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Abstract

This note considers the representation of the solution of electro-
magnetic scattering and antenna problems in terms of eigenvalues and
eigenmodes of electromagnetic integral equations and their method of
moments numerical approximation. Certain features of the eigenmode
expansion are related to pole terms in the singularity expansion method.
i'or impedance operators eigenimpedances are defined and shown to be
useful for considering the effects of impedance loading on the object re-
sponse, thereby giving an approach to synthesizing the object broadband
and transient response characteristics.
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Foreword

I have been working on this eigenfunction expansion method for
some time now and the present note represents a start on the problem.
[ would like to thank various people with whom I have discussed this
topic including R. Garbacz, F. Tesche, K. S, H. Lee, L. Marin, R.

Harrington, and R. Mittra.

I sing of arms and the man who came of old, a fated wanderer,
trom the coasts of Troy to Italy and the shore of Lavinium; hard driven
on land and on the deep by the violence of heaven, by reason of cruel
Juno's unforgetful anger, and hard bestead in war also, ere he might
found a city and carry his gods into Latium; from whom is the Latin
race, the lords of Alba, and high-embattled Rome.

Muse, tell me why, for what attaint of her diety, or in what vexa-
tion, did the Queen of heaven urge on a man excellent in goodness to cir- ‘
cle through all those afflictions, to face all those toils? Is anger so

fierce in celestial spirits?

Vergil
The Aeneid
trans. by J. W, MacKail
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I. Introduction

Once upon a time* the investigation of electromagnetic interaction
with objects was begun. In the context of the nuclear electromagnetic
pulse (EMP) that question has been quite important. Due to the complex-
ity of the problem of EMP intefaction with electronic systems techniques
are needed to handle such problems with a maximum of insight into how
to decompose the problem into some kinds of smaller problems. This
decomposition allows parts of the problem to be considered separately
and often simplifies the numerical aspects of the computation.

Not too long ago the singularity expansion method {SEM) was intro-
duced to aid in the solution of electromagnetic problems.l’ 2.3 In such a
representation the solution is expressed as a collection of singularities
(poles, branch cuts, entire functions, etc.) in the complex frequency
plane. This note deals with what might be called the eigenmode expan-
sion method (EEM). In this representation one finds the eigenmodes and
eigenvalues of appropriate electromagnetic integral equations and uses
these to represent the solution as an eigenmode series. In considering
the eigenmode expansions comparisons of various aspects can be made
to the singularity expansion. Thereby more insight is obtained into both

approaches.

Much has been learned both theoretically and numerically about
SEM but much is still to be l-e:atrned.13 Some work Has been done on what
can be referred to as characteristic modes in which the equation defining
the modes is somewhat different from that used later in this note.7' 8,9
The prefix ""eigen'' is used to distinguish the modes in this note from the

"characteristic modes'’ considered by othars.

#*This opening was suggested by Maj. Bill Adams, Hg DNA, while
we were both flying on Continental flight 94 from San Francisco to Albu-
querque on 16 May 1974 as I was writing this note.



In this note we consider the general eigenmode formulation for

some antenna or scattering problem as indicated in figure 1.1. While
one is often interested in finite size objects in free space as in figure 1.1
the method discussed here applies somewhat more generally to other
problems described by the same forms of integral equations. This note
begins by defining various terms in the eigenmode expansion and then
relates them to pole terms in the singularity expansion. An important
application of the eigenmode expansion of impedance operators is made
to the synthesis of impedance loading of objects. Of course this note
just introduces these topics. Practical examples will need to be consid-

ered and the concepts can perhaps be further developed.
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II. Some Preliminaries from SEM

Let us begin with some basic definitions. Start from an integral

equation written in the general form (perhaps normalized and with the

space coordinates often suppressed)s’ 1
B(r,rss) ; Ulrh,s) > = 1(r,s) (2.1)

<
where %(r—:, 1_;';5) is the kernel of the integral equation (related to the dy-
adic Green's function), :I;(r-'., s) is the excitation function in some normal-
ized form such as the negative of the incident electric lield or an antenna
gap source field taken as an appropriate delta function excitation in time
domain, and %‘I’(r_f’, s) isthe normalized response related to the current den-
sity (or surface current density) on the object of interest. The two-sided
Laplace transform variable with respect to time is s, the complex fre-
quency. The domain of integration is the set of volume(s) and/or sur-
face(s) describing the scatterer or antenna of interest. Typically the

surrounding medium is taken as free space.
ry .

. . 17,1 :
[n numerical form from the method eof moments the integral

equation is written as a matrix equation of the form

T (). Ts) =(T(s)) nm=1,2, -+, N (2.2)
n, m n n

This is actually only an approximation to the integral equation (equation

2.1), albeit a very useful one. In certain forms of the method of mo-

ments (MoM as coined by A. Poggio) the vectors (U_(s)) and (Tn(s)) are

some discretization of the continuous functions %J‘(;'fré) and ?(r_", s); such
cases are analogous to the trapezoidal rule, Simpson's rule, etc., of
numerical integration and for conceptual purposes can be thought to be
"physically meaningful. " More general functional expansions in MoM
are also possible in which the "components'' of the numerical vectors

(ﬁn(S)) and (Tn(s)) are the coefficients in such functional expansions.

-8~




'he matrix form (cquation 2.2) has demonstrated numerical utility.
l'urthermore it provides a way for one to investigate some of the mathe-
matical properiies of antenna, scattering, and other electromagnetic
problems. I'or such theoretical purposes the matrix equation should be
in some sense an accurate representation of the integral equation. One
Sriterion of such accuracy is the convergence of the solution (?In(s)) to
U(s) as N — . However not all forms of solution are convergent in this

sense but are still numerically useful within certain restrictions.

An integral equation which can be approximated by a matrix equa-
tion with solution convergent to the true one as N - « can be defined as
being matricizable. A matricizable integral equation can be considercd
exactly solvable by MoM, Of course one should consider for what values
of the complex frequency s the integral equation is so matricizable and
thereby solvaple. There are many forms of integral equations and many

types of antenna, scattering, etc., problems to which they can be applied.

An important set of properties of the solutions of electromagnetic
problems is their properties as analytic functions (in the usual complex
variable sense) of the complex frequency s. These pronertics form the
basis of the singularity expansion method (SENM). !Nor certain itypes of
electromagnetic problems the solution has only poles in Lhe [inite s

]

plane. In cither problems branch cuts are also included in the solu-
tion.” When considering a matricizable integral equation then one can
consider for what portions of the s plane the integral equation is matri-

cizable. Note that analytic continuation is applicable to this question.

SEM, in its basic form to date, has considered the analytic prop-
erties of general integral equations from the analytic properties of the

determinant

Dy(s) = dydet ((Fn m(sn) (2.3)

»



where dN is some convenient normalization constant which may be 1 or
some convenient function of N to put formulas in various convenient
forms and/or give BN(S) a convenient limiting form as N -~ o. For
cascs that the determinant is an entire function of s the response has
only poles S, in the finite s plane found from the equation

D(s ) =0 (2.4)

a

where ideally the limit has been taken for N = o. For such S, if the

poles are first order we have

T (s w) =@)=@) «- (T (s N
m <o n n n (o4

. n, m
o 04
(2.5)
I_" . > - —_ - — . =
LTspsv, >=0 =<4, ; Fis ) >
The solution takes the form
(U (s)) = E n (siv_ ) (s -s) + non pole terms
n %4 n 04
0% (04
(2.6)

~ -n
U(r,s) = n (s)v (r)(s -s ) “ } non pole terms
Z a a @
]

with n, = 1 for first order poles. The coupling coefficient for a first

order pole is

(2.7)
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o
where
~ 1 dﬂ
T ) === T  (s) 0=1,2, 3, ¢+
n, m 2! £ n, m
£ ds
[a4 sS=8S
o
N - (2.8)
— 2 —
— —_ _ 1 d —_— = —
I' (r,r') & = — I'(r,r';s) £=1, 2, 3, <=~
£ 21 £
a ds
S=s
a

Various forms are possible for s S, Similar formulas can be devel-
oped for higher order poles.

~

~ X .
If (Fn (s)) and I'(r,r';s) are symmetric then one can set
»
(w )y =(v)
n n
o o
(2.9)

p(r) = v (r)

and the formulas and computations simplify somewhat.

Note that the E
field integral equation operator is symmetric whereas the corresponding
one for the H field is not.

-11-



III. Eigenmodes: Vector and Dyadic

An interesting approach to the solution of the integral equation 2.1
invokes an eigenmode expansion. Let us define our eigenmode equations
as

~

T (s) . (R (s) = (s)R (s))
n, m n B n
B B
(3.1)

<Ts) 5 Ryle) > = Xyle)Eg(s)

~
—

where XJB is the f3th eigenvalue and B the corresponding eigenmode.
As in the previous section the numerical form from MoM is assumed to
converge to the continuous form for TB and the modes as N — «., Having

~
defined the right side modes RB(r, s) the left side modes are

(Ln(s))B . (Pn’m(s)) = AB(S)(Ln(s))B

(3.2)

)L

(s)> = Tﬁ(s)ﬂﬁ(s)

<Eﬁ(s) ,

Note that the left and right side eigenmodes have the same eigenvalucs

since both cases have the same characteristic equation
det(T  (s)) - A (si6_ ) = 0 (3. 3)
n, m B n, m

where the Kronecker delta is

:: — —
The analogous operator is I6(r - r') so that we can symbolically indicate

~12-




-

(s)16(r - 7') = 0 (3.5)

;, leg) - i'
( B
where det operates over the range for r_':; of the integral equation. In
a limiting sense as N — o the definition of a matricizable integral equa-
tion can be used to define the operation of determinant for the continuous

operator case as in equation 3. 5.

Consider some s for which

deet((f‘n m(s))) + 0 (3. 6)

or in the limit
D(s) # 0 (3.7)

Then the matrix (?‘n m(s)) has a unique inverse. Since the matrix ele-
’ ~

ments are finite then the N eigenvalues AB(S) are all finite. Since

N
det((I’n,m(s))) = [l']l'xﬁ(s) (3.8)

then all eigenvalues are non zero for s # S,

~

The eigenvalues may or may not be all distinct. If the AB(s) are
all distinct then the corresponding eigenvectors are unique except for a
scaling constant. If some (say M) of the eigenvalues are degenerate
(say one set of these degenerate to one value) then the corresponding set

of eigenvectors (Me with 1 < Me < M) can be formed.

For simplicity let the N eigenvalues be distinct for the moment.

Then we have for two indices 8 and '

-13-



T () - R (s) = A, (s)R (s))
n, m n 8 B n 8

(3.9)

T (s) - T _(s) =X, ()T (s)
1n m n

B! I, B

Dot multiply these two equations by (En(S))B' and (ﬁn(s))ﬁ, respectively,

to give

@ (s) - (T (s) - (R (s) = YB<S)(ﬁn<s>) - (L _(s)
. g! ? B B B’
(3.10)
@ (s - (T ()R (s) = X'B,<s><'§n<s)) - (T _(s))
B! ' B B g
Subtracting gives
0 = (Rys) - Ny, NE () - (T (s)) (3.11)
B B!
if X X
and so if B(s) * 5'(8) then
0= (R () - (L (s)) (3.12)
B B!
forming a biorthogonal set of eigenvectors.
In operator form the resulting equations are
= A, (8) - X B s L 3.
0 = Pgle) - Ng ()< Byls) ; Lg,(s) > (3.13)

which for XB’S) *+ YB,(S) gives

v}

0 = <§B(s); EB'(S)> _ (3. 14)

-14-



Note that orthogonality and biorthogonality as in equations 3.12 and

3.14 are often defined with one of the terms in the dot product or sym-
metric product complex conjugatecl.17 The convention in equations 3.12
and 3. 14 might be referred to as symmetric biorthogonal or symmetric
orthogonal (if the two terms are from the same set of eigenvectors). The
common convention of complex conjugating one of the terms gives sets of
modes which could be termed conjugate biorthogonal or conjugate orthog-
onal, For present purposes the symmetric type is established as a con-
vention and referred to as simply biorthogonal or orthogonal as appro-

priate.

Now define a set of dyadic eigenmodes (cigendyads) as

(Bn _(s) = (§n<s» (I:n<s))
’ B B B
~ (3.15)
‘ DB(r,r';s) = RB(r,s) B(r',s)
In normalized form define
(En<s)> (in<s>) (Bn (s
@ p =—_r B . T P
’ B (R (s) - (T (s) (R (s)) - (C_(s)
B B3 B B3
N (3.16)
= R, (r,s)L (r', s) D, (r, r';s)
dB( ’r';S) = B E = B

g(s) > <%B(s) ; EB<s)>

which require the dot and symmetric products to be non zero (to be dis-

i
/\
.m:UH
3
1_‘.

cussed later). These dyadic modes satisfy

~15-



(T

s« D () =@ () « T (s) =X U(s)D _ ()
n, m n, m n, m n, m B n, m
B B B
@ s - @ ) =@ s . (T () = Rgls)d | (s))
B B 5
<i:(s); D

g(s) > = <:B(s) (s) > = Xy(s)Dgls)

~

LTs) 3 dyle) > = < dyle) s Ts) > = Neddyls)

Thus the dyadic modes apply equally to both sides of the integral cqua-
tion operator or matrix.

There are the orthogonality relations

(En (s)  for B =B

~ ~ ’ B
(dn m(s)) . (dn m(s)) =
’ B ’ B!
0 for B # B¢
- (3.18)
~ ~ dB(S) for B =8
<dgle) 5 dy o) > =
0 for B #F @
The normalized dyadic modes have the property
@ (sNh =@ _(s)
n, m B n, m B
~ ~ (3.19)
n ) e
dB (s). = dB(S)

n=1, 2, 3,

-16-



where the nth power of a matrix is n - 1 dot products of n such matrices.
For operators

~

T = =
d = N * ees °
5(s) = <[dgls) dgle) s +on

>

with the operator included n times with n - 1 operations (indicated by ;).
it (T
n

Y,

(3.20)

:= —
m(s)) and I'(r,r';s) are symmetric then certain simplifica-
tions can be introduced as

R (s); R - for X Y
<Fge)s By 0> =0 tor Xg(e) #

B'(S)
<Bn () = (§n<s>) <ﬁn(s>>
’ B B B
= . ~ L0 (3.21)
DB(r,r :8) = RB(r,s)RB(r',s)
(D (s))
~ n,m B
(d _(s8) = — =
’ B (R () - (R (s)
B B
: B (—— —’I.S)
—_ - —>. - B L4 ’
dB( sI';s)

-17-



IV. Operator and Matrix Representation Including Inverse

The inverse matrix or operator can be found by solving the matrix
equation in terms of the eigenvectors. Assuming linearly independent
eigenvectors (in(s))ﬁ and (ﬁn(s))ﬁ each span ?:1 N dimensional linear
vector space which contains both the solution (Un(s)) and the excitation

(Tn(s)) then we can write

N
T (s)) = ; ZB<s)<'fi (s))
n =1 n B

(4.1)
~ N ~ ~
(T (s)) = [; by (s)(E (s))
=1 B

This is merely a property of N linearly independent N dimensional vec-

tOI‘S.lG Using the biorthogonal property (equations 3.12 and 3.14) we

have
T () -+ @ (s) = ag(s)E (s) - (B (s)
B B B
(4.2)
@ () - (I(s) = by(sHL, () - (R (s)
8 B B
This gives
Ny T () + (T (s))
~ n B n {3 ~
T (s)) = ; — — (T _(s))
1 (R () - (L (s)) B
B B
(4. 3)
N N (’ﬁn<s>)8- (T (s)) N
(Tish = Y — —L & (s)
B=1 (R (s)) - (L_(s)) B
B B

~18~




N
T (s) = 55: @ (s) - (T (s))
n = n, m 8 n

(4.4)
N

(Tis) = 2. @ (s - (I(s)
n B:I N, N B n

This is a convenient point to consider the product (ﬁn(s))ﬁ . (zn(S))B.
Assume that we can construct N independent eigenvectors (Ln(s))B. Con-
sider say the first of equations 4, 3. The eigenvectors are not identically
zero. Choose ('I\'Jn(s)) such thatior' some B we have (tn(S))B . (En(s))

#+ 0, say let one component of (Un(s)) be unity and the rest zero and have
the non zero component not correspond to a zero component ol (Ln(s)).
Then if for that same 3 we were to have (Rn(s)) . (Ln(S)) = 0 there would
be no linear combination of the remaining ('Rn(s))B, (for B' # B) which
could equal (ﬁn(s))ﬁ and so necessarily (?In(s)) would not exist ((?Jn(s)) =
«w) which contradicts our hypothesis for (Un(S))' For linearly independent
ereenvectors the coetficients miust exist for all expansions of N dimen-

sional vectors. Hence

(ﬁn(s)) . (in(s)) # 0 for N linearly independent (4.5)
B B eigenvectors

Note that if one YB(S) = 0 the eigenvalues can still be distinct giving
necessarily N independent eigenvectors. This last observation should
be useful for SEM application since s = s, implies at least one Yﬁ(sa) =0

at a pole.

A matrix is said to be of simple structure il it has N lincarly in-

. 15 L L . .
dependent eigenvectors., Such a matrix is similar to a diagonal matrix
and thus can be called a diagonalizable matrix. [t is this type of matrix

‘which is assumed for our discussion. The matrix may be singular except

-19-



when considering its inverse. The eigenvalues may be degenerate, The
important property is that it is diagonalizable, i.e., a matrix of simple
structure. If the eigenvalues are all distinct then the matrix is diagonal-
izable. If the eigenvalues are not all distinct the matrix may still be

diagonalizable and so values of s for which the xﬁ(s) are degenerate

may require special attention. In this note it is usually assumed that the
matrix of interest is diagonalizable, and similarly for the corresponding

operator, unless otherwise stated.

Since (Tjn(s)) and (Tn(s)) can separately be considered as arbitrary

N dimensional complex vectors it follows from equations 4.4

6 )= ; @ (s))
n, =1 n, B
N

g_j @ _(sn' (4.6)
=1 n, 5

where the transpose relation comes from (6rl m) being symmetric and

»

where superscript T indicates transpose as

~

G snt =@ (sn (4. 7)
n, m m, 1

’ B ’ ¢

with elements interchanged about the diagonal. 'ljhus we have convenient
representations lor the identity matrix (6n.m) in terms of the eigenvern-
tors. Using the transpose dyadic modes both (Un(s)) and (Jn(s)) can be
expanded directly in terms of the left eigenvectors (Ln(s)). Nole also
that the identity matrix (or operator) is independent of s; the sum rep-
resentation is then independent of s and in particular has no poles in the

s plane.

Substituting the response vector (En(s)) from equations 4.1 into

the matrix equation 2.2 we have

~-20-



N
. =T (s - (R (s) = (T.(s)
___1 B n, m n B n
N ~ N a4
= ?_:1 aB(s)kB(s)(Rn(s))B (4.8)
Taking the dot product with (tn(s))B, and interchanging $ and B' gives

a (s, (s)L (s) - (R (s) = (L (s)) - (I(s) (4.9)
B B n 8 n 8 n 8 n

Hence

(T (s) - (T.(s)
(Un(s)) (R (38))

~

=1 Ags) R(s) - Ly ™ B
n n .

o g B B

N 1 .
= 2 —— @ (s - (T(s)
f=1 X s) ™ B

=@ st T (s) (4.10)
n,m n

Since (Tn(s)) can be chosen as an arbitrary N dimensional vector we

have a representation of the inverse matrix as

~ -1 N 1 ~
r (s)) = ; : (d (8)) (4.11)
n,m =1

~
»

n, m
).B(S) B

Substituting the response vector (?J'n(s)) from equations 4.4 into

the matrix equation 2.2 we have

-21-



( (s) « @ _(s) - T(s) = (T(s)
m n n

s n, B

M
=

g

T () - T.(s) (4.12)
m n

Considering (ﬁn(s)) arbitrarily specified as an N dimensional vector (a

"source' current) we have

(T <s>>=£$(sx5 (s)) (4.13)
n, m A1 B n,m B

Using the orthogonality relations for the eigendyads from equations 3,18

one can verify that

T et (T (s
n, m n, m
_ (s l ’% (X3 (s))
= N MM BE= "p'3), 3
B
N ~
=;(dn _(s))
:1 ’ B
= (& ) (4.14)
n, m

By successive matrix multiplication with (T‘n m(s)) from equation
»
4.13 one obtains the nth power of the matrix. Using the expression for
the inverse matrix from equation 4. 11 with successive matrix multipli-

cation cne obtains negative powers as well. The general result is

-22-




N
(T (s)? = GZ No(s)d (s))
n, m =~ n, m 8
(4.15)

n = any integer (positive or negative including zero)

The orthogonality relations for the eigendyads are used with each multi-

plication by the matrix (T'n m(s)) or its inverse to simplify the result..

Note that raising X,(s) to the nth power is all that is needed in the eigen-

B

dyad expansion of the matrix to the nth power.

Let us summarize the corresponding operator equations for this

section. Expand the response and excitation functions as

~ ﬁ();%() ~ ~
Uls) = Z < BS S> ﬁB(s) + ﬁe(s)

~

B <§B(s); EB(S)>

- ZB: <d:B(s): %(s)> - %e(s)

(4.16)

=it

) 2 <I:_EB(S); tI:(s)> ~ ~

s) = — — RB(S) + —fe(S)
B = .=
<RB(S) ; LB(S)>

L

= ; <d:B(s); %(s)> + ’_};e(S)

where Ue(S) and ‘fe(S) account for possible extra terms. The conditions

for >

<%B(s); EB(s)> + 0 (4.17)

-23~




are somewhat more complicated than in the matrix case. However if all

I__:B,(S) are orthogonal to R, for B' #+ B and if any additional terms can-
> ~
not linearly add to the R R, then the non zero characteristic of the

pr to Rg

symmetric product in equation 4., 17 should be maintained. The identity

operator is

- ITrd s+ TT (4.18)
B e

T6(r - £) ;
2
B

~
—

IMr,r' ] s) = E Y;(s)g(r—‘:;'; s) +
. B e, n (4.19)

e

n = any integer

In many cases of interest the extra terms should be zero. For
example, the sphere response is described only by discrete eigenvalues;

1,5,12
One would sus-

there is no continuous spectrum of eigenvalues.,
pect that for finite size bodies of well behaved media in {ree space (or an
infinite uniform medium) the extra terms would also not be needed.

Note that the finite size of the scattering body is an important considera-
tion since for quantum mechanical problems of scattering from a poten-
tial distribution the potential may vary throughout all space. I[lowever,
some electromagnetic problems (particu}arly involving infinite regions)
may involve other than the presently discussed eigenmode terms. Note

that the matrix form necessarily has no continuous spectrum of eigen-

values. >

-24 -



Another interesting question is the convergence of the eigenvalues
and eigenvectors to 'X’B(S), EB(S)’ EB(S) as N - o, Cnghysical grounds
one would expect that if say (Tn(s)) were a sampling of I(s) with appro-
priately smooth samgling functions in each sample zone then (In(s))
should converge to I(s) and similarly for the other terms. Note that as
N — o more and more numerical eigenvectors are involved. One then
anticipates an infinite number of eigenmodes of the continuous integral
equation operator. To accurately compute the Sth eigenvalue/eigenmode
one expects to need a significant number of samples over a significant
variation of the mode. The number of samples would be proportional to
B tor a thin wire scatterer and to BZ for a perfectly conducting fat body

such as a sphere unless certain symmetries could be utilized.

The operator can be said to be of simple structure or diagonaliza-
ble by analogyv with the matrix form if certain conditions are met. I[n
particular the eigenmodes must be all independent, even for cases of
eigenvalue degeneracy. Also there must be no extra terms so that only
the eigenvalues and eigenmodes are needed to expand the operator.
Equations 4. 15 for the matrix and 4. 19 for the operator are then of cor-
responding forms. The present discussions apply tc such diagonalizable

operators.

~ 2 —
Note for symmetric (Fn m(s)) and I(r,r', s) we have the inter-

»

esting result

(ﬁn(s)) . (ﬁn(s)) #+ 0 for a diagonalizable matrix
&1 B (matrix of simple structure)

(4.20)

<(R (s), (s)> ¥ 0 for a diagonalizable operator
(operator of simple structure)
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V. Diagonalization of the Integral Equaticn Operator or Matrix

Let us construct some convenient combinations of the eigenvectors,
eigenmodes, and eigenvalues. Define a matrix (which one might term

the right eigenmatrix) as

(E (s))
n,m

»

((R )o (R, ++e, (R) )
ny 2 N
{(5.1)

n'm 1, 2, 3’ LA ] N

for which each column is a right eigenvector, the vector component sub-
script (n) is the first index, and the second index (m) corresponds to

the eigenvector index B. Similarly define a left eigenmatrix as

(L)
1
(Lm)2
(Ln m(s)) = . (6.2)
(L_)
N

for which each row is an eigenvector, the vector component subscript
(m) is the second index, and the first index {n) correspocads to the

eigenvector index 3. Define a diagonal eigenvalue matrix as

A &) = & (s)s ) = diagl(s), Xy(s), +=+, X(s))
A, (s) 0
PWE)
- 2. (5. 3)
0 R (s)
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With these definitions we have eigenmatrix equations

T () R (s)
n, m m

s n,

R (s) - (K (s)
n, m m

L ) (Fn m's)

] L4

(Kn L8N - (@ (s))

The eigenmatrices are related as

(R (s) - (L (s)
n n

1 1 0

(R (s)) + (L (s))
n 4 n5

(T. (). (R (s)
m

n, m n,

0 (Rn(s))

. N

"

1 1 2

e R (s) - (@ (s) )
N N

Normalize the eigenvectors as

(R (s))
~ n B
F(s) = — - s
B [(Rn(s)) . (Ln(s))]
B B
(L. (s))
~ n
@ (s) = — i
8 [(Rn(s)) . (Ln(s))]
e o

~-27=~

diag((ﬁ (s)) -+ (L (s) , (R (s) - (L (s),
n n n n 2

(5.4)

< (T (s))
n

N

(5.5)

(5.6)



where the square root takes the same value in both equations. Then we

have normalized eigenmatrices as

& _(s) - ((Fn) L (E) e (F) )
s 1 2 N

(ln(s'»))1

- (T (s))
(£ (s) = 2
n, m

(2 (s))
N

with the normalized eigenmatrix equations

LFn m(s)) . (rn m(s))

@ sy T (s)
n, 1m n,m

» » 2

and the relation

T (=) . (r (s) =(6 )
n,m m n, m

Ed » »

so that the two eigenmatrices are mutually inverse.

(T () - (Kn'm(s))

X () T _(s)
n,m n, 1m

(56.7)

(5.8)

(5.9)

In operator form we have a right eigenvector of vector modes as

~

(R

14

B(s)) (Rl(s). RZ(S). RB(S). see)

and a left eigenvector of vector modes as

~

(s)) = (Ll(s), Lz(s), L3(s), cee)

—

(LB

-28~
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where there are in general an infinite number of components correspond-
ing to an infinite number of Bs. Note that each component of the above

generalized vectors is itself a vector mode function of position. One can
write the above as rows or columns provided one keeps in mind the 3 in-
dex of the components as the important quantity. In normalized form we

have

B ~ ~ 1/2
e . (5.12)
[<RB(S) ; LB(S)>]

(rg(s)) = (x‘-’l(s.), I~’2<s>, I~’3(s>, ces)
(E’B<s>> = (Fl<s>, E’z(s>. 1’3<s>. el

The eigenvalue matrix takes the form of an infinite matrix as

<7in’m<s>> = (s ) = diag(y(s), Xy(s), X(s), o+ 0)

n,m =1, 2, 3, - (5.13)
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The eigenvectors of modes equations become

~

(<F (s); R (s>>) (R () - (A (s) = (Rg(s)Rg(s))

= (Kn’m<s)) . _(RB(S))

~ (5.14)
(<LB(S); P<s>>) = (K (e - (Lgle) = K ()Lg(s))
= (L (s) « (A (s))
B n, m
and in normalized form become
(<F(S); rB(s)>) = (rB(s)) . (Kn’m(s)) = (KB(s)rB(s))
= (X (8) + (£ (s))
n, m B
(5.15)

~

F(e); T - (X  (@os) - oy
(<TFgors To>) = A o0+ dyten = Ggiolyion

= (E’B<s>) - (X (s
n, m

The eigenvectors of modes are related as
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~

(<f~:n(s) , ﬁm(s)>)

~
—

diag (<§1(s>; L (s) >, <§'2<s); f~52<s>> , o)

<r§'1<s) ; El(s)> 0
<§’2<s> : Ez(s)> (5. 16)

0

and in normalized form as

~

(<rn(s); Em(s)>) = (6, ) (5.17)

The above formalism can be extended to include special product
symbols to indicate the types of products for the vector or matrix ''ele-
ments.'' These elements are vectors and/or matrices and continuous
operation indicated by < . > is involved. This would seem to be

an interesting subject for future development.

With the results of this section the matrix or corresponding integral

equation operator can be readily diagonalized. In matrix form we have

T N (T (=N (s)
n, m n,m n, m

7 (@) &) & (s)
n, m n, m n,m

» » »

(K (s)) (5.18)
n, m

and in operator form we have
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~
- ~

(<z s); Fs) s ¥ <s)>) (<Zior: m @) - & @)

= (X (s) (5.19)
It, MM

>

Alternately we can write

T =~ 6N & ). T _(s)
n,m n,m n,m n,m

’ ] s »

- (5.20)
1;(;’,;";@ = (}B(r‘.s)) . (Kn’m(s)) . (}B(E",s))

which leads to
(T‘n’m<s))“ = (r () - (X ’m<s))“ - (@ cl)
- (5.21)
%“(F, r';s) = <:*B<F,s)> - (Kn’m<s>)“ : (%B(;’S”

ghese are similarity transformations and we can speak of (’fn m(s)) and

»

I'(s) as being similar to (KX (s)).
n, m

Another interesting form of equations 5. 18 and 5.19 is equations

for the individual eigenvalues. Setting n=m =§ in Kn m(s) gives

X
B(s) as
'XB(S> =@ ) - T () - & (8)
n B Iy, IM n B
(ﬁn(s» . ('fn () (ﬁn<s»
_ B ’ B
(ﬁn<s>) . (in(s))
B 3

(5.22)
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-i- _ - - i—,: . :
B(S) <£B(s) s I'(s), rB(s)>

i

] <EB<S>: T(s) ; %B(s)>

I'or symmetric (‘f‘n m(s)) and 13:(1—‘.. x—‘.';s) we have

T ()= ® (st
n,m

’ n, m

~

(LB(S)) = (RB(S))

® Y& (s)
‘ n,m n,m

»

= diag((R_(s) + (R (s) , (R (s)) (R (8) ,+---, (R (s) «(R (s)
n 1 n 1 n 2 n 2 n N T N

~

(<R B s>>)

- diag(<%{;l(s); §1<s>> . <§2<s> ; %2(s>> s o)

(R (s))
~ "~ n
T ) = s = — R
B B [(Rn(s)) + (& () ]
B B

. (5.23)
o
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RB(s)

'f‘t: (s), % (s)
B B

(s) = (s) =

mh”
Ty

1/2

T )= ()T
n,m n,m

> 2

~ b 4

(ﬂB(s)) (rB(s))

N ) L - O S PR
n, m n,m

» ]

E(s)l E (s) = (6 )
n m n, m

~ T ~ _
(e N <T‘n’m<sn FAr (s)) = <7£n’m<s>>
(<Fn<s> Ts) ; ;’m<s)>) = (X (s))

-~ n -~ n ~ T
TN = sy & (). G (s))
n, m n, m n, m n,m
™, rys) = <FB<I-’,s>> . <7in,m<s»“ . (I%(F.s»

Ag(s) = (rn(s))B . (Tn’m(s)) . (rn(s))B

e A
AB(S) <rB(s) » 1(s); rB(s)>
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VI. The Characteristic Equation

The complex natural frequencies and eigenvalues are related
through the characteristic determinant which can be expressed in terms

of two complex variables, s and X, as

B (s,2) = d det ((T‘n

N (80 - ”%,m’) (6.1)

»
Here dN is a convenient normalization constant (introduced in equation
2.3) which can be set equal to 1 or to some convenient function of N,

say for a convenient limiting form for DN as N —» oo,

Consider some of the properties of BN(S’M' This characteristic
determinant is a polynomial in X of degree N and can be written as

D.(s,1) = d det(@‘n IRCHIERYCR m))

N N ,
. N (6.2)
det((rn’m(s)) - k(an,m)) = Z ap(s)h
b=0o
N ~
= a A -2.(s))
N g, 8
N ~s
= I O (s) -2)
g=1 P

Some of the coefficients in this characteristic equation have commonly

encountered forms. These ino::lude16
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t
O
ury
~—
>
~—

(6. 3)

= E Sgn(ml,---,mN)?l m (S)T_"z m (s)...T (s)

- Z sgn(n , -+ -,nNﬁ‘n , l(s)Tn

(nls"',nN) 1 2’

2 LI ) n

where the summation extends over all possible permutations of (1,2,+--,
N) of the n or m indices. The sgn function is defined as the sign of the

permutation listed by its N arguments as

sgnm_,+++,m_) = sign Il (m_-m)]
! N 1<p<q<N P
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m -m )
P

1<p<q<N

B {m -m )
1<p<q<N P

(m -m_)
n ——= (6.4)
1<p<qg<N | q p|

so that the sgn function is +1 or -1, Permutations with sgn = +1 are
called even and those with sgn = -1 are called odd. If r successive in-
terchanges of pairs of numbers in (1, +++, N) give (ml, e, rnN) the

latter permutation has a value of (-1)" for sgn.

The above considerations can be extended to all the coefficients in

o . 1
the characteristic equation from 2,16

det<@"n (s - "‘%,m))

s

- Z sgn(ml,'--,mN)(fl,ml(s) - xal’ml)

(FN, (s) - X6 (6.5)

My N”“N)

The cdoefficient of AP in this-equation is found by multiplying out the fac-

tors and keeping those which have A exactly p times giving

a (s) = Z E sgn(ml,-”,mN)

p
n e e m eee M
1< N'p ( 1’ ’ N)
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- (<1)P ) ) )(Sgn mnl,...,mn&-p)

n<0n0< m s, In
1 rLN—p( n, nN-p

I T (s 0<p<N (6.6)

n:nl’co.’rlN-p n

This result takes the form

Py = - p ® = * 8

ap(s) = (-1) Z det(Tn’m(s) » m,m =n,, N, s nN-p)
n1<---<nN_

p (6.7)

0 <p <N

and the summation is over all possible sets of n, Ceoe < nN-p' The de-
terminants in equations 6.7 are then of N - p by N - p matrices. In ef-
fect the new matrices are formed by using only rows Dys *ots nN—p and

columns n_, «-«-, ny from the original matrix (T (s)).
1 -p n, m

Another representation of the coefficients in the characteristic
equation is in terms of the eigenvalues. One can expand equation 6.4
and equate coefficients of kp. Alternatively one can note that the matrix

from equation 5.3

<7£n,m<s>> = (X (s)s_ ) = diag(X (s), =+, X (8))

= (6.8)
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has the same eigenvalues as (f‘n m(s)) and hence the same characteris-

tic equation. Since the determinant is the product of the eigenvalues

equation 6.7 becomes

Py = p © = * s 0
ap(s) = (-1) ! /.Z< det(An’m(s) » MM =, 0, R nN_p)
1 N-p (6.9)
0 <p<N
or
~ _ P
3 (s) = (-1) > n Xg(s)

(6.10)
0 <p <N

For p = N the sums in equations 6.9 and 6.10 can be defined to be 1.

Note then that the special results of equations 6. 3 follow very simply.

If we have an N by N matrix (cn m(w)) then we have the interesting
L4

result
4 N
mdet((cn’m(w))) = E det<(cn,m(W)) )
p=1 p

(cn’m(w)) for n" # p _ (6.11)

(cn,m(w)) =
p )
(W Cn,m(W)) for n = p

which is a row expansion; there is a very similar column expansion as
well. Consider the N by N matrix (brl m)' A convenient derivative

formula with respect to A is
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N

\ | :
Y Y - - Y
sy det(( V=26 ) P det((bn’m) By ) )
p=1 p p
(bn,m) isan N-1by N-1 matrix with n,m # p (6. 12)

p

(6 m) isan N-1by N-1 matrix with n,m # p
p
Another formula for the coefficients in the characteristic equation

is obtained from the formula for the coefficients in a Taylor series as

(s)) - A6 )) (6.13)
m n,m

A=0

According to the Cayley-Hamilton theorem a matrix satisfies its

own characteristic equation. Hence we have

N
Sa @ (s = ) (6. 14)
5% P n, m n, m

For the continuous operator (assumed matricizable) we can write

~

N ~ .
lim Y d 3 )P Erss) = 0 (6.15)
- N p
N-w p=o0

~

where d__  is chosen such that d ao(s) tend to a finite but not identically

zero limlic. One way to confirml\ihe above formulas is to write the oper-
ator or matrix in diagonalized form from equations 5.21 and thereby
convert equations 6,14 and 6. iv into equations involving a diagonal eig-
envalue matrix or operator with the 3th diagonal element now being the

~

characteristic equation for A = XB(S).
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VII, Eigenvalues Related to Natural Frequencies

The characteristic equation can be used to relate natural frequen-

cies and eigenvalues. The natural frequencies are determined from

DN(Sa,O) = DN(Sa) =0 (7.1)

The N eigenvalues are determined from

BN<s,-YB(s>) =0 forf=1,2,3 =+, N (7.2)
These two equations show that the SEM and EEM representations are
linked through the determinant function BN(S,K). 'The eigenvalues YB(S)

(for 3 =1, 2, «++, N) and the natural frequencies sa (for all o where «

is some index set) can be interrelated.

Equation 7.2 can be used to establish the analytic properties of the
eigenvalues X‘B(S) as functions of the complex frequency s. These prop-
erties can be used to construct a representation of the eigenvalues in-
volving their singularities and their zeros. As indicated in equations
t. 13 and 4,19 the inverse of the integral equation operator uses terms
involving X;;;(s). Hence the singularity expansions of the reciprocals of
the eigenvalues are desired. This section considers some features of
the singularity expansion of the reciprocal eigenvalues. An important
feature of the relation between eigenvalucs and natural frequencies ig the
typical situation of natural frequencies belonging Lo particular cigenval-
ues in the sense of being the zeros of particular eigenvalues. The eigen-

values tend to separate the natural frequencies into separate sets, one

set for each eigenvalue,

A. Neztural frequencies

Equation 7.1 is the defining equation for the natural frequencies of
our object of interest. Since DN(s) is usually analytic near an s, ol in-
terest it has a power series expansion as
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8

£
D_(s) = D (s -s )
N = N£ a
a
(7.3)
2
= l d ~ = . o0
DN = 7 7 DN(S) for £ =0, 1, 2,
g ds
a - S-S
a

. 1
Assuming that the numerator (the cofactor matrix) has no zero at 8,’

then there is a pole of order n, at s, associated with the object re-

sponse provided

(7.4)

R

e
[v]
o
a]
~

1l
o]

I"or certain types of bodies BN(S) is meromorphic (has only pole
singularities in the finite s plane) and is hence analytic at its finite
zeros.l’z’4 Such objects include finite size objects in frce space, both
perfectly conducting and with well behaved properties of the media. l'or
some other types of objects there may he zeros of the ''denominator"”
such as BN(S) which are not analytic. Such zeros are excluded from

our consideration.

B. Eigenvalues near the natural frequencies

From the eigenvalue equation (equation 7.2) the N eigenvalues at

the s, satisfy

D (3,:Xg(s,)) = 0 for B=1,2,3, ++, N (7.5)

Since
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N
Dyfs,) = dyy 3131 Agls,) = dya,ls,) = 0 (7. 6)

then at least one of the eigenvalues must be zero at S, Liabel one of

these by B = Bl.

Suppose there is an M-fold eigenvalue degeneracy at s,

X, (s)=2_(8)=cese =2, (s)=0
(7.7)
Bl-’_[32<-~-<BM, 1<M<N
Writing
N
D (s »A) = dy Z a (s,
p=0
N N
= d (1) JI X -2x, (s ) (7.8)
N h B "«
B=1
then BN(SO,A) has an M-fold zero at X = 0 which implies
ao(sa) = al(sa) = ee. = aM(sa) =0 (7.9)

In the complex s plane the s, are digscrete and form a set of mcasurc
zero (zero area) so one might expect degeneracy at s = s, to be an un-
usual occurrence. This would be expected for bodies with rotational
symmetry (accidental degeneracy) such as in the case of a sphere.
However such bodies tend to have natural frequency degeneracy as well,
again as with a sphere.1 The conditions for such degeneracies need fur-
ther study as already pointed out in sections IV and V in connection with

the matrix (operator) diagonalizability.
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It is well known that the eigenvalues are continuous functions of the
matrix elements.ls' 16 Except for singularities the matrix elements are
continuous functions of s. Hence the ;p(s) are continuous functions of s
as are the eigenvalues :B(s). Then except for singularities in the ma-
trix elements small changes in s near S, produce small changes in the
KB(S). If only one eigenvalue is zero at S, then only that eigeanvalue is
small in some neighborhood of S, In the inverse matrix (equation 4. 15)
or inverse operator (equation 4. 19) this small eigenvalue in the denomi-

nator gives the dominant term which is the pole at S,

A non degenerate eigenvalue is an analytic function of the matrix
elements since it is a non degenerate root of the characteristic equation
(a polynomial in K).ls Hence non degenerate eigenvalues are analytic
lunctions of s wherever the matrix elements are all analytic functions of
s. Points of degeneracy in the s plane are potential points of non ana-
lyticity tor the corresponding eigenvalues. One might expect branch

bond

.points and associated branch cuts in the AB as functions in the s plane.

~

However, the degenerate KB may possibly still be analytic at degener-

acies.
Let us assume that at some s, of interest all the Aﬁ(s) are ana-
lytic. They can then be expanded in a Taylor series convergent in somie

circle of non zero radius centered on sa as

£=0
a
(7.10)
)
1 4d =~
A F = ——A,(8)
1
Bﬂ & dsB B _
@ sS=s

Then near sa the matrix determinant is written as
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1}
[N
w
OA
/)]
i
Q.
—p
>

s - s )YV (7.11)
Q

Suppose there is a first order pole (DN1 # 0). Then one and only
a

~

one of the KB(S) has a zero at s, and s, can be said to belong to that TB.

Suppose that there is a second order pole at S, Then equation 7.11
requires two eigenvalues with first order zeros or one eigenvalue with a
second order zero. In order to have a second order poie in the inverse
matrix (equation 4.15) requires, if the matrix is diagonalizable in a
neighborhood of 8, there must be one and only one eigenvalue with a

zero at sa and the zero is second order.

Similarly (for eigenvalues all analytic at sa) a pole of order n,
requires one and only one eigenvalue to be zero at s, and the zero is of
order n.; the natural frequency belongs to only that eigenvalue. Clearly
analyticity of the eigenvalues has important implications, Conversely,
if more than one eigenvalue is zero at S, (and if the matrix is diagonal-

izable) then the eigenvalues (at least two of them) are non analytic at S,*

C. Eigenvalues away from natural frequencies

With s # S, (for any «) then we have

(7.12)
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Assume s is chosen such that the matrix elements are all bounded in
magnitude. Then the eigenvalues are all finite. This implies from equa-
tion 7,12 that away from the s, (and from infinities) all N eigenvalues

must be non zero.,

Since the eigenvalues are continuous functions of s (for analytic
matrix elements) one can track the variation of the XB as functions of s
unambiguously except possibly for points of degeneracy of the TB and
discontinuities in the matrix elements. The eigenvalues are in addition
analytic functions of s except possibly at points of degeneracy and points
of non analyticity of the matrix elements. This allows the use of certain
complex variable techniques such as contour integrals and Taylor series

in treating the )TB.

One in general expects points of degeneracy of the Tﬁ in the s
plane. Consider two eigenvalues, say Y@l(s) and ’i’go(s\. We ask
whether they are equal for any s. Certainly one can find two analytic

functions (entire functions) which are never equal in the finite s plane

simply by defining the second as equal to the first plus a non zero con-

stant. However, such cases would seem specially contrived.

In the case of the perfect’v conduciing sphere cizcnvalues are
Known for both the I field integral equartion :ZFIE) and the H field inte~
gral equation (HFIE).5 The TB(S) are given by combinations of modified
spherical Bessel functions which can be represented by combinations of
exponential, polynomial, and reciprocal power functions of s. One can
equate two of the YB(S) and solve the transcendental equation for the
points of degeneracy in the finite s plane. These eigenvalues are ana-
lytic in the entire s plane except for s = 0 in some cases., Certainly

then eigenvalues can be analytic at points of degeneracy, at least in

s30me cases,
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D. Eigenvalue ordering of the natural frequencies

Since one can think of certain natural frequencies belonging to each
eigenvalue as being zeros of that eigenvalue, then one can use this pro-
nerty to order the natural frequencies. For the natural frequencies S,

consider the index set . Let o be rewritten as

a = (B’B')
(7.13)

Sa ~ °g,B

where 3 indicates the eigenvalue to which 5, belongs. If a particular
natural frequency belongs to more than one eigenvalue then it can have

more than one set of labels (3,8".

The index [ may be a single number (1, 2, 3, -++) or may be a
pair (or larger set) of numbers if the eigenvalues and eigenmodes are
divided into different types. Such division might be chargeless modes
vs. modes with non identically zero charge or H modes vs. E modes de-
pending on the electromagnetic problem being considered and the conven-

tions used.

The index §' labels the natural frequencies belonging to a particu-
lar eigenvalue (specitied by B). There are various conventions one may
choose for assigning values to B'. A convenient convention is

>0 for Im[sa] >0

(7.14)

1}
(=]

i

B 0 for Im[s,]

<0 for Lm[sa] <0

Of course B' may also be a pair (or larger set) of numbers if convenient.
For example, if more than one s, belonging to TB has I_m[sa] = 0 then
B' could conveniently be written as two numbers of the form (0,"") which

would be a generalization of the convention of equation 7. 14.
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l’"r'cviouslyl the convention for the a index set has been chosen so

that the set split into three parts as

@ for I_m[sa] >0

1]
o
—
~J
.
J—
($2}
~

a T S« for Lm[sa]

a for Im[sa] <0

This can be generalized to the eigenvalue related notation by similarly

decomposing B' as

BL for Im[sa] >0

pgr = BL, for Lm[sa] =0 (7.18)
g for Im[sa] <0
This gives
a’+ = (BsB_’,_)
a = <B,Bé) (7.17)
a = (E,B")

Objects of interest can have natural frequencies on both the iw
axis and in the left half plane. Integral equations for objects comprised
of perfectly conducting surfaces apply to both exterior and interior prob-
lems. The kernel of the integral equation contains no information re-
garding the sources; it does contain the information regarding the object
(geomet. 7 and composition). The kernel then contains the exterior and
interior natural frequencies. Both types of natural frequencies are

zeros of the eigenvalues,
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Upon inspection of the eigenvalues for the sphere derived from the
EI[E and HFIEJ,5 one observes that they are not the same, In each case
they are represented by a product of an interior part and an exterior part
where the terms interior and exterior are defined according to whether
the respective parts have interior or exterior natural frequencies as
their zeros. In the case of the EFIE the two parts have their zeros cor-
responding in both cases to E modes or in both cases to H modes. In the
case of the HFIE the two parts have one part with the zeros of an E mode
and the other with the zeros of an H mode. Hence as one might expect
the eigenvalues from different integral equations can be different with
different sets of natural frequencies. Thus one must distinguish the

eigenvalues by integral equation. One might choose

Ye (s) for EFIE
X. (s) for HFIE (7.18)
Y (s) for CFIE

and similarly for other types of integral equations. Here CFIE means
the combined field integral equation recently introduced.10 Perhaps by
comparing the eigenvalues from different integral equations for various
scattering and antenna problems one can develop general prccedures for
further decomposing the eigenvalues into parts with smaller sets of natu-
ral frequencies (such as internal vs. external). Such decomposition can

help better define § and f' indices.

One would like a natural ordering principle for assigning numbers

(or sets of numbers) to B. Consider the number of s, beionging to A (s)

B

as a possible choice for 3 or for one of the numbers in a set of numbers

making up B. However the eigenvalues of a sphere from the EFIE and
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HI'IE have an infinite number of zeros as can pe seen by inspection.o
This infinite number of zeros is associated with modified Bessel func-

tions of the first kind corresponding to the internal (cavity) resonances.
The external part of the eigenvalues for the periecily conduciing sphers
nas only a finite number of zeros in the lefl haud plane, The number =

exterior eigenvalue zeros may then give a better way to chcose f.

Another possible way to choose 3 is based on the magnitude of the
smallest internal natural frequency associated with YB. Since the inter-
ior natural frequencies all lie on the iw axis they are uniquely ordered.
Note that poles in the response of a passive object on the iw axis can
only be tirst order. It is not clear whetlier the ordering or the X by
this teciinique gives the same resulis as using the aumber of exiernal

~

zeros in A,
B

The example of the perfectly conducting sphere has been helpful in
formulating and suggesting some of the general properties of eigenvalues
and natural frequencies. Figure 7.1 shows the exterior natural frequen-

cies and their connection to the eigenvalues for a perfectly conducting

ark IL
—SPreres—TrIere

o) L AY s RN " 1 — — 3 3
P=, o) and P~ - 1’ wiere @ - g,1n,n’ 1s discussed in a
orevious note,” Ordering eigenvaluesz bv the mumber of sxterior natural

suencles or -

o

‘requencies gives a set of consecuilve arcs of aztural o
creasing size corresponding to increasing 5, The first arc is n = I,
the next is n = 2, etc, Note that each arc indicated in figure 7.1 mignt
be considered as two arcs, one for E modes and one for H modes; this
is accounted for by q = 1,2 in the index set (g,n). Note that this ap-
proximate geometrical concept of arcs is only for the external natural
frequencies. On the iw axis the natural {requencies for the differem
eigenvalues (B values) form trajectories which lie on top of each other.

In the left half plane there is some separatior of the trajectories (arcs)

of eigenvalue zeros,

-~

c
n some previous considerations ot the natural frequencies of thin
2]

wire objects the concept of layers of natural frequencies was introduced.”
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B density ks 1
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for q =2
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c

—5.0 -3.0

Figure 7.1. Exterior Natural Frequencies sq n n,(a/c) of

» »

the Perfectly Conducting Sphere for Use With Exterior Incident Wave
1<ng<e§6
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'T'his concept is useful in considering the transient response of thin ob-
jects lor which the first layer (the external natural frequencies nearest
the iw axis) seemed to dominate the transient and CW response of the
object. One can identify the first layer of natural frequencies for the
sphere in figure 7.1 and ncte that they are all of E-mode type. Succes-
sive layers (numbers 2, 3, etc.) are readily identified as one moves to
the left in the left half s plane for the perfectly conducting sphere. Note
that for the sphere odd layers have E-mode natural frequencies, while
even layers have H-mode natural frequencies. Within each layer each
natural frequency or conjugate pair of natural frequencies corresponds

R
li) le

o different eigenmodes (i.e., different values of
Arcs and layers of natural frequencies (poies) would then seem 1o
ce complementary. Together they provide a way to label the naturwl [r=2-
quencies in the left half plane. Since the left half plane is two dimen-
sional in a geometrical sense a set of two numbers or nuwnber sets {arcs:
and layers) would seem to be a natural way for ordering the natural fre-

quencies.,

E. Conjugate symmetry of the eigenvalues

One o the properties of Lapiace tranziormes time ‘uncrions fome -
atocs, etc.) is that or conjugate symmetry if ithe time domain function is

real valued (for real t). If f(t) is a real valued time function then

* -st
f ft) e ot at
-0

T(s) = Hs)

T(s)

(7.19)

where f(t) can be a scalar, vector, dyadic, etc., function for present

purposes. This is generalized to combined conjugate symmetry as
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£ (t) = f(t) + qif'(t)
q() (t) qif'(

FTe)=F (5
q -q

where both f(t) and f'(t) are real valued time functions. Combined con-
jugate symmetry then is a generalization of conjugate symmetry to the

Laplace transform of complex functions of time.

In the case of the perfectly conducting sphere the eigenvalues of
both the EFIE and HIFIE have been calculated.5 In both cases the eigen-
values are conjugate symmetric functions of s. The conjugate symmet-~
ric properties of the eigenvalues of general scattering and antenna prob-

lems are of concern in understanding and computing these eigenvalues.

Consider an integral equation for which the forcing function (source
or incident field) is a real valued time function (Laplace transiormed)
and likewise for the response (say a current, current density, or surface
current densitv), Examples of these include the ET[E and Hr'IE. The
kernels for such cases are real valued in time domain and conjugate

symmetric in complex frequency domain. They consist of the free space

dyadic Green's function together with its modifications.

Let a conjugate symmetric integral equation operator be approxi-
mated by a conjugate symmetric matrix using the MoM. Then the deter-
minant BN(S) is a conjugate symmetric function establishing the conju-
gate symmetry of the placement of the natural frequencies and other sin-
gularities. Likewise all the coefficients 2 (s) in the characteristic
equation BN(S,;\) are conjugate symmetricpfunctions of s. For real s
the ap(s) are real; DN(S,A) is then a polynomial in A with real coeffi-
cients and hence a conjugate symmetric function of A. Similarly, for
real A, BN(S,?L) is a conjug_ate symmetric function of s, Let us then

refer to such a function as a conjugate bisymmetric function of s and A.
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The zeros of BN(S,A) determine the eigenvalues AB(S). For real

N

s since BN(S,A) is a conjugate symmetric function of A the roots KB(S)

must be conjugate symmetric in the sense that for every eigenvalue with

a non zero imaginary part there must be another 2igenvalue which is its
conjugate. Furthermore the multiplicity of the eigenvalues must also oe

preserved in a conjugate symmetric fashion for real s.

Consider some point on the reai .s axis and the associated N
eigenvalues. Since the eigenvalues are continuous functions of the ma-
trix elements and in turn of the complex frequency s (except at singular-
ities and branch cuts of the matrix elements) let us vary s away from
the real axis and track the eigenvalues. Eigenvalues which are reail on
the real s axis can be continued away from the real axis as conjugate

symmetric functions since

~ ~

DN(S,/\B(S)) =0 =D _(s,\

(7.21)

i
-]
@]
-
P
el
6]

—_—
A

So for every pair s,}\B(s) there corresponds *he pair s,A,!5). AS

0

~

R

varies away from the real axis RB varies corntinuously and conjuga.e
symmetrically in both the upper and lower half s planes. This allows
the same value of B to be applied to an eigenvalue which varies continu-
ously through the real axis as s crosses the real axis. This allows for

a type of eigenvalues (conjugate symmetric) as

No(s) = Xy(3) (7.22)
B B

Note that for this development our starting point on the real s axis is
assumed o be a point of continuity of the matrix elements as functions of

s. If the TB of concern passes through points of degeneracy as s is ’
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varied (including possibly the starting point on the real axis) the choice
of which eigenvalue to tag with B going out of the point of degeneracy

must be done in a conjugate symmetric manner if equation 7.22 is to
apply.

Consider now the case that for s real there may be some non

purely real eigenvalues. In this case one follows the more general ap-

proach from
D (s, X

N(s AB (s)) (7.23)

where YB(S) is some root for a given s and TB,(E) is some root for the

corresponding s. As indicated by equation 7.23 one allowed choice of

A_B'(S) j.S
~ p— ] i‘

which can be used to define the index ' for a given B.

~

For real s then B(S> and XB,(S) are complex conjugates. If for
real s we have XB(S) = B (s} then we can set B' = 3 and consider this
pair as one eigenvalue which is a continuous function of s as s passes
through the real axis. This eigenvalue is conjugate symmetric as in

equation 7.22,

If for some real s we have AB(S) £ AB,(S) because Im[)TB(s)] £0
then one can use the more general relation of equation 7.24 to group
pairs of eigenvalues. However one can still define B' = 3 provided a

branch cut is placed along the real s axis for those values of real s for

which KB(S) #AB' .

real axis as XB(Q + i0) and KB(Q -10). We then have

These "two'' eigenvalues can then be written on the
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X.(s) = A, (s) (7.25)

~

where say we use TB for Imf{s] > 0 and g for Im[s] < 0 with a discon-

tinuity in crossing the real axis for some real s. Note that for some
real s this eigenvalue may be continuous crossing the real s axis. Re-
gions of continuity and discontinuity on the real s axis would be sepa-

rated by branch points. Adopting such a convention then the eigenvalues
of conjugate symmetric integral operators can then each be chosen to be

conjugate symmetric functions of s.

Whether or not such eigenvalue discontinuities along the real s
axis are necessary to preserve eigenvalue conjugate symmetry in the 2
plane is an interesting question. The EFIE and HFIE eigenvalues of the
perfectly conducting sphere have no such discontinuity while maintaining
conjugate symmetry. On the other hand one expects such eigenvalues oi
the perfectly conducting circular cylinder (infinitely long) to have branch
cuts along the negative real s axis due to the branch cut there in the in- .

tegral equation operator.

The property of conjugate symmetiry is a convenience in calculating
and labelling eigenvalues. It applies to common integral equations such
as the EI'IE and the HFIE. However the CFIE deals with combined quan-~
tities (equation 7.20) and its eigenvalues will not be conjugate symmetric
but rather combined conjugate symmetric by extension of the previous

arguments,
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VIII. Eigenmodes Related to Natural Modes
A. Normalization of cigenmodes and natural modes

Having considered the eigenvalues as related to the natural lre-
quencies a further step in relating eigenmode expansions to singularity
expansions is to relate the eigenmodes to natural modes. The natural

modes for the object response (say a surface current density) are deter-

mined from

T (s»n-(w) =(0)
n,Mm o n n

»

@
f . = - —
< T(s,); v, > =0
and the associated coupling vectors are determined from
‘l’ )y - (D (s )) = (0 )
n n,m « n
a
N (8.2)
— - F - —
<K, 5 Tts) > =0
IFor symmetric operators and matrices we have
(un) = (Vn) > M (r) = Va(r) (8. 3)

if the same normalization is used. Typically (but not necessarily) the

normalization is chosen as

male l =1, II_; I = maxll_; (;)| =1
¢} [24 — [o4
« max r
(8.4)
. maxlun | =1, l:al = max Ea(;)l =1
o] max r
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Another kind of normalization is giveneby

¢

w) - w) =a , <T i >-a

which for symmetric matrices and operators gives

w) «w) =a , <PV >=-a (8.6)

(24 (4

where Aa is a convenient normalization constant. One might choose

AQ = 1 but if the natural mode and coupling vector are to be made di-
mensionless then Aa has the dimensions of length for one dimensional
integrals, length squared for surface integrals, and length cubed for vol-
ume integrals. One might set Aa = Ba or Ba,a2 or Ba/a3 where a is
some characteristic dimension of the electromagnetic problem. Note
that for Ja # ;a an additional condition (besides equations 8.5) must be

imposed to uniquely specify ’Ta and ;a/'

The corresponding eigenmodes for the object response are deter-

mined from

(T ) = (R () = 3 ()R (s)
‘ g F B |
(8.7)
LTs) : Ryls) > = DNEIIEY
with the associated left side (transpose) modes as
(T (s) (T (s) = X, (sNL (s))
o g n, m B3 ng
~ (8.8)
L(s); T = X (s)L
<L) 5 Tts) Xgls)Lg(s)
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For symmetric operators and matrices we have

(L (s) = (R (s) , L&s) = Rylrs) (8.
n o n P b
B B
if both modes are normalized in the same way. One choice of normaliza-

tion is

max}ﬁ (s)l =1, lﬁB(S)l = mgxlﬁﬁ(r—':s)l =1
° B max r
(8.10)
maxlz (s)l =1, IEB(S)I z max]fﬁ(;,s), =1
oo max  ©

An alternate normalization is
®Rpe) - @) =B, <Fgls); L) > = A(s) (8.11)
B B
which for symmetric operators and matrices is

(Rn(s))ﬁ : (Rn(s))B - K, <Hgls): Rgler >

Als) (8.12)

where Z(s) is now the normalization constant. Again one could choose
A(s) = 1. However for dimensionless eigenmodes one might set A(s) =
B(s)a or ]‘3'(s)a2 or ﬁ(s)a3 depending on whether surface or volume in-

tegrals are involved and where a is some characteristic dimension of
= 3
the electromagnetic problem. Note that for -LB = RB an additional con~

~
—

X
dition (besides equations 8.11) is needed to uniquely specify LB and RB.
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B. Eigenmodes at natural frequencies

[n section VII it was noted that at least one of the eigenvalues had

azeroat s = s, and this could form the basis for grouping the natural
frequencies with their corresponding eigenvalues. Writing « as 8,83’
one can note an interesting resuit for s = Sa' Since at s = SB B the

»

)

eigenvalue TB(SB’B,) = 0 giving

<Pn.m(sB:B’)) . (RH(SB,B'»B = (0)
T " .3
<T(sg g) 3 Rglsg g,) > = 0
(8.13)
T (55 g * (Tn’m(sﬁ’ﬁ,» = (0)
~ = =
Tglsg,p)+ Ttsg g > = 0
which allows us to set
R (s, o)) = {v)
n BB R
RB r’SB,B') VB.B'(r)
- (8. 14)
(T (sp o) = ()
BB 8,8
L,(r,s (r)
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T'his choice requires that the same normalization be used [or both the
eigenmodes and the natural modes. If different normalizations are used
then the right sides of equations 8, 14 are multiplied by non zero complex

constants.

I'or the above results one assumes that neither the natural modes
nor the eigenmodes are degenerate at the 8, of interest. If there is de-
generacy then one must define a biorthogonal set of natural modes and
coupling vectors and have these correspond to an identical set of right

and left eigenmodes.

The above equations illustrate that the natural modes and eigen-
modes are related in a significant way. At the natural frequencies the
associated eigenmodes are the natural modes. Away from the natural
frequencies the eigenmodes are then continuations of the natural modes
to general complex frequencies. This continuation of the spatial distri-
bution of the eigenmodes leads one to consider the eigenmodes as another
way of tracking which natural frequencies ''belong'' to a particular eigen-
value/eigenmode.

C. Conjugate symmetry of the elgenmodes

in sectiocn VII it was shown that for kernels and matrices which
were Laplace transforms of real valued time functions (operators) the
eigenvalues could be indexed such that each eigenvalue is a conjugate
symmetric function of s. Assuming a conjugate syinmetric kernel

~

(r,r';s) and matrix (’f‘n m(s)) with eigenvalues XB(S) chosen in a con-

L]

jugate symmetric manner the eigenmodes (both right and left) are also

conjugate symmetric as the following development will show.

b.arting from the right eigenmode equation
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T (s - R () =X, (s)E (s)
n, m n 8 B n 8

<I‘<s>, Rgls) > = % (S)R (s)

let us form the complex conjugate as

T s - R (s) =2 ()R (s))
n, m n 8 B n 8

(8.16)

Ml

<

Using the conjugate symmetric property of the operator (matrix) and

(5) 5 Rgle) > = Xg(s)g(s)

eigenvalues gives

@ @) - ®(s) = X,EE (s)
I, m n n

» B B B
(8.17)
<TG) ; Rgls) > = Ay(s)Rgls)
However the eigenmode equation for complex frequency s is
(Fn’m(S)) . (Rn(s)) = kB(S)(Rn(S))
B B
(8.18)

<TG : Rge) > = N(5)Rg(6)

Comparing equations 8. 18 to 8.17 allows the choice
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(§n<s>) = (ﬁn@)
B B

(8.19)
‘3(3) = RB(S)

=N

x -
which specifies the choice of normalization for RB(S) in terms of the

normalization of ﬁB(s). The left eigenvectors have the same type of
conjugate symmetiry as -

(T (s) = (T (s)
B "B

(8.20)

eyl
™
3
it
0
w|

which is obtained by steps identical to equations 8. 15 through 8.20 with
left eigenvectors instead of right.

One can also note that in normalized form we have (using equations
5.6 and 5.12)

(r (s) = (r ()
n n

B B

= ~ (8.21)
(ﬂ.n(s)) = (ﬂn(s))

B B
EB(S) = IZB(S)

This type of normalization specifies the complex multiplier of the eigen-

‘ modes if the left and right modes are related by another condition. It is
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the type of normalization in equations 8.11 wi‘h A(s) = 1. For symmet-
ric operators (matrices) this additional condition is specified by making

the left and right modes equal.

-64-



[X. Some Derivatives of Eigenmode Expansion Quantities

In studying the relationship of the eigenmode expansion to the sin-
gularity expansion the properties of the eigenmode expansion gquantities
as functions of the complex frequency s are important. The derivatives

of these functions with respect to s yield some useful formulas.
Start with the eigenvalues from equations 5.22 as
s) = T (s - @ (s) - (x (s)
B n g n,m n g

(9.1)

Vil

Rois) = < Tols) Ts) ;7
g(s) = < Tgle) ; Tie) ; Fyie) >

Take the s derivative to give

d ~ - _i ~ . ~ . ~
S - [ds uzn(s»B] o)+ Fyfen
~ d ~ ~
+ (T (s) - [—(F <s>)] . (& ()
n 3 ds n,m n 8

F Ty - T (s - [i(F (s)) ]
n 8 n, m ds n B

_ T~ _q— ~ . ~

- "B‘S’[ds uzn(s»B] (rn(s))B

+ (T (s) - [—d—ﬁ“ <s>] . & (s)
n n, m n

g lds f

~

~ d ~
+ AB<s)<fzn(s>)B . [d—s- (rn<s))B]
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— 3 d 7 ~
] AB(s)ag[(fn(s)) : (rn(s))B]

B
~ d ~ ~ )
+ @ (s) - IEE‘Fn,m‘S”] - (s (9. 2)
B 8
Since
@ (s) - (r (s) =1 (9. 3)
n n

B B

the eigenvalue derivative is

d o~ oy ) i ~ . ~
s = (Jzn<s))B [ds (I“n’m(s))l (rn(s))B
(9.4)
d ) = Ji:: =
35 hgts) = <gle) 3 55 Tl 5 rgls)
Another form of equations 9.1 is
1= T ) - =@ )] - T ()
B Rgs) 2T B
(9.5)
e 1 =L
- 7 — T
R ACH T rgls) >

S
B()
Following the steps in equation 9.2 in differentiating with respect to s

gives

ds 13 (s)

B

0= (T (s) - {i[—i—(f* (s»” C (s
n B o n, m n B

(9.6)
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<£ (s) 52 [ I‘<s)] ; E’ (s) >

B()

I'rom equations 9.1 and 9.4 one can also form the logarithmic
derivative of the eigenvalues as

d [ -~ ) d ~
Es—lln(lﬁ(s))] = 5
X.(s)
B
T () [i T )] - F s
n ds n, m n
- B B
(E'n(s» . <T‘n (s (Fn(s»
8 ’ B
@ _(s) - [Hd—ﬁ‘ ()] - ® (o))
B B
('fjn(s» . <T“n (s <§n<s>>
B ’ B

_ diln[('ﬁ (s)) - (T (s) - (B (s) ]
S n }3 N, Im n B

W

<%<s>,%1; :5’<s>>

a%[m('iﬁ(s))]

<£ (5); o) ; (s)>

<E’B<s> ; L) ; gﬁ(s>>

<E’B(s)  Te) ; %B(s>>
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Consider the eigenmodes. From the relation

@ (s) + (r (s) =1
n n

B B
(9.8)
<gls) 5 rgle) > = 1
for the normalized eigenmodes we have the derivative relations
d [~ ~
0= L[Tn - Fion ]
ds n 3 n 3
- [% @ (s) ] c F e+ T (s) - [;%(Fn(s)) ]
B B B B
(9.9)
d - .=
0 = £<£B(s) s rB(S)>

h
&|a

aSY

Y
U)\
N

LR

w

+

P~y
@

0
Q.
m'D-

N
Gy

1]

x ¥ -
These relations also apply to LB(r, s) and RB(r, s) provided they are

normalized such that their symmetric product is independent of s. This
. ~ . . 2
would require that A(s) in equation 8. 11 be a constant A (or Aa, Aa°®,
3 .
Aa  where a is a characteristic dimension of the electromagnetic prob-

lem).

For symmetric operators and matrices the above eigenmode rela

tionship begins from
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T (s) + (r(s) =1
n n

B B8
(9.10)
<r8(s); rB(s)> =1
-and gives
0 = —C‘-{G ) - F.(s) |
ds n 8 n )
0 = (r (s)) - [—(r (s))
n 3 ds n 8]
(9.11)
d e
0 = 3o <rgls) s rgle) >
= . d =
0 = < ryls) s ggrgls) >

~

One can interpret this relation for d;B(r—': s)/ds by noting that the deriva-
tive of the eigenmode (normalized in a frequency independent manner) is
orthogonal to the eigenmode. In other words the ''direction' of the de-

rivative is constrained in this orthogonal fashion for eigenmodes of sym-

metrical operators and matrices.
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X. SEM Coupling Coefficients Related to the Eigenmode Expansion

In comparing the pole terms in the SEM form of the inverse matrix
or operator for first order poles as

+ other singularities

i v (ru (r')
r . =
(r,r';s) ZS_S -
T L
s=s
a
+ other singularities
(which gives the class 2 form of the SEM coupling coefficients)6 to the
eigenmode expansion of the inverse matrix or operator as
N (R _(s)) (L (s))
-1 : I noogon g
N D ™ ~
_ ? B=1 AB(S) (R.n(s)) . (Ln(s))
B B
| (10.2)
= R,(r,s)L,(r, s)
T s, rs) =Z L 8 &

B Agls) <§’B(s) ; EB<s>>

where the operator is assumed diagonalizable, one notes the similarity

in the forms of the terms of the summations. From the matrix or in-
tegral equation for the delta function response as
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T (s) - T () = T (s)
n, m n n

~ (10. 3)
< Tr,t5s) 5 e, s) > = 15, )
the formal solutions
~ ~ -1 ~
(U (s)) = (T (s)) = = (I (s))
n n, m n
(10.4)
Uir,s) = <T'Erus) T e) >
lead to the SEM solution (pole terms exhibited) as
(T () = 3.7 (,,8)v ) (s - s )" + other singularities
n o 1’ n a
04 a
(10.5)

~
—

U(r,s) = E Fa(gl.s)l_/;(r_:)(s - Sa)—l + other singularities
a

where ey 1s a unit vector describing the direction of incidence as re-

quired and to the EEM solution as

N (ﬁn(s)) .
T () = 2, —— — B @ () -+ (T(s)
B=1 Xg(s) (R (s) - (T (s)) nooB
n n
B B
(10. 6)
~ 1 ﬁB(;' s) ~ ~

U(r,s) = ) = - — <Lgle): ) >
PR <Rgers Tyte) >
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'

Assuming non degeneracy of the eigex{ralues at a natural frequency
of interest described as S, © SB g we have zomparing the SEM and EEM

representations for the SEM coupling coeffic .2nts

(w ) + (T (sg g

n

~ - B’BY
n e ,s ) = ~
B.BUTUTBBT — T () - ()
s n, - n 1
B,B! s=8g g, B.B
) () - (I (s ,))
= _Q.f(s)i 1 LR il
p.Bd B.B! BB

(10.7)

g, 1258, 81 *

The coupling coefficients (at Sa) are then expressible in terms of deriva-
tives of the corresponding eigenvalues with respect to s at the corres-
ponding natural frequencies. This result is found from expanding the
terms in equations 10.6 around SB’B'. Alternatively one can use the ex-
pression for the derivative of an eigenvalue with respect to s in equa-

tions 9.4 evaluated at SB g

Consider one term in the EEM representation of the inverse opera-
tor and the corresponding term in the solution of the integral equation.

These can be expanded in an SEM form (for {irst order poles) as
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(R () (T (s)
n

1 g "oop

%(s) R _(s) - (L _(s))
B B
- (v ) (M )
.yt ey (S)‘ ' "g.p g
g s s as B (vn) . (“n)
°B. B B.B' B.B!
+ other singularities
(10.8)
1 RB(r,S)LB(r',s)
") <Ryls) s Lyle) >
Tl | .V "
] -8 1 as = 7
@ ° 5F el lgp “B,B'>

+ other singularities

and
(R _(s))
- B @ (s) -+ (T is))
As(s) (R (s)) - (L.(s)) - B
T
= Z ?7'3 B,(gl,S)(vn) (s - sg B,)-l
gr B, B! ’
+ other singularities
(10.9)
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Z g B,(e ,s)l/B B,(;)(s - SB,B')-

+ other singularities

The SEM expansion of the eigenmode terms as in equations 10.8
and 10,9 leads to a sum over f3' (a part of the « index set) for the pole
terms plus other terms such as branch contributions, etc. In certain
cases such as the response of a perfectly conducting sphere to a delta
function incident plane wave1 this sum over B' is a finite sum with its
maximum magnitude proportional to the eigenmode index 3 (= n + a con-
stant in the usual sphere notation). Like the natural frequencies, natu-
ral modes, and coupling vectors, the coupling coefficients also associate

with the Bth eigenvalues and eigenmodes for a = f3,8'.

X .
One might take the scalar multiple of RB(r,s) in equations 10.9

and call it the eigenmode coupling coefficient as

~

~ - 1 <%B(S) : —I’(s)>

CB(el’S) = = — _ (10.10)

2ple) <§-B(s) ;Do) >

such that
~ — : - _ 1 —
CB(el’S)RB(r'S) = ; — SB . nB B'(e ’S)VB,B'(r)
+ other singularities (10.11)

-T4-




~

Then since R, — v, at s one might view 7 5 -8 in a
B~ VBB 2 Sg,p g 8,81/ (s = 5g,p0)
collective sense (over ') as the eigenmode coupling coefficient in an

SEM sense,
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XI. Use of Eigenvalues for Synthesis of Antenna and Scatterer
{mpedance Loading

An interesting aspect of the EEM concerns the properties of the

eigenvalues as impedances. In particular certain forms of the matrix or

operator admit such an interpretation.

A. Impedance matrix or operator

As discussed by Harringtonl,7 one can define an impedance matrix
based on an E-field type integral equation. Such an equation is one which
relates a set of source electric fields to a response current, surface cur-
rent density, current density, or some combination of these, The cur-
rent, etc., is the response part of the matrix or integral equation and
the source eleectric field is the excitation function. The integral or ma-

trix equation has a generalized form of Ohm's law as

<Z(R;;s)1 ﬂ;,s)> = ES(E',s)

(11.1)

Z  (s) . (T () = (B (s)
My, IM 41 Sn

The matrix el;tnier_lj:s Zn’ (s) are referred to as generalized impedances.
One can call Z(r,r';s? an impedance kernel and with the integration call
it an impedance operator. The impedance matrix is (Zn, m(s)). The
source electric field ES can be an antenna gap field or the incident elec-
tric field (or the parallel component in the case of a surface or thin wire)
for a scatterer. The response current density is indicated by J but this

could also be a surface current density or a line current.

For ;# r' the usual electric field integral equation (EFIE) for

perfectly conducting bodies in free space has
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N¢ ¢

R ———
.

(r,r';s) = su

—_—
.

r';s) (11.2)

~
L J

(with only components tangential to the surface considered) where the

free space dyadic Green's function is

-

- —12-vv]'6 (T, 7:s) (11.3)
Y

Qi
|
=i

0

(F.Ts) [
[0}

=
where I is the 3 X 3 identity matrix and the scalar free space Green's

function is

ror'|

o G Ylr-r
Go(r,r';s) 5 —— (11.4)
41r|r - r'|
with
_ s
’Y = e
c
(11.5)
S
o €
o

—

The singularity at r = r' is rather troublesome. ’fhere are other ways
to formulate the operator to attempt to avoid this problem such as by
writing the fields due to the source electric field as integrals over both
current and charge in the form of vector and scalar potentials; this leads
to an integro-differential equation. It is not the purpose of this section
to consider the various ways of formulating the EFIE either analytically
or in a method of moments (MoM) numerical format, What is of concern

here is what the form of an impedance operator implies.
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B. Eigenimpedances

Inasmuch as this note is concerned with eigenmode expansions let
us consider the eigenmode gquantities concerned with impedance opera-
tors. In particular note that the eigenvalues of an impedance operator

are appropriately identified as eigenimpedances ZB(S) from

Z  (s) - R (s) = Z (s)R (s))
n,m n n

‘ g P B
(11.6)
<Zts) ; Rgle) > = ZglaIBgls)
where now
7z = X 7
g(s) = Xyls) (11.7)

Why these are termed eigenimpedances can be seen by choosing

—

Jr,s) = c<s)§8<r,s> (11.8)

so that the corresponding source electric field is

ES(E',s> = ZB<s)6<s>ﬁB(F,s)
= EB(S)E’(F,S) (11.9)

This relation might be referred to as Ohm's law for impedance eigen-

modes,

The eigenimpedances have dimensions of ohms times appropriate
powers of length (meters). If the integral equation uses a surface inte-

gral so that the response is a surface current density j.s (amperes/m)
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then EB(S) is a simple impedance (ohms or ohms per square as a sheet
impedance). If the integral equation uses a volume integral so that the
response is a current density J (amperes/mz) then ZB(S) has dimen-
sions ohm meters. If a line integral is used so that the response is a

current I then EB(S) has dimensions ohms/m (impedance per unit
length).

The reciprocals of the eigenimpedances ére the eigenadmittances
as

(11.10)

The eigenadmittances are the eigenvalues of the inverse matrix or oper-

ator

?(—-,r_'.';s) e Z-l(_.,r_'.';s)
(11.11)
& ey =C syt .
n,m s 1IN
50 that we have
J(T,s) = <?(_’,—.',S); E (r,s)
(11,12)
TN = (8)+ (E ()
n , m S
n
and
E(r,s) = ?B(S)ES(F’S) (11.13)
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for current or source electric field chosen as an eigenmode. The im-

pedance eigenmodes can then also b: referred to as admittance eigen-

modes. The inverse of an impedance operator (matrix) is of course .

designated an admittance operator (matrix).

C. Impedance loading of antennas and scatterers

Suppose now that we have formulated a matrix or integral equation
of the impedance type for a perfectly conducting object excited by some

incident wave or other source electric field. Let this case be denoted by

(Z  (s)) « (T (s) = (Eg (s))

n, m n
n
~ (11.14)
ZE e s TE, 9> - B(F.
< (r,r';s) (r b)> S(r s)
Now let us load the object with an impedance function so that
E(r,s) = B, (r,s) + E_(r,s) = Z (r,8) "~ J(r,s) (11.15)

W

—

where the impedance loading Zﬂ(r, s} may in its general ‘orm be a dyadic
function of position and frequency. The electric field in this relation is
the total electric field including the incident plus scattered electric field
for cases that both are present. For surface type objects the electric
fields and surface current densities have only their components parallel

to the surface considered.

Now the total electric field is

E(r,s) = E_(r,s) + E _(r,s) = 2 (c,s) + J(r,s) (11.16)
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where the four terms are, respectively, the total electric field, the
source field (or the incident field in a scattering problem), the radiated
(or scattered) field, and the impedance loading field (IR). If

—
— —n

T = - nn (11.17)

is the tangential dyadic to the surface of an object where n is the out-

ward pointing unit normal vector, then for a perfectly conducting object

we have on the surface

T(r) * E(r,s) = 0 (11.18)

For zero loading impedance (a perfectly conducting body) then we have

>
(where ES is by definition tangential to the surface)

—>

-T(r) « E (r)8)
r

E (r—':s)
S

<Zr,rhs) 5 T, 8) > (11.19)

For the loaded surface type body (%ﬂ being a sheet impedance) equation
11.16 takes the form

E (r,s) = -T(r) » E (r,8) + 2 ,(r,8) « J (ry5)
s r £ s
= < Z(r,tus) 1 T (5 8) > + Zy(r,s) + T (5, s)

I
N
a]
5
L}
a
+
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where GS represents a surface (two dimensional) delta function or in
matrix form

<?§ <s)> - [(Z (s)) + (Z (s))] . (3 <s)‘) (11.21)
S n, m £ s
n n,m

n

Thus the impedance loading changes the impedance matrix or operator

from the unloaded case to a new loaded impedance matrix or operator,

This type of result applies not only to sheet impedance loading of

perfectly conducting surfaces but also to volume loading as well.

To see
this write the radiated (or scattered) electric field as a volume intcgral

over the current density as

W

Er(r,s) = - Z(r,r';s), J(r';s)> (11.22)

>
where Z is an impedance operator as before with volume integration

used. Again the operator is assumed properly defined to take care of

the integration near r = r. A generalized Ohm's law of the medium is

—

J(x—:,s) =

~

£<F,s> . Elr,s)

=<y

= Y (r,s) + |E (r,s) + E (r,s) (11.23) -
£ s r
where for a simple conducting dielectric
Yﬁ(r,s) = [0 + s(e - eo)]I
= —Z’;z (r,s) (11.24)
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where o and € are the conductivity and permittivity, respectively, of
the medium.

More general forms of this admittance loading are also
possible.

Assuming the permeability of the medium is the same as free

space (4 = #o) then we can combine equations 11.22 and 11.23 to give

~
~

s ,8) = <Z(I—:;;s); ias)> + §£1(;s) .

.-J-(I_",s)

- <Zr,rhs) + Z(Ees@ - 1) Je,e) > (11.25)

which is of the same form as equation 11.20 except that it is a volume
integral equation. It is this type of equation which is interesting for our

present development. In matrix form it is

® (’E (=) [@ (s)) + ('Z (s))] NERCH (11.26)
s n, m 2 n
n . n, m

D.

Eigenimpedance modification by uniform scalar impedance
loading

The basic idea is to now have the impedance loading appear as a
change in the eigenvalues.

Taking equations 11.25 and 11.26 as the gen-

eral form of our equation of interest let us first choose a simple type of
impedance loading specified by

~
-
—
Z

,(r8) = Z (s)

T  (over the object) (11.27)

In this form the loading impedance is scalar and independent of the spa-

tial coordinates over the domain of integration (the object of interest)

with appropriate modification to allow for sheet impedances on surface
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fype objects. Note that the scalar Ef(s) is still allowed to be a function

of the complex frequency.

Find eigenimpedances and eigenmodes as before for the impedance

operator (or matrix) without loading as

<Z(a); Rgls) > = Zgle)Rgls)

<L (8) 5 Z(s) > = z (s)R (s)

Next apply the loaded impedance operator to the eigenmodes in equation

(11.28)

11,28 to obtain

~

<Zr,ths) + Z,(e)Te(r - ) ; R’B(F'.s)>

= <Z( ,r38) RB(r',s)> + Zﬂ(S)RB(r’S)

~

- [ZB(S) + ZE(S)]R'B(r’S)

(11.29)

<L (r,s) s Z(r,r'38) + Z (s)I&(r - F')>

- <LyF8) 5 Zr, 5580 > + Z (el 8)

~

= [ZB(S) + Zﬂ(s)]LB(r';s)
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Iience the loaded impedance operator has the same eigenmodes as the

unloaded impedance operator. Furthermore, the eigenimpedances of the

loaded impedance operator are equal to those of the unloaded impedance
operator plus the loading impedance. This transformation can be indi-
cated symbolically by

—- : -

RB impedance RB
loading

—_ — —

LB impedance LB (11.30)
loading

ZB impedance ZB Zf
loading

Write the solution of our impedance integral equation (11.25) as

~ 1 R, (r,s) ~ ~

.](;.,s)=2~ B <EB(S)ZES(s)> (11.31)
R

:!3(8" sz(S) <§B(s); EB(S)>

One can now see that the solution for our impedance loaded object can be
obtained for a wide variety of loading impedances Zﬂ(s) using the once-
obtained eigenimpedances and eigenmodes of the unloaded object.

E. Eigenimpedance modification by nonuniform dyadic

impedance loading

Now choose the loading impedance of the type

-

~
—
-_  —
Z

, = Z ()T () (11. 32)
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as a scalar impedance function of the complex frequency times a dyadic

space function with the property

fl(r) 0 0
D) - T - BN - 0 1, 0
0 0o 1@ (11.33)

fn(F) >0 forn=1, 2, 3

i.e., that ?(;‘h) is diagonalizable and positive definite (to assure imped-

ance realizability).

Our integral equation now has the form

~

~ ~

TE’S(Rs) = <Z(F,F';s> + E£<s)‘f“<}’>a<}’- ) .‘J’(I-",s>> (11. 34)

There are many approaches to manipulating this equation into a form in

which the eigenvalues are modified by the ""addition"

of the loading im-
pedance. Consider one such approach in which we multiply through by

f to give

-—7
.f

Ei(rs) = < Z'(r,rhs) + Zylele(r - 1) 3 T(r,8) > (11.35)
where
: — ::—1 : -
E'(r,s) = f (r) « E (r,s)
s s
(11, 36)
~—_-: —_ ::-1 — E — 2
ZYr,r';s) 2 £ “(r) o Z(r,r';s)
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liquation 11. 35 is now of the same form as equation 11.25.

We have modified unloaded eigenimpedances and eigenmodes from

~

<§;"<s> ; §B<s>>

= Zé(s)ﬁb(m
~ (11.37)
b . _ ~ —bl
L Lpis) s ZMs) Zpy(s)Rp(s)
For Eﬂ(s) # 0 we have
_.l ______b _.I
RB impedance RB
loading
_.I _—____’ _.l
L impedance LB (11, 38)
loading
ZB imnedance ZB * ZE

loading

just as in equation 11, 30. This gives a solution

ﬁ' (r,s)

1 B
25107 208 TRt Tyl >

il

(1_:. s)

[N

<E£3(s); TR >

(11.39)

=

as an expansion in terms of the modified impedance eigenmodes. Again
a wide variety of choices is possible for ’Zﬂ(s), the frequency dependent

part of the loading impedance.

There are other ways to define modified impedance operators and

associated modified eigenimpedances and eigenmodes. Some other ways
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may prove more useful than the present one. The present derivation
shows that the basic equation for the change of the eigenimpedances with

loading as in equations 11. 30 carries through to the case of spatially

varying loading impedance as in equations 11,32 and 11. 38.

F. Eigenimpedance synthesis

Synthesis is an established discipline in the field of electric cir-
cuits. One purpose of this note is to extend some circuit synthesis con-
cepts to antennas and scatterers. There are various types of synthesis
one might speak of for antennas and scatterers depending on what is be-
ing synthesized. Some attention has been given by various other inves-
tigators to pattern synthesis (spatial distribution of the scattering at
some frequency or frequency band). However, in this note a different

type of synthesis is considered.

What the eigenmode expansion appears particularly suited for is
synthesis of the frequency dependence of the radiated or scattered fields.
This type of synthesis is directly related to classical circuit synthesis ‘

for which one is referred to various texts such as that by Guillemin.

The essence of the synthesis itecanigue discussed here is to 3vnthe-
size the loading impedance to make the eigenimpedances have desircd
features. Note that for a chosen form of the spatial dependence ?(r_‘-) of
the eigenmode invariance and eigenimpedance transtormation of equa-
tions 11. 38 apply. For our known set of eigenmodes obtained from the
object geometry and ?(;) we can vary the scalar impedance function
zﬂ(s) to modify the eigenvalues to some new frequency dependence while

keeping the other terms in the solution (equation 11.39) unchanged.

There a) 2 various criteria one might place on Zé(s) + ZQ(S) for
obtaining some optimum frequency dependence. If the antenna or scat-
terer were driven so as to excite only one eigenmode then the problem
would be somewhat simplified. However in the general case all the

eigenmodes and the associated eigenimpedances are included. O
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An intefesting approach to the eigenimpedance synthesis is obtained
from SEM considerations. Assuming that in some region of interest in
the s plane there are only pole singularities in the response then one can
choose the loading impedance so as to move the poles to desired locations.
For broadband or transient antenna and scattering problems the solutiion
may be dominated by a few poles for the frequency band or time regime

of interest. IFor such problems a pole synthesis would appear to have

some desirable features.

The poles of the response are the zeros of the eigenimpedances,

Zp(s Y + 7 0 (11.40)
‘)

g8 " %48, 7
In this synthesis procedure one can regard the eigenimpedance zeros
(the SB,B')ES variables to be altered depending on the given ZB(S) and
choosable Zﬂ(s). To do this consider some set of eigenimpedances to be
of interest as designated say by 3 =1, 2, »«+, M. This choice might be
based on the known positions of the zeros of the unloaded eigenimpedances.

Then for each B choose where its set of zeros should be, i.e., choose

the s, ,,. Then set
oy
Z (sg a) = ~Zplsy o)) (11.41)
LB, B! B "B,B!

and see whether or not an impedance function zﬁ(s) can be synthesized
with this set of values. This procedure can be thought of as an M fold
circuit synthesis since in effect, while one impedance loading is chosen,

M eigenimpedances are synthesized,

Of course there are some difficulties with this approach., While
the Zﬁ(s) synthesized will satisfy equation 11.40 at the chosen SB.BI
there may be other zeros introduced as well. [‘urthermore the eigenim-
pedances for 3 > M will also be affected. Thus one may have to be care-

ful with the degrees of freedom allowed to the loading impedance.
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As part of a synthesis of Zﬂ(s) one must find a realizable zﬂ(s).

The loading impedance might be active or passive as desired within the
constraint of stable eigenimpedances. Circuit theory needs to be applicd
to this synthesis with perhaps a few twists not found in conventional ap-

plications.

Concerning the practical realization of zl(s) in terms of lumped
elements one must consider that the loading impedance must approximate
the continuous loading impedance chosen for the synthesis. Hence
zf(s)?(;) is approximated as many small lumped element networks (per-
haps including distributed elements such as transmission lines) inserted
into the antenna or scatterer at many places. Questions of how many

circuits and how small they should be can then also be asked.

It would be helpful in this general synthesis theory to understand
the general properties of the unloaded eigenimpedances ZB(S). Their
passive nature will have much to say about their zeros, poles, and entire
functions, and even branch cuts in objects require their introduction.

For surface type objects one can consider the unloaded eigenimpedances
with relation to the exterior and interior fields. One may be able to re-
gard the eigénimpedances as the parallel combination of an exterior and
an interior part where the interior pari sziisiies Foster'’s theorcem (ncles
and zeros alternating on the iw axis). There is clearly much {o be ex-

plored here.

The eigenimpedance synthesis would seem to apply to some impor -~
tant practical problems. In EMP simulator design it can be used to syn~
thesize waveforms on simulators that utilize impedance loading. In
radar scattering it gives some control over the radar cross section of
the target and allows one to vary certain of the aspect invariant proper-
ties of the target (in particular the pnles of the response) in a controlled
manner. In EMP interaction it may give an optimization procedure in

certain cases to minimize the currents and charges on the objects over

some irequency band.
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XII. Summary

This note has covered much ground. Expansions in terms of eigen-
modes have various interesting and useful properties for describing the
electromagnetic properties of objects. The modes form biorthogonal
sets and can ke physically constructed, at least approximately. Eigen-
mode representations can also be singularity expanded, thereby provid-

ing a further degree of splitting up (factorization) of the solution.

There is much to be learned about the EEM in terms of special
theorems of an energy or reciprocity nature. The various types of elec-
tromagnetic integral equations also define their own types of eigenmodes
and eigenvalues with presumably their own special characteristics. \ar-
lous types of objects need to be considered to see what special character-
istics these objects give to the EEM and SEM. These objects can be both
those with separable coordinates for which "analytic' results can be ob-
tained, and those of more general shape for which ""numerical' formula-
tions are needed. The implications of object geometrical symmetry on
the EEM and SEM could be considered in some detail. The eigenmodes
can be extended away from the object to represent the fields and far

Sields,

The eigenvalues order the natural irequencies bul since the cigen-
values are different for different integral equations one would like to
know how such differences affect the natural frequency ordering. The
asymptotic forms of the eigenvalues and eigenmodeé for large s are also
of interest. Impedance eigenvalues (eigenimpedances) are useful for
synthesizing loading impedances; perhaps other types of eigenvalues are
also useful in this regard. In the method of moments (MoM) there is
some error in this numerical formulation for a given choice of basis
functions and testing functions. The EEM should give some approaches
to quantifying such errors in terms of eigenvalue errors and eigenmode
errors; such errors may then also be interpretable in terms of changes

in the SEM quantities such as natural frequencies.
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XIII, Epilogue

After thinking about the EEM and SEM for some time now and hav-
ing learned a few things in the process it is apparent that there is much
more yet to learn. This is a humbling experience to realize more and
more how little one knows and how much more there is to be done. It

would seem that such is the nature of science and that God wanted it that

way. Now it is time to take yet more steps.

The woods are lovely, dark and deep.
But I have promises to keep,

And miles to go before I sleep,

And miles to go before I sleep.

Robert Frost,
Stopping by Woods on a
Snowy Evening
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