ty Piy, jrySiky ThyPiy, jkz®ike

T 4,010, ikxSikx T 5Pz, kySiky (118)
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where

-1 .. o
Dy, jkx ™ 2mB.B ) [aay K G Sk 2 ;b K, (h, 3K

-biaij3(1, ik) - bibij4(1’ jk)]

-1 . i .
DiX, jky‘ B (Zﬁa]_BJk) [alb_]kKl (i, Jk) = aic—ijz(l, Jk)

--bibij3 (i, jk) +biaij4(1, jk}]

. -1 .. ..
ix, jkz = -i(27 cEi) [aiK7(1, jk) +biK8(1’ jk)]

_l 3 3 - 3
Diy, jlx (ZﬁBiBjk) [biaijl(l, Jk)+bibij2(1,Jk)

+a.a.,. K
1 <

3 (

-1 . ..
Diy. sy = (ZﬂBiBjk) [b;byy X (s jk) - biaij2<1, jk)

+ aibij3(1, jk) - aiaij4(1, jk)]

. -1 .. -
Diy, jkz =" i(2r cBi) {biK7(1, jk) - aiKS(l’ ik)]

i -l 3 > . «
DiZ, JkX— - I(ZﬁCBJk) [a_]kK5 (1: Jk)+kaK6 (1, Jk)]

i —1 > : « .
Diz, jky =T 1(2ﬁchk) [bijS i, jk) - aij6 i, jk)]

where Kl through KS

and a,b,8 by (184) through (186) in the same reference.

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

are given by (198)-(201) and (341)-(344) in reference 1

The evaluation of the rest of the t, s components of D is similar

o (118) provided we make the correct replacements for the unit vectors

t
A A
t, s.

]

Next we calculate the t, s components of
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D (R;) = (VXG; ", R (127)

=15

If we recall that r =R - r+, r+=r:r., r+:r =y, and that vxG. Iis
- =1l =0’ = "~"4’ o - —Hk : =is
given by (46) we understand that the t, s components of D, (Rl) have the
same form as (118) provided we account for the changes due to the action
of the reflection operator B’l' In that respect the third of (75)b is helpful.
Then -
A A

. . . - pl® ()
-t D 1 I Byt i) = B D S T tPixe, ey Sikey

_ (z) (z) (z)
tixDiy, jkzsjkz +tizDiz, jkxsjkx +t1yD1Y, jky Jky

(z) (z) (z)
Yy Piy, jkzikz T taPiz, jrxSikx T2 iz, jky Siky)

(z)

argument of D

(128)

where D is the same as Pl except that we have replaced z., in the

jk

by -z

L) ik

The calculation of the remaining t, s components of D, (N) is simi-

1
= A
lar provided we allow for the correct replacement of the unit vectors t

A
and s.

Finally we consider the alternate model of the wing as an infinite
+ 7
flat Elate and proceed to calculate tie t, s elements of ¥ ¥ G (g ,30) and
[vx G G (r I RIE R where VXQIS(£ Iy ) is given by (72)

v X G. (r+,r+)= -vG (r+,r+.) X R (129)
and r+. =R r+, R=1 - 2.9'{} If we recall (75)a and (75)b we can arrive

at the following expressions

vG et el xRI 8 =- PR RY) )

Jk Pk I Rijey i 51 ™ 8285k

r )

g )
13kz Py Sk xSy T Ridkx s

e ] (130)

iz Jky 1y sz
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where

(y)

ik R
(v) _ (y) R ik -3
Pl = (kR -1 e U 1 ram) fRUk] (131)
\ 2 2
Rg}i = Ing’l= [(xi—-xjk) +(yi+yjk) +(Z _z ) ]a (132)
_82 (Xl-xJk) + ly, Y5 )y+(z Jk)% (133)

To calculate the remaining t, s components of - VG (£+, T )X R
we use (130) allowing for the correct replacements of the unit vectors % s

The last calculation involves the .t, s component of

+ - +
[VXGIS(£ yr MRy = [-9G (r ',

JXR]-R (134)

With the aid of (75)a and (75)b we can arrive at the following expression

- v ez ) x BT Ry S5k T P:'fj'ka) [- Ri(}’f; (b Sicp T 2550
* Rngz) (b S 1 xSy ™ Rijhoe oy ™ by Sikez ] (135)
where )
. Z
g_kz) ) (lkORl(i{Z) o e1k0Ri§rk (1/4ﬁ)[R(i?IZ<)]-3 (136)
fsz’ lRl(jka = [(xi-xjk)2 +{y; +yjk)2 +{zi+zjk)2]% (137)
RO = Gy Rty 1y )9 4 (o h e ) 8 (138)

The derivation of the remaining t, s components of [- VGo(£+’ E;i) x R]- Ry
is similar and is given by (135) provided we make the correct replacements

A
for the unit vectors t, s.

Thus we have completed the derivation of the t, s components of

ﬁa in (95)a for both wing models, i.e. the infinite elliptical cylinder and 0
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the infinite flat plate. The matrix equation (87) can now be inverted in
order to calculate the t and s components of_b_T+ and J~. The components
of the real surface current density J at any point can be obtained with
the aid of (84) and (85).

We now present symmetry relations that could be used to re-
duce the number of matrix elements that need to be calculated. They
are particularly useful in reducing computer time when the elliptic cylin-
der model of the wing is used. In this note we are interested in obtain-
ing numerical results only for the flat plate model of the wing and for
that reason as well as time limitations we have note programmed these
relations. For completeness we present the following symmetry rela-

tions.

5
*
*
1l
>

——

/ ~ Pylon

o
*
*
i

o

where i ,j refer to zones symmetric (with respect tox = 0) to i,

respectively, i.e.

b3 ¥
m :{Z[Nr—rl] +1}N +m-1, m=1i,j
b P

Furthermatrix element symmetries exist if Ll = LZ’ however, then we

could do considerably more than just reduce the number of matrix ele-
ments that must be calculated, This is so because we would have an
additional plane of symmetry (yz plane) and we could further reduce the
size of the matrix that must be inverted by supplying the analysis con-

tained in Section II.

197-55



Finally the following remarks are in order. In debugging the

program that solves (86) we first considered a familiar problem, that
is the interaction of a perfectly conducting circular cylinder with an in-
cident plane electromagnetic wave. Thus the wing and the pylon were
removed and the hole left over at the pylon-body intersection was proper- >
ly filled out by correcting the areas and coordinates of zones and sub-

zones., The Green's function also had to be modified, that is we deleted »
the scattered part corresponding to the presence of the wing. The sym-

metry considerations were still true and valuable and were left unchang-

ed. Thus our debugging had endowed us with the very interesting prob-

lem of calculating the current density components on the surface of a

perfectly conducting cylinder illuminated by a plane wave. The ensuing
calculations and comparisons to known results were interesting and im-

portant enough to be published as a forthcoming Interaction Note.
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SECTION V

CALCULATION OF INTERIOR CABLE CURRENTS AND VOLTAGES

In this section we consider a cable or cable bundle to be run-
ning coaxial with the axis of our circular cylindrical portion of the attach-
ed structure. This analysis is also appropriate for the modification of
our program where the circular cylinder is situated in free space. The
geometry describing the orientation of the cable and the aperture expos-
ing the cable is depicted in figure 7 . The parameters defined by this
figure are a, ¢, 0 and cpz with only cpz requiring further definition.
This is the angle as indicated measured to the geometric center of the
kth aperture. The other coordinate needed to locate this aperture is
xgwhere x is the Cartesian coordinate defined in figure 1. For our
purposes we require two additional parameters to characterize the
aperture, the electric polarizability al; and the magnetic polarizability
c,rl;. We are now in a position to use the results of reference 5 to rep-
resent the EMP excited aperture as the equivalent two port depicted in

figure 8. The equivalent voltage and current sources are given by

k o k_k k k
Veq— 1k0amD Jt(xa,’ @a) (139)
and
k_k
k C{‘eD k k
eq: ZC vs j(xa’c‘oa) (140)

where Vg is the surface divergence and

2 2 2
Zo ay +ta - ¢
ZC = 2?- arccosh ———E};-a—-— (141)
1
Dk _ ZO (1 - Qz)z N
Zw-rab I-gcos (cpw - cpg) (142)

5. Latham, R. W., ''Small holes in cable shields, "' AF WL Interaction
Notes, Note 118, September 1972,
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Figure 7: Internal cable geometry

)

Figure 8: Two port equivalent circuit for the kth excited aperture

197-58




Zgab
8= 22 2

ab;-a +g

(143)

In reference 5 the equivalent voltage and current source two port is due
to an aperture in an infinite cylinder. In this note we assume that the
same two port source can be inserted between the equivalent transmission
lines associated with our finite cylinder as depicted in figure 9 . The
internal terminating impedances ZR and ZL must be specified as input
parameters and the characteristic impedance of the line is given in
reference 5. The solution of the transmission line problem depicted in
figure 9 for a single two port source is well known and depends on
whether the position on the cable, where the voltage and currents are to
be calculated, is associated with a coordinate Xc that is either larger or
smaller tha.nxg. Using the principle of superposition, the solution for

many apertures is

N . k . k k
X X _ - -
L ” Zc elko( c aL)- pRelkO[Z(Ll Xa.L) (X'c % aL)] k
V(X ): G»(X :X' ) T vV
c - 1 ¢’ al’, +Zk L - k eZIk (L. - k TL
= <L Rr PRE® Ol "¥,p)
N . k . k k
R . Ze elko(xaR.xc)_ pLe1k0 [2(L2+xaR)-(xaR-_xC)]
+ el{x , 2 F : = Vg
<1 c aRZ L7 k 1 - k ezxko(Lz +xaR)
- c"7TR PoR PL
(144)
N . k : k k.
L . . oi¥o (Xc-xa.L)-‘rpRelko[Z(Ll-xaLHXc-“aL)] .
I ) =Z e, XaLfZ Lo K . K J2ik (Lo~ xK) VoL
k=1 c TL PoL, PR
N k ikol2(L +xk ) - (xk—x )]

R oikd®p-x ) tpp e ° 2 ek R "¢ "
+Z e (x C’XaR) - " 1 - %1;{ oL elko (L2+ XaR) TR
k=1 c TTR

(145)
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Figure 9: Total equivalent transmission line description of the internal coupling problem




where NL and Np are determined according to

k
= = J
X, XaLk 1, . I\L
and
k
= !
XCS XaRk——l,...,I\R

The remaining quantities in (144) and (145) are given by

k
k L X ¥ X,
elxy x )= . X ' (146)
z X, = xa
R ZC +ZR (147)
. ) Z -ZL
i ZC +ZL _ (148)
k
. I - - eZlk (LZ + Xa.L)
Z = Z - -
T, “¢ 1+, Zlko(L2 + XEL) (149)
L
k
R
Zrr = 2. ) "
1+ Zlko(Ll-xaR) (150)
k
Z -7
0 k _ _c TL, (151)
oLL z +Zk
c TL
k
zZ -7
pk - ¢ IR (152)
oR 7 +Zk
TR
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k k_k k
Vrr = ZrRleq” Veq (154)

The relationship of the internal cable voltage and current
given in (144) and (145) to the surface current densitites that are calcu-
lated in this note is through the equivalent source dependence as can
be seen in (139) and (140). These quantities are evaluated at the point
corresponding to the geometric center of the aperture (xz, Cpl;); however,
for the calculation of these quantities the surface is assumed to be closed.
In general, the center of an aperture will not correspond to the center
of a zone where the two components of the surface current density are
calculated. For this reason we use the four point interpolation pro-

cedure that will now be described. In general

k k _ N _ J J
J & o= Jl: = (I-py)(1-q )8, +p, (1-q. ) B
J J
k k ‘ Q Q
and v s _‘I(xa: Cpa) - (I‘Pk)( l-qk)Ak + Pk(l'qk)Bk
+qu(1-p)C + p g, DY (156)
where we have reduced the problem to specifying p. ,q ,AQ’ J Qs J, CQ’ J
o) kK*k’"k , B k

and Dk"T as functions of x]:,cp]:, and the calculated components o%{ the
surface current densities at the determined center of appropriate neigh-

boring zones.
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k
We replace the dependence of these quantities onx a with the
equivalent and more convenient variable

k

= I"l _xa

Tx

The resulting interpolation procedure is now summarized to the infent
that a particular specification of Ty and Cpi leads to the specification of
all quantities appearingin (155) and (156). ( The subsequent presentation
involves the numbering scheme and dimensions of zones explained in

detail in Appendix A.)

For

4

5= Ty S L1 - 5 (157)
we define

T £

(G o)
b

where 1é l)is the length of a body (circular cylinder) zone for x 20 and
[x]” is the largest integer smaller than x. If x is integer then [x] =x-1.

Now we consider the cases B 2Ty and By < Ti If

Bkz T then
*
B ™ Tk Tk
Py = —-—————-—-1(1) and JAk =[——-1 (IJ +1+ NpNh’ Jpk = JAk-l (159)
b b
Bk<'rk, then
1
Bk“b()""k . T T . .
Py~ . o) and JAk=[——1 (l)]+ 2+ NpNh’ Jpk = _]Ak-l (160)
b b
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where N is the number of pylon zones along half the pylon circumference,

Nh the number of zones along the pylon height and iax Ik will be used

shortly.
For
1él) léz)
Ly -5 <mesh v 72 (161)
(2)
Lyt 1,7 /2 - my (1) (1)
p, = y Ja. = N +#1 +N_N,j_=N'"/+N_N,_ (162)
k 1él)’[2+lé2)/2 Ak b p h''Bk b ph

él) the number of

longitudinal zones along the x 2 0 portion of the body.

where l.éz) the length of a body zone for x< 0 and N

For
(2) ]_b(Z)
Ll + > <"rks Ll+ L2 - =
define
%k
T, - L
k 1 (2)
R +([Tﬂ ] )
and if

BTk . () [T~ Mg L
Py = —1—(—27 and JAk:Nb + [—T)—_:l + 1 +NpNh,JBk=JAk-1 (165)
b
Bk< T 1 then
(2) *
Br Tl Tk . (1) [T~ o
pk = ) 2 and JAk:Nb + ——ly)—] +2+NpNh,JBk=JAk—1 (166)
b
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Next we consider the ¢ dependence. Thus for

0<et < 3n/4
o3

(167)

K
o ~m/4 g . I . B
el T G o +N), D =T (. +N.)
k- YrYak Pl PR T YUk T
A o1 2epls) | 27pla
k 2y A A E
> (168)
o _ 1 27srlpy)  3plgy)
Bk ay 3 g
Q. 1 IaplUary) | 3Tl * )
ab 3 dE
50 1 2Tsplgy * M) 33plpy 7N
= = +
k= a 30 38 -

where JtF(j), JSF(j) are the t and s components of the surface current

density evaluated at the center of the jth zone situated on the front (F,z > 0)

portion of the body, the partial derivatives are given in detail later and

Nb is the number of longitudinal zones along the full length of the body.

For

3n/4 < cpi < 5n/4

K
B " 3n/4 5 . J
U= Tz AT Tl TN By
cl a3 G +N.), DI =T (ju. +N,)
k- otBYar TN Pt gUBk TN
AQ_ L 8 Toplar™y) 37 p g + Ny)
= — +
ko ag 3 38
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N

Upk T Np)

? (170)



s0. 1 2TerUp TN 3wl ¥ )

k ab 3w 3§
Q.12 Toplar® Ny 39gla + M)

k™ ay dp Ag
2. L 2emUpc F 1) 23 plpy T 1)

k ab o] LR J

(170)

where the index B stands for back i. e, the z <0 portion of the body. For

511- /4 Scp<2.ﬂ'
k =N
/4 - P, J . J .
U= 7z Px T Ielar) Br = Jiglmy
cd o T .+ N, DL =T _(uy + N,
k- "tBYAk T b Yk T tBYBK T b
A0. 1 2spUa)  3TpUay)
kT o2, aw 3E
a9 . L 37 .glm) | 39pligy)
x“a T s 58
Q.1 2 ToglUax TNy 3iplige # N
ko a 3 GRS
bR 1 2 Tsplax TNy 3Jdglg + Ny
k 2y 3t 38 J

(171)

(172)

Finally we present explicit numerical expressions for the partial deriva-

tives appearing in the previous relationships for the various zone loca-

tions.

NN, +1

3E

NpNh + Nb +1
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@ Jyr,

G+1) -7

B)

)
lb
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i
2
<]
4
-+
)
2

aJi:(F,B)(j)_ J-t(F,B)(jH) - Jrt(F,B)(j-l) (175)
_ (1) e /a1 @
§= NN+ NNy b
j= NNy Né1)+ 1 . ; j
G008 LS 0t el - L
, = 1) (2)
o (1) (1/2)[1( + 31 7]
J = NNy £ NP N 41 b b
.. (1) )
NPNh+Z__]_NpNh+Nb -1
NN +2+N <3jsNN +N_ +N (l)-l
p h b~ ! P h b b (77)
2Ty, By Ty, )Y - w5y (-D)
3§ i ) 7
21,
(1) <i<
Nplp # N o #2535 NNy, + Np-l
(1) <is<
NoNp +# Ny # NpHo 2S5 SN N+ 2N -1 (178)

CRS (2)
21,
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The ¢p - derivatives are calculated as follows

NNy + 15§ = NN + N

e e

2Tl T gy - I 0) \( 179)
39 /2 .
|
3J gy I gli) - T gUHN) _
de m/2 /
. )
NNy + N+ 1S SN N+ 2N,
2T pl) T gl - T p(-Ny) oo
3% ™
21,500 TGN - T 6
X 0 J
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APPENDIX A

In this Appendix we present the numbering scheme of zones (into which
we divide the structure under consideration) and subzones (into which we
divide each zone), and the necessary calculations to determine the dimen-
sions, areas and coordinates of zones and subzones. Because of the sym-
metry considerations presented in Section II, we will only consider zones

on surfaces corresponding to z > 0 (fig. 1 ).

The main requirement that must be satisfied in determining the size
of a zone is that both components of the surface current density should be
approximately constant over the zone. The zone size on the structure
must satisfy both a geometry requirement and a wavelength requirement.
The wavelength requirement depends somewhat on the accuracy desired
and is accordingly 8 to 10 zones per wavelength. For the class of struc-
tures considered, geometry limited zoning is sufficiently dense so as to
allow the calculation of all qualities for wavelengths that exhibit the major
resonances of the structure as well as encompassing a signiﬁcant portion
of the EMP spectrum. We accomplish this without decreasing the wave-
length beyond a value that would cause any geometry limited zone to be
larger than a tenth of a wavelength., Specifically, the geometry zoning
restrictions are that either dimension of a zone on the circular cylinder
should be approximately equal to, or less than, the diameter of the cylinder
and similarly, either dimension of a zone on the elliptic cylinder should be

approximately equal to, or less than, the minor axis of the ellipse.

A separate consideration from the choice of the zone size is the choice
of the number of subzones, This number is determined by the requirement
that self and adjacent matrix elements are calculated accurately. It is
actually the calculation of the adjacent matrix elements that imposes the
most stringent requirement. This is the case because an analytical proce-
dure, described in Appendix B, is used to calculate the self matrix elements

and this procedure is insensitive to the subzoning.
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By performing zoning and subzoning numerical experiments on a cir-
cular cylinder, we found that 9 subzones give sufficient accuracy. These
experiments also eased our concern over the questionable approximation
that the surface current densities were constant over zones adjacent to the .
edge formed by the end caps of the cylinder. We know that a component of
the surface current density has an integrable singularity at the edge; however, .
our results were in good agreement with those presented by Sassman (ref. 2 )

for the total axial current even near the edge.
1. Numbering of Zones and Subzones

1.1 Pylon

As we mentioned earlier, geometrical considerations relevant to the
zoning of the pylon surface require that the linear dimensions of a zone
should be no larger than the minor axis pr of the pylon elliptical cross

section. Bearing this in mind, the longitudinal number of zones Np {cor-

responding to half the circumference Sp of the elliptic cross section, and

chosen as an even number for convenience) is

S sl
szz{[%ﬁ’-] +1} (A-1)
p

3k *
where [x] 1is the largest integer smaller than x. (If x integer, [x] = x-1.)

Similarly the number of zones Nh along the height of the pylon hp is

h %
I -
Nh“[pr] +1 (A-2)

To describe the location of a zone we will use one subscript, say i, i.e.
i runs from 1 to NpNh (fig, 10}, Each subzone can be characterized by
two subscripts; one for the mother zone and the other for the subzone with-
in the zone, i.e. i,k where 1 runs from 1 to N Nh and k from 0 to 8

(the zeroth subzone is the central one,.fig.10)., However, a subzone can

also be characterized by a single subscript, say a(1,2,3,--, 9NpNh) and
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Figure 10: Numbering of zones on pylon.




the relationship between o and i,k is

a{i,k =0) =
a(i,k =1) =
a(i,k =2} =
afi,k =3)=
o i,k = 4) =
a{i,k =5)=
i,k =6)=
ai,k=7)=
afi,k =8) =

As an example we choose i =50, NP =12,
are characterized by o = 436, 437, 438, 472, 473, 474, 508, 509, 510

(fig.12.

1.2

Due to the asymmetry of the body with respect to the x-axis the number

of longitudinal zones is different in the two sections, x> 0 and x < 0.

ferring to figure 1
(1) Ll b
Nb “12a
b -
2) _[ 2]
Np ' =z
b 4

-1 .
3NP<Z[T\I—-] +1)+ 3i -1
P
af{i,k =0} -3N_ -1
P
a{i,k = 0) -3N
( ) b
afli,k = 0) —3Np+l
¢,k = 0) -1
afi,k = 0) +1
¢ (i, = 0) 43N - 1
@i,k = 0) +3N
p

h

Body (Cylindrical Surface)

we have
+ 1, x>0
+ 1, x < 0

Around the body we choose two zones (z > 0), each of length (ﬂ'/Z)ab.
Thus the total number of zones on (half) the cylindrical surface of the body

is

ZNb

= Z[N](gl) + N{_)Z)]
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N. > 5 and the nine subzones
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Figure 11: Numbering of subzones on pylon, Numbers correspond to Np = 12 and Nh > 5.)




The numbering scheme of zones and subzones is similar to that on the ‘
l a & 9
h +1, NpNh

) and a subzone by two subscripts i,k (k =0, 1,<+¢,8) or by one sub-

pylon. A zone will be characterized by a subscript i (NpN
+2Nb ;
script a' such that .

als
ks

i-N N, -1
+ 1} +3(-N N -1 (A-7)

T — oy
a(l,k_O)_?;Nb{Z[ Ny

The relationship of of (i,k) to ol (i,k = 0) is the same as on the pylon (A-3)
Notice that the first subzone on the body

provided we replace Np by Nb.
corresponds to "OLT = 1 whereas the first zone corresponds to NpNh + 1.
1.3 Body (End Caps)

Each cap is divided into two zones (z > 0) each of arc length (Tr/Z)ab.

These four zones correspond to (fig.12)

1=pr+1 x:Ll, g< m/2 h
=N, +2 x =L, 6> m/2
=pr+3 x=-—L2, a< m/2
=pr+4 x:-Lz, a> m/2 P
where
pr = NpNh 2Ny (A-9)

Each subzone will be divided into nine subzones characterized by two
subscripts i,k (k = 0,1,°**,8). The arrangement of the subzones is shown

in figure 13a.

2. Coordinates and Areas of Zones and Subzones Not Adjacent to Sur-

face Intersections

2.1 Areas and Coordinates of Subzones
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Figure 12: Numbering of zones on end caps.
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Figure 13b: Determination of centers of subzones on
end caps. All subareas are equal (three
of them are shown shaded).

Figure 13a: Numbering of subzones on end caps.
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2.1.1 Pylon

To determine the areas and coordinates at the center of a given sub-
zone on the pylon we first define the linear dimensions of a zone, If we

recall (A-1) and (A-2) we can write

\
s /2
) = =2
P N
P
b (A-10)
) Z'NR
N,

Consequently the linear dimensions of a subzone are (1/3)¢ , (1/3)4 and
the corresponding area equal to (1/9)4 pz W The coordinates of the pylon
subzones are given by

@ =3N +1,"°+, 3N (3N -1
b s p( b )

X =a cosu N
a P

z

b _cosu (A-11)
a p

£ *
a h a-1
YCL = bW + T{Z[W] - 1}
P )

where u is determined by

u
Z sk 1
- v 2 =
N A S
o

P

Equations (A-11) and (A-12) can easily be understood with the aid of figures
l4:and 15,

2.1.2 Body (Cylindrical Surface)

The longitudinal length of the body zones can be defined with the aid of
(A-4) and (A-5)
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Figure l4:
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Pylon cross section

\V

Cross section of pylomn.
an azimuthal angle u.

-

Point P is the center of the ath subzone characterized by
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Figure 15: Calculation of the y coordinate of the center P of a pylon subzone not adjacent to

surface intersections.



I >0 |
bSO
b
) (A-13)
L )
zf%—(—%, %<0
Ny )

whereas the arc length of each zone is (ﬂ/Z)ab.
1(31) (x> 0),1/3 ﬁ,l(jz) (x < 0), (ﬁ/é)ab
and the areas equal to ('ﬂ‘/lS),@l()l )ab (x> 0) and (®W/18)4 1(32)3’13 (
The coordinates at the center of a subzone for

L. -a * a
aT<Als[_i__.E +1, aT>A253Nb(1)+[—(-ZE)———] + 1
4} ,5 £.77/3

Thus the corresponding
lengths of a body subzone are 1/3 §
x < 0).

are

. S P
t [of-1 b + fa (1),
XQT = Ll —{a - [g—N-——] 3Nb} 3 + —Z o - [g—N—- 3Nb < 3Nb (A-14)

b b
i @) @) i .
- - T-O‘—‘l]m N G N T—E—;]>3N()
= o4 s O
ot { [3 pl PP {3 e > b
Y+ =-b +h +ab(l-coscoT)
(A-15)
ZO’T = absin mCLT
© ={2 O‘T'l]ﬂ = (A-16)
GT 3Nb 12

Equations (A-15) and (A-16) can easily be understood with the aid of fig-
ures 16 and 17.
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Figure 16: Geometry for the calculation the x coordinate of body subzones.
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Figure 17: Geometry for the calculation of the y and z coordinates of the centers P_ (s =1, 2, ..., 6)
8

of body subzones not adjacent to the body-pylon intersection. (Scales of figures 16 and 17 are not the same).
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2.1.3 Body (End Caps)

Each zone is divided into nine subzones of equal area ( :(TT/36)a1?;)
and the center of a subzone is defined as the common point of four seg-
ments of equal area as illustrated in figure 13b. The following results

are obtained

1=pr+l

x:Ll

=b +h + 1\/3_0 I (2k-1) k=123 (A-17)
Y“wpab'6°slz‘] T i

1
y=b, +h +ay {1 - 7 cos [-1”7 (2k-7)]: k= 4, 5 (A-18)
z = ;213 sin [112 (2k-7)]

x= L

y=by th ta {1 - /%cos [132 (Zk-9ﬂ} k=6,7,8 (A-19)
z = zb sin[lzz (2k-9)]

X = Ll

y=b_+h +%ab k=o (A-20)
2= 2 a
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i= pr + 2
The coordinates are the same as for i = N T 2 except that the terms in
the angular bracket for the y-coordinate add rather than subtract. For .

k = 0, y:bw+hp+(3/2)ab.

i= pr +3
The coordinates are the same as for i = pr + 1 except that x = -Lz.
i= pr + 4
The coordinates are the same as for i = pr + 2 except that x = -Lz.
2.2 Areas and Coordinates of Zones
2.2.1 Pylon

In view of (A-10) the area of a pylon zone is ﬂ'pﬁ'h’ whereas the co-
ordinates at the center of the zone are the same as the coordinates at the
center of the central subzone of the zone. They are given by (A-11) where

o is equal to a(i,k = 0) and related to i according to (A-3).
2.2.2 Body (Cylindrical Surface)

The area of a body zone is equal to (TT/Z)abzl()l) for x> 0 and
(ﬁ/Z)abZ}(al) for x < 0, whereas the coordinates at the center of the zone
are given by (A-15) with of equal to cﬁ(i, k = 0) and related to 1 according

to (.A"?)o
2.2.3 Body (End Caps)

The area of a zon. is (™ /4)a§ and the coordinates at the center of

the zone are given by Q

197-84



— , 1 2 -
y = W+hp+2ab 1—NpNh+l (A-21)
zZ = %ab
X = Ll
y:bW+hP+3/Zab 1:NpNh+2 (A-22)
z = éab
X = - L2
— 1 LR _ -
y_bw+hp+2ab 1—NpNh+3 (A-23)
z = %ab -
X = - L2
y:bw+hp+3/2ab 1=NpNh+4 (A-24)
z = %ab
3. Coordinates and Areas of Zones and Subzones Adjacent to Sur-
face Intersections
3.1 Coordinates and Areas of Subzones

3.1.1 Pylon
3.1.1.1 Wing-Pylon Intersection

The coordinates of the subzones adjacent to the wing-pylon inter-

section, i.e.

@ =1,+++, 3N

P
are given by
X =a_cosu
o8 p
z_ =b_sinu (A-25)
a p

[\

<
il
o

2
{_mb [H(l-
o 3 W
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Figure 18: Calculation of the y coordinate of the center P of a pylon subzone adjacent to the wing-pylon
intersection,
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where u is determined by

u

4
-zE(Za -1) = .!). (a.IZJ sinzu + bIZ) cos u)

L
2

du (A-26)

To understand the above relationships we refer to figures 14 and 18.
The x and z coordinates at the center P of the subzone can be obtained

with the aid of figure 14, whereas from figure 18 we see that
2

<~ \2
YG. =YP=%(YP! +YPH):% bW< 'Ta) +bw+f_?_]

a

To calculate the areas of the above subzones we first recall that N
is an even integer and consequently there are (3/2)N_ subzones for x > 0
and also (3/2)Np for x < 0. It is easy to see (fig. 10) that subzones
positioned symmetrically about the x = 0 plane have equal areas. Ifa
subzone (x > 0) is characterized by an index o the symmetric subzone

will correspond to an index 8 such that
B=3N_/2+1,""*3N a=3N_-B+1 (@=1, ..., 3N /2) (A-27)
P P P P 2Ry

Thus it suffices to only calculate areas for

1
. Xa as +x (b0 -a0)]?
(AS)Q=§Eth+f b -v)| ~B——b dx (A-28)
" a (a_-x)
< pp
a+l
where
2\3
- x_
w (A-29)
>§<=a. cos u = a,a + 1
X, o y (v )

and u, is determined by
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u

L Y L
£ (y -1)= f (az sinzu + bz <:oszu)a du (A-30)
3 s P P
To derive (A-28) we refer to figures 19 and 20. From figure 20 the shaded .
area is
ds = (b - ylds (A-31)
and 2 21 2 )
ds = [(dX ) + (dz) ]2 = dx[l + (dz/dx) ]2
(A-32)
dz X E; X bz
ax - "z 2 T ° 2, 2.2 =
a b (1 -x"/a’)? a
p P P’ °p P

With the aid of (A-31) and (A-32) we can easily arrive at (A-28).

From the numerical accuracy point of view (A-28) is not suitable for

% . . .
numerical integration when x, = ap even though the resulting singularity is

integrable. To secure sufficient accuracy we can rewrite (A-28) as

Xa 291 2% 1+ 2m2 - a5 )
1 x| 2 _p g
(DS) ==4 4, +D {[1-(1-—)] {P P }-K(a -x)}dx
a 97°ph w . aXZN' a;(a;_xa) p
Xa+ 1
>:< —]-'- ;{; i
+ ZbWK [(ap - Xy +l)a - (ap - Xa)a] (A-33)
where .
K=zt |1 - - (a_<a ) (A-34)
VZap 32 p w

The integrand in (A-33) is zero at x = ap and can be evaluated numerically

with sufficient accuracy.

3.1.1.2 Pylon-Body Intersection
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Figure 19: Cross section of pylon. PO( and Pa’|<

+1

are the end points of the a th subzone.
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Figure 20: Calculation of the area of a pylon subzone adjacent to the wing-pylon intersection
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The coordinates of the subzones adjacent to the pylon-body intersection

o4 =3Np(3Nh - 1) +1,°°, 9NpNh
are given by
X =a_cosu R
o
z, = bp sin u 1 (A-35)
'Zh zi B
Yo *Pw TPy T F2% P2
b S/

and u is determined by

! F2 2 2 2.3
£ {2{a- 3N - 1)3Np}-1} -_-f (agsinu +bcos u)®du  (A-36)
O

The x and z coordinates can be calculated with the aid of figure 14 whereas

from figure 21 we see that

Yy =Vp=Vpi tz(P'PY

2

2 £ Z

_ __h _h N S
_bw+hp 5+ %3+ab[ (1 2)]

ap

[\

f~

|

Notice that P'' lies on the body and it has the same =z coordinate as the

center P of the pylon subzone.

To calculate the areas of the subzones we first recall that Np is an
even integer and consequently therz are (3/2)Np subzones for x> 0 and
also (3/2)Np for x < 0. Because of symmetry about the x = 0 plane,if a
subzone (x > 0) is characterized by an index ¢ the symmetric subzone

will correspond to an index B such that
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Figure 21: Calculation of the y coordinate at the center P of a pylon subzone adjacent to the

pylon-body intersection
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B = (3N l)3Np+—2-E+l,.--,3N N

A~ h™p

2(3N

i

Thus it suffices to only calculate areas for:

- 1)3N_+3N_- B +1
RN . P

(3N, = 13N+ 1,00+, (3N

3N )
D - 1)3Np +—RZ

(3N, - 1)3Np 1,00, BNy - 1)3Np + (3N /2).
b N
) o+l b4+zz(a;—b§) 2
- = 2 -
(6S) =g okt ) ey -y ) NI dz
Z, PP

where

*=b sin u =qa,q + 1
“y = °p y W )

and uY is determined by

)=

du

£
[v - (3Nh- 1)3Np- l]—§>E = / (alz3 sinzu +b123 coszu)

Equation (A-37) can be derived with the aid of figures 19 and 22.

figure 22 the shaded area is

ds = (ab - y*) ds

and
2 ™
=[1 + (dx/dz)"] dz
az az
dx Zz
=7 % - ool
b a(l-z/b) b J
P p P

(A-37)

(A-38)

(A-39)

From

(A-40)

(A-41)

Using (A-40) and (A-41) we can easily arrive at (A-37). Notice that when
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Figure 22: Geometry for the calculation of the area of a pylon subzone adjacent to the

pylon-body intersection
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b
Za +1
sequently to allow for accurate numerical integration we should rewrite

(A-37) as

= bp’ the integrand in (A-37) has an integrable singularity and con-

e

v ES 1

! za+1[' 2\ b§+z2(a;-b; 2

(8S), = g Aok, * abf Ll-<l-:z b2 (B2 - 22)
” b P P
z
a
_i e 1 st _1_]
_ 2 - e 2 _ AR} -
- Kl(bp z) dz ZKl 2, [(bp za+l) (bp zg) (A-42)

The integrand in (A-35) is zero at z = bp and the numerical integration can

be performed accurately.
3.1.2 Body (Cylindrical Surface). Body-Pylon Intersection

In what follows we assume that sin™! (bp/ab) is smaller than 30° and
consequently the intersection does not reach beyond the first row of subzones.

The subzones adjacent to the body-pylon intersection correspond to

.{.
Alson SAZ

where Al’AZ have been defined by (A-14). We first present the coordi-

nates of subzones for x> 0, i.e.

1
x
L,
x = L -GT._.bL_+ b
CLT 1 3 6
3 Lo
?4 7% Sm(lz * 2) (A-43)
_ Lo
yT-bW+h +ab[l-cos(2-r 2)]
a ),
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where

cp* = sin-l(z*/ab) W
1 (A-44)

X t 273
Z,,< =b [ -<—aC£—) ] <for x S a ) l
p p GT p _j

Equations (A-43) can be understood with the aid of figures 23a, 23b. Notice
that when t}?e Xt coordinate at the center of the o = Al subzone is larger
than ap, z in (A-44)is not defined, i.e. point P' (fig.23 ) does not belong
to the pylon surface. For Xy > ap the y and.z coordinates for the af = Ay

subzone can be defined as follows

7 |
yT-bW+hp+ab(l—cosE)

o
2+ za sinj T A, x =z a (A-45)
of =% S T2 S U p
L1
x = L. - ¢ _]1_ + b > a
¥ 1 3 & ~ %p
a

_)

Notice that for x T: ap, cp"< in (A-44) is zero and (A-43) is identical with
(A-45). ¢

The coordinates at the center of a subzone for x < 0 such that
3N£l)+lsch < A

2

can be derived similarly

ICANIL h

I % b

S e

ZCJ_ =a, sin (l—ﬁz— + CD—Z) (A-46)
yT:b +h ~}-a.,b [I-COS(% +CDT>}

a /
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Figure 23: Geometry for the calculation of the coordinates of the center P of a body subzonec

adjacent to the body-pylon intersection. (Scales of figures (a) and (b) are not the same. )
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and
(2) (2) )
4 § .

- T AN "b b
xaT (o 3Nb )—-—--3 +——€—

_ . T - -
ZGT a, sin 73 xaT = ap, o' = A2 (A-47)

: i

YOJ_ = bW + hp + ay, (1 - cos -17)

Next we present the areas of the subzones starting with

Ll-a 3
aT=A1: —(l)—ﬂ +1
IAE

o
a
p # -
-l-f ay (cp - sin -—) dx (A-48)
g b
X
where
2y: )
Z=b (1-2{_2-) 1
p a
] P
L
x =Ly - A —— (A-49)
= -lb x
¢ = sin B
%p

-

Equation (A-48) can be derived with the aid of figures 24 and 25 . From
figure 25 we see that ‘
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Figure 24: Geometry in the zy plane for the calculation of the area of the first body subzone

adjacent to the body-pylon intersection. (Scales of figures 24 and 25 are not the same. )
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Figure 25: Geometry for the calculation of the area of the first body subzone adjacent to the

body-~pylon intersection
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Area 1

[ ]
b s
Ly-@y -1 — 2%

(1)

_ b IT_ b
AreaZ_——3—— ab(é -c@)

3 -
Differential Area = a, Apdx =a @ - sin 1 =z dx
b : b ay
With the help of the above relationships we can easily derive (A-48).

We proceed now by presenting the areas of subzones such that

A +1<qof < 3NSJ

1 "
o) *a :
T 5 % -
(AS)CLT =—2——ab<€ - cp>+ . ab<cp - sin %) dx (A-50)
a+1
where
2 1
z=Db (l -%)2 W
p a
P
1) (A-51)
* oy b ool of
S e (v -1)—= (v =al,a'+ 1)
y

Equation (A-50) can be derived with the aid of figures 24 and 26 and in a
similar manner as (A-48).

Next we consider subzones for x < 0 such that
(1) i
3Nb +1 <! < A2 -1

%
(1) Tat1
(AS) | = zb a [ - cp* + a * -sin_li dx (A-52)
B 3 b\l6 (@ a
X*

b

04
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Figure 26: Geometry for the calculation of the area of a body subzone adjacent to the

body-pylon intersection




where

P (2)
% (1) b ¥
X .= hﬁ-3N -1)73 (vT = of,al+1)
YT b
* 1P
¢ = sin 2
%

(2) (2)
(AS) |, = A —3N(l) Eb -a_la *+£b
o 277 )3 pl*® T3
a
p
(* . =1 =z )
+ a, {© - sin — }dx
b ay
X"l‘
G’T
where
‘\
_b XZ %
z=b (‘--7?
a
P
(2)
- £
(1) b
XQT_<A2 3Nb - l>-—3—
* 1P
¢ = sin £
ap p.
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3.2 Coordinates and Areas of Zones
3.2.1 Pylon
3.2,1. 1 Wing-Pylon Intersection

The coordinates at the center of a zone are the same as the coordi-
nates at the center of the central subzone and this subzone is not adjacent
to the intersection. Thus the coordinates of a zone i are given by (A-11)

with ¢ equal to a(i,k = 0) and related to i by the relationship
a(i,k=0)=3Np+3k-l, 1sisz (A-54)

To calculate the area of a zone we notice that only three subzones are ad-

jacent to the wing-pylon intersection and consequently

2 (A-55)
(88); =5 4,4, T (AS) 5 11yt (88) s 1emay T (8S) 4, 1ea3)
where (DS)0 is given by (A-33)
o{i,k=1)=3i -2
a(i,k =2)=3i-1 lsisNP (A-56)

i,k =3) =31

3.2.1.2 Pylon-Body Intersection

The coordinates at the center of a zone are the same as the coordi-
nates at the center of the central subzone, and this subzone is not adjacent
to the intersection. Thus the coordinates are given by (A-11) with o equal
to o (i, k = 0) and related to i by

cx(i,k:O):3Np(2N -13+3i-1, NP(N (A-57)

h -l)+lsiszN

h h

The area of a zone is equal to

197-104




2
(AS)i=§ »‘szh +'(AS)a )+(A S)OL +(AS)<1 (A-58)

(i,k=6 (i, k=7) (i, k=8)

where (AS)OL is given by (A-42) and

a(i,k=6)=ac@li,k=0) +3Np -1 R
o(i,k=7)=0(@l,k=0) + 3Np ﬁ (A-59)
a(i,k=8)=a(i,k=0) +3Np +1j

The relationship of a(i,k = 0) to i is given by (A-57).
3.2.2 Body (Cylindrical Surface)

The coordinates at the center of a zone are given by (A-14) with CLT

equal to aT (i,k = 0) and related to i by

aT(i,k=0):3Nb +3i -1

L - a % * (A-60)

1 : (1),[%p
NpNh +[71—7-P.] +1<1ics< NpNh + Nb +[£ 2] + 1
b b

The area of a zone is given by

g (m)

b
(AS)i =—=— Ta, + (.AS)

§ +(AS) + (A S) + (A-61)
o', k=1) ol (4, k=2) o (i, k=3)

where
i, k=1)=0af @,k =0)- 3N, -1

ol G,k =2)=ol i,k

i, k=3)=a @,k =0)- 3N, +1

and of(i,k = 0) is given by (A-60). The superscript m is equal to 1 for
x>0 and 2 for x<0.
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Finally we would like to make the following observations. In this

work we have treated subzones adjacent to surface intersections as con-
sisting of a '"usual' subzone plus or minus some additional area because
of the changing geometrical configuration at the intersection. When the
additional area is added we assume that the additional maximum longi-

tudinal length is less than . SEh/3, i. e.
Wing - Pylon Intersection
2.5 1

bw{l 1= fa be.sa, /s

Pylon-Body Intersection
2, )PT2

ab{l -[1- (bp ab) ] }, < .5zh/3

When the additional area is subtracted we assume that

Body-Pylon Intersection

. =1 o
sin (bp/ab) < 30

This condition means that the intersection curve is confined within the

first row of subzones on the body.
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APPENDIX B

In this Appendix we derive explicit expressions for Zg (K=A,B, C,D)
which appear in (94) and contain the integrable singularity arising from the
free-space part of the Green's function. To accomplish this we first cal-

culate the t, s components of Dy defined by (91).

A A
-t D (r,r ) ’s‘o = -t [VG (r, T )xI=]-’s\,O=—t [vG, (. ) x 8]
=(txs ) VGO(r,r )
A A A A
-t D (,r )t =(xt) vG (z,zr )=0
(B-1)

/S\'D(I‘,l‘ )/; =@ X/S\)°VG (r,r )

=0 — -0 o [e] O =" ~—0O
A A Ay L
S‘__Qo(_l_‘_,}‘_o) ts —(’EO,X §)- VG (r,z,)

r-r
~ =0 . 1

VG (T ) = Gk, - g) Gz zy) (B-2)
- =0

R=r-r, R=|r-z| (B-3)

= = =0 - =0

and notice that R can be decomposed into two appropriate cylindrical co-

ordinates
R = - t-t )% B-4
R=z-r =p-p +(t-t, (B-4)
where
9_=X§+22
A A j Pylon (B-5)
t =-y, t=-y
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Body
} (Cylindrical Surface) (B-6)

o>
"
1
»n>
o
"
[}
»

Thus we can rewrite {B-1) as follows

Pylon
A 1 Go
D @) 8, ={Ex8 ) [p-p + k-t )ik -R) &
={Ex%)- (e- Y+ Ex8 ) te-t) ---G—o
o £ s tik, - PR
A A . 1 Go
= (’cxso)°(g-go) ik -g) =% (B-7)

To evaluate the triple product (41:\, QO,R—_Q_O) we use figure 27to obtain the

following relationships

a_ cos &
bp sin 8§

i

ds:-ﬁapsinede-l-%b cos & d8
P

$=ds/|ds]
p=a cos 8 8 +b_sing 2
- P p
1
A (-ap sin 0 & + bp cos § 'z\,)/(ag sinze + b;za c:osze)‘2 (13-8)
A A
t=-vy J
Using (B-8) we can rewrite (B-7) as
a b [l-cos (8 -8 )] G (r,r )
8D mr) - 8, = BR e ik -5 ) 2 (8-9)
= (a”sin”8_ +b cos 8§ )?
P o P °
Similarly,
A
B x8)+ R = (B x8)-[(g-0)+ (-t )]
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Pylon cross section

Figure 27: Geometry for the definition of p, /s\, and 0 on the pylon elliptic cross section



= (8 x8)- (p-p )+ -t )Ex8) ;
:(t-to)(é\ x 8). %

The triple product (’s\o, 's\,_g- _Qo)is zero because all the vectors are coplanar

and the last triple product can be evaluated with the aid of (B-8). Thus

anJD sin (8 - eo) ]

ES
2

w>
v}

o—-

(x,xr )-8 =|t-t) T )
— © © (a?} sinze +b§ c0sze)'2 (ai sinzeo+bp coszeo)

G (x,r )
)__Cl__:O__ (B-10)

ik -
(i = ,

Q

Pl L

The last expression in (B-1} can be evaluated in a similar manner

' A
E x8) - R =0 x8- [p-p, + -t )%
A
=@OXS)- (e -2.)
and
a b [cos(8 -8 )-1] G (r,r )
8 D(r,r)-'t\ = -2 P o + - (ik __l.)_i_____.‘?._ (B-11)
=o'~ ~o o 2 . 2 2 2 .\3 o R R
(a_sin"§ + b cos @)
b p
Body (Cylindrical Surface)
For the body we can easily obtain (fig. 28)
G
A . 1
-t 20(5,50) . 's\o :ab[l - cos(@ —60)] (1ko- ﬁ)—R-g
§.D (z,r ) 8§ =(t-t )sin(9 -6 )ik -1)53 (B-12)
So=Zo\ iy S0 T ol § o o R R >
4-D ). b= ee)l'k1G°
s Dz o = apleos(e-8)-11d U=y J

Body (End Caps)

For the end caps the R vector lies in the yz plane and the exterior
product of any £ or % with any 8§ or f yields a vector perpendicular to
this plane. Consequently, (B-1) shows that all the t, s components of

D are zero, i.e. there is no contribution to the submatrix elements

from the integrable singularity.
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Figure 28: Geometry for the definition of p , Q, and 8 on the body cross section



Next we proceed to split PO in order to treat the singularity in a

numerically accurate manner. We start with integrals of the form

- | kR
1 =-]s as, 1(8, 8, )g(t, t )ik, - —&) — (B-13) .

where the explicit form of f and g depends on the location of the zone over .
which we integrate and the specific component of D_- When t = ty and
8 =08, thenR=oand f(6 ,8 ) =0, g{t ,t ) = o but one can show that
o o’ o ’ o’ o
the integrand is singular. As we mentioned elsewhere this is an integrable
singularity i. e. if we perform the to integration we obtain a one-dimen-
sional integral with an integrand free of singularity. However, because of
the presence of exp[ikoR],the t integration is complicated and for this

reason we rewrite (B-13) as

_ . ikoR 3
I _[s ds, £(8,9_) glt,t ) [(1koR-l)e +11 (1/47R”)

L ds_ £(e,8_) glt,t ) (1/4nR>) (B-14)

We can easily show that the integrand of the first integral goes to
Zero as 80 -+ 8 and t, * ts whereas the second integral is simple enough
to allow the ts integration to be done explicitly. (The division of Iin
(B-14) corresponds to the division of ]_30 in (92).) The first integral in
(B-14) will be treated as the other integrals occuring in the expressions
for A(.:J., B%, C%, and D% (see remarks preceding (89).) The second
integral in (B-14) will be first converted into a one-dimensional integral.

The exact form depends on the location of the zone.

1. Zones not Adjacent to Surface Intersections
1.1 Pylon

Consider a zone not adjacent to a surface intersection., For such

a zone the ranges of t and eo are
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h’ h
bt 20 BT 3
. ) (B-15)
o i 1
where lh is the length of a zone along the height of the pylon and 9(11),
6(2.)are determined by
: . (1)
B ei 1
i- [11\; l]N -1}1 = (a2 sinzu + bzcoszu)gdu
D P p P p
o
and
ES e(.Z)
i-1 o2, 2 2 2 %t
i_[l :lN 1 = (a_sin"u + b cos u)? du
N_]7p ['p P P
P
>l‘< ~ - e-
i-1 1 2.2 2 2
(i - [}N;] Np - —2> lp =f (apsin u + bpcos u) du
o
as we explained in Appendix A.
If we take the previous rela.tionlships into account and remember that
dS_=dt_ (a®sin®8_ +bcos’0 )2d6_ we obtain
e o ° 2) o o
8", ti +1h/2
A 1 t 2 .2 2 2, % 3
Zii = - Iz 0 deo(a sin 60 + b cos 80) f(ei,eo) dto/R (B-17)
8, -
i + 1h/z
where
_[.2 2,2, . : 2 273
R = [ap(cos Gi— cos Flo) + bp(sm ei- sin 90) + (ti— to) ] (B-18)

and ZAi appears in (94).

i

. A
Performing the to integration we obtain the following expression for Z
ii’
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1
Zi = - Zbﬁf de F, (6, GO)(l/Rl) (B-19)

where

FA(ei’ eo) = apbp[l - cos (Gi— 80)]

[aI?; (cos ei - cos GO)Z +b123 (sin ei - sin 80)2]-1 (B-20)

and

1

o (1h/2)2]3 (B-21)

2 2 A .
Rl = [ap(cos ei - cos 80) + bp{sm ei - sin eo)

As we mentioned before Zﬁ = 0, and because of the oddness with respect

to the integrand in the expression for ZiCi we also have

C
5=0 (B-22)
Finally
)
! i
D__h -
,Zii =I5 dBOFD(ei, 90)(1/R1) (B-23)
(1)
H
where
1
ab (a2 sinzeo +b2 cosze )2
Fp= BEP P R 0© [l-cos(e-eo)]

(a2 sinze. + b2 cosze.)E
P 1 p 1
[az (cos 8, -cos § )2 + b2 (sin 8, -sin A )2]-1 (B-24)
p i o p i o

and Rl is given by (B-21).
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1.2 Body (Cylindrical Surface)

The limits of integration on the cylindrical surface of the body

are
1 1
b b
to t - 5 0 t+ >
(B-25)
T i
O 18- 4, 8+
where 121:j is the longitudinal length of a zone (1b = lél) for x >0and
1b = lb( for x<0 as we explained in Appendix A).
We can usethe resultsfor the pylon to obtain
/4
. SA D 1b d 6 :
Zii i Zﬁ " dn [Zaz(l-cose)+12/4] :
o b b
(B-26)
ZB = Z.(; =0
11 11

From (B-26) we see that unlike for the pylon zones the self-term cor-
rections on the body are independent of the zone location (except for the
fact that 1b is different in the two sections x>0 and x<0). We also ob-
serve that the integral in (B-26) has the form of an elliptic integral and

can be easily calculated numerically.

1.3 Body (End Caps)

As we already mentioned

ii ii ii ii
2. Zones Adjacent to Surface Intersections
2.1 Pylon

197-115



2.1.1 Wing-Pylon Interface

With the aid of flgure 29 we can find
(2)

-1 *
zh=- L ~£' a8_F,(9,8,) F, (6,8, (B-27)
z5 =0 (B-28)
(@
2C- L[ " a8 a,6)1/R -1/R,) (B-29)
ii 21 (1) o C'i’ o 1 2
ei
. (2)
D_ 1 |1 *
Zii = 7o f(l dGOFD(ei, 80) FA (Gi, Go) (B-30)
where FA, Rl’ FD are given by (B-20), (B-21), and (B-24) respectively,
FC is given by

a b_sin (ei-eo)
F = PR (B-31)

C™ 2.in28 tbleosln )E
]+1h

(a”sin”8,+b cos™A,
P i i

P 2 2
a cos §
{1 - 2
2
1 2b a
h W W .

W)

FA (ei, eo) = ’Z—R- + R (B-32)
1 2
and
_)2 2 2. . . 2
R2 = {ap(COS ei - cos 90) + bp(s1n Qi— sin C‘;O)
i 1
azcoszeo 2 1h 2z
. P C A
+ bW [1 ( az ) }-!— > ] (B-33) k
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Figure 29: Geometry for the calculation of the self-contribution for zones adjacent to wing—pylon
intersection.



2.1.2 Pylon-Body Interface

With the aid of figure 30 we obtain

A g (2)
- ;,_[ i + i
R 0 an_ F,(8,8.) Fr (8,8 (B-34)
8, ”
ziBi =0 (B-35)
.(2)
2C- L[ P48 F (0.8 )N1/R.-1/R.) (B-36)
i 2T (1) o C'i’ o 3 1
A
p(1)
D_ 1 t +
zP - 48 F(8,8,) F(5,,8.) (B-37)

ii 41 e(l) o D
i

where FA, Rl’ FD’ FC are given by (B-20), (B-21), (B-24), and (B-31)

. L
respectively and bzsinzeo 5
A o B
Fa=3r. 7 7R (B-38)
1 3
R3 = {a}z)(cos Gi— cos 90)2 + b;(sinei - sin 80)2
1 1
bzsinzeo 2 lh 2 )z
ol ) ] -
a
b

2.2 Body (Cylindrical Surface)

2.2.1 Body-Pylon Interface

We start by considering the first zone adjacent to the interface
as depicted in figure 31. This zone is characterized by an index i equal

T to

L.-a
i=NN + —l—l-)P-—+1 (B-40) "
b 1b(
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Figure 30: Geometry for the calculation of the self-contribution for zones adjacent to pylon-body

intersection.
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Figure 31:
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)
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Geometry for the calculation of the self-contribution of the zone adjacent to body-pylon
intersection (x > 0).
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The self-term correction is given by

A_.D_..D D 3
T235 7 2y 7 (Zg)y (25, (25, (B-41)
zB -0 (B-42)
11
c C c
Zi = (Z53), +(Z70), (B-43)
/4 1(1) 1
D 1 b 1
z2) = L | 4 .- U Bosg)
iy 4 g {Z[Zaé(l-cos Ay (1b<”/z)2:]'2 [Zaé(l—cos 8+ 11?‘]2}
o ! , (1)
D 1 1 b
(Z7)), = =+ f de{ s + 1y (B-45)
2 8t [Zai(l-cos_ew 112]12 Z[Zai(l—cos e)+(1é1)/2)2]2}
/4
D 1 f o L
(Z), = =] 4as ;- U (B-46)
s~ 8y )[za,g(l-cos 9)+117J2 [Zag(l—cos 8)+ 122]2}
e*
C abf . { 1 1
(Z3), = == d6 sin® 5 - -
weooend [Zai(l—cos e)+112]a [Zag(l-cos e)+(1b(”/2)2] 2}
(B-47)
/4
C abf . 1 1
(Z..), = == désin8<; 1 - 1% (B-48)
1’3 ' Zﬂe* {[Zatz)(l—cos 9)+112]2 [Zag(l—cos 9)—'—122}2}
_ . (1), 1 <1>] i
1 =a - [Ll - G- e 2 (B-49)
_ . (1), 1, (1)
1, =x, - [Ll SRR LT Y :l (B-50)
=a_1 /b 22 (B-51)
X, Ta (z2 P ] -5
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z, =a, cos (6 + m/4) (B-52)
8" = cos™ Mz /a,) - /4 (B-53)
2 =b [1 (% /a_)? z (B-54)
Tp L P ]
* : (1)
x = L= (-N Nl (B-55)
Next we consider zones such that
N N, + D1, 1<isN N, + N, () (B-56)
p h 1 (1) “"ph b
b
With the aid of figure 32 we can derive the following expressions
A_.D_, D D
= Zyy = Zyy = (Zg)y T (254 (B-57)
zB -0 (B-58)
it
C C
Zy; = (Z33)5 (B-59)
. +
(1) 6.
D 1b i+1 48
(Zi3)5 = 8w 7 7,22 (B-60)
_“/4[2ab(1—c05 8) +(1b /2)7]
N L ()
Dy _ L[ "4 b s (B-61)
(z =g 1= L -
1’3 8w + 212 ZH cos A)+ 1/2)2 2 1 cos@)+12 2
9. b 3
i+1
b 1 - 1
(Z -——f 46 sm@{ rL 1 .
2 + [ 2(l-cos G)Jr(l,él)/Z)Z}2 [Zai(l-cos E))+132J2
(B~62)
( (1)
= ; 1) _b_
1 =x, - [Ll - - NN . } -63) @
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Geometry for the calculation of the self-contribution for zones adjacent to body-pylon

intersection (x > 0).




1
2

X3 = ay ['1-(z3/bp)2]

zZ, = abcos(e + 1/4)

= cos_l(zr;/ab) - /4

5+

1

+, 27k L
bp[l - (xm/ap) T m =1i,1+1

B+

- (1)
= Ll-(m- NpNh-l) 1b

3+

derive the following results

[B-64)

(B-65)

(B-66)

(B-67)

(B-68)

For zones adjacent to the body-pylon intersection and x < o we can easily

(1) . (1) *p_
N, + NpNh +1<icx< Nb + NPNh+[1 ) (B-69)
b
A__D_,.D D
2y = Zyg = (255, T (25, (B-70)
zﬁ = o (B-71)
z$ = (23), (B-72)
1
(2) e,
1 i
Dy . b dg
(Zii)Z © 8T f r 2 2y .2 1% (B-73)
4 [Zab(l-cos 8) + (L7"/2) }
e?
141 (2)
1 1
zD), = 21 ag b o 4 (B-74)
s sm 222(1-cos &)+, 2Y2)¢F 221 1 2
e, pli-cos 8ty :l ap(l-cos &)F 4]
el
C ab i+l ) 1 1
(Zo2)y = - -——g. dg sin g L= L
113 Zﬁe; [Zaz(l-cos 9)+(1bm/7.)2J2 [zagu-cos 8)+ lﬂz
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1, = x, - [(i-NpNh—N(l))l (2) 4 (2)/2] (B-176)

4 b b b
1
Xy =2, [1-(Z4/bp)2:lE (B-77)
zy = abcos(Q + 14) (B-78)
8;n = cos_l(z;n/ab)-ﬂ/él (B-79)
Zr'n = bp [l—(x;l/ap)z-}% (B-80)
x;n = (m - NPN N -1)].b (B-8.1)
. (1) >
b= Ny NN +[;%2—)J+ 1 (B-82)
A D D D D
-Zy; = Zy; = (2 (250, (2354 (B-83)
zi o - : (B-84)
C _ C C
N 1 /4 1b(2) 1
zD), - —fde .- (B-86)
HIL AT Z[Zai(l—cos 9)+(1b(2)/2)2]2 [?.ab(l cos e)+152]
D 1 3 15 1b(2)
(Zz.2) == 1 T 1y (B-87)
ii'2 ~ 8™ )/ [Za (l-cos 8)+1 ]2 Z[Za,i(l-cos 8)+(Lb(2)/2)2}
1 1 1
(z ii = __f 2 =L - > 6 — (B-88)
& l cose)+l ] [Zab(l--cose)+16J2
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a

o™ (b
c b

1 1
(Zo), == 5= d8 sin 6{ - - i}
11’2 Zn“ﬂ/‘} Eai(l-cos 6)+152']E %ai(l-cos G)-!-(lb(z)/Z)Z:l2

(B-89)
/4
C a -
b [ : 1 1
(Z..), == == d6 sin® 1 - +—3 (B-90)
ii’3 Zﬂ'é* %ai(l-cos 8)+1521F %ai(l—cos 6)+1§J2 }
_ . (1), , (2) 1, (2)
15 = ap - [(1 - NpNh-Nb ) 1b -5 lb ] (B-91)
_ . (1),, 2}y 1, (2) -
16 =x, - [(1—NpNh-Nb -5 1b ] (B-92)
1
5 =2, [1 . <z6/bp)2]2 (B-93)
zZg =abCOs(9 + m/4) (B-94)
8" = cos ™z /ay) - /4 (B-95)
* U 213 i
. —bp[ (x /ap)] (B-96)
- noN N Doy @) (B-97)

p h b b
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