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ABSTRACT

In this paper, a technique for determining the behavior of
thin-wire antennas mounted radially on a conducting sphere is formu-
lated and verified numerically and experimentally. The analysis
method for this problem involves the formulation and solution of
an integral equation for the antenna current. By a proper choice
of the boundary condition at the sphere surface, which the Green's
tensor for the problem satisfies, the range of integral equation
ig limited to over the wires only. The effect of the sphere is
included in the Green's tensor. Numerical results for a number of
different structures are presented.

Portions of the formulation of this problem have been discussed
in IN 137.
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I. INTRODUCTION

One problem which constantly arises in electromagnetic compatibility
analysis of satellites, aircraft and other vehicles is that of assessing
the degree of mutual interaction between two or more antennas which
are located on the vehicle. A particular antenna may have a certain
input impedance and radiation pattern when located on a vehicle. If
additional antennas or other conducting elements are connected to the
vehicle, the properties of the original antenna can be significantly
different.

Not only do additional antennas affect the overall antenna
behavior, but the size and shape of the vehicle itself are important.

By being able to analyze such problems, it may be possible to locate
various antennas on a particular vehicle so as to minimize the electro-
magnetic coupling and interference between them. Moreover, the radiation
pattern of a specific antenna will depend on its location with respect

to the other antennas. By locating an antenna correctly on a vehicle,
interference from sources in a particular direction can be reduced.

Such radiation problems can, in principle, be treated by a
variety of numerical methods. The most general method is to formulate
an integral equation for the unknown surface currents flowing on both
the vehicle and on the antennas. The solution for the current is then

(4)

found by using the method of moments to obtain a system of linear
equations from the integral equation. This system of equations is then
solved numerically on the computer. This method can be used for obstacles
of arbitrary shape and for any number of antennas on the obstacle.

In practice, however, this method is severely limited due to
computer time and storage requirements. Only relatively simple geo-
metries have been treated and their sizes are usually small compared
to a wavelength. A possible way around these difficulties is to employ
a modified kernel in the integral equation which serves to reduce the
range of the equation from over the entire structure to only over the
antennas.

The idea of using a modified Green's function for formulating

integral equations is well established. Aside from the discussions of
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(7,8,17)
(10)

this method in various texts , other investigators have explored

the use of this method. Kammler has investigated the static charge
distributions on circular cylinders within a parallel plate region,
Rao(14) (18) (20)

, Taylor and Tesche have considered the radiating

properties of antennas within parallel plates. Similarly, this method
has been utilized for the analysis of periodic structures by others(g’lS).
It appears, however, that this technique has not been widely applied
numerically to problems involving antennas which are exterior to a
conducting obstacle.

This paper considers the behavior of a number of monopole antennas
radially oriented on a perfect conducting sphere using the modified
Green's function approach. A spherical obstacle was chosen since the
form of the modified Green's function is well known. 1In addition, the
numerical results to be presented will be useful for applications to
satellites (which may take on roughly spherical shape) having monopole
antennas or sensor booms.

Even for certain vehicle shapes which are not coincident with a
constant coordinate surface, and thereby admitting an eigenfunction
expansion for the Green's function, this method can be used. The Green's
function can be computed numerically beforehand as described by
Harrington(5>. This computation necessitates actually solving the surface

integral equation for the vehicle currents, once for each orientation

and position of a unit current element.

II. FORMULATION OF THE INTEGRAL EQUATION

Consider the electromagnetic radiation or scattering from a con-
ducting sphere of radius a with 1 radially directed wires of length
Li and radius bi at various angles (ei,¢i), as shown in Figure 1.

The scattered electric field, ES¢e

,» produced by the currents on the
wires and by the sphere surface currents (both of which are excited
either by an incident plane wave for the scattering problem or by driving
sources at the junctions of the wires and sphere for the antenna problem)

may be written as

=sca,— , _ . =,= - =
E (ro) = Jwu J(rs)"I;fS(rS'rO)ds ’ (1)

sphere
& wires
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Figure 1. Geometry of the problem.
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where Ifg is the free space electric field Green's tensor as described

by Tai(l7). I1f, however, one uses the Green's tensor which satisfies
ns&L(ES,fé) = 0 (2)

for r, on the sphere surface, it is possible to show that the integral
in Eq. (1) extends only over the wires. Thus, it is necessary to deter-
mine only the wire currents to solve the problem.

For the geometry under consideration, only radially directed
currents flow on the thin wires. Moreover, the component of the electric
field needed to form the integral equation for the wire current is only

the radial component. Noting that for the perfectly conducting wire,

Einc + Eica = 0 on the wire surfaces, Eq. (1) yields the following
integral equation for the wire currents:
_Einc(f )y = s — - —
r ol T Juwu. Jr(rs) Frr(rs,ro)ds . (3)

wires
As in all thin-wire problems, only the total current flowing in the

wire is computed.

The (rr) component of the spherical Green's tensor is derived

by Jones<8) and has the form
= = - n(n+l) (2n+1) . (2)
I CS N Z T, [Jn(kr<)hn (kr )
n=1
(2) 2
+ 1.00%) (kr)n! )(krs)] P_(cosy) (4)

smaller
larger
represent the spherical Bessel and Hankel functions respectively. The

(2)

) of r, and Tos and jn and hn

where <) represents the (
>
angle vy 1is that between the two vectors ;5 and ;é as shown in

Figure 2. The factor T, takes into account the presence of the sphere

and has the values

aj_ (ka)
e (5)

=
olei5]e

ahn(ka)
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Source point

/ J,(rg)drg

Observation point

Figure 2. General locations of the source and observation points in the
presence of the sphere,
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for a perfectly conducting sphere of radius a. For a sphere of finite

conducting material, this term may be modified as outlined in Jones.
The integral equation, Eq. (3), for the current on the antenna

looks similar to the integro-differential equation of the Pocklington

(20)

type for a single isolated scatterer or antenna This type of

equation is written as

. 1 a2 9 -jklfg_fgl
-Elnc(r ) = — | == + k J_(r )9—————————— ds ,
r o Jwe dr2 r's
o

4Wlf§-;s’

and is known to have a triplet-type singularity in the kernel as

r, +-rs if the indicated derivatives are carried out explicitly. This

necessitates the use of the finite difference technique in order to

4)

determine a solution By analogy it is expected that the infinite

sum in Eq. (4) will contain a similar triplet singularity as r, - rs,
so it is desirable to rewrite Eq. (3) as an integro-differential
equation, as was done in the isolated dipole case.

If gn(kr) represents any spherical Bessel function, then by

definition(l)

d g dg
n o+ % n_ + [kz - ______n(n+l) ] gn = 0 - (7)

Defining the function fn(kr) = krgn(kr) and taking the appropriate

derivatives, it is found from Eq. (7) that

2
2
(517 + k ) - ELE%LL fn(kr) =0 (8)
dr r

or equivalently,

n(n+l)gn(kr) d2
dr

= = + kz) rg, (kr) . i (9

Substituting into Egqs. (3) and (4), an equation of the Pocklington

form results:
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. 2
—E;nc(r ) = juwu <d_2 + kz [Jr(fs)K(Es’;:—O)ds (10)

wires

where the kernel K(;.,;.) is given by

K(F,.F,) = oo Z-r—: (2n+1) [jn(kr<)hr(12) (kx_)
n=1 .
2 2
+ Tnhé )(kro)hé )(krs)] Pn(cosy) . (11)

In solving Eq. (10), it is necessary to evaluate the kernel K
in an efficient manner. If the calculation of K requires more time
than to solve the equivalent set of coupled integral equations using
the simpler free space Green's tensor, this method will not be a useful
one. From the isclated thin-wire problem, it is known that the kernel
in Eq. (6) has a singularity of the form |ro—r5{_l. If there is a
similar singularity in the kernel of Eq. (11}, it is expected that the

series would converge very slowly at points near r, R T, and, in fact,

diverge when r, = r,. Thus, it would be advantageous to put Eq. (11)
in closed form for rapid numerical computation.

In investigating Eq. (1l1), it is seen that there are two terms
in the summation. The first term involving jn and h( ) represents
the direct contribution of the source on the observed electric field,
while the second term, invo}ving factor Tn’ represents the effect of
the sphere on the observed field. The singularity in the kernel will

occur in the first term as L3N - r.-

(5)

The addition theorem for spherical Hankel function willl permit

the summation of the first part of the kernel K. It may be shown that
2 2
ni?) (lro-r Z(2n+1 (c )n{P () _(cosy)  (12)
n=0
and that

_'R *

(2) 5y = 4
ho“  (R) =3 (13)
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Thus, upon noting that Eq. (12) is essentially the first part
of Eq. (11), aside from the n = 0 term, it is possible to express

the kernel K as:

. ~jk|r_-r_| )
FLE) = 2.2 |38 -5 (krnt?) (xr))
K r,) = ok T — = J o >
(rgrs dnk r klro'rs o <
* E Tn(2n+l)hé2)(krs)hé ) (ke _)®_(cosy)| . (14)
n=1
Hence, the first portion of the kernel, which is singular at ;5 = ;é’

may be summed in closed form, leaving only the reflection contribution
to be summed numerically. This kernel as given by Eq. (14) and the
relation in Eq. (10) describes the Pocklington integro-differential
equation for the currents flowing on the wire in the presence of the sphere.
It should be pointed out that, for the case of a single wire on
the sphere, the angle 7Y between the source point (;;) and the
observation point (;5) is zero, thereby causing the Pn(cosy) term
to be unity for all values of n. For the more general case where there
are other wires on sphere, this term needs to be included.
The solution of Eq. (10) is often facilitated by assuming that
the surface current J on the antenna wire can be replaced by the
same amount of total current I = 27bJ which flows along the axis of
the wire. The factor b is the radius of the wire. With this thin-wire
approximation, the factor [;;—;gl in Eq. (14) is never singular. Care
must be exercised in using this approximation, however, as is discussed
in Ref. (21).
In the derivation of the Pocklington equation, it was assumed
that both the current J and the incident electric field E&nc were
in the radial direction only and therefore related simply by the Green's
tensor component Frr' In the limiting case of a very thin cylindrical
dipole mounted on a relatively large sphere this is a good approximation,
but it is never exact due to the finite thickness of the wire. There-
fore, if a more exact solution is desired for thicker wires, both the
5 and ; components of E and J must be considered and suitably
related through the four components of the Green's tensor, T

Y
Trg> Tgy and Iy

b
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III. DETERMINATION QOF THE INCIDENT FIELD: SCATTERING PROBLEM

The source term for the Pocklington equation depends on the
tangential component of the electric field incident on the wires due to
a driving source on the wire itself (antenna problem) or due to an
incident plane wave (scattering problem). Note that in evaluating
this tangential field, the presence of the conducting sphere must be
accounted for. In the scattering problem, the field incident on the
wire consists of two parts, as shown in Figure 3. One is a direct
contribution of the incident field and the other is a reflection from
the spherical obstacle.

The scattering of an incident field by a conducting sphere is
presented in detail by Harrington(6). For a scattering problem where
the incident plane wave of magnitude Eo is % polarized and propagates

in the z direction, the radial component of the electric field observed

at point E; = (ro,6,¢) is given by

2
-, _ 1 [ a 2 —
E (X)) = IaE (5;7 + k ) A_(x)) . (15)
o

The quantity Ar is the radially directed magnetic vector potential which
generates field TM with respect to the T direction. This may be expressed
in series form as shown by Harrington as

oo

E

Ar(fi) = 5% cosd zz:kro [anjn(kro) + bnh£2)(kro)] Pi(cose)
n=0 (16)
where
-1
_ 3 T(2n+l)
& T Ta(ntD) (17)
and
by = ATy (18)

where T is defined by Eq. (5). Using the relation in Eq. (8), the

expression for the field in Eq. (15) can be simplified to yield
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Figure 3. Total incident field on
arbitrary wire antenna in presence
of arbitrary obstacle.
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. E cos¢ \—n
inc,—-, _ "o ; j T (2n+l) 1 . (2)
Er (ro) = IR T, Pn(cose)[jn(kro) + Tnhn (kro)}

(19) 0

This relation may be used to evaluate the forcing term in Eq. (10).

Since the field is not singular along the wire as is the kernel in
Eq. (14), it is not necessary to separate out the singular term to sum
it directly. The complete sum in Eq. (19) may be done numerically

without difficulty.

IV. DETERMINATION OF THE INCIDENT FIELD: ANTENNA PROBLEM

At this point it is desirable to consider the exact form of the
electric field incident on the wire for the case of a driven antenna.
This actual source which produces the incident field may then be related
to a small voltage source between the antenna and the sphere.

For the case of a driven monopole on the sphere, the antenna will
be assumed to be fed by a co-axial line having TEM excitation. This is
shown in Figure 4. From the equivalence principle, a mathematical sur-
face can be drawn about the antenna wire and an equivalent source of

nxH = 3 placed on this surface, thereby allowing the removal of the

antenna wire. The incident electric field tangent to the mathematical
surface may then be calculated by considering the excited aperture in the
sphere to be radiating without the wire present. Figure 5 shows the
geometry for this problem.

The radially directed electric field for the source in this problem

(8)

is readily determined from the Green's tensor [I. From Jones , it may

~

be shown that the radiated electric field produced by an impressed tan-

gential electric field E; on the surface of the sphere is given by

(r ) = [;XE(ES)}.[VSXL(ES’; )]ds (20)

sphere
surface

where T 1is the Green's function obeying Eq. (2).

~

The electric field on the surface of the sphere is assumed to be

related to the voltage across the co~axial line by the relation

v
— o —~
T  Tln(c/by ~ T8 (21)
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Figure 5. Geometry for computing incident electric field with
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where T d1s the radius of the cylindrical coordinate system for the

co—-axial line and b and ¢

are the inner and outer radii of the line.

Noting T = a sin0, the impressed electric field is given by

V A4
a
By = 3 1n(c/oysind - (22)
for O within the co-axial region and zero elsewhere.

. c= L o . . . inc |
Since nxE is in the -¢ direction and we wish to find E in the

o . . . . . ~~th — -
r direction, it is desired to extract the ¢r component of VSXT(r ST ),
which has the following form:

(VD) oy = %}izznﬂ 3 (kr, )h(z)(kr ) + T_h_ (kg )h( )(krs)]
i
n=1
ar_
X g5 (cose )P (cos® ) (23}

where 60 defines the observation point and 6 _  defines the source point.

Specializing this for r,>a on the surface of a perfectly conducting

sphere, and using the Wronskian to reduce the complexity of the Hankel

functions, the following is obtained:

jn dP
k
(VXL)¢r =" waro —a—izﬁiél—— héZ)(kro)Pn(coses) T (cose )
— a h_(ka)
n=1 da n
(24)

Substituting this and Eq. (22) into (20) yields:

g=sin’

inc _ 2{(n+1) hn(kro)
E. (ro) = e
a ln(c/b) da ah ka)] o

8 —51n b/a n=

- 2 .
Pn(coseo) {a 51nesdes) (25)

where the integral over ¢ has already been carried out. Interchanging

the order of the summation and using the following relationship,

2 dPn
—ae— de = Pn(Xz) - Pn(xl) (26)




where -

cos[sin—l(c/a)]

>
1}

and

P4
]

cos[siﬁl(b/a)] ,

the resulting equation for the incident radial electric field is

® (2)
. vV k h =" (kr,)
B (Ey) = TIR(e/ET E T T N L
— ah_ (ka) o)
n=1 da Ie}
[e,xp -2 xp] . (27)

This relation should be evaluated for observation points on the
surface of the antenna wire and subsequently used in the integral equation

to determine the current on the driven antenna.

V. THE RADIATED FIELDS AND THE SPHERE CURRENT

Once the currents on the monopole antennas are determined by a
numerical solution of Egq. (10), the fields radiated by the currents on
the entire structure can be found by evaluating Eq. (1) with only the
l/rO terms in A‘Q in {ones(s), it i1s observed that only the components
of I' in the ©® and ¢ directions exist in the far field. Moreover,
for the special case of a radially directed current located at either
polar axis of the sphere, only the 6 component of the radiated electric
field is non-zero, and from the symmetry of the problem, is independent
of the ¢ coordinate. This results in the fact that the Fr,e component
requires only one summation process instead of the two which are required
in the most general case.

For a single monopole antenna located at (OO,OO), the electric

field can be expressed as

Ee(rO,G) = Juwu I(rs)Tre(ro,rs)drs (28)

wire
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with

o= L "a dap_
- e L [t
TL o ,Mkz (2n+1) = A r_h (k,r) 5
n=1
: = aq h (k ’
Jn(];rs) i dda aj_ (ka) ni r.) 29)
s d—a- ahn(ka) S R

and I(rs) being the numerically determined monopole current.
In looking at the far field components of Eq. (29), it is possible

to replace the term Hn(kro) by its asymptotic form

1jkro
- intl}y & > @ (30)
hn (kro) Bl kro as 1:‘O
Similarly,
-jkrO
1 d .
g [roma )] ~ Mk S s 5 v e )
Q (] o

With these simplifications, the radiated electric field is given by

-jkr
Z k IRES
- . 0 e 0 (2n+1) 1
Ee (ro,e) v ————kro fI(rs) Zj TPn(cose)
wire
jn(krs) i e hn(ka) drS . (32)
Y ahn(ka)

For mofe than one monopole located on the sphere, the radiated
field is computed using a rotation of coordinates procedure as described
by Du and Tai(B). After the currents on all monopoles are computed, the
contribution from each monopole to the total field is calculated by
first rotating the antenna to the (OO,OO) position, evaluating Ee from
Eq. (32), and then rotating the antenna back to its original position.
In this manner, both EG and E¢ fields are produced, but it requires

only the single summation process. Sample results for the sphere and

two monopoles are presented in Ref. (19).
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In a similar manner, the surface current density on the sphere
can be computed. The magnetic field intensity at an observation point

x exterior to the sphere is given by the following expression:

H(rgy) = - Ton J/p VXI(rg, £ ) =T (ry) dvg . (33)
wires

By letting the observation point rg approach the sphere, and noting
that the tangential H field gives the induced surface currents, it is
possible to obtain values for J¢ and Je on the sphere.

If there is only one radially directed monopole at (0°,0°),
the representation for VX[ becomes simpler, and it is seen that only a

J6 exists on the sphere. This is given by

Je(e) = [I(rs) K(a,e,rs) dr (34)

wire

where the kernel K is

. 1
h (kr.) ®._{(cos8)
1 n S n {35}
= et (2n+1)
K(a,8,xry) dta E g 2 ah_(ka)
da n
n=1

For more than one monopole, the same rotational procedure used for
the field calculation is employed to obtain values of J6 and J¢ pro-
duced by each of the individual monopoles. The results are then super-

imposed so as to obtain the total surface currents.
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VI. NUMERICAL RESULTS

The solution of the integral equation for the antenna currents

4)

was achieved by using the method of moments For this study, a pulse
function expansion for the wire current was used, along with delta
function testing. The driving source for the antenna was assumed to be
the co—axial feed discussed in Section IV.

One important concern in carrying out a numerical solution to
Eq. (10) is that the kernel of the integral equation be summed efficiently.
It is well known that this type of series requires typically (ka) terms
before the partial sum be%in§ to converge. For extremely large spheres,
23

the Watson transformation has been developed t¢ speed the conver-
gence. For the present problem with sphere sizes on the order of two

or three wavelengths, a direct summation of the terms is feasible.
However, when the source and observation points lie near the sphere
surface, the series becomes more and more slowly convergent. As a result,
a nonlinear transformation of the partial sums of the slowly converging

(16)

sequence, as described by Shanks , was employed to obtain the con-

verged values of the kernel for the larger sphere sizes.

As a typical example, Figure 6 shows the converging behavior of
the series in Eq. (14) for the case when the source points and the obser-
vation point lie along the © = 0 axis, and with the source point located
on the sphere surface. Both the real and imaginary parts of the
resulting sum are shown as a function of the number of terms, N.

After five terms, it is seen that for a sphere radius of .25,
the real part of the series has converged for all of the different obser-
vation points. After sixty terms, however, the imaginary part of the
series still has not converged for the observation point at r, = 27A.
Let Sn denote the imaginary part of the sum after n terms are added.
Using the first twenty terms of the sequence, i.e., Sl’ 82...820, the
resulting sum of the series as determined by the transformation is 4%
higher than the sum obtained by taking 70 terms, 870. The actual value
of the sum S20 is seen to be 20% lower than the 870 term, clearly
indicating that the transformation applied to the first twenty partial

sums gives a good indication of the final value for the sum.
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Figure 6. Partial sum of the kernel for a = .25A, Yy =0 ,

and r = 25X,
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If the sequence of partial sums S .5 are employed in

517 5527550
the transformation, it is expected that the resulting value for the

summation as given by the transformation will be more accurate due to
the fact that the higher order partial sums themselves are more
accurate. Comparing this value of the summation to that obtained by
transforming the first twenty partial sums, it is seen that the difference
is only .04%. Thus, the first twenty terms of this series can be used
to adequately determine the final sum of this particular series.

A subroutine for carrying out this transformation was written
and is employed to determine the resulting value of the kernel K if
the number of terms in the series is insufficient to obtain adequate
convergence. In the actual program, it was found that for a sphere
radius of about .50) and the specified error in the summation of Eq. (10)
being .001, the nonlinear transformation was used for only about 107
of the kernel evaluations when 50 terms in the sum were used. For the
determination of the current on a quarter wave monopcle on a sphere of
radius a = .5A, and the subsequent calculation of the radiation pattern,

the required computer time was approxiamtely three seconds on a CDC 6400,

For this figure, seven zones on the structure were used.
As an example of typical results obtained from the calculations,

Figure 7 shows the input impedance of a single monopole of length

L = .25)% and shape factor § = 2 In(2L/b) = 10, b being the wire

radius, mounted on a sphere of variable radius. As the radius approaches

a very large value, the monopole effectively sees an infinite ground plane

instead of the sphere. The appropriate input impedance values for the

ground plane, denoted by R and X are shown in the figure. It is

interesting to note that even with a sphere of only 1A in diameter, the

input impedance is only about 10% high from that of the ground plane value.
Figure 8 shows the frequency domain response of the input impedance

of a single monopole of length L =a and Q= 9.6. This roughly compares

with the size of the conical antenna treated by Bolle and Morganstern(z):

and their results are shown by the dotted lines in the figure. - .
The radiation pattern of a single monopole of length L = .25

on a sphere of a variable radius from a = .IX to .6) is portrayed in .

Figure 9. Shown are normalized polar plots of the radiated power. Note
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Figure 7.
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Input impedance R + jX of quarter wave monopole on
sphere as function of sphere radius.
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Figure 8. Input impedance of monopole on sphere (L = a}) as a
function of frequency (solid curves). Results for a
perfect flat ground and those of Bolle and Morganstern
are also indicated.

198-22




180°




that only half of the radiation pattern is presented due to the rotational

symmetry involved. It is interesting to note that even though the input

impedance of the monopole is relatively close to that of an infinite

ground plane mount for a = .5}, the radiation pattern is markedly

different for each different value of a. .
The total é directed current flowing on the sphere at any angle §

is shown in Figure 10 for three different sphere radii. This is obtained -

by evaluating the expression for the surface current density, J given

)
in Eq. (34) and multiplying by 2ma sin(®) to give the total cgrrent in
the 6 direction. Note that the current values are for an assumed
excitation of .5 volt at the antenna input. The real part of the current
is negative at the input of the antenna at § = 0 due to the sign con-
vention of the & wunit vector on the sphere.

With this general method of analysis, the mutual coupling between
two or more antennas can be readily determined. As shown in Figure 11,
the self and mutual admittances of two radial monopoles of lengths

Ll = L2, 2 = 10, mounted on the sphere are shown as a function of the

angle between them. Two different sphere radii are considered. As an

example of the application of these results to EMC analysis, it is noted
that there is a minimum in the antenna coupling at 6 = 138 for a sphere
size of .5A. Thus, for minimum interference between the two antennas,
their relative positions should be at that angle.

The total input admittance of the antennas previously discussed
depends not only on the self and mutual admittances of the antennas, but

on the excitation voltages of both antennas as

Yoor = Y11 * le(vz/vl) . (36)

Thus, with the data presented in Figure 11, it is possible to obtain
the total input admittance for an arbitrary source excitation. In Figure 12
the input admittance for the even (V1=V2) and odd (Vl=—V2) modes of exci-
tation are presented as a function of the angle 6. The sphere radius
is a = .25A. It is seen that the total input admittance depends to a .
great extent on the phasing of the exciting sources.
A symmetrical, four—arm spherical antenna as shown in Figure 13 -

has been analyzed also. For this structure, it was assumed that the

monopole lengths were each .25A and had a shape factor of § = 10. The
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driving voltages were each .5 volts. Figure 14 shows the total input

admittance for each antenna, as well as the self and mutual impedances
as a function of the sphere size. It is interesting to note that the
real part of input current for the multi-arm antenna, when all antennas
are driven in phase, is much smaller than that calculated on a single
monopole on the same sphere, indicating a lower radiated power for each
antenna. This can be related to the fact that a uniformly oscillating
cloud of electrons does mot radiate, and the multi-arm antenna has a much
higher degree of symmetry than does the single monopole case.

The normalized magnitudes of the radiation fields IEGI and
!E¢! are shown in Figure 15 in polar form as a function of the polar
angle 6 for four different ¢ planes, © =O°, lOo, 200, 30°. Because
of symmetry, the pattern at ¢ = 40° is identical to that of

¢ = 20° and so forth. The normalized antenna gain G(8,¢) for this

structure, defined as G(9,9) = \/IEGIZ + lE¢|2 is given in Figure 16.
Du and Tai(3) have computed the radiated fields from point dipoles located
on the same size sphere and at the same positions. As expected, the

present results agree very well with their's, since the monopoles are still

a fraction of a wavelength in length and behave much like point sources.
Figure 17 presents the current density Je and Figure 18 shows

J for the surface currents induced on the sphere for the four—arm

simmetrical antenna. )

Finally, the scattering problem is briefly treated in Figure 19.
The delta-function spectrum of the short circuit current at the antenna
input is shown along with the resulting step function excited transient
behavior of the current. Notice the low frequency scalloping in the

spectral response which is due to the resonances of the sphere.
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VII. EXPERIMENTAL RESULTS

In an effort to determine the accuracy of the numerical methods,

input impedance measurements were made for the two special cases shown in

Figures 20a and 20b. When the monopoles are driven in phase, these two

structures are easily analyzed using an image ground plane in conjunction

with a network analyzer.

The network analyzer is capable of providing

swept frequency impedance information at any reference plane along a co-

axial line. By driving the antenna with the co-axial line (as shown in

Figure 21) and locating the reference plane at the base of the monopole,

it is possible to obtain the input impedance of the structure over a

wide range of frequencies.

The output of the network analyzer is in the form of amplitude

and phase of the reflection coefficient, which is easily transformed into

a complex impedance. By driving the Y-input of an X-Y recorder with

the amplitude/phase output and driving the X-input with a frequency

reference, a plot of the amplitude and phase of the reflection from the

monopole as a function of frequency is obtained.

(12)

As King has noted, the impedance loading the end of the co-

axial line is not just the antenna impedance, but also includes effects

due to the finite size of the aperture at the point of excitation.

These

fringing effects are not negligible, and they are particularly important

at anti-resonance. These fringing effects can be modeled as a small

negative capacitance, Cf,

located at the end of the co-axial line.

In order to correct the theoretical results to account for the

effects of the fringing capacitance, the method suggested by King

13)

is employed. First, the case of a monopole over a ground plane is con-

sidered. Since the theoretical results are well known for the monopole

it is possible to add a small fringing capacitance to the source region

so as to make the theoretical and measured anti-resonance occur at the

same frequency. For the experimental setup employed, it was found that

the fringing capacitance 1s -.076 pf.

It is now possible to investigate the two cases of interest.

The fringing capacitance will change somewhat from that of the monopole

over an image ground plane since the feed is located on a spherical
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surface. To a good approximation, however, it is possible to assume the
same fringing effects in these two cases. Figure 22 and Figure 23 show
the theoretical and measured impedance (with and without a compensating
Cf) and measured impedance as a function of frequency. The figures
clearly show the excellent agreement between theoretical and experimental

results.

VIITI. CONCLUSIONS

In this paper, a technique for determining the behavior of thin-
wire antennas located on a conducting sphere was discussed. This method
consisted of formulating and then solving an integral equation for the
antenna current, with the range of integration limited to over the wire
only through the use of a modified Green's function. From the knowledge
of the currents flowing on the wires, the input impedances, radiated fields,
sphere currents and mutual coupling parameters can be easily computed.

The application of this method shows that it is numerically feasible..
in terms of computer time and storage requirements. Comparisons of the
computed results with other data obtained through approximate analyses
or other techniques show that this method is also accurate.

From the specific structures analyzed, a number of conclusions can
be drawn about the spherical antenna.

1) The functional form of the current distribution on a radially
directed monopole of length I mounted onthe sphere is very close to that
existing on the same monopole over an infinite ground plane. This implies
that the form of the antemna current is relatively independent of the sphere
size.

2) The input impedance of a monopole driven against the sphere depends
upon the sphere radius, but for spheres of radius greater than .5), the
input impedance is well within 8% of the impedance of the same monopole
over an infinite ground plane.

3) The radiation patterns and the current distribution on the sphere
are calculated through a rotational procedure. The most basic structure
for these calculations is, therefore, that of one mounopole along the polar
axis of the sphere, since all other structures may be treated by rotating

the coordinate system and adding the results.
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4) TFor small gpheres or other obstacles the radiation pattern is

almost like that of the antenna of length L. As the obstacle size
increases, its presence becomes important in determining the shape of the
radiation pattern. The pattern for a single monopole of length L = .25A
at the top pole of a sphere of radius "a" is similar to that of a quarter
wave antenna for a <.,15 . As the sphere radius increases, the maximum
in the radiation pattern begins to move away from the monopole location,
resulting in a higher radiation intensity near the bottom of the sphere
than near the top.

5) The current density on the sphere due to a single monopole at the
pole of the sphere is seen to be oscillatorxy in nature. The total current
on the sphere is zero at the opposite pole of the sphere as required by
symmetry, and the magnitude of the current is seen to decrease as the
observation point on the sphere surface moves away from the base of the

monopole.
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