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Abstract

The coupling of the energy from an incident plane wave to a trans-
mission line situated behind a plane screen is computed by the use of

equivalent electric and magnetic dipole moments. The frequency and time

responses of the voltage at the transmission-line terminals are evaluated
from the equivalent circuit consisting of one voltage generator and one
current generator. It was found that the circular hole and a single-wire

transmission line have directional property when a TM incident wave is
arriving in parallel with the screen surface,
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SECTION I

Introduction

The general problem addressed in this study 1s how does
electromagnetic energy incident upon an infinite ground screen
containing an aperture couple to wire transmission lines residing
behind the screen. In this initial investigation discussion is
restricted to the simple case shown in Figure 1-1. of a single
z-directed line of infinite extent behind a screen containing an
aperture which is dimensionally'vanishingly small. The solution
may serve as a Green's function for more general aperture shapes.

Several simplifying assumptions are made. First, the quantity
of interest 1s taken to be the energy propagated away from the
aperture on the line and not local, evanescent phenomena. This
obviates a detailed investigation of the more difficult aperture
region of the line. Second, the primary carrier of energy is
agssumed to be the TEM mode, and any higher order modes are
ignored. The analysis is first-order and serves as a base fox
more exact investigati&n. Such representation of the electromagnetic
field on a transmission line in terms of the TEM wave is discussed
in detail in Interaction Note 148, ref, [1].

For purposes of computation of the fields inside the screen,
the aperture is replaced with some equivalent source distribution
residing on the surface of an infinite, unbroken ground screen.
Allowance is made for either a magnetic surface current amalog or
a dipole moment equivalent in which both electric and magnetic
sources may be present. These sources can be computed from the
aperture fields which are the solution of the boundary value problem
for the given aperture. At present, we assume that the solution
for the given aperture has been found, and that the equivalent
electric and magnetic dipole moments ;a and ;a are computed from

this solution. The methods of computation of dipole moments have
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Fig. 1-1. ©System to be investigated.

Fig. 1-2. Aperture replaced by electric dipole moment ;a and

-3
magnetic dipole moment o




been discussed in the Interaction Note 132, ref. [2]}, and in
the Sensor and Simulation Note 125, ref [3]. It is appropriate
to mention here an important difference in notation between
these two notes and the present report.
In the present report, the electric dipole moment P,
(in Ampere°meters) denotes the moment of the electric current
element, much in the same way as in references [4], [5], and
[6]. The above mentioned references [2] and [3] are using
the moment of the electric charge doublet p (in Coulombemeters).

The relationship between the two notations i1s
p, = jup . (1-1)

Similarly, the magnetic dipole moment m_ (in Volte*meters)
used here represents the moment of the magnetic current element,
in agreement with references [7], [8], and [9]. The relation-

ship between m, and m defined in [3] is, for circular aperture,

m, = —jOHm . (1-2)

Given the simple sources of Figure 1-2., one may readily
draw the equivalent circuit for the excitation of the trans-
mission line, shown in Figure 1-3., where the ideal current
source AI is related linearly to the magnitude P, of the
electric dipole moment and where the ideal voltage source
AV is similarly related to the magnitude m of the magnetic
dipole moment.

The equivalent circuit in Figure 1-3 is of great value
for computing the terminal voltages V3 and V4 on the trans-
mission line for any particular incident waveforms. The
frequency-domain résponse of V3 and V4 is discussed in Section 3
of this report, while the time-domain response i1s discussed in
Section 4. Several examples have been worked out, and the

resulting waveforms are shown in that Section.,



Fig. 1-3. Simple equivalent circuit for the transmission line.

The derivation of the background formulas is organized in
four Appendices. Appendix A summarizes the TEM field configu-
ration on tﬁe single wire above a ground plane. The coupling
coefficients have been derived in two different ways in
Appendices B and C. Appendix D explains why a small aperture
can be replaced by a pair of dipoles. Also, Appendix D
demonstrates the presence of the quadrupole term Bbe/dx, which

is neglected in the dipole representation.




SECTION 1IT

Problem Description

The coupling of the electromagnetic field through an aperture
to the single-wire transmission line is illustrated in Fig. 2-1.
A circular aperture of radius a is centered at the point (xO,O, 0).
A circular wire of radius r is situated at height d above the
perfectly conducting ground plane of infinite extent. The wire
lengths in each direction from the aperture are denoted by 23 and 24.
At these ends there may be attached some lumped resistances. The
problem to be solved in this reporﬁ is to compute the voltages
V3 and V4 at each end of the single-wire transmission line for a
known electromagnetic wave incident from below the ground plane.
There are two basic orientations of the incident plane wave:
transverse electric (TE) and transverse magnetic (TM) wave, as
shown in Fig. 2-1. TE wave is oriented so that the E vector is
parallel with the ground plane, while in TM wave the vector E is
parallel with the ground ﬁlane. The plane of incidence 1s specified
by angle « ana the angle of incidence by angle 8. Vector i is
pointing in the direction of propagation and has its magnitude
equal to the free-space propagation constant k for real, positive w.
In an incident plane wave, the magnitudes of electric and

magnetic fields are related through the intrinsic impedance n

as follows

E- = H'n (2-1)
o

The components of interest for the coupling through the aperture

are the normal electric and the tangential magnetic fields, which

are:

IM: En Eo sin® . Ht = HO s (2-2)



TE wave:

Fig. 2-1. The geometry of the problem to be investigated.
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TE: E_ =0 . HS = Ho cos § . (2-3)

The x and y components of these fields are:

™: Ey = Eo sin © R HX = -HO sin o (2-4)
i i

TE E- =0 . H = H_ cos © cos @« . (2-5)
y X o)

On the surface of a perfect conductor, the total normal electric
and tangential magnetic fields are double the corresponding

incident field components:

mM: E°F - 28 sin 6, HEOF - - ZBogin o, (2-6)
-— y o X n
TE: E'°C = 0 s 7ot - zgocos O cos « . : (2-7)

11



SECTION III

Response in the Frequency Domain

The excitation of a single-wire transmission line through
a small aperture is modeled by the circuit inm Fig. 3-1. Gen-
erators AL and AV represent the aperture electric and magnetic
dipoles, located at z=0. The twoports 1-3 and 2-4 represent
the transmission line sections of lengths £3 and 24. The
resistance; R3‘and R4 are the external terminations. Assuming
that the functions AV(w) and AI(w) are known, the terminal vol-
tages V3(w) and V4(w) will be computed.

From Kirchhoff laws it follows

AT

L]
H
+
=

1 2 s (3_1)

fl
<3

|
<3

Av 2 1 . (3-2)

The circuit will be solved by the use of scattering para-
meters. First, the currents and voltages at each of the ports
i=1 through 4 will be separated in the incident (superscript +)

and outgoing (superscript -) parts:

I T =Lt - vr -
vy =V o+ T, ; I; Zo(vi v , (3-3)

where Z0 is the characteristic impedance. Next, the normalized

scattering parameters a and b will be introduced:

+ -
vy . v,

a; = — 3 bi = —= . (3-4)
Vzo' /zo

In terms of scattering parameters, (3-1) and (3-2) become

AL = (a1 + a, - bl - bz) s (3=5)

S

12




ig. 3-1.

Equivalent twoport circuit for the transmission line.
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AV = /zo (-al +oa, - bl + b2) . (3-6)

This can be rearranged as

a, = % (AT /E; - _él) + b

1 E; 2 ? (3-7)
1 AV -
a, = = (AL vZ2 + — . (3-8)
2 2 o E;) + bl

For simple sections of transmission line, the scattering matrices

are given by

b, 0 1 a
2 . 2
‘ \ = e_Jk'Q'é { \/ (3-9)

b4/ A1 Oi‘\a4

for the right~hand section, and

b 0 1\ /a
1\= oIk, )( 1) (3-10)

bsl 10/ \ay

for the left-hand section.
Furthermore, the terminations R3 and R4 produce reflection

coefficients p3 and p, as follows

a R,~7

= = _ 3% -
0y = 5 =T , (3-11)
3 3tZ,
a
04 = -5—4-. = R[|, ZQ (3"12)
4 R,+Z
4 "o

(3-7) through (3-12) contain 8 linear equations relating 8

unknown coefficients a; and bi' The system may be solved by

14




simple eliminations.

est are b, and b, :

The two scattering coefficients of inter-

3 4
. 1 Ppae-ijA + Mejk£4
b = e " (3"13)
30002 3R L 5 o eIk o
374
1}_Mp3e-jk'?'3 + Pejk23
b, = S — - (3-14)
4 2 esztot - p,p,e sztot
374
where gtot = 23 + 24, and
pear /i + 2L, wearvz -2 L (3-15)
° Zo Zo

The voltages at ports 3 and 4 can be obtained from the scat~-

tering coefficients b3 and b4 in the following way:

V3

/zO (1 + p3)b3

——

. /z0 (1 + p4)b4

<3
]

Therefore, the problem has been solved,

are expressed terms of sources AI and AV.

AI and AV have been expressed in terms
P, and m For a small aperture of an
moments can be computed by integrating
tribution as explained in Appendix D.

tained from a solution of the boundary

particular aperture.

s (3-16)

(3-17)

Output voltages
In Appendix C,

of aperture moments
arbitrary shape, the
the aperture field dis-~
This field must be ob-

value'problem for a

A special case of a small circular aperture will be inves-

tigated next, since there are simple analytic expressions

available for its dipole moments. The

case of the TM incident

wave will be selected as being more interesting, because it

contains two excitation terms while the TE wave has only one.

15



Let the incident plane wave be a known function of fre-

quency ¢ (w):

Ei(w) = Eoé(w) . (3-18)

From (2-6) theé total normal electric and tangential magunetic

field on the metal surface are

ECF = 2E sin® o(u) | (3-19)
y o

gE9F = _ 2B, cina d(w) . (3-20)
X N

From (C-18) and (C-19), the transmission line sources AI and

A7 are

— 1 -
AT = 7§: PyaeyTEM(xo’o) R (3-21)
o
= - YZ -
AV o mxathEM(xo’O) (3-22)

Dipole moments for circular aperture are given by (D-28) and
(D-29). Since the coordinate system in Appendix D is different
from the one which is used in Fig. 2-1, we have to exchange

coordinates z and y 'as follows:

_ 24 0 3 tot _
B, = J§wL a Hx ) (3-23)
b, = jluead EEO (3-24)
ya 3 y ’

The TEM-wave modal fields at the center of the aperture, in
the absence of the aperture, are obtained from (B-12) and (B-13)

as follows:

16



nh

e (X ,0) = - ] (3_25)
yEEM o TZ_ (x> + b’)
(o] [s]
h
h (x ,0) =
- xTEM "o ﬂ/Zo(Xi + 0y . (3-26)

When substituted in (3-15), the above relations give the fol-
lowing values of P and M:

P 4F hka3
i)

= jo(w) (2in® £ 2 sina)

M 3vz m(x_ + h")
where the upper sigh is for P and the lower sign is for M.

The voltages v, and V, are now obtained from (3-16) and
(3-17) as follows

2
2ha
Vv, (w) E ¢(w) ¢, (w) s (3~28)
3T Gl el o0 %
2ha2
V4(w) 7 EO¢(w) ¢4(w) . (3-29)

BW(XZ + h°)

The frequency dependence is incorporated into the two functions

denoted ¢3(w) and ¢4(w):

(sin¢ +2sina) pée’ijA +(sinB- 2 sina)e K%y
¢ ,(w) = jka(l+p,) . —
’ ) ejkgtot - pLp,e sztot
374
(3-30)
) (sinf-2sina) p3e—3k23 +(Sine+ZSinu)ejk23
¢4(w) = Jka(l+p,) 9 T ,

e tot-pap, e ot

(3-31)

As the propagation constant is also a function of w

17



k = w Yue , (3-32)

the above expressions may be used to compute the magnitude and
phase of voltages V3 and V4 as functions of frequency. A

following example has been selected:

aperture radius a = 10 mm
distance from aperture to tramsm. line X, = 20 nm
transm. line radius r = 1 mm
transm. line height d = 10 om
line length in (+2z) direction 24 = 2,1l m
line length in (-z) direction 23 = 3,0 m
plane-wave angle of incidence 8 = 45°
azimuth angle for plane of incidence o = 30°
load refistance at (+z) port R4 = 10 kQ
load resistance at (:z) port R3 = 10 Q

Assuming that the plane-wave spectrum is independent of frequency
(¢ (w)=const), the relative voltage at the port 4, expressed
in decibels, is shown in Fig.'3—2 as function of frequency.

As seen from (3-31), at'very low frequencies k£3<<l and k&,<<1,

so that ¢4(w) is proportional to w. This situation prevaiis

in Fig. 3-2 up to about 50 Mrad/s. At higher frequencies,

the transmission line will have resonances determined by

lengths 23 and 14 and by load wvalues Py and Py As the
characteristic impedance of the transmission line in the example

chosen is Zo=l79Q, port 3 is almost short-circuited by the

resistance R3=lOQ while port 4 is almost open-circuited. The
first resonance occurs therefore at k2t0t=ﬂ/2 or

— ____C = —

fres,l - 42 1419 MHZ 9204 Mrad/s s
tot

as can be seen in Fig, 3.2: Higher resonances occurring at

£ = .

res,n (2n+1) fres,l

+ can be also seen in the same figure.

18
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Fig. 3-2. Frequency response.

Fig. 3-3. Directional property of the aperture coupling:

Voltage at port 3 is zero vhen azimuth is 30°.
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An interesting directional property may be observed for .

the TM plane wave incident parallel with the ground plane. If
the Port 4 is terminated in Z then one can see from (3-30)
that ¢3=0 when sinf=2 sing or, for 9=90°, when 0=30°. As

shown in Fig. 3-3, the voltage at port 3 will be zero, when

the incident TM wave is coming under an angle a=30°, parallel
with the ground plane. This property could be used to build

a low-profile direction finder. However, a practical appli-
cation of this effect is limited to strong incident waves only,
because of the considerable signal loss at the passage through
a small aperture.

In the example from p. 18 the lateral displacement of the
hole X, is larger than the wire-height d. Therefore the
assumption (D-9) is violated, and the neglection of the
quadrupole term may cause an error in the obtained results.
Fortunately, this error could have an influence only on the
amplitudes of line voltages, whereas the frequency response

and the time response are not affected by it.

When the hole is placed symmetrically beneath the wire
as in Fig. 3-3 the assumption (D-9) is fulfilled and the

neglection of the term SHbX/Bx is well justified.

20



SECTION IV

Response in the Time Domain

The circuit model of the transmission line excitation
through a small aperture is once again shown in Fig, 4-1. The
sources AV and AI have been evaluated previously as functions of
frequency. In this section, they will be expressed as functions

of time. From (C-18) and (C-19)

_ 1

AI(t) = - 7%: PyaeyTEM(Xo’O) (4-1)
o] N

AV(t) = - /Z m_ B oy (% ,0) (4-2)

Let a TM incident plane wave below the ground plane be a pre-

scribed functiocn of time

Ei(t) AOF(t) . (4-3)

The corresponding total normal electric and tangential magnetic

fields are obtained from (2-6):

tot

Ey (£) = 2AO sinf F(t) , (4-4)
24
H;Ot(t) = - —2 sina F(E) . (4-5)

For a small circular aperture the magnetic and electric dipole
moments in the frequency domain are given by (3-23) and (3-24).
To obtalin the time domain presentation, replace factor jw by the
time derivative d/dt:

dHtot
X

dt . (4-6)

4 3
mxa(t) = 3 Me

21
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+ [t VN g + <A +
Res Vs v, V, 2
3 3 _ 1 Al 2 V4 R4
V'WL R a~n Vot
-4—]3 ,!—>- —<—,2 ,4_>.
Fig, 4-1, Equivalent circuit for the transmission line.
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2 3 dE
Pya(t) = 3 ¢€a —E%__ . (4=7)
Modal fields eyTEM and thEM do not depend on frequency or on
time, as seen from (3-25) and (3-26). The sources AI and AV are

therefore given by the following functions of time:

sin® 4ha3Ao
AIL(t) = = —> F'(t) , (4-8)
o 3ﬂc(xo+h )
4ha3A
AV(t) = 2sino 5 ; F'(t) , (46-9)
3Wc(xo+h )

where F'(t) stands for dF(t)/dt, and c is the velocity of light.
When the voltages and currents at ports 1 and 2 are de-
composed in their incident and outgoing parts, like in (3-3),

the Kirchhoff laws give the following
: + - + -
ZOAI(t) = Vl(t) - Vl(t) + Vz(t) - Vz(t) s (4-10)
R o + - _
Av(t) = Vl(t) Vl(t) + V2(t) + Vz(t> . (4-11)

TEM wave on a transmission line exhibits no dispersion: the
waveforms travel along the line without deformation. E.g. the
wave V;(t) travels toward the right-hand side of the line 24, and
a portion of it is reflected back due to reflection coefficient

Py- When the reflected wave comes back to port 2, it is called V;(t):

v, (t) = pav;(t-214) | . (4-12)

Similarly, the reflected wave on the left-hand portion of the

transmission line is

vi(e) = pSVI(t—2T3) ) (46-13)

23



The time-shifts T3 and 14 are

%

-
H
ol

: T4 = T4 R (4-14)

as the TEM wave travels with the velocity of light c. Substitute
(4-12) and (4-13) in (4-10) and (4-11) and obtain

V;(t) 52,A1(6)-AV(D)] + p4V§(t—214) ] (4-15)

]

+ 1 + _
Vz(t) 4{Z°AI(t)+AV(t)] + p3V1(t 2T3) . (4-16)

The bracketed expressions in (4-15) and (4~16) are the sources
which determine the shape and the magnitude of the transmission-
line voltages. For shorter writing, denote these expressions by

Vm and Vp as follows

: ZhaBA
Vm(t) = 5 (sin6 - 2 sina) F'(t) , (4-17)
‘ 3ﬂc(x°+h )
: 2ha3A
Vv () = 73 (sin® + 2sina) F'(t) . (4-18)
P 3ﬂc(x6+h )]

By using this notation, the responses at ports 1 and 2 become

V;(t) v, (e) + pAV; (t-21,) s (4-19)

+
Vz(t)

+
Vp(t) + p3Vl

(£-21,) . (4-20)
As seen from the above, the voltage responses on the transmission
line are given by the time derivatives F'(t) of the incident plane-
wave time function F(t), plus the terms originating from the
reflections at the opposite sides of the transmission line.

One has obtained a pair of recurrence equations for computation

of the time histories of V;(t) and V;(t). Assume that the incident

24




plane wave 1s a pulse starting at t=0. TFor 0 < t <27 the

y
voltage wave V;(t) in (4-19) is given only by Vm(t), gecause the
wave reflected from the port 4 has not yet arrived back to the
point Z=0., The obtained expression for V:(t) should be shifted
in time for 2T3, and added in (4-20), after a multiplication with
P3s etc.

The total time history of the back-and~forth reflections on
the transmission line may be put in a graphical time table shown
in Fig. 4~2, The example shown has the same dimensions as in
Section 3, so that the time lag necessary for the wave emanating
from the center to reach the port 4 is 7ns. The wavefront which
started from the center toward the left and then comes back after
a reflection at port 3, is shifted for 27ns, etc. The voltage
observed at port 4 shows the arrival of these shiftec pulses in
a manner depicted in Fig. 4-3. Assuming that the line is lossless,
the only loss of energy occurs when the wave is reflected from
the resistive terminations at ports 3 and 4. If these terminations
become lossless (like open-circuit or short circuit), the pulses
bounce back and forth on the transmission line forever. On the
other hand, when the ports 3 and 4 are terminated in matched 1oads,
the pulses arrive at each end only once, and are totally dissipated
there without any further reflection.

The following doubly-exponential function was selected as a
typical incident waveform

F(t) = e %F.o7BE (4-21)

For the same example as in Section 3, the incident-wave parameters

have been selected as follows:

incident wave magnitude Ao = 100kV/m
short exponential B = 108391
long exponential o = 3'1065"l

25



N 7 ~Z
'%% g paYe
y
3~
<% 277, o
Yt
(in ns)

Fig. 4~-2. Time table of wave reflections on the transmission line.

A4 (t)
0 7ns 27 ns >t
Fig. 4-3. General waveform at port 4.

26



The shape of the incident wave is shown in Fig. 4-4. Note
the fast rise and the slow decay c¢f this wave form. Also note
that the value of F(t) is zero for negative times, which makes
the derivative F'(t) discontinuous at t=0.

For the example selected in Section 3, the voltage at the
ﬁort 4 is shown by a solid line in Fig. 4-5. This waveform is
obtained from (4-19) and (4-20), while the time table from
Fig. 4-2 was used for keeping track of the first nine arrivals
at the port 4. It is important to note that the voltage appears
in the form of a series of sharp spikes, which are graduzally
being attenuated due to lossy terminations at ports 3 and 4.

The reason for the abrupt changes in V4(t) is the fact that the
incident waveform F(t) has discontinuous derivatives, as mentioned
above. The highest peak of the voltage V4 is less than 0.5V,
while the incident waveform has a strength of 100kV/m. This

shows that an aperture of the radius of 1 cm allows very little

of the incident energy to penetrate the hole.

The waveform in Fig. 4-5 is obtained by computing discrete
values of V4(t) in increments of 1 ns. Due to the straight-line
interpolation between the computed points, the plotted results
seem as if the rise time of each of the pulses had the value 1 ns.
Actually, this apparent finite rise-time is the consequence of
the discretization in the computer output, while the actual rise-
times are infinitesimally short. The same 1 ns discretization
is selected in all the remaining illustrations.

Fig. 4-6 shows V4(t) when the termination at port 3 is equal
to the characteristic impedance, namely R3=Zo=l79.59349. It can
be seen that the multiple reflections are no more present, and
that the voltage consists of one single spike, of the same peak
value as in Fig. 4-5.

In Fig. 4-7, both sides of the line are terminated in a
matched load, Ry=R,=2 . The wave shape is the same as in Fig. 4-6,

but the peak value is about half smaller, since the total voltage
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at port 4 consists of the incident wave onlyv, while in Fig. 4-6
both incident and reflected waves were present.

In Figs. 4-8 through 4-10 the terminations are again
mismatched: R_,=100 and R,=10k{l. This time the angle of incidence

3 4
8 is varied. ©Note that in Fig. 4-5, 6=45°. This situation is

to be compared with 6=0° in Fig. 4-8, 6=60° in Fig. 4-9 and 8=90°

in Fig. 4-10. Obviously, the two functions V_ and V, from (4-17)
P ¥ +

1 and V2 from

(4-19) and (4-20) also depend on &. As one can see, for 8=0°

the two waves V; and V; have about the same amplitude. At 8=60°
V; is much greater than V:, while at 6=90° V; is equal to zero,
and only V; exists. This demonstrates the directional behavior

of the hole coupling, which was mentioned at the end of Section 3.

and (4-18) depend on &, so that the outgoing waves V

Only the wave VZ exists, which travels toward the port 4, it is
then reflected back because R4>>Zo’ travels back toward port 3,

it is reflected with the opposite sign since R <<Z_, etc.

Figures 4-11 through 4-13 give an illustriticn of how
sensitive is the directional property to slight variations of
different parameters. In all these three figures 8=90° and
o is close to —300, sé that the directional property is demonstrated.
For the purposes of direct comparison, the voltage scale is the
same as in previous figures. In Fig. 4~11 the termination at

port 3 is close to matched value, R_ =200R, the termination at

port 4 is almost open circuit, R4=1gk9, and 0=-30°, As seen in
the figure, the first pulse arrives at t=27ns. This is a pulse
reflected from the port 3 which is not exactly matched, and the
peak value of the pulse iy well below-0.1V. There is no direct
arrival-at t=7ns, because of the directive property of the hole.
Also, second reflection is so small that it is not visible in
the selected scale. In Figs. 4-12 and 4-13 the termination at
the port 3 is exact, R3=179.59349. When a=—300, there is no
output at port 4, as shown in Fig. 4-12. However, for slightly
different orientation a=—25°, the small pulse appears at t-7ns,

as shown in Fig. 4-13.
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In the examples presented above, the voltage at port 4 was
about double of the incident-wave voltage, because port 4 was
essentially open circuited. This voltage becomes much smaller
‘if the port is essentially short-circuited. In Fig. 4-14 all
the parameters are the same as in Fig. 4~5, except that R4=1OQ,
which is much smaller than Zo. Obviously, the incident and
the reflected voltage waves at port 4 are now of the opposite
sign, so that the total voltage is small . Fig., 4-15 is
obtained when the terminations on both sides of the transmission
line are approximately open circuits: R3=R4=10kﬂ. When this
situation is compared with Fig. 4-5, it can be seen that the first
arrival at t=7ns has the same polarity as before, while the
second arrival at t=27ns has the reversed polarity. The resulting
waveshape is thus strongly dependent on the value of the
terminating resistances.

Instead of using the direct approach for computation of the
time response as in this secticn, it is possible to obtain the
time response by taking a Fourier transform of the frequency
response obtained in Section 3. This has been dome for the
same example treated here, and the results are shown in Fig. 4-16.
This waveform has been obtained by using a Fast Fourier Transform
subroutine FOURI, with N=2048 points, spaced 1 ns apart. Only
the first 180 points are shown in the illustration, the rest of
them are needed only to provide enough‘time for the waveform
to die out. As expected, the waveform reconstructed from the
Fourier transform does not have as sharp edges as the original
but otherwise, the similarity between Figures 4-5 and 4-16 is

very good.
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APPENDIX A

TEM Field of a Circular Wire

Above the Ground Plane

In Fig, A-1(a), a line charge of q Coulombs per meter is
placed at height h above the infinite ground plane. At the
observation point P, the electrostatic potential ¢ can be

computed from (see [A.1])

r

S 2 -
$ = o= tn (D) (a-1)
1
where the potential of the ground plane was taken to be zero.
A dynamic electric field of a TEM wave may be obtained from

the above potential ¢ by taking the transverse gradient operator

Vt as follows (see [A.2])

>

E - -vt¢e‘jkz i (A-2)

For the geometry from Fig. A-la, the above equation yields the

following components of the electric field in rectangular

coordinates:

_ gh 2xy ‘ -jkz _
Ex TE 2 2., 2 2 € ’ (A-3)
[x"+(y-h) "1 [x "+ (y+h) "]
2 2 2
. h + - _
B = - ab . X -y o3k . (A-4)

[x2+(y-h) 21 [x2+ (y+n) 2]

The equipotential lines of this field are eccentric circles
[A.1]. Therefore, the same field is an exact representation for
a metal circular cylinder of a finite radius r above the ground
plane, as shown in Fig. A-1(b). Note that the center of this
cylinder is not at the height h above the ground plane, but at a
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different height, denoted d [A.1]

d° = h° + r . ' (A-3)

The potential difference between the ground plane and the surface

of the cylinder is, due to conservative property of the TEM field,

y=d-1
- - _49_ h+d-r _
Vo ~/;y(0,y)dy Tme in (h—d+r> . . (A-6)
y=0

After some manipulation (see e.g. [A=3] for details), (A-6) can

be brought to the following form

.4 -1 4 | -
Vo e cosh (r) . (A=7)

When (A-7) is used to express q in terms of Vo’ the expressions

for the electric field components (A-3) and (A-4) become

4hV

= o . ) Xy ~jkz B
Ee = -1 4. ) ) 7, © , (A-8)
cosh (;) (X H(y-h) 1 Ix"+(y+h) "]
AhVO h2+x2-y2 -jkz
cosh (;) [x"+(y=-h) " 1[x"+(y+h) "]

In the above formulas, h is to be computed from physical dimensions
d and r by using (A-5), and v, is the voltage between the cylindrical
conductor and the ground plane.

The corresponding magnetic field can be found from Maxwell's

equaticn

fenh 4
il
<l
™
2204

—jou . (A-10)

=R 2

When the components of are evaluated in rectangular

coordinates, the result is
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jes]

E
= - XL = = -]
Hx n s H n s (A-11)

where N = Yu/e = 1207 in air.
For a TEM wave traveling in +z direction, the voltage between
the conductor and ground is Vo. The total current Io on the

conductor can be obtained from (see Fig. A-1b)
o]

Zﬁvo
Io = Hx(x,O)dx = ~1 4 . (A-12)
Yo n cosh (;)

Therefore, the characteristic impedance of the air-filled trans-
mission line from Fig. A=1lb is

-1 ,d

A"
Zz = === 60 cosh ) - (A-13)

o I_
o
Note that all the above equations are exact, valid for any
dimensions d and r, as long as the conductors may be assumed to

have perfect conductivity.
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APPENDIX B

Coupling Coefficients for TEM Mode
Excited by Localized Current Sources.

(Reciprocity Theorem Method)

Figure B-1 represents a general waveguide in which there is
a localized current source 3. This socurce is capable of producing
outgoing waves which carry away the energy across the distant
"ports" located at zq and z,. For the n-th outward propagating
mode, the wave amplitudes and phases are denoted by C; and G:
according to Collin [B.1]. The total electric and magnetic field
of the outgoing wave at the positioﬁ z, will be a sum of all the

propagating modes:

[0}
>4 > > -jB_z :
E = Z C:(en +e,) e n2 , (B-1)
n=1
1 4 - jjanz
—ﬁ+ _ 2 Cn(hn + hzn) e . (B~2)
n=1

-> >
The above notation is taken from Collin. en and hn are real

functions, representing normalized transverse electric and magnetic

fields of the n~th mode. The normalization is here taken to be
such that
f(; RN I
n n
cross section (B~-3)

Instead of unity, the above integral may be set equal to an
arbitrary constant as in Collin, but the choice (B-3) seems to

be more convenient here.

Under the assumption that the individual modes are mutually

orthogonal, i.e.
' -> > . >
j?enlx hn) dS = 0 for n # m R (B-4)

cross section
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Collin [B.1] applied the reciprocity theorem to the situation
shown in Fig. B-1 in order to derive the simple rule for com-
putation of the amplitude C: of the outgoing n-th modal wave:
. iB_z
-ZCZ = (Zn - zzn)°3e m gy . (B-3)
v

Therefore, the rule is to take the electric field of the
n-=th modal wave traveling in negative 2z direction and form the
scalar product of this field with the current source 3. The
integration is to be performed over the volume V within which the
current 7 exists. CZ is a wave amplitude of the wadve traveling
in the positive z direction, as shown in Fig. B-1.

The above rule will be next applied to the particular
problem of energy coupling from the small aperture to the single-
wire transmission line, as shown in Fig. B-2. The incident wave
coming from below the ground plane produces a given field config-
uration over the aperture, This field in turn causes the energy
transfer into a region above the ground plane by two distinct
mechanisms: a direct radiation into a free space above the
ground plane (denoted by Erad in Fig. B-2), and a guided TEM
wave propagation along the wire (denoted by E+ and E in the same
figure).

In this study one is primarily interested in the guided
energy propagating along the transmission line. In order to
make this problem directly amenable to the application of the
rule (B-5), one may imagine another ground plane somewhere above
the wire, so that the energy can propagate away from the aperture
only be means of guided waves, traveling in positive and negative
z directions. This second ground plane is indicated by a dotted
line imn Fig. B-3. In actual practical situations, this additional
ground plane is formed by the other side of an airplane wing, as
indicated in Fig. B-4.

Appendix D describes the method of replacing the aperture
in a ground plane with a 1id in the ground plane over which there

is situated a pair of electric and magnetic dipoles. The ground

*
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plane is now completely closed as shown in Fig. B-3, and the
current source consists of two dipoles E: and 3:. The situation
corresponds entirely to the situation from Fig. B-1, and the
same reciprocity-~theorem rule may be applied here.

Since we are interested in the TEM wave only, the z-com-
ponents of the both electric and magnetic fields are zero.
However, since both the electric and magnetic current sources
are present, (B-5) has to be supplemented to include the magnetic
current. Also, since the equivalent current is not distributed
over the volume, but only over the surface of the aperture, the

. +
rule for computing C becomes

+ _ > Jrom .Te jkz _
2Crpy = V[}hTEM Jgmerpydg) &0 4S8 (B-6)
aperture

where the subscripts s denote surface currents in Amperes per
meter. This formula will be now used to find the magnitudes

+ . >m *e
c and C of the TEM waves induced by the sources JS and JS

TEM TEM
as shown in Fig, B-3. The electric and magnetic fields of the

TEM wave on a circular wire above the ground plane have been

derived in Appendix A. They are as fcliows
F..., =Ea_+E a
TEM x7x yay ? (8-7)
> >
= - EY Ex -
HTEM L + nay. (B-8)
. 3 + + -
The normalized fields CrEM and hTEM of the TEM wave propagatiang
in positive z direction are to be defined in the following way:
+
% _ Vo > ( ~jkz
TEM ~ —— STEM xsy)e (B-9)
o
+
B 0% (xayye (B-10)
= — X,y)e -
TEM /E: TEM
50




Then, the total power transmitted by the TEM propagating wave is

P = LRe [(F x e y.db
TEM | °© TEM TEM
cross section
+ 2
- LXQL_ (+ E ) d§
Y ®tEM * "TEM
° cross section
v: 2
= 37 (B-11)
o
because of (B-3). Obviously, the result is consistent with the

circuit theory. For the traveling wave, the total voltage VO is
equal to the incident-wave voltage VZ. Thus, the normalized
modal fields are found by comparing (B-9) and (B-10) with (A-8),
(A-9), and (A-13):

z - ;‘<2nh . Xy )
TEM e g e (o) P i (yen) 7
.2 2 2
Sm (DB h_tx -y . , (8-12)
Yz, [x+(y-n) 1L (y+n) 7]
> _i—) > .
hTEM = naz X eTEM . (B~13)

The modal fields are now explicitely known. They can be
substituted in (B-6) in order to compute the wave amplitude

C for any aperture for which the equivalent surface electric

+
TEM ' e s
and magnetic currents JS and JS are known.

The computation is especially simple when the source currents

take the form of delta functions:

32 = Ea &x—xo) &z—zo),‘ (B-14)
3: = +pa Mx-xy) &z-z,), (B~15)

51



-+ >
where m and p, are the magnetic and electric dipole moments of
a

the aperture (in Volt-meters and Ampere-meters). When (B-14)

and (B-15) are substituted in (B-6), the result is

: jkz
+ - ° -
Crpy = lPyprmy (%00 0) Byameyrmy (%6000 Py le ’ (B-16)
since h and e are the only two mnon-zero field components

xTEM vyTEM
(see Fig. B-5) at the surface of the ground plane (y=0).

+
CTEM has the meaning of the usual scattering-parameter
amplitude: +
+ Vo
c = — s (B-17)
TEM /E;

so that the total power carried hy the TEM wave is

-> -~k > + 2
= 1 L] 3 1 ? -
Prpy = %Re v[(ETEM x Hyp,)tds = Hlco [, (B-18)
cross section

. . . + R
The dimensions of CTEM are Watts

In order to compute the amplitude C

TEM
in the negative z direction, the reaction is to be taken with a

of the wave traveling

unit-amplitude TEM wave propagating in the positive z direction.

Also, one has to note that for the wave propagating in negative

3 [] + a . +
z direction the eTEM remains such as in (B-12), but the hTEM

has the sign opposite of (B-13). With these changes in mind,

the formula (B-6) becomes

- _ > ,rm > . rey —jkz
2CTEM = ( hTEM Js erEM Js)e ds. (B-19)
aperture

when the sources are delta functions (B-14) and (B-15), the

amplitude C of the waveé traveling in the negative z direction

TEM
beconmes

cikz,

0) p. _le . (B-20)

Crpye = ~5Ib oo (x_50) m 0r®) Py,

TEM xTEM %o (x

xa SyTEM
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APPENDIX C

Coupling Coefficients for TEM Mode
Excited by Localized Current Sources.

(Mode Matching Method)

In Fig. C-1, an infinitely long transmission line is excited
by a localized distribution of current sources. Sheath S has a
finite size, it is situated in the x-y plane, and it contains
surface electric currents 32 (in amperes/meter) and surface
mggnetic currents 3: (in volts/meter). Assuming that 3: and 32
are known functions of position,‘we want to coﬁpute the voltages

and currents on the transmission line (denoted by V VZO’ IlO’
and I20 in Fig. C-1).

Total electric and magnetic fields on a transmission line

10°?

may be represented as a sum over all propagating and nonpropagating
modes. It will be assumed that only a TEM mode is propagating
at frequency of interest. The electromagnetic field at z = 0+

is, therefore

-> >

El = .]:_0. eTEM + _—l__% -é ) (C"l)
/Zo n vz n

> —_— > —

H1 = Ilo Zo hTEM +len zn %n : (c-2)

On the other side of the boundary, at z = 0= the field is

v \
B, =20 4 BT (c-3)
2 Y2 TEM n /E— "
o) n
e
H2 - IZO/ZO hTEM - I2n/zn hn ? (C-4)
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Fig. C-1. Excitation of the transmission line by a sheath of

electric and magnetic currents.
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the negative sign coming from the fact that the direction of I

20
is along the negative z axis, as in Fig. C-1. The further discussion .
is considerably simplified if we ‘define the abstract scalar

product of two vectors K(x,y) and E(x,y) as follows

«©@
<k, 3> =j~‘[ K x 3%) 2 dxdy . (C-5)

If A or B have non?zero values only within the 1imited range of

X or y, the integration will be naturally restricted to this range
only. ©Note that if K = E and % = ﬁ, this scalar product has a
physical meaning of the Poynting vector flux. TFor complex values
of E and ﬁ (peak values), one half of the real part of the scalar
product represents the average power flux along the transmission
line. In Appendix B, the modal fields e and h were defined

TEM TEM
as real functions normalized in the following way:

N .
= - |
< eqpy o zTEM > 1 . (C-6)

It will be assumed that all the other modes are evanescent, and

orthogonal to the TEM modes:
- >

Re < e, > h > =0 (c-7)

> = 0. (C-8)

- >
Along the sheath S containing the surface currents JZ and J:,

the boundary conditions are [C.1]:

> > -+

a, x (B - Hy) = J_ , (C-9)
> - > +m

a, ¥ (E2 - El) =J. . (C-10)

The electromagnetic fields will be next expressed in terms of

expansions (C-1) through (C-4) and the equality of both sides
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of the equation (C-9) will be enforced in terms of the abstract

scalar product defined earlier. Thus, the scalar product of
-
(C-9) with hTEM gives
-> - > > >e ->
- > = -
< a, x (Hl H2) , hTEM < Js s hTEM >, (Cc-11)

Assuming that only TEM is propagating and that all the modes are
- -
orthogonal, only the TEM-term in the expansions for Hl and H2
contributes to the real part of the above scalar product. Using
(C-2) and (C-4) gives
-> > > >
% - < > = < > -
2, <8, ¥ (I % Iy0) Bppy > Prpy 330 Bpgy” - (C-12)
Furthermore, from (B-13) the magnetic field of a TEM wave can be

expressed in terms of the electric field as follows:

E 1 - -> (
— -—
TEM ~ n %z ¥ STEM ° €-13)
- > .
Since erEM is perpendicular to a_ s (C~12) and (C-13) give the
following result
/zO o o
- Ty FI0) 7 Uyg Purpy = Iy Pyrmd 9%y (C-14)
In an analogous way, a scalar product is formed of(C~10) with ZTEM
and the following result is obtained
1 - = o - JB _
Jr Va0 = V10? ‘J:st eyrEM T Jys CxrEM) XY - (€-13)
(o]

The integrations involved in (C-14) and (C-15) are greatly
simplified when the electric and magnetic currents take the form

of delta functions (Appendix D), like in the case of a small

aperture:

Jg Guy,0) = 5, 8(x=x_)6(y) (c-16)
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m -+

Js (x,y,0) = m G(X—XO)G(y) . (C~17)
Furthermore, on the surface of the metal, ETEM has only the y
component and KTEM has only the x component. Therefore, for
small aperture the induced voltages and currents are
IlO + IZO = AI = 72_-__—_'__ pya eyTEM (XO,O) (C-18)
o
V20 - V10 =4V = - zo Pxa thEM (Xo’o) (C-19)

The values of AI and AV depend only on the corresponding components
of the electric and magnetic dipole moments and on the dimensions
of the cross section of the tramnsmission line. AI and AV do not
depend on the load conditioms at the transmission line terminals.
Therefore, an equivalent circuit for the voltages and currents

on the transmission line can be drawn as shown in Fig. C-2.

. R + .
The traveling wave amplitudes Vl and V2 on the transmission

line may be computed as follows. From the Ohm's law

v v :
E&Q = fig = zo (C-20)
20 10 :
Thus we can eliminate I10 and 120 in (C-17) and (C-~18) and obtain
Vo= V. =% (2 AL - AV) (Cc-21)
1 10 2 o 3
+ _ _ 1
Vi o=V, = 3 (2 AT+ AV) (c-22)

since on an infinite transmission line, the total voltage consists
of the outgoing voltage wave only. By normalizing traveling waves

as in Appendix B:

, (c-23)
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Fig. C-2. Equivalent circuit for the transmission line.

59



one obtains the outgoing wave amplitudes as follows:

+ _ 1 _ :

C =3 (myy Pyrem + Pya SyrEN’ (€-25)

The results are in agreement with (B-16) and (B-~20). Therefore,

the mode matching method and the reciprocity theorem method both

lead to the same result.
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APFENDIX D

Aperture Representation by a Pair of Dipoles

Assume that the distribution of the EM field in a given
aperture is a known function. To compute the scattered field in
the "inside" region one needs to know only the tangential
electric field ﬁt over the aperture (Fig. D-la). It is convenient

->

to close the aperture and place magnetic surface current J:

over the area which was previously occupied by aperture:
(D-1)

as shown in Fig. D-1b. Now, the scattered field anywhere in the
"inside" region may be computed from the known value of the source

+m . .
J_., resting on the surface of a metal plane without aperture.

s
Computation of the field Ea’ scattered by the aperture, is

conveniently performed by the use of the reciprocity theorem.
In Fig. D-2, the origin of coordinates 1s located in the region
over which there exists a source current 32. At the position ?09
the field produced by 3: is %a(¥o)' To test this field, a unit-
magnitude electric dipole ; of suitable orientation is located
at T
.
a

P

-
p =

6(?-’50) (D-2)

>
where ap is a unit vector specifying the orientation of the

-
testing dipole ;, and S(r—;;)is a delta function having the property

j}<¥)6<?-¥o)dv = £() . (D-3)
v .
The reciprocity theorem can be formulated in various ways, as it
is discussed in detail in the Mathematics Note 33, ref [D.1].

For the situation shown in Fig. D-2, the following form of the
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"outside" region "inside" region - “inside" region
Fig. D-la. Fig. D-1b.
Aperture in the screen. Aperture replaced by a N

. m
surface magnetic current JS.

Fig. D-2. Evaluation of the p-component of the "inside" electric

field by the use of reciprocity theorem.
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reciprocity theorem is used [D.2]:

> -> -> “+a > “>m >
® 4 e — 9 . —4
G E () f(J B 3% ey (D-4)
\"

-+ - : >
E. and H, are the fields produced by the source p and evaluated

ag the szrface of the aperture when the aperture is closed by a
perfectly conducting 1id. When the practical computation is
performed, this field will look 1like a pair of two waves, one
incident in the direction from source ; toward the center of
coordinates, and the other being reflected from the metal surface.
Therefore, the magnetic field tangemntial to the metal surface and
the electric field normal to the metal surface will have magnitudes
equal to twice the magnitudes of:the corresponding incident
fields. , )

In the case of an aperture, the integration indicated in
(D-4) is performed over the surfa;e instead of over the volume,

so that one obtains

> > > > > >m >
¢ F = 3 - . N -
ap a(ro) (Js Eb Js Hb)dS (D-5)
S

re +m
JS and Js are surface electric and magnetic currents, which are
the sources of the field scattered by the aperture. In the case
considered here, 3: is given by (D-1), and 3: = 0, Therefore,

in order to compute the p-component of the field Ea scattered
by the aperture, one needs to know only the behavior of the
tangential component of the magnetic field ﬁb over the region
where there was an aperture (but it is not there any more.)

In order to facilitate further discussion, the rectangﬁlar
coordinates of the aperture region will be denoted by x and y,
as shown in Fig. D-3a. ©Note that the x-axis has been chosen to
coincide with the orientation of ﬁb' The corresponding electric
field E; follows from Maxwell's equation:

> ->
V x H = juwely (D-6)
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e .
Since Hb has only the x-compounent, (D-6) gives

Sbe
> > > ‘ -
Field Hb, Eb is produced by a dipole p at distance frol away

from the aperture. If the aperture dimensions are smaller than
|¥0|, then the field variations over the aperture region will be
smooth and slight. It is legitimate to expand the field in a
Taylor series and retain only the first three terms:

3H, _(0,0) 3, _(0,0)

3% ¥ty y . (D-8)

Y]
be(X,Y) v, be(oso) +

T

When the lateral displacemenf of the hole in Fig. 2-1 is small,
x,<<d s (D-9)

the. second term in (D-8) wvanishes:

oH 0,0 .
b (00 o 5-10)
9%

i

However, this is not true when x0=d, and the second term should 0

be taken into account by including it in the quadrupole contribution,
as done in [D-3}. 1In the present report only the dipole

contribution is considered, so that the assumption (D-10) will

be made even when (D-9) is not true. The third term in (D-8)

can be related to E through (D-7), so that the expansion for

bz
be becomes:
be(x,y) N be(0,0) - jweEbz(0,0)y . (D-11)
Then, the reaction integral in (D-53) becomes
> > > >
ap‘Ea(ro) = —JrJS Hde
. s
Y - -4 m -
[HbX(O,O) JweEbz(O,O)y]JSX(x,y)dxdy . (D-12)

64



Taking constants out of the integration one obtains

>
a

p

->
r

+ .
'Ea( O) = -be(0,0)aor+ JweEbz(O,O)al ) (D-13)

where a, and a; represent the zeroth and the first moment of the

Jm function as follows
sX

a_ =~[[J:x(x,y)dxdy R (D-14)

a; =.[ny2X(x,y)dxdy . ' - (D-15)

Comparing the approximate equation (D-13) with the exact equation
(D-5) one can come to the following interpretation. The aperture

> >
is producing such a far field Ea(ro)’ as if the source comnsisted

of two point sources: one magnetic surface current
> >
g = m, s(x)8(y) (D-16)

and one electric surface current

3= 3, 88y . (0-17)

The magnetic dipole moment is

> > > >m ,
m, o= aa = ax[TJSX(x,y)dxdy , (D-18)

and the electric dipole moment is

- -, _—>. m
P, = 3,jwea; = azjwel7;Jsx(X’y)dXdy . (D~19)

The situation is depicted in Fig. D-3b. Consequently, for purposes
of calculation of the field scattered by the aperture at distanées
considerably larger than the aperture size, the aperture may be
represented by a pair of electric and magnetic dipoles (= point
sources). Indeed if one substitutes (16) and (17) into (5), one

obtains the same result (13) as from the Taylor's expansion of
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the fields over the aperture. The equivalence 1s obviously good
only in a low frequency limit, when the aperture is small in
comparison with the wavelength so that the first three terms in
Taylor's expansion (D- 8 ) offer all the needed details of the
field variation. It is possible to continue the expansion to
quadrupoles, as done by Collin [D.3], at the expense of considerable
loss in simpiicity.

As an example, consider the small circular aperture.
Jackson [D.4] gives the expression for the tangential field in

the plane of the opening as follows (SI units):

- > .
E___=E b + 2jup
tan o i
nva =p

2
) Yat-o® (D-20)

farh 2

-
(az X

Where‘Eo is the z—componint of the extermnal electric field in the
absence of the hole and Ho is the tangential external magnetic
field in the absence of the hole. 1In EMP terminology, these are
the short-circuit normal electric and tangential magnetic fields,
in the "outside'" region. E is the radius vector of the circular
aperture (see Fig. D-4). The vector product (ZZ X ﬁo) is a
vector laying in the aperfure plane, its magnitude equal to HO

¢ (see Fig. D-4).

-
Note that a, is perpendicular to the actual short-circuit

' -
and its direction defined by a unit vector a

- >
tangential field ﬁo' Using the unit vectors a. and ap , (D-20)

can be rewritten as

7 = Z __EEE__ + Z _EEEEEE az_pz (D—Zl)
tan o] ﬂ/aZ_DZ t il

According to Fig. D-4 onme can express everything in rectangular

coordinates x and y as follows:

92 = X2 + yz > (D-22)

+ > + 2 aq

ap = a_ coso ay81n¢ s (D-23)

L = Z_cosa + a_sing . (D-24)
t X y
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Fig. D-3b.

->

Fig. D-3a.
J: is replaced by a pair of

Interaction of the magnetic
“m .
surface current JS with moments.,

-5
slowly varying field Hb-

/

Fig. D-4. Computation of dipole moments of a circular aperture.
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-
The Etan from (D-21) will be replaced by a solid metal wall plus
an equivalent magnetic surface current, such as in Fig. D-1b.

From (D-1), this equivalent magnetic surface current is

J- = F X a (D-25)

Using (D~22) to(D-24) one obtains the x-component of 32

Eop51n¢ 2

m _ + j% wuHosina az—p . (D-26)

Jsx -
mYya =
The computation of equivalent aperture moments %a and %a is
now performed according to (D-18) and (D-19). TFor the circular
aperture, it is convenient to integrate in polar, instead of

rectangular, coordinates

a 27 2 :
N Eopsine 2 2
= [_________- s & ) - . -
o ai/r =T + ig wuHopszna a“-p }dpd¢ (D-27)
mYa“"-p
p=0 ¢=0

The first term vanishes and the result of integration is

.

>
m
a XJ

2 & w a3H ind (D
3 H o?ln . -28)

Similarly, the equivalent electric dipole moment of the aperture
is found from (1%) and (26)

7 = '% wsa3Eo . (D~29)

>
a aZJ
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