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Abstract

Depending on various physical characteristics of practical aper-
tures their electromagnetic responses can exhibit different characteris-
tics. This note considers various types of apertures encountered and

differentiates them into several classes based on their topological prop-

((

erties assuming the apertures are located in perfectly conducting planes.

Impedance loading is also considered.
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rheve has been a considerable amount ol work done in the arca of
coupling through apertures. ~26 In particular, numerous cases of cou-
pling through apertures in an infinite plane have been studied. The pre-
liminary work concerning large apertures in an infinite plane was due to
Kirchhoff.1 Subsequent work by Bethe2 has led to the understanding of
small apertures through the introduction of equivalent electric and mag-

4 . . .
netic dipole moments. Booker's extension of Babinet's principle gave

further theoretical insight into the aperture problem.

Present interest in apertures arises from the need to understand
EMP coupling through windows, doors, hatches, etc., into various ob-
jects. In some cases, as in certain cockpit windows, the aperture region
is loaded by a resistive sheet. In cases such as hatches in aircraft,
missgiles, etc., the gasket surrounding the door could be resistive. In
most of the instances involving aircraft or missiles, the region behind
the window, door or hatch is small. As a consequence, it is more cor-

rectly treated as a cavity backed aperture.

In considering the aperture coupling problem one then notes that the
term aperture covers a wide variety of shapes and impedance loadings.
Depending on the specifics of geometry and loading one then expects var-
ious types of electromagnetic responses. One expects objects with simi-
lar shapes and impedance distributions to have similar responses. Let
us then categorize the aperture types according to their topology, both in
a geometrical sense (general shape) and with regard to the location (in a
topological sense) and general magnitude of any significant impedances.
Topological concepts are useful for decomposing the EMP interaction
problem into smaller problems.27 This note uses topological concepts to
distinguish between important variations in one kind of EMP interaction

problem.

The apertures as discussed above are generally in a curved body.

Hence the curvature of this body as well as the loading in the aperture
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(for sheet impedance loaded apertures) would have an influence on the
aperture distribution and the distribution in the region into which the
aperture couples.12 Because of these complexities, even the problem of
electromagnetic coupling through an aperture in a body of rotation is
quite difficult. As a result, if the curvature of the body near the aper-
ture is small, it is generally assumed to be zero. As an approximation
one can often assume that the aperture is in an infinite plane sheet. The
results obtained can then often be used as a step in the solution of the

aperture in the more complicated structure.

Using the planar approximation the aperture problem can be split

into three parts:

1. The short circuit surface current and charge densities can be

obtained on the complicated object of interest.

2. The aperture fields are calculated using these short circuit
surface current and charge densities. This analysis can be aided

by the use of Babinet's principle.

3. The coupling into the interior of the complicated object is cal-
culated by matching appropriate cavity fields to the aperture fields.
Near resonance the cavity fields can be used {o correct the short

circuit surface current and charge densities in part 2.

If the wavelength of the external field is large compared to the largest
dimension of the aperture, Bethe's quasistatic approximation based on
the equivalent polarizabilities of the aperture can be used. This further
simplifies the use of the 3 part decomposition of the aperture problem on

a complicated object.



II. Classification of Aperture Problems

In principle, apertures can be categorized by their topology and
physical composition. By their topology they can be classified as simple
apertures, hatches, and gratings, and by their physical composition they

can be separated into loaded and unloaded types.

A. Simple Apertures

A simple aperture is defined as a domain Sa in a perfectly con-
ducting infinite (less Sa) plane S, such that Sa is simply connected with
no zero sheet impedance regions allowed in Sa (except in the zero mea-

sure sense) as shown in figure 1. This can be expressed as

Sa U S = P (the entire plane)

£ 0 on S, (simply connected)

sheet impedance

= 0 on S (an infinite surface)

The aperture region Sa can be loaded or unloaded. If the aperture
region is unloaded, the Babinet equivalent aperture (the complementary
scatterer) is as shown in figure 2, If Sa is unloaded and S is perfectly
conducting, the complementary scatterer Sz'a. is perfectly conducting and
the surrounding rﬁigion S' is free space., However, if Sa is loaded by an
admittance sheet _?PS, with the region S being perfect}Vy conducting, the

complementary scatterer S; has surface admittance _?"S given by1

LT (?1) s (1)
Z 2
O

where (?Y;— 1

. . : . . = =4
g )2 is defined as the two dimensional inverse of YS and 7' is

given by



Aperture Region

S
a

S: Perfectly conducting infinite plane (less Sa)

Simple aperture

N/
5

Complementary simple disc

Figure 1. Simple Aperture and its Complementary Disc
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Figure 2. Typical Simple Apertures and Their Complementary Discs
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v = i 0 o], q==I (2)

In the case of small apertures, approximate formulae for the polar-
izability of equivalent dipoles are available.2 For small unloaded aper-
tures these characteristics are independent of frequency, while, for the
loaded case, they are frequency dependent. For the case of large aper-
tures, the current on the complementary disc is calculated which in turn

yields the aperture fields.
B. Hatches

A hatch is defined in part as a multiply connected domain Sa in an
infinite perfectly conducting plane (less Sa) such that, on Sa’ any zero
surface impedance region has zero measure as shown in figures 3 and 4.
The perfectly conducting plane is designated as S for regions exterior to

Sa and Sl’ S S . for regions interior to Sa' Mathematically this

or T Sy
can be expressed as

N
S LS U Sn = P (the entire plane)
n:

£ 0 on Sa (multiply connected)

sheet impedance

However not all domains satisfying the above conditions are hatches.
I'or it to be a hatch, it has to satisfy certain additional conditions. For
instance, considering an annular slot as shown in figure 5, it is not a
hatch unless 6 << r. Mathematically, 6 << r, < rye. This definition can

simply be extended to more complicated hatches. The complement of the



A simple hatch

iy

Complementary loop

Figure 3. A Simpie IHatch



A multiple hateh

Complementary multiple loop

Figure 4. A Multiple Iatch



Annular slot

Sl

Complementary annular ring

Figure 5. Annular Slot
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hatch resembles a thin wire loop. As a consequence, results from thin
wire loops can be used to solve the problems of hatches. In the case of

aircraft, for example, a closed door is a hatch.

A brief discussion on loaded hatcl}es is in order. Let the aperture
Sa be covered by a dyadic admittance §s' The question which naturally
arises is which dyadic components are important? In the case of the
rectangular slit as shown in figure 2, and hatches as shown in figures 3,

4, and 5, the component of the admittance (% along Tt’ the trans-

S)tt
verse direction, is important. However, in the complementary sirip as

shown in figure 2, and the complementary loops as shown in figures 3, 4,
and 5, the component of the admittance (%’S)ﬂﬂ along T, the longitudinal

direction, is important.
~

In practice, the transverse admittance (gr’s )tt per unit length is

preferred. It is defined as

(semens/meter)

vy\}}ere A is the width of the slot. The complementary admittance-length
(yg)M is
Y

) = (Y') A (semen-meters)
20 S 00

B R2Y;

(

Similarly, the transverse impedance-length (ES) is given by

tt

~
—_
—_—-
Z

S

(

) = S) A (ohm-meters)
tt tt

~

while the complementary impedance per unit length (Z‘IS)EJZ is

-11-



Ny}

(Z1)
L (ohms/meter)

S
) =
Y. A

C. Gratings

A grating is defined as a periodic array of identical apertures (typ-
ically finite in number) with narrow separations between the apertures.
The apertures may be impedance loaded. The narrow separations be-

' These bars might also

tween the apertures can be referred to as "bars.'
be impedance loaded except that the bar impedance should be small com-

pared to the aperture impedance for such a structure to be thought of as

a grating.

Some typical gratings are shown in figures 6 and 7. For example,
in some cases aircraft windows can be thought of as forming a grating.
In certain aircraft the windows are loaded. For these cases the comple-

mentary impedance can be obtained using the generalized Babinet's prin-

ciple.

Very little if anything is known regarding numerical solutions tor
gratings. If the apertures are in the form of slots as shown in figure 8

with b << a and d,, d, >> a then dipole approximations can be used at

1, 2
low frequencies.4’ 6 At the resonant frequency of the slotg, the grating is

almost transparent if the magnetic field is parallel to the slots and is

highly reflective for other polarizations.

1 d2 << a, b with a and

b of the same order. Because of the interaction between apertures, the

The problem of interest to EMP is when d

dipole approximation is not valid for the individual apertures. However
equivalent dipole moments and polarizabilities can still be defined for the
entire grating for application to distant observers at sufficiently low fre-
guencies. The computation of such polarizabilities, near fields, resonant

penetration, etc., of the entire grating is somewhat complicated.
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One dimensional grating

L Sa | L

S’ E = o0
s

One dimensional complementary disc array

Figure 6. One Dimensional Grating
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Two dimensional grating

SI

Two dimensional complementary disc array

Figure 7. Two Dimensional Grating
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Two dimensional strip array

Figure 8. Periodic Array of Small Slots and Its Complement
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IiI. Some Comments on Aperture Integral Equations

While this note is not intended as an exposition on aperture integral
equations, still there are some observations that can be made which re-
sult from the aperture topology. For convenience let us discuss the

apertures from the point of view of their equivalent discs (including im-

pedance loading).

A. Simple Apertures

As in figures 1 and 2 the complement of a simple aperture is a
simple disc, perhaps impedance loaded. Unless it is thin such as a slit
then we are presented with a general two dimensional surface integral
equation. For long thin slots as in figure 2 a thin-wire integral equation
can be used. Such cases reduce to one dimensional integral equations,
at least as an approximation, Thus for even a simple aperture what
might be considered a topological property (thin vs. wide) has important

consequences.
B. Hatches

As indicated in figures 3, 4, and 5 one of the essential features of
a hatch is that the "joint'" or 'gasket'' which is the aperture region (per-
haps impedance loaded) is thin compared to the dimensions of the regions
enclosed by the aperture. For such an aperture an approximation as a
thin strip or wire for the complementary impedance loaded disc is quite
appropriate, This leads to a thin wire integral equation on a planar loop

or multiple loop structure.

Note the similarity between the thin wire hatch integral equation
and the thin wire simple aperture integral equation for a thin slot. The
difference is in the aperture topology. A simple (non closed) slot has a
complement which behaves as an electric dipole. A hatch slot (closed)
has a complement which is a loop and thus has a significant induced mag-

netic dipole moment (on the complement).

-16-



RN

C. Gratings

In a sense a grating as in figures 6 and 7 is the inverse of a hatch
in that the principal aperture regions are large compared to the regions
(bars) between the apertures. The complement of a grating is a disc ar-
ray where the discs are large compared to the spacing between them.
One might attempt to solve then a surface integral equation on the com-

plementary disc array.

An alternate approach would be to solve for the fields due to a point
electric dipole in a single large aperture formed by both the aperture ar-
ray and the bars separating them. This problem can be converted to that
of an equivalent magnetic current element on the complementary large
dise. This procedure (perhaps itself involving a numerical solution)
would find the large aperture dyadic Green's function. This Green's
function could be applied in an integral equation over the bars by setting
tangential electric field equal to zero or equal to an impedance times a
surface current density. This would then be a two step solution proce-~

dure,
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IV, Summary

Since the topological properties of apertures have implications
concerning the aperture response then such topological properties can be
used as a basis for the decomposition of the general class of planar aper-
tures into several categories. The aperture topology in a somewhat gen-
eralized sense can also be used to determine whether one or two dimen-
sional integration is required in the integral equations describing the
aperture response. The presence of any aperture impedance loading

also affects the aperture classification and integral equations.

In this note simple apertures, hatches, and gratings have been dis-
cussed. While such aperture types have some practical importance they
are not the only types one might define using topological concepts. As
more experience is gained in this area the aperture decomposition will

likely be extended and refined.
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