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Abstract

Three different approaches are used to discuss the differences between
the current and charge densities calculated for a perfectly conducting closed

surface and those for the wire grid that models the closed surface.
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SECTION I

INTRODUCTION

Recently, the question has been raised regarding the validity of using
the wire-grid model of a structure with a closed surface in EMP interaction
calculations [1]. By EMP interaction calculations we mean calculations of
current and charge densities induced on the closed surface of a structure.

To be sure, the wire-grid model has certain attractive features from the view-
point of computer programming and is capable of giving reliable far-field results,
such as the radar cross section and the extinction coefficient of a scatterer.

On the other hand, it is clear on physical grounds that the wire grid is a poor
model of a closed surface for interaction calculations. Without loss of
generality, let the closed surface of the actual structure and the wires of the
wire-grid model be perfectly conducting (Figs. la and 1b). Then, the former

has an interior region where the field vanishes identically, whereas the latter
has an evanescent reactive field hugging both sides of the grid. Evidently,

this means that the current and charge densities induced on the external surface
of the actual structure must differ from the corresponding "averaged" quantities
on the outer side of the grid when both structures are immersed in the same
incident wave. The differences will be quantified in the following three sections,
each of which is based on an approach of its own.

In Section II we employ certain spatial averaging on the E~field integral
equation appropriate for the wire-grid model of an actual solid structure and
arrive at a perturbed integral operator valid on the closed surface of the actual
structure. The standard first-order perturbation theory is then invoked to
calculate the impedances that need to be subtracted from the wire-grid model so
as to approximate the actual structure more closely. The special case of a
solid sphere and the corresponding wire-grid sphere is treated as an example of
the general theory. The impedances that need to be subtracted from the wire-
grid sphere are given explicitly and the lowest natural frequencies are contrasted
with those of the solid sphere. It is found that the wire-grid sphere (or,
perhaps, the wire-grid model of a general-shaped body) has larger resonance

frequencies and smaller damping constants than does the corresponding solid sphere.
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Fig. la.

Perfectly conducting closed surface.

Q

Fig. 1b. Wire—grid model of Fig. la.




In Section III we calculate the matrix elements from the E-field integral
equation for the wire-grid model and for the corresponding structure with a
closed surface. The comparison of the calculations shows that the diagonal
matrix elements and the off-diagonal elements resulting from interactions tetween
immediate neighboring patches are substantially smaller than the corresponding
ones in the wire-grid model. The interactions between more distant patches,
however, agree well with the interactions between corresponding wire segments.
The calculations not only confirm one of the results in Section II that the
induced currents are underestimated in the wire-grid model but also point to a
way of correcting the matrix elements in computer codes based on the wire-grid
model.

The matrix equation of the E~field integral equation that is commonly used
in numerical computation can be interpreted as an N-port network. A different
network representation is given in Section IV based on one of the many different
forms of the E-field equation. This representation can be viewed as a "two-
dimensional" transmission line and is more accurate for the wire-grid model,

The network elements are calculated for the closed surface as well as for the

corresponding wire—-grid model.




SECTION II

FORMAL APPROACH

We begin with the so-called E-field integral equation on the wire surface

of Fig. 1b

£-1=-Eg, @
with
£+J = _E_ind + Ec:ap
= su hxhx j G(r,z)I (xS’ - = fxhxvy- j G(r,xNIEds' (2
where Elnd and Ecap can be interpreted respectively as the inductive and

1

capacitive parts of the scattered field, r and r' belong to the wire surface,

n is the outward unit normal, nxax = (ﬁﬁ—;)-, I = unit dyad, s=jw for time
. jwt . .

convention e %", Note that L 1s a symmetric operator. For the moment, let

us assume that after some spatial averaging of (1), e.g., integrating over a

square cell in Fig. 1b, we have, on the closed surface of the structure (Fig. la),

@€, - LYK = -E 3)

where £' is an impedance operator and considered to be a perturbation on éo’
' belong to the closed surface. When L'

which is given by (2) when r and ¢
is zero, (3) becomes the E-field integral equation on the closed surface of a
perfectly conducting structure (Fig. la). TFor the perturbed operator L' we

take, from [2],

[1e->
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2m in ( 21r )(L 2 vsvs) (4)
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Here, VS is the surface gradient operator, a the length of wire segment,



ro the wire radius (fig. 1b), and ¢2 = (ue)—l.
Let iﬁ and gﬁ be the normalized eigenvectors that diagonalize respec-

tively the operators &£ and £ - &', i.e.,
=0 =< =

_ 4,0
£, 3y = ®)

ety = K 6
£k AB(S)_B (6)

Applying the first-order perturbation theory to (6) we obtain [3]

= ° - !
ks(s) XB(S) Lgg (s )
1 = .Y,
by o | Lpog s ®
with
[ gﬁ -£ﬁ<ﬂ3= 1
Let SB,S' and S;,B' be the zeros of XB and Ag respectively. Then (7)

gives approximately

s ~ g% +1L' 2 ) Eig- - )]
8,8" = “g,8' T “gg°s,8'’ | ds sg ”

As an example, let us work out the case of a perfectly conducting sphere
and the corresponding wire-grid model. We will calculate the natural modes,
the eigenvalues (which are equal to the negatives of the eigenimpedances intro-
duced in [41), and the natural frequencies only for the lowest electric and
magnetic modes of the wire-grid model and compare them with the corresponding

ones of the solid sphere. From [5] we have, for a solid sphere of radius R,

the following:
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Table I. Solid Sphere

electric dipole mode magnetic dipole mode
t ]

oty =g | SRy [sR sk, [s=R o v, |sR; (sRY]|sR . (sR
}\l(s)_zo[cll<c>] [ckl<c)] kl(s) Zo[cll(c>][ckl(0)]

' — A e no_ Lo

il g6 sin © 51 ¢ sin ©

or 1 iv3 e on c

s ={-=: =)= s ===

1,il(2 Z)R 1,0 R

where ZO = /u/e, il(x) and kl(x) are the modified spherical Bessel functions,

and the prime on the square brackets means differentiation with respect to sR/c.
We first evaluate LI'Ll and (d/ds)k(i with the above data for a solid

sphere. Then we use (9) to calculate the corresponding natural frequencies of

the wire-grid model. We find

'—l.
o5

_%.1‘% (1-38) + = (1+68) (electric dipole mode)

V)]
1

'l' 0 __1‘% (1-9) ] (magnetic dipole mode) (10)

_a g _a_
2mR n 27rro

In Fig. 2 we show the poles based on the above calculations and it can be seen

(o]
]

that the wire grid has a higher Q value than the corresponding closed structure,
as one might have expected intuitively.

It is interesting to point out that the eigenvectors _Ig}'lm(e,@ and

g’im(e,cb) of a sphere defined in [6] diagonalize not only the operator ogo but
also the perturbed operator &', i.e.,
CZ
T 1 _— 1
& -Islm = gsuRS§ | 1 + > 2 L +1) glm
2s"R
(11)
LI L I "
L l<-ﬁLm SHRS EJlm
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Fig. 2. Natural frequencies of electric and magnetic

modes of a solid sphere and its wire-grid model.
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The employment of these eigenvectors makes the calculation of LéB extremely
easy for all the natural modes. The functions gi and JY used here can be
identified with K! and K!Y. of [6] respectively. Table II summarizes the

=10 =10
results for the electric and magnetic dipole modes of a wire-grid sphere and

can be compared with Table I for a solid sphere.

Table II. Wire-grid Sphere

electric dipole modg magnetic dipole mode
A(s) = 287 (s) - suRS[L+c?/ (s%R%) ] M(s) = A" - suRg
Ki = 0 sin 6 Ki{ = ¢ sin ¢
SR S LR SR R

Before concluding this section let us summarize the most important result
in the language of adding or subtracting impedances to or from the wire-grid
model so that it will approximate closer the corresponding closed surface. Since

the eigenimpedance Z_ 1is the negative of the eigenvalue A (7) can be written

8 B’

as

- o . 1 '
AZB = ZB(S) - ZB(S) = LBB(S) a")

which simply means
(eigenimpedance of wire grid) - (eigenimpedance of closed surface)

= Lgg(®)

Although (7) has been obtained by the first-order perturbation theory, in certain
cases such as a sphere the result is exact because the unperturbed eigenfunctions

also diagonalize the perturbed operator §'. For a more general method of calcu-

1

BB
cates that we should subtract

lating L the reader is referred to [4]. 1In the case of a sphere, (11) indi-



AL = uRS  and  A(L/C)) = ﬂ%%l)-

from the wire-grid sphere. Notice that A(l/Cﬁ) depends on the mode number

2(2=B). Thus, the excess series impedance of the wire-grid sphere is given by

L Gy

€y,

for the 2-th mode, which is the sum of the %-th electric and the %-th magnetic

mode.
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SECTION III

DIRECT APPROACH

The E-field integral equation for a closed surface can take several
different forms because the second (capacitive) term, g?ap, in (2) can be

manipulated as follows:

E°9P = - —S% AXAXYY - j G(r,r")K(x')ds' (12a)
= - i AXDXY [ GV'.KdS' (12b)
= - ~S~l-€— nXnX f VGY'-K ds' (12¢)
= - 51;5 Axnx [ GV'V'-KdS' (124)
- - ElE AXAXY f VG - K dS' (12e)
= - ‘le nxnx f VVG - K dS' (12£)

where we have used VG =-Y'G and n + K =0, and the order of vector multipli-

cations is from right to left. Several remarks are now in order concgrning the
different forms in expressions (12a)-(12f). Expressions (12c), (12e) and (12f)
have to be interpreted as principal-value integrals. Expression (12f) does not
exist even in the principal-value sense, but it is widely used in numerical
computation because of convenience. To circumvent the difficulty of divergence
the so-called extended boundary conditibn method is introduced in which one only
requires the incident field be canceled by the scattered field in an arbitrary

' would never coincide.

region completely within the scatterer, so that r and ¢
Expressions (12b), (12¢) and (12d) contain derivatives of the unknown and, hence,
undesirable from a numerical viewpoint. The matrix elements generated for (12a)-

(12f) by, say, some quadrature formulas or the method of moments, are different

11



and therefore different circuit interpretations will result.

In this section we will evaluate the matrix elements for the E-field inte- o
gral equation based on expression (12e), first for a closed surface (Fig. la)
and then for the corresponding wire-grid model (Fig. 1b). The reasons for
choosing expression (12e) as the starting point are implicit in the remarks
just made and will also become obvious in the following. Our effort will be
spent mostly on the calculations of the diagonal elements and the coupling
between neighboring patches or wire segments.

We first divide the closed surface (Fig. la) into mathematical patches,
say, squares with side a. Then, we limit our attention to the i-th patch which
is small compared to the local radii of curvature and, hence, can be treated as
~a plane square. Let us introduce an arbitrary two-dimensional coordinate system
as shown in Fig. 3 and calculate, first, the two terms in the diagonal elements,
Eénd and E;ap’ in the matrix representation of (2). To evaluate Eind we
let the observation point r 1lie at the_cénter I of the i-th patch, assume
the unknown current density to be constant throughout the patch, make low-

frequency approximation to the Green's function G (the patch is small compared

to wavelengths), and integrate over the i-th patch Si' Thus, “
gind _ Sy 0, X0, X G(r,,r')K(r')ds’'
=i A P il
i

dx'dy'

. S o e
* G PR ED J J

(x,-x' )2+ (yi-y')z

d&dn

0 %2+n2

) ) al2 ra/2
= gy 0y (R4 Jo J

1
- ﬁ,x(ﬁ,xK.)?_a[J R,n(1+/l+u2)du+l]
™ N 1 —1 0

- BE8& oh @ +Y2D)KR, (13)
i —I1

i2
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Fig. 3. Coordinates of the i-th square plane patch.
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where

K

- - & apar | ve@an xahes]
i 4 S - -

i

_E(Ei). Next, we will calculate ggap given by

=T.
- =i

(14)

Before we proceed with the detail of calculation of (14) some preliminary remarks

are perhaps necessary.

strictly followed; otherwise, one will end up with meaningless results.

The observation point r always lies within the i-th patch. (c¢)

integration over the circle with radius §

(Fig. 3) vanishes as

8

(b)

(a) The order of operations as defined in (14) must be

The angular

tends to

zero and , hence, the integral in (14) exists in the principal-value sense.

One may, if one wishes, expand the unknown K in a Taylor series about

and keep more than one term in the series.

T,
i

(d)

But physical intuition tells us that

K 1is practically constant over a small patch and there is no need to keep terms

beyond the first one in the series unless the coefficient in the first term

happens to be zero.

local coordinate system of Fig. 3,

where

o1 ’ij {x—x’
4rse _Bx S R3

1
o1 _a_f {x—x'
4mse | 9y s R3

1

/QX-X')Z + (Y-Y')2

1 4
Kx(x V') +

R &'y') +

R

3

R

3

1
Ky(x',y')} dx'dy'

1
Ky(x',y')} dx'dy'

o

-l

X=X.
1

- y=¥4

X=X,

V=Y,

Then, keeping only the first term in the Taylor series expansion of K,

have

14

we

After some simple vector algebra, (14) gives, in terms of the

(15)

(16)




. 1 [jL Jy—yi—a/Z Jx—xi—a/Z 3 £ € (g
x 4se | 3% Y—Yi+a/2 X-Xi+a/2 (£2+ﬂ2)3/2 x 17
—_—n
tTo
(")
2a K fa/z dn o2y (r
a T T T aea o
4mse LI [n2+(a/2)2]3/2 Tsea X
Similarly, we have
I = - ,/5 K (r.)
v msea 'y —i
Substitution into (15) gives, with Ei = E(Ei),
gCap _ _ V2
—i msea —i1
Collecting the results from (13) and (18) we have
L., = -2 9n@+/2) - /2
ii T TSsea

i

372 Ky (po7y)

)

dgdn]
X=X

i
v=v,
"1

(17)

(18)

(19)

to be the diagonal matrix elements of the E-field integral equation,

over the closed surface of a perfectly conducting surface.

in a more general form:

with

15

Let us rewrite (19)

(20)



_ An(1+/2)

Li = i up, = 0.07 WP, henries
T

Ci = —_€ep; = 0.56 3 farads
4/2

pi = perimeter of the i~th zone

We now turn to the calculation of the diagonal elements of the wire-grid
model using the so-called thin-wire approximation in which the integrals in
(12¢), (12e) and (12f) all exist because r and r' never coincide. Then,
expressions (12e) and (12f) are equivalent and either can be used for the eval-
vation of matrix elements. Let us consider the i-th segment of the wire grid
and a is small compared to wavelengths (Fig. 4). Then, the diagonal matrix

element in of (2) for the wire grid is given by

g =_ﬂj_fyi+a/2 I(ydy' , 1 J’yi+a/2 22 T(yNdy’

ii 71 L 4ase 2
y3-al2 V(yi—y')2+ri yimal2 8y V(yi-y')2+ri

I
- suafl 2 i
< by + Seaw) a (21)

where I has been assumed constant over a segment, Ii = I(yi), Q=2 ﬁn(a/ro),
and Ii/a should be identified with the y-component of the surface current
density gi of the corresponding closed surface.

So far the calculation has been limited to the diagonal matrix elements for
the actual body and its wire-grid model. The mutual interaction between neighbor-
ing patches and between the corresponding wire segments can be calculated with
si=?lar techniques. The tacit assumptions in these calculations are that the
region under consideration is small in terms of wavelengths and that it can be
approximated by a planar surface. Fig. 5 shows the patches and wires for which
the results are obtained and presented in Table III.

Starting_with the diagonal elements we now make some comments concerning
the results shown in Table III. For Q=6 (i.e., a=20r,), which is about the
value used in most wire-grid computer codes, Q/4=1.5 while in(l+/f)2 0.881, the

difference being about a factor of 1.7. For the capacitive diagonal term the

16
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Fig. 4. The i-th segment of the wire=-grid model.
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Table IIIa.

Matrix elements from the E-field integral equation for the

patches of Fig. 5a.

Patch #1 Patch #2 Patch #3
K K K K K K
X y X y X y
E;ap(0,0)ssa -0.4502 0 0.1915 0 -0.0177 0.0494
E;ap(0,0)sea 0 -0.4502 0 -0.0769 0.0494 | -0.0177
ind
E,"(0,0)/sua |~-0.2805 0 0.0826 0 0.0577 0
ind
E, (0,0)/sua 0 ~0.2805 0 0.0826 0 0.0577
Patch #4 Patch #5 Patch #6
K K K K K K
X v X y X Y
E;ap(0,0)sea 0.0211 0 0.0106 0.0089 0.0018 0.0054
E;ap(0,0)sea 0 ~0.0102 0.0089 | -0.0029 0.0054 0.0018
ind
E."(0,0)/sua | 0.0402 0 0.0359 0 0.0283 0
ind
B (0,0) /sua 0 0.0402 0 0.0359 0 0.0283
Example: The current density K, = K

sc _
Etan(o’o) -

3

(0.0577 spya K =
X

0.0177 K + 0.0494 K

sea X

+(o.0494 . _ 0.0177 Ky>§’

sea

19
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3x X + K3y ¥ on patch #3 gives the
following tangential electric field at the center of patch #1,

X
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Table IIIb.

Matrix elements from the E-field integral equation for the

wire segments of Fig. 5b.

I, I, I, I, I I,
E;ap(0,0)sea -2/ -0.0712 |[-0.0091 | 0.2829 |-0.0081 | -0.0031
E;nd(0,0)/sua —9/4r | 0.0766 | 0.0394 |-0.0874 | 0.0568 | 0.0355

I, g Iy Lo I1 T19 I3
E;ap(0,0)sea 0.0226 | 0.0102 | 0.0016 |-0.2892 | -0.0239 | -0.0150 |-0.0127

ind

B, (0,0)/sua | 0.0406 | 0.0360 | 0.0282 0 0 0 0
Example: The current = I3 vy on wire segment #3 gives the following

E;C(O,O) = (0.0394 sua -

3
axial electric field at the center of wire segment #1,

20

0.0091 \ I3
sega
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the difference is about 417. We also note that both the inductive and capacitive
terms of the diagonal elements of the wire-grid model are larger than the corres-
ponding elements of the actual (patch) case. This result is intuitively clear
since a wire segment has a larger impedance than does the corresponding patch.
Therefore, the wire-grid model underestimates the EMP-induced currents on the
actual structure.

Turning to the off-diagonal elements in Table III we see that the inductive
parts of the matrix elements with respect to immediate neighbors agree within
8% in the two cases. For more distant patches and wire segments the differénce
is less than 1%. The capacitive terms, however, differ more than the inductive
terms in the two cases, as can be seen from Table III. The difference (in the
capacitive terms) will be reduced to less than 3% for more distant patches and
wire segments than those presented in the table. We mention in passing that
the interaction between distant patches and wire:segments outside the range
covered by Table III can be accounted for using a dipole approximation of the
patches and wires.

Since each patch (wire segment) is small in terms of wavelengths so that
[sa/cl << 1, the capacitive term of each matrix element increases as the patch
(wire) size decreases. This rather perturbing behavior can be attributed to the
fact that the E-field equation is not-an integral equation but an integro-differ-
ential equation. Therefore, this isan inherent property of the E-field equatiocz
gnd will occur in solving this equation numerically using the so-called method
of moments regardless of the base functions (piece-wise linear, piece-wise
sinusoidal, etc.) that one may use. This behavior of the elements makes the
matrix ill-conditioned and it is not clear that the numerical solution converges

as the patch size decreases (matrix size increases).
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SECTION IV

CIRCUIT APPROACH °

In the preceding section we saw how the diagonal matrix elements and the
matrix elements connecting neighboring patches or wire segments were generated
starting with expression (12e) for the capacitive term. In a straightforward
but messy manner one can calculate all the matrix elements for N patches on a Y
closed surface or 2N wire segments of the corresponding grid model. In so
doing one will end up with a 2Nx2ZN matrix. In the language of circuit theory
one then has a 2N-port network, the lumped elements of which are given by the
matrix elements and are interconnected in a highly complex manner. In this
section we will derive a much simpler circuit representation of the wire grid
and calculate the circuit elements in the representation. We then argue that
the same representation holds approximately also for the closed surface at
least locally and calculate the circuit elements by integration over patches.

The derivation of the circuit representation is mostly heuristic, intermingled
with physical arguments and simple mathematical operations.

When one looks at the wire grid as shown in Fig. 1b, one sees a self-
inductance and a self-capacitance for each wire segment (which is assumed to be “
electrically short) and mutual inductances and capacitances between neighboring -
segments. If each wire segment is thin enough (i.e., @ = 2 2n(a/ry) = 10),
the mutual inductances and capacitances can be neglected in comparison to the

self-inductance and self-capacitance whose values are given by

_ paQ _ bmea
Lw T4y Cw Q

(22)
Wnen the wire segments are of the same length a and radius T the self-
capacitance, C, of each wire cross (which is one basic unit of the grid model)
is simply ZCW. Thus, one arrives at the circuit representation of Fig. 6, which
may be termed a “two-dimensional" transmission-line model of a wire grid. It
must be borne in mind, however, that such a representation is wvalid only when

the grid is planar and radiation losses are neglected.

To see how Fig. 6 comes about we start with expression (12a) for the

22
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capacitive term in the E-field integral equation. The integral equation mnow
takes the form, with s=juw,
inc

~ A 1 ~ -
jop nx GJ dS' - ——— nxnxVV- "= -
jou nxnx J ds' - 5o mxaxvy J GJds Eon (23)

Because of the presence of VV outside the integral sign the branch current in
one wire segment will be related to the currents in neighboring segments through
the shunt currents flowing into the capacitances, in a way similar to the usual
one~dimensional transmission line. The values for Lw and Cw given by (22)
can be obtained from (23) by noting that G is highly peaked at r'=r and

hence the integral in (23) over, say, the i-th segment gives approximately

, Qr
J G(r,,r")J(x")ds' = J(r.) J G(r,,r')dS' = —> J(z,) (24)
—i’— = = ——i - 2 =1 :
S, S, .
i i
where r; is the midpoint of the i-th segment. The differential operator %%
in the second term of (23) must now be interpreted as ViVi; that is to say,
ViVi-JKEi) means taking the difference of the values of J evaluated at the
centers of neighboring segments. With these considerations we arrive at the
circuit representation Fig. 6 with radiation losses neglected.
For the corresponding closed surface (Fig. la) we assume that locally the
circult representation is the same as Fig. 6 except that the inductance and
capacitance values will be different. The difference stems from the evaluation

of (24) over a square of side a rather than along a wire segment of length a

and radius ro. Over the i-th patch we then have

_a Rn(l+¢§} N
= ——-———W }\(

[s G(z,,r")K(r")ds' = K(zr,) f G(r,,r')ds’ K (25)

. 5,
i i

where we have used (13) to evaluate the integral.
To sum up, the inductance L and capacitance C in the circuit represen-

tation Fig. 6 are given in Table IV.

23



Fig. 6. Local circuit representation of the wire-grid model

shown in Fig. 1b.
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Table IV. Values of L and C in Fig. 6

closed surface wire grid
u aln(l+/§) uaf
L s Heaae
T 4m
Tea 8mea
C — ==
2n(l+/§)

Notice that the inductance value of the closed surface in Table IV is the same as
the self-inductance calculated in Section ITII. However, the self-capacitance
values are different because the capacitance in Table IV is a shunt capacitance
with respect to infinity, whereas the self-capacitance value in Section III is
referred to a series capacitance.

There are two further points about Table IV that need to be discussed.
First, the capacitance value for each wire cross of the wire—grid model can be
split into two parallel capacitances, each having a value 4rmea/Q. In so doing
the propagation speed along either direction of the grid is given by l//ﬂg, as
it should. The second and perhaps most important point is that the difference
in inductance AL and the difference in capacitance AC between the closed
surface and its wire-grid model can be calculated from Table IV and expressed
in a more recognizable form. To do this we include one more term in the asymp-
totic formula (22) for the inductance LW. As expected, this term turns out to
be a constant, i.e., independent of the wire radius. Without going into the

details of the derivation we merely give the result:

L = EE.[Q - 20n(e/2)] + O(éj

W 4m
_ ua a uain(ar/e) 1
=2 (2ﬂr0)+ T + O(Q) (26)

Thus, we have

25



AL

R

This result is in

conducting plates

Lwire grid - Lclosed surface o

ua a pasn(én/e) U an(1+72) 1
27 MI( )+ 2n - i + 0(5)

ua a - 1
o H,n( )+ 0.244 wa- 0.28Lyua + 0()

ua a
27 an(Z‘TTr ) 27>

agreement with that of Reference 7 where the effect of replacing

with wires for parallel-plate EMP simulators is discussed.

Expression (27) is obtained with the assumption that

1 a
o Qn(Z'rrro) >> 0.04

which certainly is compatible with the thin-wire approximation. For the differ-

ence in capacitance we simply have o

ac CWire grid - Ct:losed surface

T 8w
= =-———¢a+ g €8
2n (1+/2)
= - 3.56 ea + O %) (28)

Expressions (27) and (28) mean that the wire grid has more inductance but less

capacitance than does the corresponding closed surface, as one would have expected.
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