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ABSTRACT

A numerical technique for the time domain solution of
scattering by perfect conductors is described. The problem
is broken into two cases. In the first case scattering by
parallel cylindrical conductors with arbitrary cross sections
is considered for arbitrary angles of incidence. The first
step is to reduce the cylindrical scattering problem to a
time-domain integro-differential equation for the magnetic
field intensity on the‘scatterer contour. Next, the integro-
differential equation is solved numerically for the magnetic
field on the scatterer contour which, in turn, is used to
compute the far field. To approximate an electromagnetic
impulse the incident wave is taken to be a plane Gaussian
pulse, although the technique is not limited to this excita-~
tion. The resulting far field is then an approximation to
the electromagnetic impulse response, The validity of this
technique is demonstrated by using it to calculate the approx-
imate impulse response of a circular cylinder for a normally
incident wave. The results are in good agreement with those
obtained from the classical frequency domain solution. To
il1lustrate the versatility of the technique the approxim
impulse response is also computed for a strip and a ¢

e
reflector. The results for these more complex shape N ERHT"'H
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consistent with the time domain reciprocity theorem, and thus,
provide a further check on the validity of this techniaque.

In the second case scattering bv three dimensional con-
ducting bodies of arbitrary shape is considered. The first
step is to reduce the scattering problem to a time domain
integro-differential equation for the current density on the
surface of the scatterer. Next, the integro-differential
equation 1is so?ved}numericalTy for the current density at the
scatterer which is then used to compute the far field. As in
the case of cylindrical scatterers, a plane Gaussian pulse is
chosen for the incident field so that the resulting far field
is an approximate impulse response. The technique when used
to compute the approximate impulse response of a sphere gives
results which are in good agreement with those obtained from
the classical frequency response. The technique is also used
to compute the approximate impulse response of a hemispherical
capped cylinder with axial incidence.

One of the applications of the approximate electromagnetic
impulse response is illustrated by using it to compute the

frequency response of the bodies considered. In addition some

close relationships between the approximate impulse response
and the scatterer geometry are pointed out.
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CHAPTER 1
INTRODUCTION

1.1 General

In military and space appTiéatTons, the primary means
for locating and identifying distant objects continues to
be based on the electromagnetic response of these objects.
Electromagnetic sensors do the bulk of this information
gathering. Thus, the determination of electromagnetic
response of all kinds of objects is a fundamental problem.
It is also a continuing problem because practical objects
of interest are continually undergoing evolutionary changes.

The classical approach to electromagnetic scattering
problems is an analysis based on the differential equations
for the fields, together with the boundary conditions at
the scatterer. For the most part, this work has been con-
fined to a single, but arbitrary, frequency. Over the past
seventy years, workers have produced a number of invaluable
results, however, the number of different shapes treated
has been relatively small. Moreover, work of this type on
other target shapes is becoming more and more difficult.

On the other hand, there has been relatively 1ittle
work done on scattering problems with general time variation.

Yet the most distinctive radar signature of objects surely



lies in the time variation of the scattered signal. Prob-
ably the most fundamental and useful result would be a
good method for the computation of the field scattered by
an arbitrary shape when the incident wave is ar impulse.
This scattered field is called the electromagnetic impulse
response.

The impulse response is of interest for a number of
reasons. First, the time dependent scattered field for any
excitation can be found by a convelution of the excitation
with the impulse response. Second, the frequency response
can be obtained by taking the Fourier transform of the
impulse response. Third, the impulse response is useful in
analyzing the return from targets illuminated by broadband
spread-spectrum type radar systems. One particular radar
system of this type is the broadband noise radar under study
at Purdue University. In this radar system the ocutput is
closely related to the impulse response of the target.
Fourth, the impulse response itself may be used as a char-

acteristic function of the scattering object.

1.2 Survey of Literature

A number of workers have estimated the impulse response
for various scattering objects, apparently the first Eeing
that by Kennaugh and Cosgriff (1958). They used the
physical optics approximation to calculate the far zcne
approximate impulse response for the backscatter direction

of a rectangular flat plate, sphere, and spheriod. They
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modified their first results by making them satisfy the so-
called moment conditions to give a better approximation.
Kennaugh (1961) improved the result for a sphere by using
the known sinusoidal steady state response to find the
approximate impulse response for an incident pulse train
that was synthesized by a Fourier series. Kennaugh and
Moffatt (1962) approximated the backscatter impulse response
of a cone sphere for an axial incident wave by combining

the physical optics approximation with the approximate im-
pulse response of a sphere. Using this approximate impulse
response they obtained the axial echo area of the cone
sphere with good results. Barabanenkov et al (1963) used
the physical optics approximation to find the approximate
impulse response in the backscatter direction of a sphere,
disc, and cylinder. The technique they used is essentially
the same as Kennaugh and Cosgriff (1958) used except
Kennaugh and Cosgriff improved on the physical optics result
by applying the moment conditions. Moffatt and Kennaugh
(1965) obtained the approximate backscatter impulse response
of a prolate spheriod with an axial incident wave. They

did this by "stretching" the approximate ramp response of

a sphere to obtain the approximate ramp response of the
spheriod and then differentiating the ramp response twice.
The backscatter impulse response of the flat-based right-
circular cone for an axial incident wave was approximated

by Kennaugh and Moffatt (1965) by combining results from

17



the physical optics approximation, theory of geometric

diffraction, and moment conditions. Also, Weeks (1967) —
used the physical optics approximation and the reciprocity
theorem to calculate the approximate impulse response in

the far field for a number of simple objects.

Rheinstein (1968) computed the short pulse response of N
both conducting and dielectric spheres by using the rigor- -
ously computed frequency domain results. In addition he
compared his results with some approximate tneories. Also =
in 1968 Hong and Borison reported on experimerntal measure-

ments of short pulse scattering by a blunt nose flat-backed
cone in which separate returns from the nosé and the back

edge were clearly present.

Transient scattering of acoustic waves by infinite
cylindrical structures has been quite widely studied and
much of the work is referenced in Friedlaender (1958). How-

ever, it appears that analytical solutions exist for only

simple shapes such as the wedge and cylinder. Diffraction

of sound pulses by cylindrical obstacles of arbitrary cross wi

section has been considered by Friedman and Shaw (1962). .

They developed an integral equation for the velocity poten- -

tial on the surface and then solved this équation numekﬁééi]y _

for a squére cylinder. However, it appears that the concent

of impulséif;;bohsé in acodstiés has not been é;ploifed. -
The previous work may be broken into two c]asses.rr}nr :

the first,'the classical technigue was used to find the

12



exact response for a sinusoidal steady state input and from
this the approximate impulse response was computed. In the
classical technique for finding the response, the problem
is solved by expanding the solution in a series of eigen-
functions and matching the boundary conditions to determine
the unknown coefficients. This approach is probably super-
jor to any other approach when it can be applied. However,
the serious deficiency lies in the fact that the exact fre-
quency response can be found for only a small number of
simple shapes. |

The second approach used the physical cptics approxi-
mation (sometimes along with other approximations) to obtain
the approximate impulse response. In the physical optics
approximation, the currents on the scatterer are assumed to
be due only to the incident field, and no account is taken
of the interaction between currents flowing at different
points on the scatterer. This assumption certainly is not
valid when the scatterer is a concave body, as in the case
of a corner reflector. In this case it is obvious that
currents at one point on the scatterer will affect the cur-
rents at other pdints on the scatterer. If some other
approximations are used along with the physicaT optics
approximation, the effect of currents interacting may be
at least partially taken into account. However, the worth
of these additional approximations is very hard to judge.

Moreover, the application of the additional approximations

13



is quite difficu]t for the general case.

Although it has not been carried out to date, a third
approach would be to find the response for a sinusoidal
steady statéfinput by numerical techniques. For example,
the numerical techniques of Oshiro and Su (1965) or
Andreasen (1964) could be used. The approximate impulse
response would then be found by synthesizing an incident
pulse train with a Fourier series. The advantage of this
approach would be that the approximate impulse response
could. be found for a Tlarge number of objects. However, the
overriding disadvantage is that the process would be very
arduous and time consuming since the frequency response
would have to be computed at a large number of frequencies

to obtain a good approximation to an incident pulse train.

1.3 General Outline

This thesis considers a fourth approach for computing
the approximate electromagnetic impulse response of con-
ducting scatterers. An integro-differential equation in
the time domain is developed for the current density (or
magnetic fiéia 1nfensity) on the surface of an arbitrarily
shaped scatterer. Moreover, it is demonstrated that thé
resulting equation can be solved numerically in the time
domain by treating some interesting shapes.

In Chapter 2 a time domain integro-differential equa-
tion is developed for the magnetic field intensity at the

surface of a cylindrical scatterer with arbitrary cross
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section. In the same Chapter a second time dumain integro-
differential equation is formulated for the current density
at the surface of an arbitrarily shaped three dimensional
scatterer.

The equation for cylindrical scatterers is then solved
numerically in Chapter 3 for the case of a circular cylinder
with an approximate incident plane impulse to jllustrate
that numerical solution is feasible and, in fact, gives good
results. Later in Chapter 3 the approximate impulse re-
sponse is obtained for both a strip and a corner reflector.

In Chapter 4 the integro-differential equation for the
current density on the surface of a sphere is solved numer-
jcally for an approximate incident plane impulse. Then the
resulting far scattered field is computed numerically giving
an approximate impulse response of the sphere and at the
same time demonstrating that numerical solution is feasible
and gives good results, Later in Chapter 4 the approximate
impulse response is obtained for a finite cylinder with
hemispherical caps. Chapter 5 is devoted to the presenta-

tion of conclusions and recommendations for further study.

15



CHAPTER 2
DERIVATION OF INTEGRO-DIFFERENTIAL EQUATIONS

2.1 General Scattering Problem

The general problem toward which this research is
directed is the scattering of an electromagnetic wave by
a perfectly conducting body. This is shown pictorially in
Figure 2.1, where ﬁi is the incident magnetic field. The
incident field is defined to be the field that would exist
if the scatterer were not present. The total tield that
results with the scatterer present is denoted by . The

scattered field B> is then defined as

H

i
=
o

A physical interpretation is that the incident field induces
current. on the surface of the scatterer in such a way that
the boundary conditions are satisfied. The scattered field
is. then produced by these induced currents.

By applying. the eguivalence principle. (pp 106-110
Harrington, 1961) the problem.in Figure 2.1 may be replaced
by a problem which is equivalent, as shown in Figure 2.2.

In the equivalent statement of the problem the currents are
radiating in free space. Thus, the free space Green's

functicon may be used te find the expression for the total

16
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FIGURE 2! GENERAL SCATTERING PROBLEM

}l;im Zero Field w
(free space) .

. e

H! ’ QG/

FIGURE 2.2 EQUIVALENT OF GENERAL SCATTERING
PROBLEM
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field at an arbitrary point in space. But since the cur-
rent on the scatterer is in terms of the totai field there,
then an integro-differential equation for the current (or
total field) on the surface of the scatterer may be obtained
by selecting observation points at the surface of Fhe
scatterer,

It is convenient at this point to break the problem
into two. cases. The first. case, scattering by a generalized
cylindrical scatterer, is considered in Section 2.2. The
second. case, scattering by a finite three dimensional body

of aribtrary shape, is treated in Section 2.3.

2.2 Generalized Cylindrical Scatterers

This Section considers the scattering of plane waves
at arbitrary incidence on parallel cylindrical conductors
with arbitrary cross section. It should be noted that this
is not strictly a two dimensional problem but that it can
be reduced to the same form as that of scattering with
normal incidence, which is a two dimensional problem. If
the incident wave is not plane, then the technique developed
in Section 2.3 would have to be used.

Conéidér a plane wave incident on a cylindrical scat-
terer whose sides are ﬁdfa]]é]rto the z-axis as shown in
Figure 2.3. The incident Poynting vector makes an angle
6, with the negative z-axis. At each point on the surface

~ A ~

of the scatterer an orthogonal set of unit vectors (al,az,az)

is defihed.r fhe'Qéétd; é; is the unit outward normal

18




FIGURE 2.3

AZ

4

Direction
of Incidence

GEOMETRY OF CYLINDRICAL SCATTERING
PROBLEM
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to the surface and the vector aZ is the usual unit vector

~

in the z-direction. Finally, the vector a2 lies in the

z = constant plane and is tangent to the surface such that

(gl, 52, gz) forms a right hand system. ' -
The Green's function for the ith component of the

vector potential at (¥,t) due to a point source at (v',t')

is (pg. 838 Morse and Feshbach, 1953)

-
§(R/c - (t - t'))
g(F,tsr',t') = ; R, (t-t') >0, =
4R
where _
+ “~ ”~ ~
r = xa_, + ya_ *+ za, :
)
Pl x'a, +y'a +2'a
X y z
SR
c = ],/Vu €
Thus, the vector potential due to the currents on the sur- b
face of the scatterer is
N w T@Zat,e) |
A(o,z,t) = — S(R/c - (t - t'))dz'ds'dt". »
4 R
(Note that the vector potential used here is defined so that
-> -+ -> - . }
H = UxA rather than B = VxA.) But since the structure is of -

infinite length and the incident wave makes an angle of 0

with the z axis, then

20



p > > > > z - z'
‘.’ I(p',z',t") = J(p'sz,t" = —— cos 6,)
C
Hence, it is possible to perform the z' integration ana-
- lytically. The crucial step is to change variables
z - 2z' |
- T = t' - ————cos 6.
c
->
- ‘The expression for A then becomes
> >
Alp,z,t) =
- R+ (z ~2z') cos 61
1 Ji - (t-1)]
> - c
- — |ds'{dt J(p',z,T) dz'!
A R

>

!" Since J

in time there is no loss in generality by considering cur-

> -> >
at (p,z) differs from J at (p,z') by only a shift

. > >
rents in the plane z = 0. Hence, A(p,z,t) is written as

— > >
Alp,t) = N R+ (z - 2') cos 6,
§[ - (t - 1)]
— ] > > C
— |ds'|dt Jd(p',T) dz'
4 R
> > > > B > >
_ where A(p,t) and J(p,t) are A(p,0,t) and J{p,0,t),
respectively.
- Performing the z' integration gives (see Appendix I)

21



t -
c
) > -
> > C 'J(pl,t‘) had
Alp,t) = — |ds" /S dat* ,
2m c*(t-t')? - P% sin? o, :
s ti=-e B
where the dummy variable T has been replaced by t', s is -~
the scatterer contour, and P = 13 - 5] :
-> -
The total field H is just
B(p,t) = R'(B,t) + wxA(5,t) -
’ >
Working out VxA gives (see Appendix II) -
+ - +q > \
H(p,t) = H (p,t) —
P sin 0,
¢ - ]
¢ ++| 1
c sin e, o dt! dp',t")
o ds'| [ 7
2T c?{t-t')2 - P? sin? 0. c(t-t') + P sin 6, -
S t'=-=
> . [
] BJ(pl,tl) A~
+ - ] Xap (2.1)
c at! ' -
where + -
~ p - p' -~
a =
P p
\ ;
i ot

To obtain an integro-differential equation from (2.1)

. . . e . -
it is necessary to shrink p to a point p" on the surface

of the scatterer:

22



{ "'l

I'T( ust) - H (p”’t) P S
t -
C sin ei
+ +11m+“ ds
p*p 2m
s t!=-o
> >
J(p',t")
[ +
c(t-t') + P sin 61
e
Now break H into components
-> ~ YA
H = aH +aH +
11 2 2

T 93d(p',t")
c at!
aZHZ ,

-»> v -»>
and compute J by applying the boundary condition J =

to obtain
> > ~ -»>
1 i - _ al 1 '
Jlp'st') =-a H, (p',t") +
So (2.2) becomes
> > o T o
Hp"st) = H'(p",t)
C sin 91 ~n A
+ 1im ds'(apxa')
-5+—5|l Z’n’ P
S
O H (Bt 1
[ 2 + -
c(t-t') + P sin 0 c

23

->

a'xH
1

~ -»>
] ]
aZHz(p ,t')
P sin o,
t -
c
dt'
/cz(t-t')z - P? sin? 8
t':-oo
aH_(p',t")
z
]
at'



. P sin 61
c
c sin 91 A A dt'
+ Tim ds'(a_xan,)
0 >0 2n z7"P 1/cz(t-t')z - P2 sin%s
s tl=-o
H(p',t') 1 3H (p*,t")
e [ + z 1. (2.3)
c(t-t') + P sin 61 C at'
Expanding a, in terms of
ap = al(al-ap) + a'(a -ap) s
and substituting into (2.3) gives
- "*'iv-)n
H(p“,t) = H (p 9t)
P sin 81
t -
c '
~ c sin ei A A dt
* aZ+]1mEu - ds'(a -ap) Ye2(t-t1)2 - PZ sin? 6
t':-oo
>y ' -+ '
. Hz(p yt') N l BHZ(p s t')
c(t-t') + P sin @, c 3t -
P sin 81
t -
c
c sin 6, ~ A { dt'
+ Tim ds'(a_xa,)
Do+ o" 27 | [ } /&z(t-t')z - P?2 sin? 0,
s t'=ew
- -+
H (p';t') 1 8H (plst')
- [ + 2 Ji (2.4)
c(t-t') + P sin P c ot
24
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-
But since the normal component of H is zero by virtue of

the boundary condition, then it is neceésary to find only
= >
the tangential components of the H-field (i.e., H2 and HZ)

at the surface of the scatterer. So (2.4) yields

Ho(p",t) = H, (p",t)
. P sin ei
C
c sin 61 (A ~ ) dat'
+ 1im, ———— [ds'(a'-a
o+ p" 2m 1 oPT Vez(pogr)z L op2ogip? 0.
s tl=-c
> 1 > ]
Ho (5 st?) 1 oK (3 ,t)
- L + - ] (2.5)
c(t-t') + P sin 6,i c at!
3 >
H o (p"st) = H'(p",t)
2 2
.. P sin 61
C
c sin 61 A A dt'
+ Tim ds'(a“-aP) /
p+p" 2% ! c?(t-t')? - P2 sin? 8
] t'=-
H (5", t') 1 3H (5',t")
P P
[ 2 -2 1 . (2.86)
c(t-t') + P sin p c 5t

where a; is the unit normal at 3' and at is the unit normal
at S“.
- Thus, H2 and HZ are decoupled as eXpected, and so each

component may be treated separately. Traditionally,

25



equation (2.5) is called the TE case and equétion (2.6)
is. called the TM case. The 1imiting procedure in (2.5)

and (2.6) is performed in Appendix Ill. The result is:

sl A - i bl
HZ(Q ,t) = ZHZ(Q st)
P sin ei
t e —,
c
C‘ S‘in 61- ~ ~ dtl
o — ds‘(a'-aP) J
T 1 c?(t-t')? - P% sin? 8,
S t':-oo
Hy(0'st") 1 8H, (5" .t")
ol _ bo— (2.7)
c(t-t") + P sin 0 c 3t
sl - i Sl
o (p",t) 2H (o ,t)
P sin ei
£ -
c.
¢ sin &i ~ A ) dt'
+ ds'(a'-a
T 1P /cz(t-t')z - P? sin? 8.
S t'z=aw
> >
H o (p',t") T 3H (p',t').
L = + - e I . (2.8)
c(t-t') + P sin ST c ot!

Some. observations about the integro-differential equa-
tion (2.7) are now made. They are:
1. Consider the first term 2H)(3",t). On the "illu-
minated" part of the scatterer, this is the field

that would be given by the physical optics

26
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approximation. However, this formulation differs
from the physical optics approximation even in
this term be;ause in the "shadowed" region the
physical optics term is zero.

2. The secbnd term may be inferpreted as the field at

p" due to currents flowing at other points on the
scatterer. It is 1nterest1hg to note that if QP
is tangential at 3, then the current at 3' con-
tributes nothing to the_field at E”. This means,
’for example, that there is no dfrect 1n§eraction
between currents flowing on the same flat surface.

3, It should also be noted that the effect of any

interaction is delayed in time by at least

P sin eiﬁ. It is this important fact that makes

“numerical solution of (2.7) and (2.8) feasible.
So equation (2.7) givés the total field at a point on the
scatterer as the sum of ZHZ and the field due to currents
that existed at past times at other points on the scatterer.
The interpretation of equation (2.8) is the same.

The striking fact about this formulation directly in
the time domain is that equdtions (2.7) and (2.8) may be
solved numerically on a computer by stepping on in time.
That is, with these equations the total H field can be cal-
culated sequentially in time beginning when the incident
field arrives at the scatterer. This is possible since the

total field at some time t is given in terms of the incident
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field at time t (which is known) and the total field at
previous times (which has been computed).

In most applications, the quantity of importance is
the scattered field at a great distance from the scatterer.
This is often called the far field. When the distance from
the scatterer becomes very large, P also becomes very large,
and the contribution due to the first term in the square

brackets of (2.1) becomes negligible. In this case (2.1)

becomes
>
H2(B,t) =
P sin 9.
t - i
c i
sin 6, dt
1 t
— |ds v v
2m c{(t-t') - P sin 0 c{t-t') + P sin 6.
S t':-oo
> >
ad(p'l,tl) "
Xa
9t P
In addition for P very large, B}
1 1
v Y
c(t-t"') + P sin 61 2 sin ei 0
4, —> a_ = o/
p o psre

So the expression for the far field becomes
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> >
H (0,t) =
P sin ei
C > >

11 sin 0, dt' 3d(p',t") ~
—_— 1 l4s" - Xa .
a 2w 2 ‘/c(t-t') - P sin 8, ot

S t'=-m

> >
Applying the boundary condition to find J in terms of H and
simp1ifying gives the following expression for the far

scattered field

S t'=-w
> 1
. ol (o', t")
at! .
P sin 8,
b - i
c
,\ dt OH (p',t*)
+ 3, ds'| 2 ] (2.9)
c{t-t') - P sin 81 ot’
s t!'=-w
where
a¢ = azxap
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2.3 Three Dimensional Scatterers

The derivation of the integro-differential equation
in this case differs somewhat from the cylindrical case
although the basic approach is the same. As in the cylin-
drical case, the equivalent problem shown in Figure 2.2 is
solved.

The vector potential due to any current distribution

on a surface S is given by (pg. 428 Stratton, 1947)

> > 1 ~3(7' t - R/c)
A(l",t) = - : ? dss
4
R
S
wherev
S is the surface of the scatterer
¥ is the observation point
r' is the integration point
R = |F - 7'
¢ = 1/Vu e

>

In the equivalent probtem shown in Figure 2.2 the total H
field is simply the sum of the incident field and the field
>

>
produced by the induced currents, J. Thus, the total H
field is

Working out VxA gives (see Appendix IV)
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.
1 J(r',t) 1 3d(r',T) A
+ [ - + — ] xaRdS' (2.10)
4m R Rc 8T  1=t-R/c
where ,
-> -+
~ Y‘ - Y‘
a, = ‘
R R
-5

An integro-differential equation for J may be obtained
by simply shrinking ¥ to a point ¥" on the surface of the

scatterer and then applying the boundary conditions to put

>

-
H in terms of J. It may be worth noting that alternatively

-5 -
an equation in terms of H can be obtained: however, the

-5
numerical computation of the far scattered field from H

-
takes somewhat longer than it does using J. Hence, the

: - : >

integro-differential equation was put in terms of J. Shrink-
- -~

ing r to r" yields

> > *>q >
H(r",t) = H (r",t)
> > <> >
1 J(r',T) 1 3d(r',t) ~
+ Tim — |L - +  — ] xaRdS',
r->r dr R o ot T=t-R/c
S

(2.11)

The limiting procedure for (2.11) is carried out in Appendix

V. Using this result, (2.11) then reduces to
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> > +'f -
H(r",t) = 2H (r",t)
A i o > >
1 Jlr',T) T 3d(r',T) ~
Fo— [—_—;——_- + —_ ] xaRdS‘ . (2.12)
2m R R¢ 9T T=t-R/c
S
: . il
For convenience an orthogonal right hand system of i
unit vectars (al,az,as) is chosen far each point aon the o
scatterer such that a is normal to the surface of the ;
scatterer and a_,a are tangential to the surface of the -
N !
scatterer. Equation (2.12) is put entirely ip terms of J %
-
by applying the boundary condition ,
> > ~ > > !
J(r',t) = a; xH(r",t) , -~
i
giving
> > " +'i >
d(r",t) = Za:xH (r",t) }
> > > > .
1 ~ J(r',t) 1 ad{r',T) ~ i
+ a: x[ {——~—;——' + — —F—1} xaR] das' . -
2T R Rc aT T=t-R/¢ r
S -
(2.13) ¢
|
This is a vector integro-differential equation for the = %
current density on the surface of the scatterer. {
bl |
Some observations about this equation should be made. g
They are: __5

2 > |

~ > .
1. The term 2a: X H'(r",t) is the current that would be

given by the physical aptics approximation on the
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current at previous times (which has been computed).

"illuminated" part of the scatterer. However, this
formulation differs from the physical optics approx-
imation even in this term because in the "shadowed"
region the physical optics current is zero.

The second term on the right hand side of (2.13)
may be interpreted as the current at r* due to
currents flowing at other points on the scatterer.
It is interesting to note that if the patch of sur-
face at ¥' lies in the same plane as the patch of
surface af ?", then the current at r' contributes
nothing to the current at r". This means there

is no direct interaction between cukfents flowing
at different points on the same flat surface.

The effect of any interactions is delayed by R/c.
It is this important fact that permits the numer-
ical solution of (2.13).

The three dimehsiona1.case differs from the cylin-
drical case because in fhe three dimensiona1 case
three coupled integro-differential equations must

be solved.

As in the cylindrical case equation (2.13) may be solved
numerically on the computer by stepping on in time. This is
possible since the current at some time t is given in terms

of the incident field at time t (which is known) and the

In most applications the quantity of interest is the

far scattered field. When the distance from the scatterer,
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R, is Tlarge then the contribution of the first term in the

square brackets of (2.10) to the integral is negligible.

In additian the fd]]owing approximations can be made.

1 1
—_— —— —
R r -
g — 3, -
Thus, (2.10) reduces to the following expression for the far
scattered field. -
> >
>e 1 ad(r',t) ~ -
H>(r,t) = [ ] xardS‘ . (2.14)
Arrc 3T T=t-R/c
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CHAPTER 3
NUMERICAL SOLUTION OF CYLINDRICAL PROBLEMS

3.1 Preliminary Discussion

The équations derived in Section 2.2 give the field on
the surface of a general cylindrical scatterer due to a
plane wave incident at an arb{trary direction. The special
case of normal incidence permits a simpler interpretation
of the results and is somewhat casier to implement (al-
though extension of the numerical procedure to an arbitrary
angle of incidence would be straightforward). Moreoverf it
is suspected that consideration of an arbitrary angle of
incidence would not add appreciably to understanding of the
scattering phenomena. Hence, the following discussion is
Timited to the case of normal incidence, i.e., 6. = 90°.

It is also convenient at this point to change the units
of time from seconds to light meters where one light-meter
is defined as the time it takes light moving at velocity c
to travel a distance of one meter, i.e., tnew = Cto]d
This change of units facilitates interpretation of the re-
su]ts; in addjtion it also removes the cumbersome factor ¢
from the formulation.

For the new unit of time and the case of normal in-

cidence, the 1ntegr0-differenkia1 equétions for the field
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on the surface of the .scatterer given in (2.7) and (2.8)

‘become
;ll -— 1 1t
Hy(p",t) = 261 (p",t)
t-P
>
1 A A dt' Ho(p',t")
+ — ds'(a'-ap) 7 L
T ! (t-t')2% - P2 (t-t') + P
S t'=z-o
-
BHZ(p',t')
+ -] (3.1)
at'
t -i+ll
Ho(0",t) = 2H (6",1)
t-P
- -+
A A dtl H (p"tl)

In addition the expression for the far scattered field given

in (2.9) becomes

t-P
1 dt'  aH_(p',t')
-+ A ~ A P >
H3(p,t) = — [az ds'(a'+a_) / z
/o 2mv/5 P (t-t') - P! at!
S t'=-w
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. dt aHZ(Z',t')] .
+ a ds' 3.3
¢ “(t-t') - P 3t

3.2 Numerical Approximation of
Integro-Differential Equation

3.2.1 Space Integratioh
It s 1mportént to observe that the space integration
is essentially the integration of a periodic function, f(¢),
(or for multiple scatterers a sum of periodic functions)
over one per{od. This suggests that f(¢) may be repreéented

by the Fourier series

a [e ]
f(¢) = ==+ £ a_cos mp +b_sin my
5 ney M m
whgrer 2T
1
a = - f(¢) cos m¢ do
v
o}
27
1
b= - f(¢) sin mo do
v
0

If the Fourier series representation is possible, then the
integral of f(¢) over one period is simply Ta, . The

rectangular approximation for the 1ntegfa1 giving a, would
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1T N-1 2mm 2m
0 T m=0 N —N—
where
N = number of subintervals taken in one period.
In fact, Hamming (1962) shows that a, and A are related

exactly by

) (3.4)

where aN is the mxN Fourier coefficient of f(¢). Thus,

the error incurred using the rectangular approximation for

the space integration is

a
1

e 8

error = 2F%

m mN

This equation not only indicates how large the error is,
but it also indicates how many sample points must be taken
to obtain a given error. That is, the number of sample
points, N, must be chosen large enough so that the Nth
Fourier coefficient of f{¢) is negligible.

Appendix VI shows that the Fourier series representa-
tions of the space integration arguments in (3.1), (3.2),
and (3.3) are valid, and also that the absolute value of
the resultant Fourier coefficiénts are Tess thanm M/m®™F
where € is an arbitrarily small positive number and M is

some positive number independent of m. Thus, the error

~incurred by using an N peint rectangular approximation for
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the space integration argument is essentially the Nth
Fourier coefficient of the space integration argument.
One might ask if it is possible to do better by using

a higher order po1ynomina1 approximation for the space
integraticn. It is easy to show that the trapazoidal rule
gives exactly the same results as the réctangu]ar rule.
The éecond order polynominal approximation, Simpson's rule,
gives two possible results depending upon where the first
sample point is taken, but there is no way of knowing which.
resu1t-1s more accurate. Moreover, if the average of the
two resu]tslis taken, then the answer given by the rectan-
gular rule is obtained.

~Hence, the rectangular rule was used for the space
integration because of its simplicity, good accuracy, and
ease with which errors could be estimated. In addition, it
implies a method for choosing the number of sample points

to make the error below some acceptable minimum.

3.2.2 Time Integration
The time integrations in (3.1) and (3.2) are essentially
the same, and thus, it is sufficient to consider only one
of these equations. For the purpose of this discussion con-

sider the time integration in (3.1)

t-p
-
- A A dt' : 1 H(p'st")
f(p') = a'-a {
f S A e R T L
tret
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BH(p',t')
+ —}]
ot
> -+
For the case when P is zero (i.e., p' = p") the value

>
of f(p') was obtained from (VI.6) in Appendix VI giving

H
>
fp") = - =2
2R
where
>
R = radius of curvature of contour at p"
-
Hg = Hp"st)

Note that this result depends upon H(p",t) which is the

item té be computed. In order to obviate this difficulty,
an estimate, using the value of H(S”,t-At) for H(p",t), was
first made for f(p"). The value of H(B“,t) was computed
using this estimate for f(g“), and then a new value of f(g“)
was calculated. This process could be iterated more times;
however, one iteration was sufficient for the cases treated
because the contribution of f(3") to the total field was
relatively small (less than 10 percent).

For the case when P 1is not zero, the time integration
was broken into twoc parts so that the integration about the
singularity at the upper limit could be handled numerically,
e, t,-At t-p
|

ty

N
r
f(3') = J
t=

t =At

i
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where tN was chosen such that
0 <t -P - tN < At

At = time increment for the numerical

integration.

The integration from t1 to (tN - At) was carried out using

Simpson's rule.

The integration near the singularity, I
2

P

, where

t..
>
dt! 1 H(p',t')
1 = [ {
2 /t-t' - P /E-t' + P t-t' + P
tN-At

(3.5)

was performed analytically using the following procedure.

The quantity within the square brackets of (3.5)

1 H(p',t") dH(p',t")

v(t') = ———{ +
t-t' + P Ttet' o+ P

was approximated by the fourth order polynominal

v(t') = vy v (EetteP) by (t-t!-P)?
v (t-t'-P)? 4 v (t-t'-P)"

and then integrated analytically to give

—
H

2¢t_tN_l_P [Vo_+ vl(t—t

1
3

1
-7_ 3 N"l 9 4
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where

The far field time integration in (3.3) was somewhat
simpler than the time integrations in (3.1) and (3.2) be-
cause in (3.3) the value of P is never zero. The techniques
used for the time integration in (3.3) were the same as
those used in (3.7) and (3.3) for the case when P is not

Zero.

3.2.3 Time Differentiation

The time derijvative of the H field on the surface of
the scatterer was computed numerically. This was done by
approximating the H field with a fourth order polynominal
and then differentiating the result aha]ytica]]y. The best
approximation occurs when the derivative is evaluated near
the middle of the five points used to compute the coeffi-
cients of the fourth order polynominal approximation. Hence,
the numerical derivative was evaluated as close as possible

to the center of these five points.

3.3 Numerijcal Solution

3.3.7 General Procedure
The general procedure for the numerical solution of
(3.1) is essentially the same as the procedure for the

solution of (3.2). Hence, it is sufficient to describe only

the solution of (3.1). Discussion of the procedure for the
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numerical solution of (3.1) is facilitated by considering
the space-time picture of the problem as shown in Figure
3.1. The space coordinates are the usual x and y coordi-
nates, and the time coordinate, t, is the vertical axis.
The contour of the scatterer in space-time is then repre-
sented by the cylindrical surface shown. It is desired to
find the field,H(p,t), at all points on this cylindrical
surface.

In order to numerically solve (3.1) for H(B,t), it is
necessary to choose points in space-time at which to compute
H(E,t). The cylindrical surface was broken into patches as
shown in Figure 3.1 and the H field was computed at the
center of each of these patches numerically using (3.1).

The actual choice of the sample points is discussed in
Section 3.3.2.

The genera] procedure for the numerical solution of
(3.1) is as follows. The incident H field is assumed to be
zero at the scatterer for all times less than some value to.
Hence, the total H field on the surface is also zero for all
times less than to. Suppose at t1 = tO + At the incident
H field just reaches the scatterer. Thus, at t1 on part of
the scatterer an H field that is simply twice the tangential
component of the incident H field is set up. As time marches
on, the incident H field envelops more of the scatterer and
the field at each point is given by the incident field, which

is known, and the field at other points on the scatterer at
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FIGURE 3. SPACE-TIME PICTURE. OF SCATTERING.
PROBLEM -
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earlier times, which has been computed. So by simply
marching on in time, the entire H field on the scatterer

contour can be generated by using equation (3.71).

'3.3.2 Choice of Sample Points in Space-Time
In this discussion it is assumed that both the scat-
terer and the incident H field are given. First consider
a point (pg,tj)on the scatterer Eon%dﬁ?”as shown 1ﬁ Figﬁ}e
3.1. The cross-hatched region on the cylindrical space-time

surface in Figure 3.1 is called the dependence domain of

point (pi’tj) and is defined by

where

P = Ip‘gjl

The H field at (pi,tj) depends on only the H field at points
that 1ie in the dependence domain.
The numerical solution of (3.1) is performed by stepping

,t.-P) must be

on in time, and thus, the value of H(pirx 3

known in order to compute the value of H(pi,tj). But this

is only assured if

t., - P < t., - At
J J
where
At. = the time increment.
Therefore, one restriction on the chqicé of sample points

is
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At < P_.
min

where
Pm1'n
This says that the spacing in time must be less than the

time it takes a wave, moving at the velocity of 1ight, to
travel between the closest space points.

As was pointed out in Sectiaon 3.2.1, the N sample points
in space should be chosen such that the amplitude of the Nth
Fourier coefficient of the space integration argument, f(¢),
be negligible. In practice it is impossible to determine
the argument of the space integration beforehand. Con-
sequently, the time derivative of the incident H field set-
up on the scatterer was uéed as an estimate of the argument
of the space integration. Moreover, the points on the scat-
terer contour were chosen with approximately egual spacing
to minimize computer time.

A fine tﬁme increment was used from the time the in-
cident field arrived at the scatterer until the time the
incident field passed the scatterer. The reason a fine time
increment is necessary during the initial part of the
sequential computation is as follows. In the integro-
differential equation the total H field separates into two
parts: (1) the incident H field which is the field that
would exist if the scatterer were noF present and (2) the

scattered H field which is the field produced by the induced

currents on the scatterer. However, on the shadow side of

46
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the scatterer the incident field and the scattered field
have opposite signs but equal or very nearly equal ampli-
tudes during the initial period of time. This is because
the total field, which is the sum of the incident field and
the scattered field, is zero or near zero in this region of
space-time. The greatest numerical error will occur in
this region because there is a subtraction of two numbers
which are Targe compared with their difference. Moreover,

this error will be propagated since the numerical solution

is obtained by stepping on in time. Thus, a fine time incre-

ment was used during the critical period of time to improve
the accuracy. After the incident wave had passed the scat-
terer the normal time increment was used to reduce computer

time.

3.4 Choice of Incident Field

Up to this point the only restrictions on the incident
field have been that ft reach the scattere? at some finite
time in the pasf and that it has no variation with z, i.e.,
the previously described brocedures may be applied to all
cylindrical incident fields with arbitrary time variation.
As noted in Chapter 1, the incident field of greatest inter-
est is a plane impulse in space-time because solutions for
all other plane incident fields may be obtained from the
impulse response. Thus, in this work an approximation to
a plane jmpu1sé was used for the incident ﬁ field, gnd the

resulting scattered fields constitute an approximate
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electromagnetic impulse response,

Three alternate approximations to the impulse are

the Gaussian pulse,

n 242
_ .. =n“t
6n(t) - T € ¢ ‘
the sin (t) over t pulse,
() sin nt -
6 t = —_— 'y
n mt
and the polynominal pulse, -
n
6n(t) = — . -
m(1+n?t?)

The Gaussian pulse approximation was chosen because it de-

cays toward:zero very rapidly as shown in Figure 3.2. The

incident H field was taken to be

e-nz(t + X cos ¢ + y sin ¢')2

§u:

K (B.t) =
where
¢! = angle the Poynting vector of incident field

makes with negative x-axis.

3.5 "Relation Between Frequency Response
and Approximate Impulse Response

The electromagnetic scattering problem can be considered
a linear system with one input (the incident field) and many
outputs (the resultant field at ail points in space). Shown

in Figure 3.3 is a block diagram of the linear system -
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FIGURE 3.2 LOGARITHMIC PLOT OF GAUSSIAN
PULSE SHOWING RAPID DECAY

49



x(t) Linear y(t) —
> System >

FIGURE 3.3 BLOCK DIAGRAM OF LINEAR SYSTEM
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representation with only one of the outputs iﬁdicated.
In this study the input, x(t), to the linear system

was the approximate impulse

-n?t?
e

§N3

x(t) =
and the output, y(t), was the approximate impulse response.
The frequency response, H(w), is simply the ratio of the

Fourier transform of the output, Y(w), to the Fourier trans-

form of the input X(w), i.e.,

Y(w)
H(w) = (3.6)
i X{w)
where ()2
X(w) = e o0
Y(w) = F{y(t)}

Y

Hence, the frequency response may be obtained from the

approximate impulse response by

2
H{w) = e Fly(t)} . (3.7)

e

On the other hand, the approximate impulse respohse may be

obtained from the frequency response by

g(t) = FTfe 2 W(a): (3.8)

where

-1 . . . . .
F “{ } indicates the inverse Fourier transform.
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In this thesis the Fourier transform and inverse
Fourier transform operations were performed numerically by
using the finite Fourier transform computer program written
by Cooley (1966).

It should be pointed out that there is an upper fre-
quency limit for which the frequency response can be com-
puted using (3.7). There are several reasons for this.
First, the amplitude of the high frequency components of
the incident field are small. Second, the numerical
accuracy for higher frequency components is reduced because
the error in the space integration is proportional to the

Nth

Fourier component of the integrand. Third, the error
incurred in the numerical computation of the time derivative
and its subsequent use in the analytical time integration
becomes larger for the higher frequency components contained
in the field. The results of this investigation indicate

- that satisfactory answers are obtained if as few as four

space sample points occur in one wavelength.

3.6 Numerical Examples

3.6.1 Circular Cylinder
The feasibility of the actual numerical solution of
the integro-differential equation was first demonstrated by
considering the case of a circular cylinder. The circular
cylinder was chosen as the test case for several reasons.

First, the frequency response of a circular cylinder can be
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obtained exactly by classical techniques, and thus, pro-
vided a check on the validity of the computer program and
numerical techniques. And second, the choice of sample
points on a circular cylinder was relatively straight-

forward.

The actual circular cylinder used for the test case
had a radius of one meter as shown in Figure 3.4 and the

incident field was the approximate impulse

e-4(x+t)2

;HN

(3.t =
which possessedla widfh apbroximate1y equal to the diameter
of the cylinder. The sample points on the cylinder Were
spaced every 15° or approximately every 0.25 meters,
Finally, the fine time increment was chosen to be 0.1 light-

meters and the course time increment was taken as 0.2 Tight-

meters. _

The total field on the surface of the scatterer was
found by solving the integro-differential equation with the
numerical procedufe discussed in Section 3.3. .This result,
in turn, was used to numerically compute the far scattered
field, which is the approximate 1mpu1sé respohse.

In Figure 3.5 the appfoximate impulse response in the
backscatter direction is shown for the TE case. The result
calculated directiyﬁin the time domain using (3.1) and'(3.3)
is compared with the result obtained by performing an inverse
Fourier transform of the classical frequency response

solution as described in Section 3.5. As can be seen in
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FIGURE 3.4 GEOMETRY OF CIRCULAR CYLINDER
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Figure 3.5, the two results in the backscatter direction
are essentially identical. The comparison of the approxi-
mate impulse response obtained by these two techniqueé for
other directions was also very good.

The initial peak in Figure 3.5 corresponds to spécu]ar
reflection from the front side of the cylinder and would
have been predicted by geometric optics. The negative swing
that follows is similar to what would be given by the
physical optics approximationj And finally, the subsequent
positive swing may be interpreted as due to a wave traveling
around the backside of the cylinder. This wave is often
called the creeping wave. The time of arrival of the second
positive peak (at approximately 4.0 light-meters) indicates,
in this case, that the velocity of the creeping wave 1is
approximately 0.8 times the speed of T1ight. An inspection
of the éurrent density on the surface of the scatterer does
indeed reveal two pulses, one on each side of the scatterer,
traveling from the illuminated region to the unilluminated
region of the scatterer. These two pulses coentinue on into
the shadow region, diminishing in amplitude as they go,
until they meet at which time they coalesce and lose much
of their shape and identity.

In Figure 3.6 the approximate impulse response in the
backscatter direction is shown for the TM Ease. Again the
\

result calculated directly in the time domain using (3.2)

and (3.3) éompares quite well with the result obtained by
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performing an inverse Fourier transform of the classical
frequency response. However, the character of the back-
scattered fa? field for the TM case is distinctly different
from the TE case. The initial peak in the TM case, as in
the TE case, corresponds to the specular refiection from
the front side of the cylinder. However, the negative swing
predicted by the physical optics approximation does not
occur. Furthermore, there is no creeping wave contribution
to the scattered field. This is not surprising since a
creeping wave in the TM case would be similar to a horizon-
tally polarized wave propagating over a conducting surface,
which would be attenuated very rapidly. On the other hand,
the creeping wave in the TE case would be similar to a
vertically polarized wave propagating over a conducting
surface, which would have very little attenuation.

The approximate electromagnetic impulse response of a
circular cylinder for the TE case is shown fin Figuré 3.7

along with the incident pulse. Thfs figure may be viewed as

- a "snapshot" of the waveforms in space, with all dimensions

to scale, ekcept the distance to the cylinder. The outer
semi-circle represents the points in space that the peak of
the incident pulse would have reabhed if it were reflected
from the origin (the center of the cylinder in this case).
The amplitude of the scattered H fieid is normaiized by the
multiplying factor of /3; , where P, is the distance of the

outer semi-circle from the origin. Each scattered field
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consists of an initial pulse which represents the contribu-
tion due to specular reflection and could be predicted by
geometric optics. This initial pulse is followed by smaller
pulses that may be interpreted as the wave traveling around
the cylinder (creeping wave). |

The approximate electromagnetic impulse response of
a circular cylinder for the TM case is shown in Figure 3.8.
As in the TE case, each scattered field consiéts of an
initial puise which represents the contribution due to
specular reflection. However, there is no indication of
a creeping wave contribution to the scattered field.

Finally, using the technique discussed in Section 3.5,
the frequency response of the circular cylinder was computed
from the approximate impulse response. The frequency re-
sponse is plotted as a function of k where k is defined to
be w/c and w is the radian frequency. In Figure 3.9 the
TE result in thg backscatter direction is compared with the
c1assica1'frequency response. The comparison 1s.exce11ent
up to approximately k'= 6, and satisfaétory up to approxi-
mately k =.8. Hence, this technique gives acceptable re-
sults when as few as three sample points on the scatterer
occur in a wavelength.

The TM frequency response calculated from the approxi-
mate 1mpU1se response in the backscatter direction is com-
pared with the classical frequency response in Figure 3.10.

The comparison is excellent from approximately k = 0.2 up
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to k = 6. The error at low frequencies is due to the long
"tail" occurring in the approximate impulse response. For
the numerical computation of the Fourijer transform, this

tail of the approximate impulse response was extrapolated
linearly to zero, giving rise to the small error at low
frequencies. Figure 3.9 and Figure 3.10 indicate that the
frequency response can be obtained over a wider range for the

TE case than for the TM case by using this technique.

3.6.2 Strip

A strip with the cross-section shown in Figure 3.11 was
the second shape considered. This shape was chosen to
demonstrate the feasibility of numerical solution of the
integro-differential equation for convex scatterers for
which the frequency domain solution has not been obtained
by classical techniques. Moreover, the strip geometry pro-
vides two flat surfaces which saves computer fime since
there is no direct interaction between currents on the same
flat surface. Finally, the strip ends are circular cylinder
halves, and‘thus, some interesting comparisons can be made
between the approximate impulse responses of the strip and
the circular cylinder. The sample points on the contour
were chosen with a spacing of approximately 0.25 meters as
indicated in Figure 3.11. The incident field and the time
increments were taken to be the same as for the case of the

circular cylinder.
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The approximate impulse response of the strip with

broadside incidence is shown in Figure 3.12 for the TE case.

As a test of the validity of the computer program and the
accuracy of the results, the approximate impulse response
of strip was again computed for end-on incidence as shown
in Figure 3.13. By the time domain reciprocity theorem
(Cheo, 1965), the scattered field should be the same if the
direction of the incident field and the scattered field are
interchanged. As can be seen in Figure 3.13, the numerical
solution of the integro-~-differential equation gives results
which agree very well with the time domain reciprocity
theorem. That is, the field scattered off the end of the
strip with broadside incidence in Figure 3.12 is the same
as the field scattered off the side of the strip with end-
on incidence in Figure 3.13.

Shown in Figure 3.14 and 3.15 for the TM case are the
numerically computed approximate impulise responses cof the
strip with broadside incidence and end-on incidence, re-
spectively. Again these numerical results agree well with
the time domain reciprocity theorem.

A comparison of the approximate impuise response of
the strip with the approximate impulse response of the
circular cylinder is now made. Consider first the TE case
with broadside incidence shown in Figure 3.12., In both the
Backscatter and forwardscatter directions the initial por-

tion of the return from the strip is enhanced. In the
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_‘l backscatter direction the creeping wave contribution to

- the response of the strip has a shape very similar to the
circular cy]inder case; however, its magnitude is somewhat

- smaller, The time of arrival of the creeping wave contri-

bution does indicate that the creeping wave velocity is = -

between approximately 0.8 and 0.9 times the speed of 1ight.

The TE case of the strip with end-on incidence is

shown in Fiqgure 3.13. The initial portion of the return is

- very close both in size and shape to the return from the

circular cylinder. In fact, in the forward direction the ; ;;_;

entire response of the strip appears from the curve to be .‘;;éf

the same as for the circular cylinder. However, a closer’ ?[:g

examination of the num.rical results reveals small differ- o  17 |

-‘ ences which may be attributed to a wave traveling one and - "

a half times around the structure. In the backséatter and‘zf LT

near backscatter directions the near-zero region in the |

strip response indicates that the contribution due to the 7::_:£{;§

sides is very small for the TE case with end-on incidence. -

- After this near-zero region in the strip response, a nega-' ii“t
tive swing occurs. The timing of fhis negative swing in- b
dicates that it may be associated with the boundary betweeﬁi;';ﬁﬂ
the flat side and the curved backside of the strip. Next,W%f=
the response again swings positive. This may be attributed
— to a creeping wave traveling around the rear of the strip

at approximately 0.8 times the speed of light.



The TM case of the strip with broadside incidence,

shown in Figure 3.14, is less interesting than the TE case.

The response of the strip is enhanced with respect to the
response of the circular cylinder in both the backscatter -

and forwardscatter directions. However, the response in

the other directions shown is not very different from the -
circular cylinder. It is interesting to note that the re- -
spaonse of the strip in the backscatter direction possesses

a negative swing as predicted by the physical cptics approxi- -

mation, This is reasonable since the physical optics ap-
proximation becomes better as the relative size of scatterer's
flat region increases.

In Figure 3.15 is shown the TM case for the strip with

end-on incidence. It is very striking how closely the re-

sponse of the strip with end-on incidence is to the response
of the circular cylinder for the TM case. In the back-
scatter direction the comparison is so good that differences
cannot be detected in the plotted curves. However, in-
spection of the numerical results reveals that the magnitude -
of the tail is slightly larger for the case of the strip.
In other directions the amplitudes of the returns from the
strip are somewhat larger but the shapes remain very close
to those of the circular cylinder.

The frequency response of the strip with broadside
incidence is shown in Figure 3.16 for the backscatter direc-

tion. In this Figure it is noted that the responses in the -
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TM case and the TE case differ widely near k = 0, but
approach each other as k increases. This is an expected
result. The TE response possesses small resonances which
may be attributed to interference between the specular re-
turn and fhe cfeeping wave return. On the other hand, the
TM case has no appreciable resonances since it has no
significant creeping wave.

The frequency\response of the strip with end-oh in-
cidence is shown in FigUre 3.17 for the backscatter direc-
tion. In view of the very close similarity between the TM
time domain response of the strip with end-on incidence and
the circular cylinder, it is not surp§is%ng to find that
the TM frequency responses of both shapes are almost identi-
cal. On the other hand, the resonances appearing in the
TE responses for the two shapes are different. This is
reasonable since these resonances'may be attributed to an
interference between the return from the front side of the
body and return due to a wave traveling around the rear
of the body. The creeping wave contribution for the strip
appears later and with lower amplitude than for the circular
‘cylinder. Finally, the TE and TM cases for both the strip
with end;on incidence and the circular cylinder all approach

the same value (1/v7) with increasing k as expected.

3.6.3< Corner Reflector
To further illustrate the appiicafion of this technique

to problems for which the frequency response has not been
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obtainéd byiéTé§§ica1 techhiqueé, the corner reflector

shown in Figure 3.18 was considered. This shape represents
a scattering body with concave surfaces which allow multiple
reflections of the ‘incident field. The spacing between the
sample points on the contour was chosen to be approximately
0.25 meters as shown in Figure 3;18. The incident field and
the time increments were taken to be the same as for the
case of the circular cylinder.

In Figure 3.19 is shown the approximate impulse re-
sponse of the corner reflector with frontside incidence for
the TE case. In the backscatter direction the first pulse
is due to the specular return from the top and bottom edges.
The second positive pulse and the subsequent negative swing
may be interpreted as due "to ‘the double reflection by the
inner sides of the cornerrref]echr. This return approxi-
‘mates a differentiation of the incident pulse. Finally, the
third positive, yet smaller, pulse can be considered due to
the creep{hé wave. Thé 5cattebed field at an angle of 30°
from the baékscatter direction is quite interesting. The
first pulse, which may be interpreted as the specular return
from the iop'edge,'ig f011erd'by a second pulse which may
*be ‘interpreted as the specular Téturn from the bottom edge.
The third positive pulse and its subsequent negative swing
may be attributed to the inside éorner. Finally, the fourth
positive,_yet smaller pulse may be explained by means of a

creeping wave. In the forwardscatter direction the initial

) 74 .
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negative pulse and the positive swing that follows is

similar in shape to the response of the circular cylinder

and the strip fn the forwardscatter direction. However,

the appearance of fhe second positive pu]sé is new. This
pulse may be attributed to the incident field being reflected
once by therinner side of the cbrner and then traveling
around the opposite edge to be scattered in the forward
direction.

As a check on the validity of the computer program and
also on the accuracy of the numerical techniques, the
approximate impulse response of the corner reflector was
computed with backside incidence as shown in Figure 3.20.

By the time domain rec procity theorem the forward scattered
field in Figure 3.19 should be the same as the forward scat-
tered field in Figure 3.20. In this case the numerical re-
sults check out Qeryrwg11 with ﬁﬁe reciprocity theorem.

The approximate impulse response of the corner re-
flector with frontside incidence is shown in Figure 3.2
for the TM case. In the backscatter direction the first
pulse is due to the specular returns from the top and bottom
edges. ‘The first negative pulse and its subsequent positive
swing may be 1nferpreted as due to the double reflection by
the inner sides of the corner. Note that the sign of this
contribution is opposite from the sign of the equivalent
contribution in the TE case. This is because there is a

' >
change in polarity of the H field for the TM case upon
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reflection from a corner, whereas, there is no change in
polarity for the TE case. There is no creeping wave con-
tribution in the TM case, as expected.

Finally, as a check on the validity of the computer
program and the accuracy of the results, the approximate
impulse response of the corner reflector with backside in-
cidence was computed for the TM case. The result is shown
in Figure 3.22. The numerically computed forwardscattered
fields are seen to be the same for both backside incidence
(Figure 3.22) and frontside incidence (Figure 3.21), as
they should be by virtue of the reciprocity theorem.

In Figure 3.23 is shown the frequency response of_the
corner reflector in the backscatter direction with frontside
incidence. Both the TE and the TM cases exhibit strong
resonances. The"peaks,'for.example, of the frequency re-
sponse may be interpreted as tﬁe_;onstructive interference
of the return from the edgyes and the return from the inside
corner. ‘Note that the peaks of the TE case occur approxi-
mately where the nulls of the TM case occur, and vice versa.
This may be explained by recalling the fact that in the time
domain the returns from the inside corner have opposite
signs for the TE aAd f&e*TMréasé;. On the .other hand, the
returns from the edges have the same sign for the two cases.

Thus, in the frequency domain the TE peaks should occur

‘Where the'TM nulls occur.
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The frequency response of the corner reflector in the
backscatter direction with backside incidence is shown in
Figure 3.24. Intérferénce.effects are present for both
cases, however, they are much sfroﬁgér for the TE case. The
peaks in the frequency fesponse may be interpreted as in-
phase addition of the‘return_frOm,the nose and the return
from the edge. In'fﬁe time'démaiﬁ.the éffect of the edges
is smaller in the TM case than in the TE case. Thus, the
interference effects in the frequency domain should also

be smaller for the ™ case, as the numerical results

illustrate.
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| CHAPTER 4
NUMERICAL SOLUTION OF THREE DIMENSIONAL PROBLEMS

d4;1 Pre]iminari_biscussion

The equation (2.13) in Section 2.3 gfves the current
on the surface of an arbitrafﬁ]y shaped three dimehsiona]
scatterer due to an arbitrary 1nc1dent.wave. As was the
case for the cy1{ndrica1.prob1em, it is convenient to

change the units of time to light-meters. Then (2.13)

becomes
> > ~ +_i ->
Jd(r",t) = 2a:xH (r',t)
> > > >
1 ~ J(r',1) 1T 3d(r',t) ~
+ o al]l.x [{ - + — } xaR] dS'
2m R R AT =t-R
S (4.1)

With the éhange of time units, equatﬁon (2.14) for the far

scattered field becdmes-

The task of this chapter is to demonstrate that numerical

solution of (4.1) and (4.2) is feasible and also gives good
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results.
To handle arbitrarily shaped geometries completely,
it is convenient to expand (4.1) in the rectangular coordi-

) ->
nate system. Doing this gives the components of J as:

+n 1 1 1 JX 1 aJX
Jx(r ,t) = 2(nyHZ nzHy) + E;- {(E; + E— g;—) (nynRy
S
il 1 ad 2
Ry LA M
1 3d
Z 1 .
' T7=t-R
1 J 1 3d
+u - 1 1 - Y ____x_
Jy(r ,t) = 2(nsz nXHz) + - {(R2 + T ) (nznRZ
S
J 1 9d J
_Zz 4 . (X
oyt - R2 * R 3t ) NzMRy (Rz
1 3d
oo X n N} ds’ (4.3b)
R 3Tt Y
T=t-R
> j ; ] JZ 1 adz
J,(r",t) = ,2(nXHy - nny) + P {(EZ_ + Ea—:) (nynpy - nynRy)
S
J 1 3J J 1 3d
(2 - 2 nNp, - (L + - L) q nRZ} ds'(4.3c)
R? R a1 R? R a3t Y

7=t-R
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where

-~ A . A A
= + +
J JxaX Jyay JzaZ
o= + +
; n.ay nyay n,a,
a, = + +
R MRx®x nRyay NRz%;z

The coupled integro-differential equations in (4.3) give
the solution of the current on the surface of the scatterer.
However, by virtue of the fact that the current is con-
strained to flow on the surface only two of these equations
are independent. Heﬁce, only two of the components of 3

>

need to be found from (4.3). The remaining component of J

is given by
hdJd, +nd, +nd_ =20, (4.4)

where Ny s ny, and n, are the rectangular components of the
unit normal at the observer.

To find the far field from the current density for
arbitrarily shaped geometries it is convenient to expand
(4.2) in rectangular coordinates. Carrying out this oper-

ation on (4.2) yields

T 3d ad
Hi = — J(__.._Z.(_ nrz - .___Z_ nry) dS' (4,53)
drr oT oT r=t-R
S
T 3d 8d.
H; e J(——é Npx = —= n.,) ds’ (4.5b)
drmr oT Rs =t-R
S
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z ry rx
dqr 90T
9T T=t-R
S
where
> A ~ ~
S S S S
= + +
H HxaX Hyay HzaZ
= + i +
4y "rx®x nryay “rzlz -

4.2 Numerical Approximation of
Integro-Differential Equation

The equations for the current on the surface of a three
dimensjonal scatterer given in (4.3) and (4.4) are somewhat
more complicated to solve numerically than the analogous
equations far cylindrical scatterers in several respects.
First, the argument of the integral must be evaluated at
arbitrary points in time rather than at only the time sample
points. Second, a set of three coupled equations must be
solved rather than only two decoupled equations. Finally,
many more sample points must be used to describe a surface
than a cantaour with the same linear dimension.

On the other hand, the cylindrical equations possess a
time integration that is not present in the three dimensional
formulation. The explanation for this is that in the cylin-
drical case the space jntegration over z has been replaced
by a time integration over t. It should be noted that
cylindrical problems may also be solved by the three'dimen—

sional formulation discussed in this Chapter.
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It is convenient to view the space integration in (4.3)
and (4.5) as an integration over the variables ¢ and 6 in
a spherical coordinate system. The integration over ¢ is
essentially the integration of a perjodic function over one
period. Thus, conclusions similar to those reached for the
space 1ntegratipn in the cylindrical case apply here for
the ¢-integration. They are principally: (1) the rectan-
gular approximation fo% the ¢-integration gives good results,

and (2) the error incurred using the rectangular approxi-

th
¢

coefficient of the ¢-integration argument where N¢ is the

mation for the ¢-integration is essentially the N Fourier
number of sample points at a given value of 6. Thus, the
rectangular rule was sed for the ¢-integration.

The 6-integration can be viewed as the integration over
a half period of a periodic function that is symmetric about

its mid-point. So the rectangular approximation for the

O-integration gives good results and produces an error that

is essentially the ZN(;Ch

Fourier coefficient of the 6 integra-
tion argument where Ne is the number of 86 sample points.
Hence, the rectangular rule was also used for the 6-integra-
tion.

Since the rectangular rule was used for both the ¢-
integration and the 8-integration, then the numerical approxi-
mation of the space integratien that was used may be viewed

in the following manner. The surface of the scatterer was

broken into a number of patches. The contribution of each
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of these patches to the surface integral in {(4.3) was then

approximated as the value of the argument of the integral
at some point in the patch times the area of the patch.
The technique used for the numerical time differentia- -
tion was the same as that used in the cylindrical case.
The current was approximated by a fourth order polynominal.
The numerical approximation for the time derivatives of the
current was obtained by analytically differentiating this
polynominal approximation. In order to achieve the best -
accuracy, the five points used for the polynominal approxi-
mation of the current were chosen such that the derivative
would be evaluated as near as possible to the middle of

them.

4.3 Numerical Solution ‘
The numerical solution of (4.3) and (4.4) was accom- _

plished by first breaking the scatterer surface into patches

and choosing a time increment. Next, the current at each -

of these patches was computed numerically using (4.3) and

(4.4). The computation was carried out sequentially in

time with the starting point in time being when the incident

field arrived at the scatterer. This process of marching

on in time is possible since (4.3) gives the current at a _,§

point in space-time in terms of (a) the incident field at

the same point in space-time (which is known) and (b) cur-

rents at other points in space but at earlier times (which

either are zero or have been previously caiculated).
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Finally, (4.5) in conjunction with the numerically computed
surface currents was used to calculate the far scattered
fields.

The criteria for the choice of sample points in space-
time for the three dimensional case are quite simiiar to
the criteria for the cylindrical case. The first restric-

tion is that

At < Rm1‘n
where
At = time increment
Rmin = minimum distance between space sample points.

This restriction says that the time increment must be less
than the time it takes a wave, moving at the speed of light,
to travel between the closest spacersample points.

As in the cy]indrica] caée; the sampTe points in space
were chosen so that a good representétion of the time de-
rivative of the incident field would be obtained. In addi-
tion, the sample points in ¢ at each level of 6 were equally
spaced. The sample points in 6 were chosen such that the
distances between adjacent levels in 6 were approximately

the same.

The largest error in the numerical solution occurs
initially in time on the unilluminated side of the scatterer
where the incident H field is tangent to the surface. In

this region of space-time there is in the numerical process
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a subtraction of two numbers which are lTarge compared with
their difference. In the cylindrical case it was necessary
to use a fine time increment during this critical period of
time in order to obtain good results. However, for the
three dimensional cases considered it was found that good
accuracy could be obtained without resorting to a fine time
increment. An explianation for this is that the relative
size of the critical region in space-time was significantly
smaller for the three dimensional scatterers considered
than for the cylindrical scatterers considered. Thus, the
relative size of the contribution to the scattered field
from the critical region in space-time would also be signi-

ficantly smaller for the three dimensicnal cases.

4.4 Numerical Examples

4.4.1 Sphere with 1.0 Meter Radius

The feasibijlity of actual numerical solution of the
integro-differential equation for three dimensional problems
was first demonstrated by considering the case of a sphere
centered at the origin. The sphere was chosen as the test
case because the results could be checked by using the
classical frequency response of a sphere. Moreover, the
choice of sample points on the surface of a sphere was rela-
tively straightforward.
| The actual sphere used for the test case had a radius

of 1.0 meter and the incident field was the approximate

92




plane impulse

i ~ 2 -4(z+t)?
H (r,t) = - ay o e (4.6)
which possessed a width approximately equal to the diameter
of the sphere. Thus, the incident field was a@ plane wave
polarized in the x-direction and propagating in the negative
z-direction as shown in Figure 4.1. It should be noted that
numerical solution of the integro-diffierential equation is
aiso possible for other incident fields such as a spherical
wave. The sample points in ¢ at a given level of 8 were
equally spaced such that the spacing was approximately 0.25
meters. The sample points in 6 were spaced every 15° start-
ing at & = 7.5°. Fina:ly, the time increment was chosen to
be 0.2 light-meters.

The current on the scatterer was found by solving (4.3)
and (4.4) with the numerical procedure described in Section
4.3. This current, in turn, was used to numerically compute
the far scattered field with (4.5). This far scattered
field may be interpreted as the approximate impulse response
of the sphere. During the numerical computations the sym-
metry possessed by this problem was exploited and a signi-
ficant saving in both computer time and computer memory re-
sulted.

The far field is shown in Figure 4.2 for the backscatter
direction. Also shown is the result obtained by performing

the inverse Fourier transform of the classical frequency

93



4\)(

i |
e T

FIGURE 4.1 GEOMETRY OF THREE DIMENSIONAL
SCATTERING PROBLEM o

94



. @

(0.6
04 — Frequency Domoin Approach
o ooo Time Domain Approach
[72)
T
O
0.2
40 200 e 20 -
40 | j t-rg (light-meters)
57
-04

FIGURE 42 APPROXIMATE IMPULSE RESPONSE OF
SPHERE BACKSCATTER DIRECTION

. 95



response using the technique described in Section 3.5, As
can be seen in Figure 4.2 the two results compare well in
the backscatter direction. The comparison of the far
scattered fields obtained by these two techniques was also
good for other directions.

The initial peak in Figure 4.2 corresponds to the
specular reflection from the sphere and would be predﬁcted'
by geometric optics. The negative swing that follows is
similar to what would be given by the physical optics ap-
proximation. And finally, the second positive pulse may be
interpreted as due to a wave traveling around the backside
of the sphere.

The E-plane approximéte electromagnetic impulse response
(i.e., the y component of the gs field in the x-z plane) of
the 1.0 meter sphere is shown in Figure 4.3. The H-plane.
approximate impulse response {(i.e., the 6 component of the
ﬁs field in the y-z plane) is shown in Figure 4.4, As in
the cylindrical case this figure may be viewed as a "snap-
shot" of the waveforms in space, with all dimensions to scale,
except the distance to the sphere. The cuter semicircle
represents the points in space that the peak of the incident
pulse would have reached if it were reflected from the origin
(the center of the sphere in this case). The amplitude of
the scattered H field is normalized by the multiplying factor
ro? where "o is the distance of the outer semicircle from

the origin. The initial positive pulses of the waveforms
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in the various directions may be interpreted as the contri-
bution due to specu]ar‘ref1ection and would be predicted

by geometric optics. The subsequent positive pulse may bé
interpreted as due to waves traveling around the scatterer.
As in the cylindrical case, these waves are often called
creeping waves. It is interesting to note that at an

angle of 90° the contribution due to the creeping wave
appears earlier and {s stronger in the E—p?éne than in the
H-plane,

Finally, using the technique discussed in Section 3.5,
the frequency response of the 1.0 meter sphere was computed
from the approximate impulse response. The frequency re-
sponse is plotted as & function of k where k is defined to
be w/c¢ and w is the radian frequency. In Figure 4.5 the
result in the backscatter direction is compared with the
classical frequency response. The comparison is good up
to approximate1y k = 6.

In general, the results obtained for the sphere were
not quite as good as the results obtained for the circular
cylinder. However, this is not surprising since the
numerical techniques used for the three dimensional case

were less refined than those used for the cylindrical case.

4.4.2 Sphere with 0.5 Meter Radius
The sphere with a 0.5 meter radius was the second
shape considered. Thi's sphere was chosen because it permits

a further check on the validity of the computer program.
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In addition, the response of the 0.5 meter sphere may be
easily compared to the response of the cylinder with hemi-
spherical caps which is considered in Section 4.4.3.

The incident E field was taken to be the same approxi-
mate impulse as was used for the 1.0 meter sphere, and thus,
possessed a width approximately equal to twice the diameter
of the 0.5 meter sphere. The sample points on the surface
were chosen in the same manner as for the case of the 1.0
meter sphere. And finally, the tﬁme increment was taken to
be 0.2 light-meters.

The approximate impulse response of‘tpe 0.5 meter sphere
in the E-plane is shown in Figure 4.6 anéfthe response in
the H-plane is shown i1 Figure 4.7. It is noted that the
relative size of the creeping wave contribution with respect
to the specular contribution is larger for the 0.5 meter
sphere than for the 1.0 meter sphere. Moreover, the approxi-
mate impulse response in the backscatter directidn begins

to look similar to the second derivative of the incident

pulse, which would be predicted by the Rayleigh approximation.

4.4.3 Cylinder with Hemispherical Caps
The final shape considered was a cylinder of radius
0.5 meters and length 2.0 meters with hemispherical end caps.
The axis of the cylinder was the z-axis. This shape was
chosen to demonstrate the numerical solution of a problem
directly in the time domain that has not been solved by

classical techniques in the frequency domain., This shape
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may be thought of as a 0.5 meter sphere that has been
bisected and pulled apart. Thus, the finite cylinder with

hemispherical caps is a natural extension of the sphere

geometry.
-+
The incident H field was taken to be the same as used

for both the 1.0 meter sphere and the 0.5 meter sphere.

The sample points on the hemispherical caps were chosen to

be the same as those on the 0.5 meter sphere in Section
4.4.2. 0On the cylinder itself the sample points were eqgually
spaced every 30° in ¢ and every 0.25 meters in z. The time
increment was taken to be 0.2 1ight meters as before.
Finally, in the interest of economy only axial incidence

was considered.

The E-plane approximate impulse response of the finite
cylinder is shown in Figure 4.8 and the H-plane response is
shown in Figure 4.9. As before, the initial positive pulses
may be interpreted as the contribution due to specular re-
flection and would be predicted by geometric optics. More-
over, the numerical results show that the initial part of
the responses of the finite cylinder are the same as the
initial part of the responses of the 0.5 meter sphere, as
they should be. Subsequently, in the backscatter and near
backscatter directions the response becomes very small, in-
dicating that in these directions there is very little return
from the sides of the cylinder. The following negative swing

may be interp?eted as the return from the junction of the
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cylinder and the backside hemispherical cap. Finally, the

second positive pulse may be attributed to a wave traveling

around the rear of the cylinder.

In Figure 4.10 the frequency response in the back-

scatter direction is shown for the finite
axial incidence. This frequency response
resonances at the lower frequencies which
as due to interference between the return

the cylinder and the return from the rear

cylinder with
contains strong
may be interpreted
from the nose of

of the cylinder.

As the frequency increases these resonances appear to dimin-

ish and approach a value of 0.25 which is
dicted by geometric optics. The accuracy
response diminishes r.pidly beyond k = 6,
to the frequency when the spacing between

approximately a'quarter wavelength.
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CHAPTER 5
DISCUSSION

5.1 Summary and Conclusions

In this thesis integro-differential equations for
solving time domain electromagnetic scattering problems have
been derived. In addition it has been demonstrated that
numerical solution of these equations is feasible and gives
good results. In Chapter 2 time domain integro-differential
equations are derived for (1) the magnetic field intensity
on the surface of a ccnducting cylindrical scatterer with
arbitrary cross section and (2) the current density on the
surface of a conducting three dimensional scatterer with
arbitrary shape. These equations give the magnetic field
intensity (current density) at a point in space-time in terms
of the incident field at that point in space-time and also
in terms of the magnetic field intensity (current density)
at other points in space but at earlier points in time. An
important feature of these formulations is that the incident
wave need not be ptlane, '

The feasibility and accuracy of numerical solution of
the cylindrical formulation is demonstrated in Chapter 3 by
considering the case of a circular cylinder with a normally

incident approximate plane impulse., The resulting far

109



scattered field is the approximate electromagnetic impulse
response of the circular cylinder. To illustrate the

generality of this technique the approximate impulse re-

sponse of both a strip and a corner reflector were obtained.

In the resulting approximate impulse responses the contri-

butions due to different scattering mechanisms can be easily

discerned. The specular reflection appears as a positive
pulse with the appropriate time delay near the beginning

of the response. The double reflection by the corner re-
flector is also clearly evident. Finally, the contribution
due to a wave traveling around the rear of the scatterer
can be clearly distinguished. The approximate impulse
responses also graphically illustrate some striking differ-
ences between the TE and the TM cases., For example, the
response in the TM case has a very long tail and also
possesses no creeping wave contribution, whereas, the
response in the TE case dies out more quickly and does
possess a significant creeping wave contribution. As an
additional check on the validity of the computer program
and the numerical techniques, it was demonstrated that the
numerical results are consistent with the time domain re-
ciprocity theorem. Finally, the frequency response was
computed from the approximate impulse response in order to
further illustrate the usefulness of the impulse response

concept in electromagnetic scattering problems.
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In Chapter 4 the feasibility and accuracy of numerical
solution of the three dimensional formulation is demon-
Sstrated by considering the case of a sphere with an incident
approximate plane impulse. To further illustrate the use
of this technique the approximate impulse response of a
finite cylinder with axial incidence was calculated. As
in the cylindrical formulation, the portiohs of the approxi-
mate impulse response due to the different scattering mech-
anisms can be clearly dfétinguished. Oﬁe interesting result
is that the sides of the finite cylinder do not appear to
radiate in the backscatter and near backscatter directions
for the case of axial incidence. Another result for the
bodies considered is 1a2at the creeping wave effect arrives
earlier and is larger for the scattered field in the E-plane
than for the scattered field in the H-plane. The frequency
response was calculated from the approximate impulse response
as in the cylindrical formulation.

The ultimate limitations on this technique are the com-
puter memory size and the required computer time. The time
increment must be lTess than the time it takes a wave,
traveling at the speed of light, to travel between the
closest points in space. Moreover, the distance between
adjacent space points should be Tess than a quarter wave-
length of the "highest" frequency contained in the incident
wave. And finally, there must be an adequate number of

space sample points to give a "good" representation of the

111



scatterer. Thus, if the scatterer size and complexity is

increased, then the number of sample points in space-time

must also be increased. Likewise, if the length of the
incident approximate impulse is decreased, then the number —
of sample points in space-time again must be increased.
This, in turn, requires more computer time and memory, which
ultimately limits the size and complexity of the bodies

that can be considered.

5.2 Recommendations for Further Study

There are numerous opportunities for further study of -
electromagnetic problems directly in the time domain using
the techniques developed in this thesis. A natural exten-

sion of this work would be to consider the problem of scat-

tering by bodies with edges. There are two possible ‘
approaches to this problem. One approach would be to de- _
rive a new integro-differential equation that holds for

bodies with mathematical edges. A second approach would be -
to use the integro-differential equations developed in this
thesis on scatterers with rounded edges having radii of
curvature much less than the Tength of the approximate in-
cident impulse, Although the basic theory developed in this
thesis applies to such problems, new numerical techniques -
must be developed to handle regions of small radius of cur-

vature in order to carry out the study of bodies with edges

economically using this second approach.
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Another extension of this work would be to develop
techniques for obtaining a better approximation for the
exact electromagnetic impulse response using the approxi-
mate impulse response calculated in this thesis. Both the
incident approximate impulse and the approximate impulse
response are known. In addition, the convolution gives an
integral equation relating the incident apprdximate impulse
and the approximate impulse response to the exact impulse
response. Thus, numerical solution of this integral equa-
tion would yield the exact impulse response. However,
numerical solution is not possible if the exact impulse
respohse contains singularity functions. But by applying
the theory of geometr-.c optics the sihgu]arity functions
could be determined and their effect subtracted from ‘the
approximate impulse response. Then an augmented exact im-
pulse response could be computed numerically. The final
step would be to add the singularity functions to the aug-
mented impulse response.

Another possible approach to the problem of obtaining
a better approximation to the exact 1mpu1sé response would
be to use a ramp for the incident wave. The numerically
computed ramp response could be differentiated twice in
order to obtain a good approximation to the impulse response.

As has been illustrated in this thesis, there is a
close correlation between the electromagnetic impulse re-

sponse and the actual geometry of the scatterer. The
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techniques developed in this thesis would permit the orderly
construction of a catalogue of approximate impulse responses
for interesting shapes. This catalogue should allow extra-
polation to new shapes and attitudes differing somewhat from
the ones in the catalogue. Finally, this cataloguing could
help determine more relationships between the approximate
impulse response and the geometry of the scatterer. The
ultimate goal would be to develop techniques for determining
the eltectromagnetic impulse response of a scatterer by a
simple inspection of its geometry.

Although not considered in this thesis, another area of
study would be the experimental measurement of electro-
magnetic impulse response. There are two reasons behind the
desire to measure electromagnetic impulse response. First,
it would give an additional check on the results obtained
by using the technique introduced in this thesis. Second,
it would allow the consideration of bodies with virtually
any compliexity. However, in many cases the experimental re-
su]té would have much less accuracy and be more expensive to
obtain than the numerical results. The feasibility of such
an experimental measurement today appears to be only border-
Tine. The present state of the art permits production of
100 volt voltage steps with 10 percent to 90 percent rise
times of 100 pico seconds. Display of voltages with these
fast rise times is also possible with present day sampiing

oscilioscopes. So production and display of voltages with




adequate amplitude and sufficiently small rise times are
possible today. But somehow an approximate electromagnetic
impulse (or step) must be launched and the resulting
response must be detected if approximate electromagnetic
impulse response is to be measured experimentally. This
seems to be the major problem today since the transient
response of antennas is not yet well understood. However,
it appears that a time domain formulation similar to the
one presented in this thesis could be developed to study

the transient response of antennas.
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APPENDIX 1

GREEN'S FUNCTION FOR CYLINDRICAL PROBLEMS

In Chapter 2 the result that .
+o0 R - z' cos ei _
S ( - T) ‘
_ C :
G = dz'
4R -
f c P sin 0, -
3 < T
27 ¢c? 12 - P?2 sin? 8, c
= A -
P sin ei 5 (1.1)
0 : T
C -
was used.

This integral is the Green's function for cylindrical
problems with an arbitrary angle of incidence. It is the
purpose of this appendix to develop the above result.

In order to perform the integration in (I.1) it is con-

venient to make a change of variables,

R - z' cos ei
W= (I.2)
o

dz' cdw
- = 3 (I°3)

R z' - R cos 81 ".
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where
0 < 6; < m/2

In (I.3) it is necessary to get the right hand side in terms

of w only. This can be done by noting that

(z' - R cos 61.)2 = ¢c2w?2 - P? sin? 0.
Hence,
[}
+ ;s zZz' > R cos 9,
/czwz - P2 sin? 0. !
z' - R cos 0, = 4
7 z' < R cos 8,
- 3
| e2w?- P2 sin? 6, !
I I
Compute the value of z, at which z, = R cos 61.
t
2 f 2 = 2 2
zO sin ei P< cos 61.
So
\ P cos 61
z, = —— ; 0<6, <7/2
sin 81

The value of w for which this occurs is found to be
P sin 61
W = —

0 c

by substituting z_  with (1.2).
Thus
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+ oW o>
szwz - P2 sin? 8. c
dz'
R -
cdw P sin 81
TV 22 2 in2 pow s — (1Y) :
c“we - P“ sin 81 c . -
Substituting (I.2) and (I.4) into (I.1) gives -
[o 0] -
c S(w - 1)
G = — / dw
21 c?w? - P?2 sin? 0. -
P sin ei _
c

. c P sin ef ”
; sy T >
2mVzq2 | p2 gip2 6. c _
G: J
P sin 6, -
0 y T <
C

which is the desired result.
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APPENDIX II
-
DERIVATION OF VxA FOR CYLINDRICAL PROBLEMS

In Chapter 2 the expression for the magnetic vector

potential was derived as

P sin 0.
R |
C -+ >
5 > C J(p|:t|>
A{p,t) = — |ds' ‘ dt!
2T c2(t-t')% - P? sin? p
S t'=-w

It is the object of this Appendix to derive VxA.

It is convenient to change variables,

P sin ei
W=t v ———1L
c
Substitution gives
t > > P sin 6.i
Jip' W - ———
> > c c
A(p,t) = — |ds' / — dw
2m c(t-w) "c(t-w) + 2P sin 0,
5 W=-oo

; >
Now compute VxA. Since the curl is with respect to the
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unprimed variables, it may be taken inside the integral

which gives

> > P sin 6. 5
t J(p' W - !
+(+ ) c dw * ¢
VxA(p,t) = — |ds° — { yx -
2 Ye(t-w) | Ve(t-w) + 2P sin e,
s w:..oo \

Applying a vector identity to the above equation yields

> >
VXA(pﬁt) =
t
c dw 1 +(+ P sin 61.
— (ds' | = AV XJ{p'sWw -
2m c(t-w) /c(t-w) + 2P sin 8 c
S W==0
> > P sin 61.
Vxd(p' W - —)
+ < . (I1.1)

Yel(t-w) + 2P sin 0.

It is convenient to work in Cartesian coordinates. In
(II.1) the gradient term in the curly brackets may be
written

{ 1

v .
[/E(t-w) + 2P sin P
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~ 8P ~ 8P - S'in e_i
= a — + a —_—
X 5x Y oy Lc(t-w) + 2P sin ei]3/2
But
o - o'
P = Jp-p'] =
/(x_x»)z + (y—y')2

Performing the differentiation of P gives

1 aP sin ei

v
/c(t—t') + 2P sinei [c(t-w) + 2P sin 91]3/2

(I1.2)

where

In (I1.1) the second term in the curly brackets is

| P sin 6. A 3J A 3 ~ (34 54
+> >
VXJ(p"w_-—-——.l-) = ax__z__ a _._Z.+az _l-_x
c Jy Y ax X 3y
P sin ei
Define T=w - sQ
C
> > ~ 83d, 9t . 8d, 8t . f8d, 3T 8, BT
Vxd(p',T) = a, — — - a, — — + a, —_——
3T By YT ax 9T 98X 3T 23y

Using the above definition for Tt and performing the differ-

entiation gives
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> > P sin ei sin ei ~ aJZ y-y'
VxJd(p',w - ) = - [a, —
c c T P
- i ’ - 1 - i
-;adz{xxi_;adyxx-adxyy _
Yoor [P Zlat P or P Jd -
This may be written in the form -
> >
> > P sin 8. sin 8, 3d(p',T) - -
¥xd (o' W - iy - 1 ] X, (11.3)
c C 3T
P sin 61 —
T=W -
C
Substituting (II.2) and (I1.3) into (II.1) gives
t —
> >
> > ¢ sin 61. dw J(p's1)
VXA(p,t) = ds' f - 3/2 ;
2T c(t-w) |[c(t-w) + 2P sin 61.] ‘ '
s W==-o
3 -
1 BJ(p',T)l ~
+ 1 xa
C/c(t—w) + 2P sin o, 31 F
J P sin 6, -
T=W -
C
P sin 6y ,
Changing back to the original variable t' = w - — -
C
gives
P sin 6.
£ e — 1 -
¢
+(+ ) c sin e1 dt'
VXA p’t = dsl -t
2w /Ez(t-t')z - P? sin? 0,
s tl=-ow _
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c(t-t') + P sin 61.

which is the desired result.
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APPENDIX III

LIMITING PROCEDURE FOR CYLINDRICAL PROBLEMS

The purpose of this Appendix is to carry out the limit- -
ing procedure in equations (2.5) and (2.6) of Chapter 2.
Consider the limit occuring in (2.5) first and define -
+ .
I(D”,t) = ' —
P sin 6.
£ =« —— 1
c -
c sin 6, A A dt'
Tim ds'(a’-ap)|
p > p" 2m ! c?(t-t')? - P sin? o,
t'z-o
> >
HZ(D',t') 1 EHZ(O',t‘) -
. + - (I11.1)
c(t-t') + P sin 0. c ot -
This may be written as —
I(B",t) = o bt
‘. P sin 6i
c
c sin 6, ~ A dt'
Tim ds'(a'-ap)
5> p"  2m t P e (t-t')? - P? sin? 0 =~
$-S t'=-w
8 N
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Ho(p',t") 1o, (p',t")
. Z + 2 ]
c(t-t') + P sin 61 C at!
P sin o,
t - i
c
c sin 61 (A ~ ) dt'
+ Tim ds'{a'+*a
o+ " 27 P /cz(t-t')z - P2 sin? 0,
Se =
-+, 1 +| 1
Hz(p , t ) 1 SHZ(D y t )
[ + - ] (I11.2)
c(t-t') + P sin 61 c at'

-
where Se is a small segment of s containing the point p".

Define the first term n the right hand side of (IIl.2) to
-
be Il(p”,t). This term causes no trouble and may be written

simply as
I +II
l(p :t) -
' P sin 8.
t - ! —
c
c sin 8, A A dt'
! ds'(a'-ap) /
2T ! c? (t-t')? - P2 sin? 0,
S-S ti=-w
€
Ho(p'st!) 1 aH_(p',t')
pls ' d pl’ '
- I z + - z 1 . (II1.3)
c(t-t') + P sin 0. c ot

-5

Assume that Hz(p,t) = 0 for t < (tl - P sin ei/c), S0

the second term on the right hand side of (III.2) may be

127



written as

-5
Iz(p st) -
P sin ei
t - —
c
c sin 8, (A ~ dt'
Tim ds'(a'ea,)
3 " 2n 1P /Ez(t-t')z P sin? 0, -
P sin 61
4 S t'=t, -
-
Ho(p'yt") 1oaH, (Bt -
+ - ] (I11.4)
c{(t-t') + P sin 0, c ot
It is convenient at this point to change variables,
. P sin 6, —~
W = t' o —_— s 4
C
and also to break (III.4) into three pieces (Iza’ Izb’ and
Izc) as follows: _
Iza =
t-At -
¢ sin ei (A A ) dw
1im ——— tds'(a'-a -
o+ p" 27 1P /c(t-w) /c(t-w) + 2P sin 6,
S w=t v
€ 1
Ho(p'y1) 1 (0" 1)
pl’T aH p',‘f —
c(t-w) + 2P sin 0, c 0T P sin 6
T= W= ————— -
c
(1I1.5) et

128



( .‘.N

2b
t
c sin 6, (A ~ ) dw
1im —— [ds'(a'"a
b+ p" 2m 1 P /c(t-w)JZZt-w) + 2P sin 0,
Se t-At
1ok, (1)
. [= ] (IT1.6)
o 3T P sin ef
T= W~
o
I2C =
t
) f
c sin ei (A ~ ) dw
Tim ——— lds'(a'"-a
p + p" 2m 1 P /E(t-w)/ﬁ(t-w) + 2P sin 6,
Se t-At
H (pI,W - -_—
2z c ‘
. - R (III.7)

c(t-w) + 2P sin P

Let Se be a segment of the contour s with length 2¢
and center at ;" as shown in Figure III.1 and let E be a
disxaﬁce § from ;", assuming § < < ¢ . So S > S" is equi-
valent to 6 4 0. Finally, take € small enough so that the
curvature of s_ is negligible. (Note that this last step is.
possible at all smooth points on the contour.) Thus, on s;

the following terms may be approximated as
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l“"(

P = vy

(52+S|2

A A S
al.ap = ‘/==-_—_—=

First consider Iza' Changing the order of integration

and substituting the approximation formulas into (IIIl.5)

gives
Iza N
t-At €
¢ sin ei dw ds'
Tim / /
§ » 0 2w cl*t-w) c(t-w) + 2P sin 0
w=t -€
1
: H, (o' ) 13, (B',T) ] 5
. 4+ -
c(t-w) + 2P sin 8. c 3T Y52 + g2
' P sin o,
T:w__________.__
c
But since P > 0 and At > 0, we can write
t-At +e
‘ : 1 dw ds'
I < 1im M - F===I ‘6 r———
28l T g >0t T2 | Ttew DT VR 4 502
t1 -e

Where

131



¢ sin 6, 1 Hz(p‘,t)
Max y , [
/E c(t-w) + 2P sin 6 c{t-w) + 2P sin 0
R -
1 3H_(p',t)
S — 1 < M
c 3T 1 -
Performing the integration gives -

1

In(e + V2 | 62) + 1n g

<M (Y /pp) 1im 8
1 § + 0

Thus, 1 + 0 as &§ - 0.
2d

Second, consider I,p- Equation (I11.6) may be written

as v
e : ®
A A cdw
1im M |(ds'|a'-a -
I < . 2 1 P v vV .
2b| =5 4 ¢ c(t-w) c(t-w) + 2? sin 8,
- t-At —
where
Ho (o t) -
sin 6,193 p,t
i z < M
2rc ot - z -
Changing variables x = c(t-w) gives _
+e cAt
g
| ~ A dx
I < lim M |(ds'‘ia'-a
2b| =5 5g 2 1 P “%2 + 2P sin 0, X -
-c 0
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Integrating gives

€

< Tim M2 ds'la;-apl n 2(/C2

I
] =550

At2 + 2P sin 91 cAt

1
+ cAt + P sin 61) + 1n

2P sin ei

Since At > 0

Tn 2(/C2 + CAt + P sin 91) <M

At? + 2P sin 0 cAt 3

A A

Substituting in the approximate formulas for P and a'1~aP

gives
€
[ dS'
I < 1im MM & s
2| = s g 2 3 V52 4 o2
-£
E rd
ds' - 1
+ 1im M § e | | ) i
§ 0 *? 6% + s'? 2 sin 8, "8% + s'?)
-€ ‘
But the first term is zero as was shown for Iza' Thus,
€
1 ds'
I < 1im M & 1In
2b| =5 .7 2 2 sin 8 8 V52 4 s'?
-£

Carrying out the integration gives
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1

< lim 2M2 $ [}1n % ' .1n(e + vV 2, 2 )t In~|]

I 2 2
~ 5 >0 en *+ 6 8

2b
Hence, I b~ 0 as § -~ 0.
2

Finally, consider IZC. Assume that € and At are small

enough so that HZ in I?_C may be approximated by
Ho(o'sw = P/c) = H_(B".t)

Thus, (III.7) may be written as

I2C =
£ t
->
H,(e",T) sin 8, y c ; (A N ) dw
im — |ds'(a'a ——— ' :
2 §>0m 1P c{t-w) [c(t-w)+ 2P sin 61]3/2
-€ t-At

Change variables x = c(t-w) to give

IZC =

€ cAt
1. 1 " n dx .
E Hz(p”,t) sin o, 61_1;m0 ; ds'(a;'ap) /X [x + 2P sineiﬁ/z

-£ 0

Integrating out the x-variation gives
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2C

€
1 N 1 A A cAt
- Hz(p”,t) Tim - ds'(a;-ap)P
? § > 0m /cAt + 2P sin 61
-€

A ~

Substitution of the approximation formulas for P and a'l'aP

gives
I2C =
£
1 > 26 ds' ) cAt
—-Hz(p",t) Tim — - -
H
2 § >0 m htors /cAt + 2 sin 91 ST

Upon integration by parts I2C becomes

I2C =

1 > cat
+— H_(p",t) [ Tim — — tan
2

z
§ >0V )
cAt + 2 sin 61 ——

§2 + g2

& e[

—

: [
cAt sin ei S S .

+1im — tan~! — ds']
6 > 0]"6% + s'%lcat + 2 sin 8,767 + 512 3/2 o 5

Now after moving the 1imit inside the integral and taking

both Timits, Izc‘reduces to
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2C

£
1 (+ 0 cAt cAt sin 81 :
— H_(p",t + ds'
2 27 7Ty cat + 2 sin 8, s')>/°

[

After performing the integration and combining terms, the

above expression yields

1 >
= — u
12C - H,(p",t)
So in summary
> 1 >
I(p“’t) = = Hz(p“’t) .
2 P sin 61
t -
c
¢ sin 61 ~ A dt'
Tim ds'(a'-ap) /
s, 0 27 1 c?(t-t)? - P? sin? P
S-5 t'=-w
€
Ho(p',t') 1 oK, (0',t")
p',t! dH_(p',t’
. ¥4 + — 4 ]

c(t-t') + P sin 8 c at'’

The limiting procedure for (2.6) is exactly the same

i

as for (2.5) since a; =al ons_. Hence, the result for

€
(2.6) can be written by inspection,
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APPENDIX IV
DERIVATION OF VXK FOR THREE DIMENSIONAL PROBLEMS

-
— The vector potential A due to a current distribution

-
J on a surface S is given by

+ >
> > 1 J(r’,t - R/¢c)

- A(r,t) = — ds' (IV.1)

41 R
_ S

where
’ > >
R = [r - r'|

>

",T) 1 8d(r,T) ~

vxA(r,t) = — |[[———— + — —] xa
4 R? Re oT

RdS

T=t-R/c

where

-
After taking the curl of A with respect to the unprimed

variables (IV.1) becomes

( ‘l'(
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> > 1 J(Y",t-R/C)
VxA(r,t) = — [VUx ds'

Using a vector identity givés

VxA(r,t) = | o o -
1 (1) » = , T e | -
- hv-— xd(r',t - R/c) + —¥xJd(r',t - R/c)] xdS*' .
4ﬂ J R R
s (1v.2) =

It is eésyftb show that

v l = - i& ;
R R2 : (IV.3)

Now consider the curl term in the square brackets of (IV.2).

‘Expanding this term in Cartesian coordinates gives

> > : .
vxd(r',t - R/c) = -
. [3d 3d . [ay 3d . (34 3d -
a, RN A O e S 4 a, X (Iv.4)
oy 3z Yiaz 3x 9 X oy

Define T =t - R/c so (IV.4) can be written as

> > ] ~ 3J 9T BJ ST
vxd(r',t) =-—[ax——§-——--—l— -
: o dT dYy dT 92
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~ (98Jd_ 9T 9J_ ot ~ 138d. 9T ad. 37T
#oa, X o Z_ b 4a | X — - X __17. (1v.5)
Yot 9z a1 3x 3T  dx 3T 3y

Using the definition of 1t and performing the differentiation

simplifies (IV.5) to

> >
> > T 8d(r',1) ~
vxJd(r',t - R/c) = — [——] Xap . (IV.6)
o oT

t=t-R/c

Substituting (IV.3) and (IV.6) into (IV.7) gives the

desired result

> > > >
> > 1 J{r',t) 1 3d(r',t ~
VxA(r,t) = — |[ + — ] xaRdS'
4w R?2 Rc ot
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APPENDIX V
LIMITING PROCEDURE FOR THREE DIMENSIONAL PROBLEMS
The purpose of this Appendix is to carry out the Timit-

ing procedure in equation (2.11) of Chapter 2. Consider

the 1imit occurring in (2.11) and define it to be

> > > >
> > .l J(Y",T) .I BJ(Y",T) ~
I(e,t) = 1im., — [ - + — ] xaRdS'.
r_j fi 4 R Rc 3T T=t-R/c
S

Equation (V.1) may be written as

5> > > > > >
I(r",t) = Il(r",t) + Iz(r“,t)
where
> > > >
N ) 1 [J(r','c) 1 aJ(r',r)] ~
I (r",t) = _1im — _— — — Xa,dS!
1 s > -),” 2 R
ro+ r" 4n R Rc 3t T=t-R/c
S-S
€
> > + >
> <+ ) 1 [J(r',r) 1 3d(r',t1) N
I (r",t) = lim — + — ] xa,dS'
> ndl) 2 ) R
r o+ r' 4n R . Rec 3T T=t-R/c
S
€
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S ->
SE is a small patch of surface containing r".

The term Yl(;”,t) causes no trouble and may be written as

&> > > >
> 1 Jr'yt) 1 8d(r',1) ~
I(r't) = — [ [— +— ] xapds' (Vv.2)
4r R Rc o7 T=t-R/c
S-S
£
A -
Let a; be the unit outward normal vector at r', Upon re-

> A S ) > >
placing J by aixH the expression for Iz(r",t) becomes

> > > >
+-( ) 1 ~ l:H(r",'r) 1 BH(P',T)] ~
I(r",t) = 1im — a'x [———mm—m— +t — ——— Xxa,dS'
2 o>t o4q 1 R?2 Rc o1 R
1=t-R/c
S
14

To expedite the evaluation of this 1imit it is helpful to

>
break I2 into two parts:

G > -+ -+ -+

Iz(r ,t) = Iza(r ,t) o+ Izb(r ,t)
where
s
> (+ ) 1 ~ [] BH(r',T)] ~ : )
I r'st) = 1im — a'xl— XapdS' V.3
2a’ ¥ o> P o4mc R 3T R
T=t-R/C
Ss

141



Izb(r",t) = _Tim,

Let S€ be a small circular patch of surface with

o ->
radius € and center at r" as shown in Figure V.1 and let -
-> A > - - g
r be a distance 6 from r", assuming § < < e . Sor > r'" 1

is equivalent to § ~ 0. Finally take S small enough so
that the curvature of S_ is negligible. (Note that this
last step is pdssible at all smooth points on the surface.) !
A cylindrical coordinate system with its origin at ;“ and -
its z-axis normal to SE as shown in Figure V.1 is used.

Thus,

al = az -
|
R = }/(32 + p2 — ‘i
~ ~ 1
~  (-pa  +8ay) _ |
aR -
' R

Using the vector identity for a triple cross product casts

(v.3) and (V.4) into the form -
>
I r',t = tim — a_-a - —
2@ § - 0 4nc z "R R 9t '
S -
€ |
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FIGURE V. EVALUATION OF INTEGRAL OVER
S¢ AS T
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- a, — (ap +—)¢ dS' (V.5)
Z R R 9T
-
> (+ -' ~ ~ H
I r',t) = Tim — (a_*a,) —
2b 5+ 0 4r z "RT g2
Se
~ 1 ”~ +
- a, E; (aR H) ¥ dS (v.6)
>
> 3 H
Now take € small enough so that H and — are essentially
aT

constant on SE. In this case the second terms in (V.5) and

(V.6) reduce to an integration of sines and cosines over a

complete period, and thus, contribute nothing to the integral.

>
> aH
In addition H and — may be taken outside the integral giving
T
> > ~ ~
> -> 1 BH(Y‘",,t) az‘aR
I a(r”,t) = Tim ds' (V.7)
2 drme at § >0 R
S
€
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~ ~

->
1 . a_*a
H(r",t) 1lim — z "R 4gr | (V.8)

1
2 § » 0 2m R2

Substitution of the approximation formulas for ap and R

into (V.7) yields

> 2T
> > 1 BH(r‘",t) §
I a(r",t) = Tim pdpdd
28 4rc at § ~ 0 §2 + g2
p=0  ¢=0
-
Integration reduces Iza to
. > >
> > 1 aH(r",t) 1 1
I (r't) = — ———— 1im = s[In(s? + €2) +1n |=|]
z 2¢ Ry § >0 2 : 8
Hence,
-+ -+
Iza(r ,t) = 0

~

Finally substitute the apprcximation formulas for ap and

R into (V.8) to obtain

€ 27

-> > 1T > » ) 1 8

Izb(r“,t) = E H(r",t) 6]lm0 E; J 37 s p2)3/2pdpd¢
p=0 i:o
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<>
Integration then reduces I2b to

s R 1 1 -
I b(r"st) = - H(Y‘",t) Tim 0|— - V62 + EZ .o
2 § ~ 0 ) ’
Thus,
-> - 1 > » -
Izb(r",t) = — H(r",t)
2 -
SO in summary 7
> > 1 - >
I{r",t) = — H{(r",t) —
2
> > > >
1 J(r',t) 1 3¥d(r',T) ~
+ lim — |t = —] xapdS'. (v.9)
S +0 4n R Rc 3T T=t-R/c —
S-S€
'
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APPENDIX VI

FOURIER SERIES OF SPACE INTEGRATION ARGUMENT

This Appendix shows that the Fourier series repre-
sentations of the space integration arguments in (3.1),
(3.2), and (3.3) are valid and also shows how the resultant
Fourier coefficients behave. First consider (3.1) in which

the space ﬁntegration argumént is

t-P
(o) A A dt' [ H(¢,t") dH(¢,t")
f(¢) = a'-a +
R R L I T ot
t'=t
1
(VI.1)
where
>
H{¢,t') replaces H(p',t)
P = P(¢)
Now expand H(¢,t') in a Tay1br series about t' = t - P, i.e.,

1
Ho,t') = H (¢) + H (¢)(t-P-t') + — H (¢)(t-t'+P)2 +..,
0 1 ? 2

Then (VI.1) can be written as
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dt' 1
t -t - P {{t-t'+P)

f{¢) = al-apr J

1

(t-t'+p)3/2 [H o+ H (t-t-P) +. Th (VI.2)

It is convenient to change variables,

x2 = t-t'-P ,
in (VI.2) giving
Ytot'-
) A A 1 ,
f(o = 2 a'+a dx [H + H x% +...]
P (x+2p)3/Z "0
0
""'—"lTTZ'[ 2 ( )
+ H o+ H x° +...] . VI.3
(x+2P) . 2
Integrating (VI.3) term by term yields
A A /t‘t['? ‘/t-tl—P
f(¢) =2 a;-aP Ho + H1 [-
S ot +p
/»_ + +)/ - - }
e | v Pt - P
Y2p |
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‘@

o Yboot +p 4Vt -t - P
+ 2 a' ap H 1n 1 1
1 1
ap
“(t-t,)? - P?
+ H [
2 2
ft-tl+P+’/t-t1-P
+ P 1n ] +...F . (VI.4)
"op

Since t - P >t , then f(¢) is continuous and has at
lTeast a bounded first derivative for P > P0 > 0. It then
remains to investigate the behavior of f(¢) about P = 0.
Let P = 0 occur when ¢ = ¢0. To investigate f(¢) near
¢ = ¢0 it is necessary to have an expression for ;i';P in
this range. Assume that the contour is smooth so that this

portion of the contour may be represented as an arc of a

circle with radius of curvature R(¢) as shown in Figure VI.1,

In this representation a positive sign is assigned to R if
E is an outward normal and a negative sign is assigned to
R if E is an inward normal, i.e., R(¢) is positive at ¢ if
the contour is locally convex and negativé if the contour
is Tocally concave. }Appiying the law of cosines to Figure

VI.1 gives

a;-aP = - — (VI.5)



FIGURE VI.I REPRESENTATION OF CONTOUR ABOUT
OBSERVER
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*‘ Substitution of (VI.5) into (VI.4) yields
- 1 ot - p bt - P
flo) = - — {H 1 + 2 H P[- :
2R | ° 1
- Ve -t + P boo ot o+ p
1 1
Jt -t - P + /Ef- t + P
+ 2 1In ! 1 ]
op
V/(t_t )2 - PZ
+ 2H P[ 1
- 2
/t -t - P + /; -t + P
- + P 1In : 1 1 +... (VI.6)
[ o
where

Since t < t - P, then (VI.6) shows that f(¢) is continuous
for all values of ¢. Moreover, (VI.6) shows that the first
derivative of f(¢) possesses only a logarithmic singularity
— at ¢O.
Thus, since f(¢) is continuous and bounded, then the
Fourier series representation is not only valid, but also

uniformly convergent (Carslaw, 1930). In addition, since

- 151



the first derivative of f(¢) possesses only a logarithmic

th

singularity, then the absolute value of its m Fourier

coefficient is less than M/mz';' for all m greater than
zero where € is an arbitrarily small positive number and
M is some positive number independent of m.

The treatment of (3.2) is the same as for (3.1). The
conclusions are also the same. Thus, the Fourier series
representation of the space integration argument in (3.2)
is not only valid but also uniformly convergent. Furthermore,
the m*" Fourier coefficient is less. than M/m> "€ for all
m greater than zero where € is an arbitrarily small positive
number and M is some positive hﬁmberrihdependent of m..

The consideration of (3.3) is somewhat-simpler than

either (3.1) or (3.2) since P is never zero in (3.3). The

space integration argument in (3.3) is

kb
o) N dt'  aH(4,t') .
gl¢) = a'-a Vi.7
1P | Yy tr o p gt

where
>
H(é,t') replaces H(p',t)

P = P(¢)

Now expand the time derivative of H in a Taylor series about
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dH(o,t") 1 2
—_—— =G (¢) + G1(¢)(t-P-t’) + — G (¢)(t=-P=t")" +.,

t-P
g(¢) = a'-a 4t [ + 6 (t-P-t') /% 4]
1 P (t_P_tI)T/Z 1
t'=t
1
Performing this integration gives
~on 172 ! 3/2
g(¢) = 2a'+a [G (t-t -P) + -G (t-t -P) +...]
1 s} 0 1 3 1 1

(vi.8)

Thus, g(¢) is continuous. Moreover, since the contour is
smooth, then the first derivative of g(¢) exists and is at
Teast bounded. Carslaw (1930) shows that under these con-
ditions the Fourier series representation of g(¢) exists,
is uniformly convergent, and that the absolute magnitude of

th Fourier coefficient is less than M/m? for all m

the m
greater than zero, where M is some positive constant in-

dependent of m.
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