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ABSTRACT

One of the more pressing problems in the application
of radar technology is the extraction of a maximum amount
of information from the backscattered fields of various
types of radar targets.to permit their classification and
identification. It is axiomatic that very wideband signals
are required to achieve this objective, and a number of
investigators have attempted to use, with partial success,
wideband radar signals to construct visually recognizable
images of relatively large radar reflectors. In this study
we describe an alternate system concept based primarily on
the use of a bank of digital matched filters matched to
the scattered-field responses in the resonance region of
targets of interest. Supporting laboratory data and com-
puter simulation results show that this approach can be an
effective means of accurately discriminating among targets
of similar size and shape, or among the different physical
orientations of the same target, even when such targets are
obscured by noise or clutter.
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SECTION 1

INTRODUCTICON

This document is submitted as the final report in response to the
requiréments set forth in Contract No. F30602-69-C-0357 bhetween the Sperry
Rand Research Center, Sudbury, Massachusetts and the Air Force Systems Command,
Rome Air Development Center, Griffiss Air Force Base, New York. The primary
objective of this program, performed during the period 22 June 1969 to 22 June
1970, was to obtain and analyze the impulse response measurements of five
sétellite-type objects. In particular, the main task was to determine or
obtain a quantitative measure of the target discriminants that exist in the

electromagnetic field backscattered from these bodies,

The motivation for this study is based on the fact that broadband

radars with sophisticated signal processors are being proposed as solutions to

both clutter and object identification problems. While many fine studies
leading to such proposals have been made, lack of knowledge of the scattering
characteristics, valid over a large enough frequency band to satisfy system
requirements, has prevented the design of truly optimum processors for target
discrimination.

Recent advances in the application of picosecond technology to micro-
wave problems have led to the development of a scattering facility that can

provide accurate measurements of the smoothed impulse response of the scatter-
ing object.

One advantage of this approach to gathering target data is that it
takes only a few minutes to demonstrate that scattering objects with different
shapes have different impulse responses. This led to the decision to use
these characteristic signatures as input data for a signal processing scheme
to identify specific targets. In addition, the impulse response waveform is
simple enough in structure to permit us to employ a laboratory instrumentation
computer to process the data.

The operating band of the system presently covers the range from
200 MHz to about 4.5 GHz. We should note, however, that as long as the width

of the smoothed impulse is short enough to resolve (in a radar sense) the
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pertinent target details, then both high- and low-frequency effects are

contained in this smoothed 'impulse-response waveform. Increasing the

high-frequency content by decreasing the pulse width will simply sharpen
the response without furnishing additional useful information about the .
target., In the frequency domain, this amounts to saying that the useful

information is contained in the baseband extending to a frequency somewhat

above the highest significiant resonance.

The approach taken in this study to obtain a measure of existing
discriminants among different scatterers was to measure the response of these
objects on the time-domain écattering range and then compute the elements of
the cross-correlation matrix. In order to show the effects of bandlimiting
on these discriminants, the measured returns were filtered and the correlation
matrix was recomputed. These data quantitatively measure the waveform differ-
ences; however, in order to obtain a measure of performance of a target iden-
tification system using these responses, noise must be introduced into the
system. A theoretical derivation of optimum discrimination systems employing
these smoothed impulse response waveforms was carried out for several potential
system environments. These optimum discriminators were implemented in the
time-domain metrology laboratory and tested with the measured waveforms. The

results of these tests indicate that targets can be effectively identified on

the basis of their impulse response. It should be noted that a currently
active Air Force project, SPERT, to develop the necessary technology to imple-
ment a high percent bandwidth radar can employ many of the concepts and results

presented here.

The next section of this paper presents a brief description of the
precision time-domain scattering facility along with a discussion of some
scattering results that are pertinent to the signal processing aspects of our
study. In Sec. 3 the digital signal processing philosophy that was used to
quantitatively measure target discriminants is discussed. The resulting cor~
relation matrices under various bandwidth constraints are also discussed.
Section 4 presents the thoeretical derivations of several optimum discrimina-
tors, while in Sec. 5 the digital implementation of the discriminators and the
experimental results obtained in the time-domain metrology laboratory are

discussed. Section 6 is a summary of the reported results,




SECTION 2

TARGET MEASUREMENTS

The electromagnetic response of a radar target contains all the
scattering information about that target, and for this reason is a character-
istic target signature. Moreover, the impulse response displays this enormous
amount of information in a deceptively simple waveform which is also closely
related to the actual target geometry. Section 2.1 discusses the time-~domain
scattering range facility which provides a quantitatively accurate means of
measuring the smoothed impulse responses of radar targets. Results are then
presented and discussed (including the relationship between characteristics of

the smoothed impulse response and the target geometry) in Sec. 2.2.

2.1 SCATTERING RANGE DESCRIPTION

The operating principles of the scattering range are most easily
understood by considering the functional block diagram shown in Fig. 1. The
system signal source is a high-voltage switch which generates a 300 V step
function with a risetime less than 100 psec. The signal is radiated, virtually
undistorted, from the base of a wire transmitting antenna protruding through a
circular ground plane 20 feet in diameter. This wave is then reflected by a
target and the scattered waveform is received on a coaxial horn antenna, which
essentially differentiates the signal and thus provides the impulse response
of the target. The received waveform is sampled by a 12 GHz oscilloscope that
has been triggered by the initial pulse and whose sampliqg gate deflection is
under the control of a small instrumentation computer. Unprocessed data are
displayed on the osciloscope CRT while the sampled-and-held waveform is passed
through a low-pass filter, digitized, read into the computer, and stored on
magnetic tape automatically. This sysfem has been designed to correct for
long-term timing drift and/or amplifier drift. In addition, the waveforms are
stored in such a way that they are ready for the subsequent operations of

averaging (to remove short-term noise) and baseline processing.*

* The effects of a time varying baseline are subtracted from measured wave-
forms to improve system accuracy.
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The salient characteristics of the range are the speed and simplicity
with which multi-octave frequency-domain data can be obtained. These advan-
tages accrue because the time-domain scattering range yields an "uncontaminated"
interval of time between the arrival of the direct wave and the arrival of
unwanted reflections. This is most easily explained by considering the sketch
in Fig. 2, which shows the relative location of the elements on the ground
plane, and the photographs in Fig. 3, which show the range response as it
appears at the oscilloscope (no data processing has been used at this point).
The transmitted signal travels outward from the base of the wire antenna and
is received at R at time tO:r% (where ¢ 1is the speed of light). This
time is marked by the pulse at the left end of the trace in Fig. 3. The out-
going wave reaches the target at t==% . is reflected, and arrives at the
receiver at tlzrz%gg :'to-k%g . The targets are usually located anywhere
from 2 to 5 feet from the transmitting antenna; therefore, target returns lie
in the region marked by the doublets at t. and t in the lower photograph,

1 2
The erratic response at the right edge of the trace which occurs after t

marks the arrival of the pulse reflected by the table edge and the effectg of
the pulse radiated from the tip of the transmitting antenna. It should be
noted that a "clear window" exists between the second doublet and the table
edge. This is required because many of the targets are highly dispersive and
their response will extend far beyond the specular reflection (e.g., see

Fig. 7). The entire region between the direct transmission and the table
edge response forms a convenient time "window" to view the target response
and allows one to "gate out" (in time) unwanted reflections. Thus, undistorted
transient target respomses can be viéwed without resorting to elaborate and
expensive anechoic chambers. In addition, a single time-domain measurement
obviates the requirement for tedious measurement of the amplitude and phase

response at many frequencies.

2.2 MEASURED RESULTS

The feasibility of accurately measuring the smoothed impulse response
on the time-domain scattering range has been demonstrated quantitatively, In
the results that follow, the sampled data from the oscilloscope have been
smoothed and the contamination of the baseline has been removed to give

the approximate impulse response.
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FIG. 2 Geometrical configuration of video time-domain scattering range.
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Incident pulse with clear range

Incident pulse with markers at
2 ft(t,) and at 5ft.(t,) from

transmitting antenna.
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FIG. 3 Response of video time-domain scattering range showing incident pulse
and time window (horizontal scale: 2 nsec/div.; vertical scale: 200 mV/div.).
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The measured incident pulse is shown in Fig. 4 along with the inci-
dent pulse used for the theoretical time-domain calculations. The measured

response of a 4.25 in. diameter sphere in the backscatter direction is shown

in Fig. 5 along with the theoretical results. The agreement between these
results is excellent. The initial pulse in the response corresponds to the
return from the nose of the sphere (the specular return). The amplitude of
this initial return is proportional to the square root of the product of the
major radii of curvature at the specular point. Next, a negative swing occurs
in the response. The character of this negative swing is influenced only by
the shape of the targét in the vicinity of the specular point. The timing of
the second positive pulse in the response indicates it is due to a wave
"traveling" around the rear of the sphere (often called the creeping wave).
These results illustrate the close relationship between the approximate im-

pulse response and the geometry of the scatterer.

To demonstrate the utility of time-domain scattering measurements
for obtaining broadband frequency response data and at the same time demon-
strate the accuracy of the measurements, the frequency response of the sphere
has been calculated from the Fourier transforms of the measured incident pulse
and the resulting scattered response. The Fourier transforms were performed

numerically on a digital computer using a finite Fourier ‘transform approxi-

mation for the infinite Fourier transform. In Fig. 6 the result obtained from
the measured data displayed in Figs. 4 and 5 is compared with the theoretical
frequency response of the sphere calculated with classical techniques. The
agreement is quite good up to a ka of approximately 4. The range of good
agreement is limited primarily by the spectral content of the incident pulse

and could be extended by using larger targets and/or shorter pulses.

The accuracy of the measurement system can be estimated by realizing
that the situation that prevails is essentially the same as the elementary
statistical problem of estimating the mean Vm of a random variable V when
given N independent sample values Vi . In our case the signal voltage
is Vm , the signal plus noise is the random variable V , and the expected

value of the noise voltage is zero. We therefore use the sample mean

12
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FIG. 5 Comparison of measured and theoretical time-domain sphere response.
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as an estimator for Vm (the signal value at a particular point t on the
sampled waveform) since it is consistent and unbiased. We take as an error

estimate the standard deviation of V
O
7 /N

which is computed using the sample variance

N
}:(V. _h?2
1
2 =1

ST = N

as an estimate for the population variance.

In our measurements the peak of the incident pulse, as measured on
the sampling oscilloscope, is approximately 500 mV, and a typical target re-
sponse has a peak value in the vicinity of 10 mV. When using the 10 mV scale
on the sampling oscilloscope, we estimate the standard deviation of V , as

described in the preceding paragraph, to be

o = 0.059 mV

v
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o

if - N=64 scans are averaged. Thus, the estimated standard deviation of V

1s in the vicinity of 0.6% of the peak value of the target response,

The previous paragraphs have described the operation of the time-
domain scattering range and presented results which show quantitative agree-
ment with previously obtained data for the conducting sphere, Numerous other
examples of the good agreement between time-domain scattering range measure-
ments and the results of solving the space-time integral equation are presented
elsewhere.1 The results of the measurements on a cube, a right square cylin-
der, a right circular cylinder, two spheres, a sphere~capped circular cylinder,

and a sphere-cone-sphere are now presented.

In Fig. 7 the smoothed impulse response (in the backscatter direction)
of an 8 in. cube is shown for two angles of incidence. For 0° incidence the
return from the front face takes the form of a smoothed doublet, as expected.
Next the response becomes small, indicating little return from the sides of
the cube, and approximately 1.4 nsec after the smoothed doublet there appears
a negative pulse whose timing can be attributed to the back edge of the cube.
For 45° incidence the first part of the response is a positive pulse that may
be attributed to the front vertical edge of the cube. This is followed approx-
imately 0.9 nsec later by a return that may be attributed to the two middle
vertical edges. The return due to a wave traveling around the rear of the
cube at the speed of light would be expected 2.5 nsec after the return
from the front edge, and indeed the measured response does show a pulse ap-
proximately 2.7 nsec after the initial pulse.

In Fig: 8 the smoothed impulse response of a right square cylinder
that was 12 in. long and 4 in. square is shown for various angles of incidence.
For 0° incidence the first portion of the return approximates a doublet and is
followed by a negligible return from the sides of the cylinder. The return
from the rear edge of the cylinder appears approximately 2.1 nsec later and is
followed by the return due to the wave traveling around the rear(a positive
pulse at 2.5 nsec). These two returns, when combined, are "doublet.-like" in
shape, but are of opposite polarity from the return from the front face. This
change of polarity would produce a 180° phase shift if convolved with a sinu-
soidal waveform. At 306 and 60° incidence the doublet character of the initial

return and the back return disappears, but the waveform features can again be

17



FIG., 7 Smoothed impulse response of an 8 in. cube (horizontal scale: 0.5 nsec/div.,
vertical scale: 10 mV/div.).
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8=30°
8 =60°
8=90°

FIG. 8 Smoothed impulse response of a right square cylinder
(horizontal scale: 0.5 nsec/div.; vertical scale: 5 mV/div.).
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attributed to various geometric features of.the,target. Finally, at 90°
incidence the large doublet return from the side face of the square cylinder
appears and is followed by returns due to the back side (a negative pulée

at 0.65 nsec) and a wave traveling around the rear (a positive pulse at 1.1

nsec) .

The smoothed impulse response of a right circular cylinder that
was 12 in. long and 4 in. in diameter is displayed in Fig. 9 for several
angles of incidence. For 0° incidence the response is nearly the same as
that measured for the right square cylinder. The main difference is that
the amplitude of the initial doublet is slightly smaller for the circular
cylinder, as expected because the cross-sectional area of the circular cyl-
inder is smaller. At 30° and 60° incidence, slight differences in the re-
sponses from the two cases appear, but the gross features again may be related
to the actual geometry. At 90° incidence, however, the return from the right
circular cylinder is markedly different from the right square cylinder. The
initial part of the circular cylinder return at 90° incidence approximates an
impulse and is followed by a negative swing, as predicted by physical optics.
The second positive pulse that appears approximately 2.0 nsec after the first
pulse may be attributed to a wave traveling around the rear of the cylinder.
Comparison of this measured response with the smoothed impulse response from
an infinitely long circular cylinder with TE polarization2 shows remarkable
similarity, and indicates the effect of the ends on a finite cylinder for
this polarization of the incident wave is small. This effect has been rigor-

ously discussed by DeLorenzo3.

In Fig. 10 the smoothed impulse responses of a 4 in. diameter sphere
and an 8 in. diameter sphere are shown. These will be used for comparison

with the responses of the sphere-capped cylinder and sphere-cone-sphere.

The smoothed impulse response of a sphere—capped cylinder with a
length of 12 in. and a diameter of 4 in. is shown in Fig. 11 for various angles
of incidence. For O0 incidence the initial part of the return is, as expected,
identical to the return from the 4 in. diameter sphere shown in Fig. 10(a).
This is followed by a near zero signal, indicating that there is little return
from the sides of the cylinder. Finally, the return from the joint between

the cylinder and the sphere cap appears, along with the return due to the wave

20
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g =30°
B=60°
§= 90°

FIG. 9 Smoothed impulse response of a right circular cylinder (horizontal
scale: 0.5 nsec/div.; vertical scale: 5 mV/div.).
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FIG. 10 Smoothed impulse response of spheres (horizontal scale:
0.5 nsec/div.; vertical scale: 5 mV/div.).
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FIG. 11 Smoothed impulse response of sphere-capped cylinder (horizontal
scale: 0.5 nsec/div.; vertical scale: 5 mV/div.).
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traveling around the rear of the cylinder. At 30° and 60° incidence, the
gradual modification from the 0° case to the 90° incidence case may be noted.

At 90° incidence the shape of the response is virtually the same as it was

for the right eircular cylinder at 90° incidence. This is expected, since -
the effect of the cylinder ends appears to be negligible for this polarization

and angle of incidence, as pointed out earlier,

Finally, the smoothed impulse response of a sphere-cone-sphere (with
a half angle of 150, a large sphere diameter of 8 in., and a small sphere
diameter of 2 in.) is displayed in Fig. 12. For the case with axial incidence
on the small sphere tip (0° incidence), Fig. 12 shows the small return from
the tip, followed by a negligible return from the conical part of the struec-
ture, Next, a negative returh, apparently from the joint between the large
sphere and the cone, appears. This is followed by the return that can be
attributed to a wave traveling around the rear sphefical surface of the
structure. By viewing'Figs. 12 and 13 ﬁhe graduai change in character of the
response from the case of 0° incidence to the case of 180° incidence can be
observed. For the case of axial incidence on the large sphere base (180°
incidence) the initial part of the return is the same as that for the 8 in.
diameter sphere shown in Fig. 10(b), as expected. This is followed by a near

zero return from the conical surface, which by the way is in the geometric

light shadow. Finally, the return from the tip region of the structure may

be observed approximately 3.2 nsec after the initial pulse. It is also inter-
esting to note that the initial portion of the returns for 1800, 1500, 120°
and 90° incidence all possess the same shape as the initial return for the

8 in. diameter sphere shown in Fig, 10(b),
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FIG., 13 Smoothed impulse response of sphere-cone-sphere (horizontal
scale: 0.5 nsec/div.; vertical scale: 5 mV/div.).
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SECTION 3

DISCRIMINANT ANALYZER

The basic processing philosophy employed in this study to analyze
target discriminants is based on the properties of the correlation function.
There are several advantages to this approach. In particular, once the appro-
priate data have been measured, the implementation of the processor is rela-
tively straightforward. In addition, a correlation processor (or matched fil-
ter) maximizes the signal-io-noise ratio, and in many cases is an optimum fil-

ter., This will be discussed in more detail later.

3.1 PROCESSING PHILOSOPHY

The fundamental basis for choosing a correlation function computer
for a discriminant analyzer is that the peak of the autocorrelation function
is greater than any cross-correlation function under an energy normalization. .

This is readily understood by defining Rir(t) to be

Rir(t) = J fi(T)fr(t + 7)dT

where fi(t) and fr(t) are two real functions and Rir(t) is the unnormal-

ized cross-correlation function.

Applying the Schwarz inequality to IRir(t)|2 yields
lRir(t)Ig =|f £.0TF (¢ + T)dT|? = | ]fi(T)\edij \fr(T)lsz
Dividing by [|£.(T)[?d7 and jlfr(T)IEdT leads to

]Rir(t)l

}pir(t)\ ) [Iifi(T)\ngJ%[flfr(T)lngJ%
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Since Rii(0)=—lff2(7)dT" and fi(t) and fr(t) are real, we have

— 2
R,;(0) = [ l£(m)|2aT

Hence,

} l : (t)l
(t) - < 1]
ir [R (R, (o)jt

or

Sl = [RQ - ]_

Since Ip (t)l is less than unity unless f.(t)%kf LT and

‘piiﬁo)l is 1dent1ca11y one, we see that the amount by wh1ch the maximum value

of any ipir(t)l is less than unity can be used as a measure of the ability to
discriminate between the real functions fi(t) and fr(t) in the absence of
noise. The smoothed or regularized impulse responses employed in this work

are real functions; therefore, the above analysis can be employed.

Before passing to the discussion of the actual digital implementation
of the processor, a few words regarding angular data and system noise are appro-
priate.’ In particular, the number of waveforms pertaining to a particular tar-
. get shape that must be stored depends on the actual shape of the target and the
transmitted pulse width. It is clear that if the incident pulse is not short
enough to resolve, in range, the change in location of the scattering centers
as a function of angle, then a continuous angular record is not necessary.

Once we accept this fact, it is clear that target response information at a

number of angular orientations is all that need be stored. It is also clear

28




that the angular sampling spacing is related to the required number of time
samples and hence to the Nyquist frequency of the system waveforms. The angu-
lar sampling frequency requirements can also be studied experimentally using
the scattering range and the correlation processor. However, a detailed study
of these interactions has not yet been made. The results in this report are
based on angular data at a few representative angles chosen to illustrate the-

ideas and should not be thought of an as optimum angular sample spacing.

3.2 DIGITAL IMPLEMENTATION

In order to demonstrate and evaluate the processing philosophy pre-
sented in the previous section, the computer was programmed to implement the
operations stated in the functional block diagram shown in Fig. 14. Since
the scattering range data is stored digitally in the computer, the first step
in the process is to>compute and store the conjugate Fourier transform and
energy of each reference waveform, A total of 22 waveforms were used in this
study. The Fourier transform and energy of an unknown target-plus-noise wave-
form are also computed and stored. Once the target data are stored, we multi-
ply the target's complex spectrum with one of the conjugate reference spectra,
compute the inverse transform of the product, select the maximum value of the
result and divide by the product of the target and reference energies. The
maximum value of lpir(t)l is found and Pir(t) is then stored. This process
is repeated for every target in the reference library. If the target response
is the .kth in the reference library, then the array of numbers we have stored
is the kth column of the correlation coefficient matrix. If we introduce
targets one at a time and compute all twenty-two column vectors, then the
total array, properly ordered, constitutes the correlation coefficient matrix.
In the absence of noise this matrix is symmetric. The results in the noise-
less case over the full system bandwidth are shown in Fig, 15. The main diagonal
is unity, as expected, and the off-diagonal terms range in absolute value from
0.335 to 0.984. This array then constitutes a quantitative measure of the dis-

criminants that exist among the target waveforms employed.

In order to obtain a measure of how the discriminants vary as a
function of center frequency and bandwidth of a potential target identification

system, each of the target returns was filtered and the correlation matrix was
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FIG. 14 Functional block diagram of the discriminant analyzer.
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FIG. 15 Correlation matrix of original target responses.
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recomputed. The resulting matrices are shown in the appendix for various fre-
quency-spectrum conditions. 1In Fig. 16 the bargraph (with expanded scale)
shows the average values of the off-diagonal terms for the frequency condi-
tions studied. The results show that the off-diagonal terms increase grad-
ually as the cutoff frequency of the low-pass filter is reduced. When the low
frequencies are removed, however, the off-diagonal terms appear, on the aver-
age, to increase more rapidly. This, of cou}se, tends to support the conten-
tion that the major source of discriminating information is in the lower por-
tion of the band. In addition, when the specular return was removed the aver-
age off-diagonal terms were smaller than the even unfiltered results. This is
further indication (since the specular return is directly related to the opti-
cal return) that the ability to discriminate between objects of similar size
on the basis of a backscattered electromagnetic field will be improved if a

lower frequency (i.e., closer to the resonance region) radar is used.

Up to this point we have computed the cross-correlation functions of
smoothed and filtered impulse-response waveforms of various similarly shaped
targets and have used the amount by which the maximum value of any cross-cor-
relation function is less than unity as a measure of the discriminants present
in the response waveforms. 1In the noiseless case we can always select the
greatest value in any column without error. However, the ability of the cor-~
relation technique to be a useful discriminator depends on the amount of noise
immunity present. We would expect reasonably good results, not necessarily
optimum, simply on the basis that the correlator or matched filter maximizes
the signal-to-noise ratio. Rather than speculate further we proceed to the
next section, in which optimum discriminators are theoretically investigated

in various situations.
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SECTION 4

THEORETICAL ANALYSIS

In this section of the report we shall review the theory of various

forms of optimum discrimination.4’5'6'7

We wish to apply this theory to the
problem of identifying targets from their radar returns. Usually these re-
turns are buried in noise. Hence, knowing the returns from targets of interest
we can use the theory of optimum discrimination to identify the target that is

present from its noisy radar return.

In the following discussion we shall assume that all signals and
noise can be represented by a finite train of uniformly spaced time samples.
The case of continuous waveforms can be handled by using the Karhunen-Loeve
expansion. The results in the continuous case are analagous to the finite-

sample case, where sums of samples correspond to integrals.

In Sec. 4.1 we will discuss the optimum disecriminator for the case
of completely known signals in additive noise of various characteristics.
This case represents the ideal situation of knowing everything about the ex-
pected signal return. In Sec. 4.2 we shall consider the practical situation
where the return signals have unknown parameters such as unknown amplitudes

and delays.

4.1 KNOWN SIGNALS IN NOISE

In this section we shall develop the optimum discriminator in the
sense of minimizing the probability of error when the signals are known exactly,
but have been corrupted by additive noise. We shall assume that our observ-
ables are a finite set of uniformly spaced time samples of the pertinent wave-
forms, This is the form in which the actual data is known and is particularly

suitable for digital operations in a computer.

Let us assume that we have a set of M signals, each of which is
represented by N uniformly spaced time samples. These signals can be repre-

sented as N dimensional vectors, i.e.,

34




~
5. |
1
s, = : 1<j <M (1)
25 :
S'
N,
5,
where
S.. = 5,(iD) 1 <i=<N
1] J
T = sampling interval
_ .th .
Sj(t) = j  signal voltage .

In this particular set of experiments, M = 22 and N = 128 . Similarly, the

additive noise is represented by the vector
r‘ b
Nol
= | (2)

.
C oV

where Noi = No(iT) , 1 =1 <N, is the discrete representation of the noise
voltage No(t).

Given the samples of a signal plus noise, we wish to decide, with a

minimum probability of error, which signal is present in the noise; i.e., we
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are given the vector

X=S5.+N 3 )

where S. 1is desired. Since an error is committed every time §i is de-
cided when §j(i # j) is present, it follows that the total probability of

error is given by

MM 7
Pg = Z z PLS; ‘§J (4)

i=1 j=1
i#]

where PE is the probability of error and P[éj;§i] is the joint probability
that §j is decided and §i is present. We shall assume that one of the

signgls §5 is present in the noise; hence

) #ls]=1 | (5)

1
where PL§jJ is probability that §j is present. From probability theory,
Eq. (3) implies

M M

DD R EE | (o

j=1 i=1
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Equation (6) substituted into Eq. (4) yields

M

Pp= 1 - ZP[_S_j;%] . | S

j=1 |

Equation (7) states that the total probability of making an error is equal to

one minus the total probability of making correct decisions.

From the definition of conditional probability,

pls.;s.1=pls.Is.1p(s.] : (8)
-] 1 =] ~1 1

where PE§jl§i] is the conditional probability that §% is decided, given

that

S.
=i

is present.

Using Eq. (8) in Eq. (7) we obtain

M

P, =1 - z P[§j Igjj p _s_j] ) (9)

J=1

Hence, in order to find the total probability of error we must know the prob-

abilities of occurrence of signals and the conditional probability of a de-

cision.

Now the a priori probabilities of occurrence of the signals have

nothing to do with the noise, and we shall assume that these are known. On

the other hand, the conditional probability of a decision depends upon the

additive noise. In order to evaluate the conditional probabilities in Eq. (9)
we must consider the decision process.
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On the basis of a given vector X we must make a decision that some
signal §j is present. This means that we must partition the space of all
vectors X into regions Vj . which is the decision that §5 is present.

From this point of view, the conditional probability becomes
Pls. s, J=pPlxev [s.1 (10)
=j =i = !

where PCE € Vjiéi] is the probability that X belongs to Vj , given that
§i is present. In terms of the condition probability density of the vector
X , given that §i is present, Eq. (10) becomes

P[§.‘S.]=J plxls. ] ax (11)
=i i

V.
J

where Piﬁléi] is the conditional probability density of X given that S,
is present and dx = dxl,dx2,....de . The integral in Eq. (11) is over the
N dimensional region Vj . Substituting Eq. (11) into Eq. (9) we obtain

M
P =1 - .zl jv. P[g[_s_j] P[_S_j] dx . (12)
=1 7]

Since the integrands in Eq. (12) are non-negative, minimizing the total prob-

ability of error is equivalent to maximizing the sum in Eq. (12): i.e.,

M
max zl ‘[v, P(§{§_j) P[_S_J.] dx . (13)
=1
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This expression is maximized by choosing the regions Vj . Consider a single
vector X . This single vector can contribute to only one integrand in ex-
pression (13), since each vector X can belong to one and only one region

V. . The strategy then is to place X 1in a region V, so as to maximize
i%s contribution to expression (13). Since the integragd is non-negative,
this maximum contributor occurs when X is placed in the region Vj , where

jo maximizes the expression

p(x|s.) ps. ] . (14)
XI5, PLS, .

The region Vj is simply the set of all X's which satisfy the expression

pxls. ) pls, 1>pxls,) pls, 1 a1l j #; . (15)
=i, T, == it 0
Hence, the decision rule is: decide S, if j, maximizes P(E‘éj) P£§j]
for the given X . If,for the particula% value of X two or more values of

j maximize expression (14), then it does not matter which of these values is
chosen, since the choice will not affect the probability of error.

A block diagram of the optimum discriminator is shown in Fig. 17.
This discriminator calculates the probability P(§l§j) PE§j] and selects the
one that has the greatest output. In the following sections we shall find the

forms that this discriminator takes when particular forms of noise are present.

4,1.,1 Uniform Independent Noise

In this section we determine the form of the discriminator when the
additive noise is uniform and independent with zero mean and range R. A

block diagram of the discriminator appears in Fig. 18.

Consider a single sample of the vector X , i.e., Xk . This com-

ponent (Eq. (3)) is the sum of a constant and uniform random variable. Hence,
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X is a uniform random variable with mean equal to the constant Skj . Thus,

the conditional density of this component, given that §5 is present, is

-~ <
X Skj

20 [
=

p(g_ck!_S_j)

oo

(16)

=0 elsewhere .

Since_the noise is independent, the resulting joint density for the vector X

is simply the product of the densities of the components, i.e .,

N
P(x|s.) = T p(x|s.) . (17)
=] -1 k-

k=1

From Eq. (17) we find that the decision rule in this case is:

choose §j if jo maximizes
N
{n s lsofeis ] . (18)
k=1 J J
Using Eq. (16) we find that the decision rule becomes: choose §j if

[Xk—S.[s—g 1<k =N . (19)
¢]

If more than one value of j satisfies Eq. (19), then choose the value of J
which has the greatest a priori probability Pﬁgj] . A consideratign of the
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above process will show that at least one value of j will satisfy Eq. (19).

Let us calculate the total probability of error for this case,
Using Eq. (17) in Eq. (11) we obtain

i N
Pp=1- ; jv {1;11 P(xk\_s_j)} Pls, ] ax (20) ‘

where Vj is determined by Eq. (19). Upon considering Egs. (16), (19) and

(20), we find that the probability of error becomes

5oilow Sis = Sis )
g = z Z {n U<1— B : >} min {PLs, ], pls. 1} (21)
k=1 J 1
i=2 j=1
where -
U(x) = x x>0
=0 x <0
min {a,b} = a a <b
= b a>b

4,1.2 Gaussian Independent Noise

In this section we shall determine the form of the discriminator

Lo . . . . . 2
when we have additive white Gaussian noise with zero mean and variance o

Consider a single component of the vector X , i.e., Xk . From

Eq. (3) we see that this component is the sum of a constant Skj and Gaussian

random variable with zero mean. Hence, the sum will be a Gaussian random

variable with mean Skj . The conditional density of Xk + given that §j is
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N

o2 10 P(s.] + z X(KT) S.(KT) - = E, (28)
—J J 2 ]
k=1
where
N
£ = ) 5.2 (kD
k=1 '

Hence, the optimum discriminator computes the discrete cross-correlation he-

tween X(t) and Sj(t) at t = 0 . The form of this discriminator is depicted

in Fig. 19. We note that the cross correlations can also be represented as
matched-filter outputs evaluated at t = NT .

Let us calculate the total probability of error for this discrimin-

ator. The total probability of error (Eq. (12)) requires calculation of the
integral

pls, s, = j"i P(§[§i) L | (2

where Vi is the set of vectors X for which i wmaximizes expression (27).

Let us define a new vector 2z :

(30)

I~
I
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present, will be

214 50
P(X |s.) = [omo= ] eXp{ —-——()—J——} (22)
k=] 952
where .
02 = variance of the noise.

Since the noise is independent, the resulting density for the entire vector

X will simply be the product of the densities of the individual components;

i.e.,
N
P(x|s.) = T P(X, s.) (23)
or
- 27-N/2
Pxls)) = [zmo®T" exp{ E G- 807 - (24)

Substituting Eq. (24) into the decision rule, we find that it becomes: choose

S. if maximizes
=, 0

PEs 1 [omo21N/2 exp { z (x, - Sy } . (25)
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Maximizing expression (25) is equivalent to maximizing

k™ Sk; (26)

since the natural logarithmic function is monotonically increasing, Expres-

sion (26) can be further reduced by eliminating additive terms which are
independent of j and thus will not affect the maximization. Hence, the

decision rule becomes: choose §5 if jo maximizes

0
\ .
2 Y 1 ‘
o 1In P[_gj] + XS -3 B | (27)
k=1
where -
N
E. = ji S .2 = energy in S.
J kJ =J
k=1

In the equally likely case that the PQ§.3 become independent of

j , they can be eliminated from expressions (26) and (27) without affecting

the maximization. -In this case, expression (26) can be interpreted as de~

scribing a discriminator which selects the signal that is closest in mean-
square-error sense to the observed vector X .

Referring to Eqs. (1) and (2), we see that Eq. (27) can be expressed
in the form '
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where

Lg | (31)
1

z=§T§+mB—%E (32)
where
s=ls 08000 s
In Pls,]
InP =
in p(s, )
El
E=| :
In terms of the vector 2z the region Vi is just the set of =z which
satisfy
z; > z for all j #1i (33)
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The desired probability in Eq. (29) thus becomes the probability that (33) is

satisfied, given that §i is present; i.e,

P[S IS I= j dz f dz f dzy [P(Z;S )] . (34)

Now since z is a linear transformation of the Gaussian random vector x , z
will be a Gaussian random vector with a conditional density of8
P(gl§i) = EQHIEIJ_N/2 exp {L'%(Q-—M)T E—l (z-M)} (35)
where
1="5's

Such an expression substituted into Eq. (34) is extemely difficult to evaluate
directly., Therefore it may be more practical to find the total probablllty of
error through Monte Carlo .techniques.

4.1.3 Correlated Gaussian Noise

In this section we shall investigate the case of discriminating
signals in additive correlated Gaussian noise with zero mean. We shall show
that this case can be solved simply by prewhitening the noise and by u51ng

the discriminator derived in Sec. 4.1,2.

Consider the random vector X when §j is present, From Eq. (3)
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will be a jointly Gaussian random variable with

we see that the vector X
8 .

S, 7 i.e.,

-J

-1 (X-5} (36)

pixls) = Lonlal TV e -3 x-5)07 2

mean equal to

where

¢, = EIN_.N_.]
ij 0i 0]
Substituting Eq. (36) into the decision rule, it-becomes: choose S, where
jo maximizes ©
pls, Won|a[17N/2 oxp {_—%q-%)T 31 (X-5)7 . (37)
Maximizing expression (37) is equivalent to maximizing
mpels,l+xfsts 25 8ts (38)
i = 7] 275i= 7
since the natural logarithmic function is monotonically increasing. Let the
inverse covariance matrix be expressed as a product of a matrix and its
transpose:. '
oo pTy (39)
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where A is a triangular nonsingular matrix. This is possible, since 2 is
positive definite., Now let us define a vector Y and set of vectors

§/j such that

I=AX (40)
=AS. 1=<j<M . (41)
=3 =
Then expression (38) becomes
mpels. l+vr s/ -dsTg! (42)
—itos T 2s) T

We note that the decision rule is now the same as the decision rule
in Sec. 4.1.2 except that the vector Y vreplaces the vector X and the sig-
nal vectors §; replace §5 . Therefore, if w? use Y as an input to the
discriminator of Sec. 4.1.2 with the vectors S, replacing the vectors g% )
the resulting discriminator will be optimum. Equation (40) represents a
linear filter operating on the vector X . The effect of this filfer on the
signals is given by Eq. (41), The effect on the noise is given by Gaussian

. . 8
noise of covariance

L~

(43)

11 o
1
1=
1l s
i

H

I R . B :
where & is the covariance matrix of the output noise. Now Eq. (39) sub-

stituted into Eq. (43) yields

/ T

- (é )—l T -l(

é = AA

)T =

Il ion

_1-5_

3=

L (44)
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where I is the identity matrix. Hence, the resulting output is white

(uncorrelated).

4.2 SIGNALS WITH UNKNOWN PARAMETERS

In this section we shall consider an optimum discriminator when the
observed signal in noise has unknown parameters. In particular, we shall be
interested in signals With unknown amplitudes: i.e., signals of the form
af(t) where a is unknown. We will also be interested in signals with un-

known delays and signals with both unknown amplitude and delay.

We recall from Sec., 4.1 that we need the conditional density
P(}lgﬁ) in order to discriminate with minimum probability of error. Now
suppose that the observed signals in noise depend upon a parameter & ; i.e.,

the vector X 1is of the form

ﬁ = S, +-N (45)

where

If the parameter o 1is independent of the noise and the original unperturbed

signals, then the desired conditional density will be

p(gglgj) = jP(_)gl%'a) P(®) do (46)
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where P(_>gl§j

o) = conditional probability density of X given §%

P(w)

probability density of o« |

In many cases either the integral in Eq. (46) is difficult to im-
plement or P(®) is unknown. In this case we would like to find a discrim-
inator that approximates using Eq. (46) in some sense. Suppose thal we
desired to find the correct signal together with the correct parameter. Then

from Sec. 4.1 we should select the WO and the j which maximize

P(xls, ) P(@ Pls. 1. 4D
Jt J :

If we ignore the value of o and simply decide that §5 is present, our

decision rule becomes: choose S, if jo maximizes
o

max {p(gl_s_sj'a) P(e)} P[_SJ.] . (48)
o

Clearly, this rule is not optimum because it assumes a penalty for confusing
the o's for the same g% , whereas the correct rule would assign no penalty
for this mistake, For the rest of the discussion we shall assume that all

signals' are equally likely and all parameter values are equally likely. Under

this assumption, the decision rule becomes: choose S, if jo maximizes
0
max {P(ﬁl%'w)} X (49)
[+
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The discriminator determined by expression (49) chooses the §j that has
most likely produced the observed vector X . Hence, this discriminator is

optimum in the maximum likelihood sense.

4,2.1 Signals with Unknown Amplitudes

In this section we shall find the maximum likelihood discriminator
for signals with unknown amplitudes in Gaussian uncorrelated noise. The more

general case of correlated Gaussian noise can be handled by first prewhitening
the noise (see Sec. 4.1.3).

Assume that the observed vector X is of the form

X=mS, + N 1<j<M (50)

where m 1is the unknown amplitude of the signal. Then the resulting condi-

tional density for X , given §j o Will be

o
~~
<
[#3]
A
|

50 = [omo2 ] -N/2 exp{ z (X -—mS ) } . (51)

The density P(x}s ) Will be maximized if and only if the sum of Eq. (51)

is minimized. Therefore, we must find the minimum of

ZCX—mS ZX—ZmZXS + ZS%. (52)
k=1

With a little algebraic manipulation Eq. (52) becomes
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N 2 N 2
Z stkj N XS, .

N Kk
2 k=1 T o2 \k=1
) T T e I (53) ‘
k=1 J k=1 J ,
, ) L]
The minimum of the sum from Eq, (53) for arbitrary m is
< : 2
N N Z XS
. 2 2 k=1
min [ (X, - S, ) b= s . (54)
k=1 k=1 J
The required density for the decision rule is then
i N N
2. -N/2 1 2 1 2
max P(X|S, ) =[2mc“ ] exp {( -—5 Z X ——[ z XS :[ . (55)
=""i,m 2 k E. k7kj
m 29" \ k=1 I k=1

In the decision rule we must maximize Eq, (55) with respect to j
Since the exponential function is monotonically increasing, this is equivalent

to maximizing

N N 2
Fped (3w
k=1 I =

Expression (56) can be further simplified, since maximizing expression (56) is

equivalent to maximizing
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Z XS .

1  kkj
k=1 . (57)
v E;

The resulting decision rule is: choose §j if ~jo maximizes expression (57),
0
This decision rule should be compared to the decision rule we ob-
tained in Sec. 4.1.2 for known signals, There are two significant differences.
One is that we use the magnitude of the cross-correlation itself, Secondly, we

divide by the energy instead of subtracting it. The form of this discriminator
is depicted in Fig., 20,

Let us also find the decision rule when the amplitude parameter m is
restricted to positive values, This would apply in systems where the polarity
of the signals is known, as, for example, in scattering problems. We must max-
imize the conditional density in Eq, (31) under the restriction of positive m .

This is equivalent to maximizing Eq. (53) for positive m , which yields

N

N

I B N S N o s L |

n::ixo Z (Xk mSkJ) = z Xk B Lmax[o,z stkj_—_\J (58)
k=1 _ k=1 J k=1

‘where

max [0,a] =

l

®
@
\Y
o

Substituting Eq., (58) into the decision rule and passing through the same
equivalences that we used previously, we find that the resulting decision rule

is: choose Sj if jo maximizes
0
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max N, S ] . (59)

Kk

ﬁ4D\/Jz

1
[O’Nrag

The form of this discriminator is shown in Fig, 21.

4,2,2 Signals with Unknown Delays

In this section we shall find the maximum likelihood discriminator
for known signals with unknown delays in Gaussian uncorrelated noise., Again,

we may handle the more general case of correlated Gaussian noise by first pre-

whitening the noise,

Assume that the observed vector X is of the form

X=5. _+ N 1<j<M (60)

where

wn
1l

Kj,T Sj(kT—T)

-
1l

delay .

Usually the function Sj(t) is known only at uniformly spaced points in time,
Therefore, it will be necessary to approximate Eq. (60) by

X = §j'z + N, | 1<jsM (61)
where _
Sjk,z = Sj(kT—zT)
4 = unknown integer .
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This approximation should be good if the sampling interval T is sufficiently

. will be

[}

small. The conditional probability density of X , given §j

N
_ 2 . -N/2 1 2]
Pxls; ) = [2mo” 17V exp f- 5 Zl XS 5 27 f - (62)
k= :

Using the same methods that were used in previous sections, we find ihat the

decision rule is: choose §j if j, maximizes
0

N N ‘
N ] T 2°

mex {Z XSi.073 L Skig [ (63)
k=1 =1

Assume that N is sufficiently large so that

N

AR a 2 X

This will be possible if Sj(t) can be represented by a finite train of uni-
formly spaced samples. In this case the decision rule is: choose §j if jo

.. 0
maximizes

N

‘ 1 ’
max E: stkj.z - 2Ej . {65)
L k=1

Now expression (65) can be expressed in terms of the original time functions,

becoming




N

nax ), xans, (GenT)-gE, (66)
k=1

Thus, we see that this decision rule calculates the peak of the discrete corre-
lation function between X(4) and Sj(t) (see Fig., 22), This compares to the
discriminator for known signals (Sec. 4.1.2), which uses the cross-correlation
at t=0 .

"4,2.3 Signals with Unknown~Amplitudes and Delays

In this section we shall find the maximum likelihood discriminator
for signals with unknown amplitudes and delays in Gaussian uncorrelated noise.

Gaussian correlated noise may be handled by prewhitening the noise,

Assume that the observed vector X 1is of the form

1<
I
&
+
=

=i, A =0
where
Skj,,Z = SJ.(kT—ZT)
Hence, the conditional probability density of X , given §5 b will be
N
- 2. -N/2 _1_2 o 32 ©)
PX]S; ;) = [2w ] exp { - 5 ), (S ) I (68)
9 k=1

In terms of the conditional density, the decision rule is: choose §j if jo

maximizes

. mzx max p(§|§j,£,m) . (69)
m
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From Sec, 4.2.1 we can perform the maximization with respect to m . Hence,

the decision rule becomes: choose §j if j, maximizes
o

. Z Tk"kj,e
max . (70)

where Eq. (64) is valid, 1In this rule we must compute the peak magnitude of
the cross-correlation function between X(t) and Sj(t) (see Fié. 23),

Similarly, we find the decision rule for the case of positive m to

be: choose §j if jo maximizes
0

- N
S
max max

N
: _[O',\/E—jixkskj.f&] :

k=1

(71)

The form of this discriminator is shown in Fig. 24.

A discussion of the results of digital simulation of many of the

ideas presented in the preceding paragraphs is contained in Sec. 5,
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APPENDIX A

BAND-LIMITED CORRELATION MATRICES

This appendix contains the matrices used in the bandwidth study

in Sec. 3. The Bargraph in Fig. 16 was computed from the data contained here.
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0-4.8 GHz with the specular return removed.
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FIG. A-3 Correlation matrix of target responses over the bandwidth 0-6.4 GHz.
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FIG. A-6 Correlation matrix of target responses over the bandwidth 0-1.6 GHz.
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FIG. A-8 Correlation matrix of target responses over the bandwidth 0.9-3.2 GlHz.
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FIG. A-9 Correlation matrix of target responses over the bandwidth
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APPENDIX B

GENERATION OF GAUSSIAN NOISE

A uniform random-number generator produces a sequence of numbers X

where ) L

(11® . X)) mod o1l

<
Il

n+1

<
I

any odd number.

This sequence is then adjusted to have zero mean and the appropriate range

1
Xn = (2 Xn - 2)R
where
R = range. -
The Gaussian random numbers are produced in steps. First, a uniform ‘

random-number generator generates a sequence of numbers Xn . Where

— 5 22
Xn+1 = (21 Xn) mod 2

where

X0 = any odd number.

Then a sequence Yn is formed such that -

12 ’
_ -22 1
¥n - E: (2 Xk - 2)
: k=1

which is approximately Gaussian with unit variance.
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