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Abstract

A numerical method is presented for determining the electromagnetic
field diffracted by an aperture in an infinite conducting plate. Compari-
sons are made with the results of approximations valid at low frequencies
and high frequencies, Calculations of the electromagnetic field components
in the aperture, in the near zone of the aperture, and in the far zone of
the aperture are made and are compared with available measured data., To
determine the electromagnetic pulse penetration through apertures the
singularity expansion method is considered. Some preliminary data are
presented. Finally the penetration of the electromagnetic field through
apertures into cavities is discussed,
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SECTION I

INTRODUCTION

The electromagnetic field penetrating an aperture in a conducting surface
depends upon a number of things~-the geometrical configuration of the conducting -
surface, the shape of the aperture, the size of the aperture, the region behind
the aperture (e.g. whether it is a closed region or open region), etc. With
this myriad of factors determining the field penetration it is extremely diffi-
cult to provide the ordnance engineer with an assessment of the degradation of
an electromagnetic shield due to the presence of an aperture, whether it be
inadvertent or deliberate. However, at low frequency the factors determining
the field penetration are well understood (ref. 1). Although in many appli-
cations a knowledge of this low frequency behavior is sufficient, the field
penetration through an aperture increases with an increase in frequency and

the penetration of energy should be a maximum at the resonant frequency of

the aperture (to see this one needs only to comsider the quarter wave resonant
slot antenna).

At low frequency, when the characteristic dimension of the aperture is
much less than a wave length, the dipole moments of the magnetic source
equivalent to the aperture field distribution may be used to obtain a very
simple analytical expression for the penetration field (ref. 1). But the
obtained expression is not valid for the region in proximity to the aperture.
Unfortunately it is near the aperture that the penetration field is largest.
Therefore, in studying the coupling of energy through an aperture a formu-

lation for determining the near field behavior is needed. Moreover, the

1. Taylor, C. D., "Electromagnetic Pulse Penetration Through Small "
Apertures," AFWL Interaction Note 74, March 1971.
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near field formulation could be used to determine the range of applica-
bility of the simple analytical formulas based on the aforementioned dipole
moment considerations.

Bethe (ref. 2) reported somé time ago that the Kirchhoff approximation
applied at low frequency provides an over estimate of the energy penetrating
a small aperture in an infinite plate. It is well know that the Kirchhoff
approximation yields accurate results in the high frequency regime where
the operating wave length is much less than the characteristic dimension of
the aperture (ref. 3). With a general formulation available for determining
the penetration field of an aperture it may be possible to determine the
frequency regime where using the Kirchhoff approximation is sufficient for
determining the penetration field.

Because of the aforementioned reasons a general formulation unrestricted
in frequency is needed for determining the electromagnetic field through
apertures. A very elegant formulation developed by Flammer (ref. 4) is
available. However, the solution is expressed in terms of the not-too-well
tabulated oblate spheroidal wave functions. But the integral equation
formulation developed by Andreason (ref. 5) for treating scattering from

bodies of revolution may be adapted also to determine the electromagnetic

2. Bethe, H. A., "Theory of Diffraction by Small Holes,'" Phy. Rev.,
Vol. 66, pp. 163-182, October 1944.

3. Jones, D. S., The Theory of Electromagnetism. Pergamon Press, New
York, 1964, pp. 626-640.

4, Flammer, C., "The Vector Wave Function Solution of the Diffraction of
Electromagnetic Waves by Circular Disks and Apertures. II. The
Diffraction Problems," J. Appl Phys., Vol. 24, No. 9, pp. 1224-1231,
September 1953.

5. Andreason, M. G., "Scattering from Bodies of Revolution," IEEE Trans.
Ant. and Prop., Vol. AP-13, pp. 303-310, March 1965.
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field penetration through a circular aperture in a plate. Because it is

believed to be more convenient the integral equation formulation is used by
the authors in developing a theoretical-numerical formulation of aperture
penetration.

The solution technique for determining the electromagnetic field dif-
fracted by an aperture begins with the solving of the complimentary disk
problem and applyiﬁg Babineé;s principle (ref. 4). Since a disk is a
limiting form of a body of revolution, the integral equation developed by
Andreason (ref. 5) for bodies of revolution may be used to obtain the
induced current distribution on the disk. The field scattered from the
disk is determined directly from the induced current. Appropriately trans-
forming this scattered field using Babinet's principle yields the diffraction

field of a circular aperture in a conducting plate. In principle the

resulting formulation is not limited in frequency and the near field as
well as the far field may be obtained.

For pulse excitation it has been shown that the singularity expansion
method is advantageous (ref. 6). Moreover the singularity expansion method
may be readily applied to the presented integral equation formulation. A
few preliminary results are presented.

Extensive comparisons are made with available measured data. Numerical
convergence is examined. And comparisons with the aforementioned low

frequency and high frequency approximations are discussed.

6. Baum, C. E., "On the Singularity Expansion Method for the Solutiomn of
Electromagnetic Interaction Problems," AFWL Interaction Note 88,
December 1971.

199-8



SECTION II

ANALYSIS

1. INTEGRAL EQUATIONS
Applying the integral equation given by Andreason (ref. 5) to determine
the surface current density, 35, induced on a disk centered at the origin

and in the z = 0 plane yields

L i _ ool S 5 - > > >
tn B (r”) i;EE t [k J Js(r)G(rlr )ds
S
> > > >
+ grad” J div Js(r)G(r[r’)ds} (1)

A A

where ti = r” and tg = ¢° with

. > +f
e—gk]r - 7|

|7 = =

>

e(r|r") =

Assuming an incident plane wave field and expanding in a TM mode expansion
yields

(;) = Z [E?’m(r) cos mo ; + Eg,m(r) sin m¢ %]'

e—sz cos B4 (2)

-5
where ei is the angle between the incident k vector and the negative z-axis.

In a similar fashion the TE mode expansion for the incident plane wave is

E (?) [E? m(r) sin m¢ r - Ei m(r) cos mé é]-

Z

m=0

e—gkz cos 84 (3)
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For the TM mode the expansion for the induced current density distribution on

the disk is

Eag © e - o] . -
J () = ) [K] (r) cos mb r + K _(r) sin m$ 4] (4) ]
s n=0 1,m 2,m
and, correspondingly, for the TE mode '
Eag o o} o e N
J (x) = E [K] (x) sinmd r - K. _(r) cos mo ¢] (5)
s m=0 % Zom

Using Equations (2) and (4) in (1) yields the coupled equations for

K?’m and Kg,m where
T _jkR
Gm(r!r’) = J % cos m¢ do | (6)
0
and
R = [(x - 3:")2 + 2rr”(1 - coscj))]l/2
N a
Eim(;’) = j %[J [Gm_l(r]r’) + Gm_*_l(r{r’)]Kim(r)rdr
o
2 g [® d
+ k_ -d—r—: J Gm(rfr’) (r e + l)Kim(r)dr
o
a
i, J (6 (el = G, (r[r)IKS | ()xdr
o
a
2 d «
+—k%- a-r-;! Gm(r}r’)Kg’m(r)dr:l (7)
o
and
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o - k - -
By () = it |- [6 (x|t =6, (]r )]Kim(r)rdr
(o]
a
- kg: G le) @ o+ DES | ar
(o]
.
+ [Gm_l(rlr‘) + Gm+l(r|r’)]K;’m(r)rdr
(o]
2 a
2m
e Gm(r]r’)Kg g (B)dr (8)
[}

Using Equations (3) and (5) in (1) yields similar coupled equations for

Ki o and KS o which may be obtained from Equations (7) and (8) making the
3 b

replacements
Km >
Km 7 %o,m
Ba * Pl
Eg,m ” E2,m

2. NUMERICAL SOLUTION BY THE METHOD OF MOMENTS
To obtain a numerical solution for Equations (7) and (8) it is necessary to
investigate the apparent singularities that occur in the various integral and

derivative terms. It is convenient to rewrite Equation (6) as

Gm(rlr‘) =

m/2 .
-jkR _
2 [ e cos 2my-1 dy

0

2 r—-r~
+ r+r” Kfl- (;Q§:~) 9



where

7/ 2 day
= 2 (10)
. /1[ - (55) Jotne

or a complete elliptic integral of the first kind. Using L'Hospital's rule

2

r-r~
Kit- (r+r‘ )

it can be shown that the first integral in Equation (9) is indeed a proper
integral whose value can be obtained using ordinary numerical methods. In the
elliptic integral there is an apparent singularity at r=r” and K cannot be
evaluated in its present form.

The numerical solution to Equations (7) and (8) will be obtained by the
method of moments (ref. 7) using a piece-wise constant representation and point

matching. For example

N-1
e _ m 5 _ _
Kl,m(r) = nzz un[H(r rn) H(r rn+l)]
m m
+ o H(rz—r) + oy H(r—rN) (11)
where
H(b) = 1 if b >0
HGB) = 0 if b <0

That is, the disk is divided into N zones with current zone bounds at

r = ry; = (-4 A = a/N J =1,¢¢e ,N+1
and within a given zone the current has a constant value., In a similar “

o)
2,m

m m
81, ...’BN

manner K is defined in terms of a set of expansion coefficients

. One often-used procedure in the method of moments is to use

7. R. F. Harrington, Field Computation by Moment Methods, The MacMillan
Company, New York, 1968.
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these expansion sets for Ki and K; o in Equations (7) and (8), require that
b ]

the equations be satisfied at a particular set of r” values (in this case
r” =1’ = (I - 0.5)A), and solve the resulting matrix equation for the a's and
B's. Performing these operations results in the matrix equation

2N
! $(m,I,0)F(m,J) = T(m,I) (12)
J=1

The elements in Equation (12) are

Fm,J) = ofj; J = 1, ***,N
m
= 8]y J = N+ 1,°°*,2N
T@m,I) = -3 L% (2) I = N, “**,N-1
’ tk T1,m I ’ ’
S e I = N, vee,N - 2
tk "2,m 1 * ?
= 0 I = 2N - 1, 2N
S(m,I,1) = +AFl(m ~ 1,1,1) - F2(m - 1,I,1) + AFl(m + 1,I,1)

GMP(I,2) - F1P(m,I,1)]

~F2(m + 1,1,1) - 27 [x,

I = 1, «ee,N-1

Sm,I,J) = +AFl(m - 1,I1,J) - F2(m -~ 1,I,J) + AFl(m + 1,I,J)

- F2(m + 1,1,3) + ry[Fl(m - 1,I,3) + Fl(m + 1,I,J)]

2
55 [ry @R (1,0) - rp G (T,041) + FlP(m,I,J)J
J = 2, e+, N=-1
I = 1, ¢ee, N-1
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S(m,I,N) = +AFl(m - 1,I,N) - F2(m ~ 1,L,N) + AFl(m + 1,I,N)

- F2(m + 1,I,N) + rN[Fl(m - 1,I,N) + Fl(m + 1,I,N)]

2
+ —122— [rN GMP (I,N) + FIP(m,I,N)]

I = 1, «+o, N~1

s(m,I,J4+N) = -AFl(m - 1,I,J) + F2(m - 1,I,J) + AFl(m + 1,I,J)

- F2(m + 1,1,3) - rJ[Fl(m - 1,I,J) -~ Fi(m + 1, I,J)]

- sz F1P (m,T,J)

s(m,I+N-1,1) -AF1(m - 1,1,1) + F2(m - 1,I,1) + AF1(m + 1,I,1)

It

- F2(mtl,T,1) + =2 [r,6M(I,2) - Fl(m,I,1)]
k T

I = 1, -0, N -1

-AFl(m - 1,I,J) +F2(m - 1,I,J) + AFl(m + 1,I,J)

Il

S(m, I+N-1,J)

~F2(m + 1,1,J) - £;[Fi(m - 1,I,9) = Fl(m + 1,I,J)]

- "‘—ki: [r;GM(T,J) = rp,6M(I,J+1) + Fl(m,I,J)]
I
I = 1, ooy N -1
J = 2, «¢ee, N -1
S(m,I+N-1,N) = =-AFl(m - 1,I,N) + F2(m - 1,I,N) + AFl(m + 1,I,N)

- F2(m + 1,I,N) - rN[Fl(m - 1,I,N) - Fl(m + 1,I,N)]

2m
- 2, [rNGM(I,N) + Fi(m,I,N)]

I

I = 1, «ee, N=-1
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S (m, T+N-1,J+N) = AFl(m - 1,I,J) - F2(m - 1,I,J) + AFl(m+l,I,J)

- F2(m + 1,1,J) + rJ[Fl(m - 1,1,3) + F1(w+l,I,J)]

2m?

- =
k rI

F1(m,I,J)

This completes the definition of all elements in the matrix equation apart from
the last two rows of the § matrix. The F matrix in Equation (12) has 2N
unknowns, but only 2N - 2 matchpoints have been specified leading to 2N - 2
equations. Rather than match in the last zone which could lead to difficulties
due to the edge effects, the edge conditions of the components of the current

*

density are used to obtain the remaining two equationms.

The edge condition for the rédial component of current requires (ref. 8)
e e A(a2 _ w231/2
Bj o = A% - )1/
and for the azimuthal component of current requires

) - -1/2
Kz’m(r) =~ B(a? - r?)

for (r-a)/a << 1. The piece-wise constant current in the last two zones is
required to satisfy the foregoing. Considering the radial component of

current yields

*Using the novel approach of requiring the current expansion to satisfy the
edge conditions explicitly, resulted in a considerable improvement in the
numerical convergence.

8. Meixner, V. J. and Andrejewski, W, "Strenge Theorie der Beugung ebener
elektromagnetischer Wellen an der Vollkommen leitenden Kreisscheibe und
an der kreisformigen Offnung im vollkommen leitenden ebenen Schirm,"
Annalen der Physik, Band 7, pp. 157-168, 1950.
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-1/2

o (28 = .2502)7H/% - oy_g (3a8 ~ 2.254%) 0 (13)

and a similar equation for BN and SN—l is obtained from the edge condition

of the azimuthal component of current. Thus -

S(m,2N-1,N) = (aA - _2542y-1/2 v
S(m,2N-1,8-1) = -(3ab - 2,2542) /2

S(m,2N,2N) = (ah - .2552)-1/2

S(m,2N,2N~1) = =(3ah - 9.2542)"1/2

and hence the last two rows of I' are zero. The terms in § are defined by

A
Fi(m,I,J) = [ gm(u + rJ[rI)du
0
by [ (u+rJ-r£)2J
+ 2 - K{1 - > du (14)
u+rJ+rI u+1:+rI
o
FIP (m,1,7) = —% Fl(m,I,J) (15)
drI
A
F2(m,1,J) = AFl(m,I,J) - J gm(u + rJIrlf)u du
0
]A a [ (u-!-rJ- ri)z:]
-2 | ——m—k |1- |7 du  (16)
0v.1-i-r‘]-i-r.|; u+rJ+rl.
GM(I,J) = Gm(rJ|r£) a7
or(,n) = -4 au@,n (18)
drI
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2
m/ kR

o~ e cos 2m¥ = 1
gm(r[r Yy = 2 2 av (19)
)
1
R = [(r - r’)2 + brr” sinzWJ /2 (20)

This completes the definition of all terms in Equation (12) for the TM case.
In an analogous fashion an equation for the TE case can be constructed.

To illustrate the numerical techniques employed consider the expression
Fl1(m,I,J). The first term can be evaluated by ordinary numerical integration
since it contains no apparent singularities. The second term

A 1 u+ ry- r£ 2
F12(m,I,J) = 2 Gf:f;j:f;:‘K 1- o+ rJ+ ri du (21)

has an apparent singularity at u = 0.5A when I = J. K is approximated by

(ref. 9)
= 2 3 4
Km) = a, +am + am] + am + a,m;
+ [by + bymy + b,m? + b,m3 + b,m}] 0 (1/my) (22)
where
a, = 1.386 294 &4
a; = 0.096 663 443
a, = 0.035 900 924
a, = 0.037 425 637
a, = 0.014 511 962
b0 = 0.5
b, = 0.124 985 94

9. Abramowitz, M. and Stegun, I. A., editors, Handbook of Mathematical
Functions. Dover Publications, Inc., New York, 1965, p. 591,
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b2 = 0.068 802 486

53 = (0.033 283 553

bu = 0.004 417 870
m - m; = 1

Rewriting Equation (21) gives

SA € hl
Fl2(m,I,J) = 2 I(uwdu + 1im 2 I(u) du
hl'*.SA“
o
CSOA-E
«Shte A
+ lim 2 I(u)du + 2 I1(U) du (23)
h2+'5A+ h2 . S5Ae

If, in the second and third integrals of Equation (23), only the a and b0

terms in K are retained, the integrations can be analytically performed.

Evaluation of these expressions shows that F1(m,I,J) exists in the Cauchy
Principle Value sense (ref. 10). The calculations are straightforward but
cumbersome and will not be included.

The evaluation of the F1P(m,I,J) terms is accomplished by taking the
partial derivative of all terms in Fl, except I and 13 of Equation (23), and
numerically those integrals. For L, and IS’ the partial derivative of the
analytic expressions for the Cauchy values is taken. The apparent singularity
in F2(m,I1,J) when I = J is treated exactly as described for F1l(m,I,J).

All other elements of S can be evaluated by standard numerical methods.

10. Edwards, J., Treatise on Integral Calculus, Vol. I, Chelsea Publishing .
co., New York, 1954, pp. 340-349
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Since the S elements require considerable computing time only the
case of normal incidence on the disk was investigated in detail. For this
problem only the m = 1 mode need be considered. The incident field may be

expanded as (ref. 11)

e _ ,mtl - .,
El,m(r) = =—cos OP cos ei €3 Jm(kr sin 6i)EO
J (Er sin 6.) (24)
EC (¥) = cos 8_ cos © srjm+l m —= =
2,m P i m

kr sin 6,
i

for the TM case with r,¢,z the usual cylindrical coordinates and the angles
of incidence and polarization defined as in Figure 1.

For the TE mode

ol Jm(kr sin ei)

=i
[e]
~
|2
~
il

1 -sin 6 €] m E
s p = ‘kr sin 8, ©
(25)
mt+1
e - o - .
Ez’m(r) sin ep €] Jm(kr sin ei) E
where €, is the Neumann number defined
2 m= 0
e, = (26)
1 otherwise

and Jm the Bessel functions. Recursion relations among the Bessel functions

can be used to show that for Si = 0 or w,
e —
El’m(r) = cos ep Eo Gm,l cos 04
0
Ez’m(r) = —cos ep Eo Sm’l cos 6,
(27)
o ,
El’m(r) = sin ep E, Gm,l |cos eil
e .
EZ,m(r) = ~-gin ep EO ém,l lcos eil

11. Strattonm, J. A., Electromagnetic Theory. McGraw-Hill Book Company, New
York, 1941, pp. 371-372. L9919




Figure 1. Circular Disk with the Polarization
of the Incident Field N
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where ¢ is the Kronecker 4.
m,l

3. SCATTERED FIELD COMPUTATION
Maxwell's equations lead to the following for the scattered fields once

the induced surface current density is known:

pet - . : - e >
ES(r’) = - T [V js v e JS(?) G(¥|T7) ds
+ kzj KS@) c(r|*”) ds] (28)
S
-> . l -> >y
Hf(? ) = v js JS(?E) x V 6(r|r”) ds (29)
with
. - oIkR
R
R = V&i + 172 ~ 2rr” sin 67 cos(d = ¢7)

These expressions can be expanded in terms of cartesian components and
evaluated for the various field points. There are two difficulties encountered
with Equations (28) and (29): each integrand becomes unbounded as r -+ a since
Js¢ + « at this point, and the equations are not valid for points in or on the
source. For convenience the field points are limited to the axis of the disk

(along z). For a normally incident field polarized in the x direction on a

s and Hs need be calculated. The result of

disk in the z = 0 plane, only Elx iy

the analytical integration near r = a leads to
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a-§ fZTT
B2 = - QE- -~ k2[J z sin 68” cos(4~¢") = J__r + J z
ST hay sé¢
o} o]

sin 8”7 cos(¢+n/2-¢")] * [z sin 67 cos ¢~ = r cos qS]/R2
+ Gk + =)[3 [Jsrz sin 67 cos(4=¢") = I, T+ I, z sin 07
cos (¢ + %-— ¢’i] . [ z sin 67 cos ¢ — r cos ¢] /R2

- : 2 - 1.2 :
J  cos ¢+ J , sin 91 +k* J__ cos ¢ - Kk Js¢ sin ¢ G(r[z)j} r dr dé

s¢
SE L geedy celw e [KE Gl - @ - 5027
a2t (a=8) ,.» on1/2 a2 . (a-98)
[ % T T o (a¢ - (a=-8)%) - 5 arcsin Tw
l l(rN) [aZ - (a - %)2]1/2 [ g—— arcsin ( éég )i]
i 2 _
- I (otaloval [1E (G 1a? - @ =527 15T (B
(a2 - (a-6)2)"1* —:;3 aresin (22)In - KK [ [a? - (a- by2y /2
[ g—- arcsin ( éii )] ﬁ] (30)
where 6 = 0
5° = 0
§ = a/N
R = [r2 + 22]*/?
rI’ = A(I - 0.5) I=1, «++, N
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In a similar fashion H;y can be evaluated. The tabulated values of the
current densities and Simpson's rule integration lead to the scattered fields
from the disk. Babinet's principle is then used to calculate the scattered

fields for the equivalent aperture

4. SINGULARITY EXPANSION METHOD

To apply the singularity expansion method it is necessary to perform a
pole search on the S matrix of (12), i.e. S is a function of the complex
frequency, s = 0 + juw, and the roots of the determinant of S are found by a

numerical search routine. Accordingly the current density may be represented

(ref. 12).
_ [R 1[E(s )]
[T ()] = E A - A
s a 8 7 8y
where
[3;(8)] is a column vector containing the

radial and circumferential components

of the mode current density

[R,] is the residue matrix
[E(sa)] the excitation field vector
Sy the poles of the system matrix

The foregoing does not show explicitly the mode contributions. Actually each
modal contribution should be expanded as shown above and the sum of the modal
contributions would represent the total surface current density.

The scattered fields in the time domain can be obtained using the
singularity expansion method from equation (30) by introducing s, the complex

frequency, and replacing the current density by

12. Crow, T. T., Graves, B. D. and Taylor, C. D., "The Singularity Expansion

Method as Applied to Perpendicular Crossed Cylinders in Free Space,"
AFWL Interaction Note 161, October 1973.
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[T ()] [R_1[E(s)]
Sr = Z_IE____.____ (31)

E cos ¢ s - 8
o ¢ o o

[T (s)] R, J1[E(s)]
—so 7 oy T (32)
Eosin ¢ o s = 8,

where [§;a] and fﬁéa] are rectangular arrays containing the first N rows of

[Ra] and the last N rows of fﬁ;] , respectively. 1In terms of mode and

coupling vectors and coupling constants ng,» Equation (31) can be rewritten as

— — ._T__
@1 £y F100) B -

E cos s — s
o] ¢ a o

=9
8, Ny () [, ]

s — 8
83

[T, = ] (34)
[

n(s) = 1617 [E(s)] (35)

and similar expressions for [3;¢(sﬂ can be obtained. These equations,
(31) through (35), apply for normal incidence, m = 1. For other than normal
incidence, each of Equations (31) through (34) must also include a summation
over m.

For the normal incidence case, substitution of Equation (34) and its
companion for [3;¢(s)] into Equation (30) leads to an expression for
Eix(r’,¢’,8’,s) as a summation over poles. The time-domain response is

found from
cctje

st

Eix(f’,e’,du’,t) = == E:SLX(r’,qS’,e‘,s)e ds (36)

!
[\&]
= |1
[
L‘—‘—”—\
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Performing the integration by the residue theorem and assuming a unit step

electromagnetic pulse yields
S - - . - FE - - - SCit
ElX(r s $7,0 :t) = g BCZ na(sa) B(IX eOLX(r 297 ,0 e (37)

. , , . . FE
ey 1s the electric field mode vector and the normalization factor Bax
is defined such that the largest element of € x is real and has magnitude

one. The explicit expression for € x is

a (2w

o -0

[ﬁia]r + fﬁza]r’ sin 8”7 cos(¢ + /2 - ¢”)>

e [r” sin 67 cos ¢~ - r cos ¢]/R?

+2 (1) 3 ) “ sin 87 cos(¢=¢")
R ( R r” sin cos($p~¢

S
[S1e4 [0

v Pyl

M ] (M, ]

v+ ——%2— 7 sin 87 cos(9 +-% - ¢’))
o

-
——

r sin 87 cos ¢7 - r_cos ¢) /R2

~¢ s
. 1 [ 1
- Za cos ¢ -+ ——£9~ sin %]— [ﬁia]cos é
o a
— e—SuR‘
+ [M¢u] sin ¢]'§ rdr dé (38)
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SECTION III

NUMERICAL RESULIS

1. CONVERGENCE OF THE SOLUTION

An important question occurring with the use of any numerical solution
technique is the question of convergence. Here it is the question of how
many current zones (N) must the disk be divided into to achieve the desired
accuracy for the induced current calculation. A convenient means of making
this determination is to use the low frequency analytical approximation for
the surface current density induced on a circular disk illuminated by a
plane wave propagating normal to the plane of the disk (ref. 13).

Considering a disk with a diameter small in terms of wavelength the
current density is obtained numerically over a range of values for the
number of current zones used. The data obtained are presented in Table 1
along with the low frequency approximation developed by Bouwkamp (ref. 13).
From these data it is observed that numerical solution for the current
density near the center of the disk convergences faster than the numerical
solution for the current density near the edge. At N = 21 the numerical
solution is within 10% of the low frequency for r < a/2. Probably the reason
for the slower convergence of the solution for the current density near the
edge is that the current density varies more rapidly with change in r in that
region, particularly the azimuthal component of current. A graph of the

induced surface current density is shown in figures 2 through 4.

13. Bouwkamp, C. J., "Diffraction Theory," Rep. Progr. Phys., 17, pp. 35—
100, 1954.
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min

.1667
.5000
.8333

1667

.5000
.8333

.1667

5000
.8333

1667
.5000
.8333

.1667

.5000
.8333

<1667
<5000
.8333

.1667
.5000
.8333

TABLE 1,

Jr/cos é x kan

3
3

VARIATION OF CURRENT DENSITY VERSUS NUMBER

OF ZONES ON A DISK OF DIAMETER (0.03183)
WITH NORMAL INCIDENCE

0.005300
0.004806
0.003483

0.004958
0.004478
0.003221

0.004749

0.004276
0.003051

0.004607
0.004138
0.002932

0.004480
0.004014

§ 0.002822

(20N

0.004346
0.003854
0.002679

0.004440
0.003900
0.002489

N =9
N = 15
N =21
N = 27
N = 33
N = 39

Low Freq. Approximation
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J¢/sin ¢ x kan

-3
=]
-3

=]
=J
-3
-]
=]
=]
-J
-3
=]
=J
=]
=3

=]

=]

0.005385
0.005731
0.008512

0.005042
0.005377
0.007680

0.004833
0.005167
0.007348

0.004690
0.005026
0.007156

0.004563
0.004902
0.007019

0.004385
0.004744
0.006928

0.004503
0.004550
0.005317
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As the frequency 1s increased the radial variation of the induced current
density becomes more complex. This is seen in figures 5 through 7. 1In
figures 5 and 6 current densities for a = A/4 and a = A/2, respectively, are
shown. In both cases an apparently spurious oscillation occurs which
decreased as N is increased. Hence this oscillation is probably related to
the convergence of the numerical solution. Also shown on the foregoing
graphs is the physical optics approximation (ref. 14), that should become
more accurate at higher frequencies.

Apparently the numerical convergence is such that whenever N > 20, 10%
accuracy is achieved for the current distribution near the center of the disk
provided the frequency is not too high. Verification of the numerical results
for higher frequencies is contained in the following section where comparisons

are made with experimental data,

2. APERTURE FIELD DISTRIBUTION

To determine the accuracy of the integral equation results for high
frequency illumination comparison with experimental data is made. The electro-
magnetic field distribution in a circular aperture has been measured by
Buchsbaum et al. (ref. 15). Applying Babinet's principle and using the
aforementioned results for the current induced on a circular disk yields
the appropriate electric field component within an illuminated circular

aperture to compare with the measured data of Buchsbaum, et al. In both

14, Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill
Book Company, New York, 1961, pp. 127-128.

15. Buchsbaum, S. J., Milne, A. R., Hogg, D. C., Bekefi, G. and Woonton, G.A.,
"Microwave Diffraction by Apertures of Various Shapes," J. Appl. Phys.,
Vol. 26, pp. 706-715, June 1955.
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cases only normal incidence is considered, i. e., ei = 0. Figures 8 and

9 exhibit the comparisons for the y component of electric field along the

X and y axes, respectively, for a = A/4. TFigures 10 and 11 exhibit the

same comparisons for a = A/2 and figures 12 and 13 show the comparisons for

a = 3x/2. For the radii a = A/4 and a = A/2 the numerical results and the
measured data differ by no more than about 10%. However for a = 3A/2 the
agreement is not quite as good but this could be due to a convergence problem.
On figures 8 through 13 the Kirchhoff approximation is presented (ref. 3).

The Kirchhoff approximation for the aperture is equivalent to the physical

optics approximation for the Babinet equivalent disk.

3. DIFFRACTED FIELD IN THE NEAR ZONE

As mentioned in the foregoing the electromagnetic field diffracted by a
small aperture may be expressed in terms of the dipole moments of the magnetic
source equivalent for the aperture field distribution. Although this pro-
cedure yields a simple formula for the diffracted field, the expression is
not valid for the region very near the aperture (ref. 1). Using the numerical
formulation that is presented, the diffracted field behind the aperture is
calculated and compared to the dipole field approximation. Typical results
are shown in figures 14 and 15 where the field components along the z axis
are presented. One general observation is that the dipole expression is
valid for distances from the aperture as small as the aperture radius.

As the frequency is increased until the aperture diameter becomes an

appreciable fraction of a wavelength it must be expected that the dipole field
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approximation would no longer be valid. However, from figures 16 and 17 it

appears that the dipole field approximation yields reasonably good approxi-

mations for apertures with as large a radius as a = A/4, Note that experi-

mental results of Fhrlich, et. al. (ref. 16) are also shown in figure 16. ;
Experimental and theoretical results for the diffracted field along the

z axis behind a circular aperture are shown in figures 18 and 19 for a = A/2.

Corresponding results for a = 3A/2 are shown in figures 20 and 21. 1In all

cases good agreement is obtained,

4., DIFFRACTED FIELD IN THE FAR ZONE

Since the diffracted field in the far zone is obtained using the same
algorithms as the near zone it is expected to be of comparable accuracy or
better. TFigure 22 exhibits the far field along the z axis as obtained
numerically and as obtained from the low and high frequency approximations.

The low frequency approximation is based on the dipole field expression of

ref. 1 and the high frequency approximation is based on the Kirchhoff
approximation (ref. 3). For the data shown in figure 22 the radius of

the aperture considered is not small enough for the low frequency approxi-
mation to be valid nor large enough for the high frequency approximation

to be valid. Hence there are significant differences between the results
of these approximations and the numerically obtained results. For a

larger aperture, a = A/2, the agreement between the high frequency approxi-
mation and the numerical results improves considerably as seen in figure 23,
And when the aperture radius a = 3A/2 (see figure 24) the Kirchhoff
approximation data coincides with the numerical solution data. However,

it must be expected that if the corresponding data were compared .

16. Ehrlich, M. J., Silver, S., and Held, G., "Studies of the Diffraction “
of Electromagnetic Waves by Circular Apertures and Complementary
Obstacles: The Near—Zone Field,'" Journal of Applied Physics, Vol. 26,
No. 1, pp. 336-345, March 1955,
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for points off the z axis then the agreement would not be as good since the

Kirchhoff approximation would not adequately approximate the aperture field

distribution.

5.

SINGULARITY EXPANSION RESULTS

To apply the singularity expansion method it is first necessary to perform

a pole search on the S matrix. The numerical search is time consuming; there-

fore, only a small number of current zones are used and only one or two poles

are located for several modes. For the details of the computational pro-

cedures see ref. 17. Table 2 gives the pole locationms, Smj’ for several m

values. Table 3 is a study of the pole location as the number of current

zones is varied. It is noted that in most cases the real part of the poles

are much less than the imaginary part. Probably these data are not correct.

Furthermore it is found that substantial variation in the real part of the

poles may occur and yet the poles still satisfy the numerical criteria used

by

the computer program in identifying poles. Evidently this subject

requires further investigation. However, the imaginary parts of the poles

appear quite reasonable and are possibly correct.

Following the numerical techniques described in ref. 17 the coupling

vectors, the residue matrix and coupling coefficlents may be determined.

Figures 24 and 25 show the real part of the mode vectors corresponding to

J
r

and J,, respectively, for the poles presented in Table 2. Also shown in

qb’

figure 26 is the real part of the electric and magnetic field natural mode

vector for the s

1 and Sy, poles.

7.

Crow, T. T., Graves, B. D., and Taylor, C. D., "Numerical Techniques
Useful in the Singularity Expansion Method as Applied to Electromagnetic
Interaction Problems, AFWL Mathematics Note 27, December 1972,
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Mode

10

12

TABLE 2. NATURAL FREQUENCIES FOR THE DISK

- ca/c
So1 -1.093
Sll -.00048
S12 -.00072
S,1 -.00021

TABLE 3. Sll VS. NUMBER OF CURRENT ZONES

calc

~.000056
-.000081

-.0000054

199-35

wa/ec

3.905
1.378
3.575

2.624

wale

1.378
1.405
1.419

1.424
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6. CAVITY BACKED APERTURES

Perhaps the simplest cavity backed aperture for studying purposes is
formed by placing an infinite conducting plate behind a plate containing an
aperture., If the field attenuates sufficiently with distance from the
aperture then the presence of the second plate may be ignored. This would
be a valid approximation for electrically small apertures when the plate
spacing is large compared to the aperture radius (see figures 14 and 15).
Under the same condition of plate spacing figures 16 through 19 indicate the
presence of the second plate may be ignored for aperture radii as large as
A/2. For larger aperture radii the Kirchhoff approximation could be used

to advantage together with imaging techniques such as is discussed in ref. 1.
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SECTION IV

CONCLUSIONS

A numerical solution to the problem of the electromagnetic field pene- o
tration through apertures is possible. The solution technique in principle
is not frequency limited; however, practical considerations limit the technique
to treating apertures with radii less than a few wavelengths. Several
observations are made concerning the low frequency and high frequency approxi-
mate solutions.

1. In the low frequency regime the dipole approximation for the diffracted
field is valid for distances from the aperture greater than the aperture
radius. This result is of interest in many problems.l8

2. In the high frequency regime the Kirchhoff approximation becomes valid

when the aperture radius is greater than a few wavelengths. Q

3. The near field behind an aperture decreases rapidly with distance
from the aperture at low frequency. However at high frequency this does not
occur.

4, The far field behind an aperture is predicted accurately by the &ipole
approximation for frequencies up to the first resonant frequency of the
aperture. And the Kirchhoff approximation yields very accurate far field

predictions whenever the aperture radius is greater than a few wavelengths.

187atham, R. W., "Small Holes in Cable Shields," AFWL Interaction Note
118, September 1972. 6
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