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ABSTRACT

) The space-time integral equation approach is extended to the solu-
tion of the large body problem for smooth convex targets. This is accomplish-
ed by the development of the impulse response augmentation technique that
combines the smoothed impulse response, which is computed exactly with the
space-time integral equation, and known features of the returns from the
specular point, the join regions, and the creeping wave. This technique
produces a total impulse response and the frequency response over the entire
spectrum, Results are obtained for the sphere, the prolate spheroid, and the
sphere-capped cylinder for axial incidence and are found to be in good agree-
ment with available data. In addition, the polarization dependent effects on
thg leading edge of the impulse response are determined for the case of non-
axial incidence on smooth convex targets. Results are presented for the im-
pulse response and frequency response of the prolate spheroid and the sphere-
capped cylinder for nonaxial incidence with both polarizations,

An expression is developed for the minimum number of orientations at
which the smoothed impulse response of a target must be measured or calculated
for a given time sample rate or given bandwidth of the incident pulse. The
results are in good agreement with measurements.

' Smoothed impulse response measurements of nine targets taken on the
time domain scattering range are presented and used as a basis of the design
of various identification processors with OLPARS,
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SECTION 1

INTRODUCTION

This document is submitted as the final report in response to the
requirements set forth in Contract No. F30602-71-C-0162 between the Sperry
Rand Research Center, Sudbury, Massachusetts, and the Air Force Systems
Command, Rome Air Development Center, Griffiss Air Force Base, New York. The
primary objective of this program, performed during the period 1971 March 9
through 1972 December 5, was to extend the applicability of the space-time
integral equation approach to bodies of arbitrary size. Past attempts to
apply frequency domain techniques to this problem have been, at best, only
partially successful.

In Sec. 2.0 the extension of the space-time integral equation tech-
nique to the large body problem is considered. The impulse response augmenta-
tion technique is developed, described and applied to three smooth, convex
targets: the sphere, the prolate spheroid and the sphere-capped cylinder.
Both the case of axial incidence and the case of nonaxial incidence for the
prolate spheroid and sphere-capped cylinder were treated. For the axial inci-
dence case the leading edge portion of the impulse response was found to be
polarization independent. However, for the nonaxial incidence case the lead-
ing edge of the impulse response was found to be polarization dependent, and,
furthermore, the functional form of this dependence was found to be propor-
tional to the difference between the principal curvatures at the specular
point and the first derivative of the area function. This polarization de-
pendence effect was incorporated into the impulse response augmentation tech-
nique and applied to the nonaxial incidence case. The results were in good
agreement with other available data.

In Sec. 3.0 a relationship is developed which gives the minimum
number of angular samples required in time domain calculations and measure-
ments in order to adequately characterize the target response for a given
time sample rate. The results of the theoretical study are compared and
found to be in good agreement with time-domain scattering range measurements.

Section 4 describes additional time-domain scattering range measure-
ments that were made during this contract to obtain smoothed impulse
responses for additional target aspect angles and polarizations. These
measurements, together with previous measurements, were used as a data base
for OLPARS to design several different identification processors, which are
described in Sec. 5. Conclusions are presented in Sec. 6.
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SECTION 2.

EXTENSION OF SPACE-TIME INTEGRAL EQUATION
TECHNIQUE TO THE LARGE BODY PROBLEM

2.1 INTRODUCTION

The general scattering problem is depicted in Fig. 1. The incident
electromagnetic field sets up currents on the body which in turn radiate and
produce a scattered field. The problem is to compute the scattered field when
the incident field and object shape are known. This scattering problem has
been solved in the frequency domain by numerical solution of the freguency-
domain integral equation for body sizes up to several wavelengths.l' It
has also been solved exactly in the time domain by numerical solution 05 the
space-time integral equation for body sizes up to several pulse widths. 4
In addition, Fourier transformation of the time domain solutions yields the
frequency response of the targets with results which are in good agreement
with both frequency domain measurements and calculations up to body sizes of
several wavelengths. While the inverse transformations of the numerical
solutions in the frequency domain have the potential for yielding time domain
results, this approach has not been demonstrated nor has its accuracy been
evaluated. Hence, the time domain technique is the most versatile method of
solving the scattering problem at the present time. In addition, it can also
be used as the basis for large body solutions as discussed below.

The target responses to verg large bodies can be computed with optics
techniques such as geometric optics,” physical optics,” or Keller's geometric
theory of diffraction. In the time domain the singular portions of the
response due to the specular return can be determined exactly by inspection of
the space-time integral equation. In effect, it demonstrates that the physical
optics currents are exact in the neighborhood of the specular point and pro-
duce a singular response. A simple technique for computing these values is by
taking the second derigative of the target area function as described by
Kennaugh and Cosgriff.- This yields the impulse response due to the physical
optics approximation and is exact initially in time.

Unfortunately, practical radar systems operate in neither the optics
region nor in the Rayleigh or low resonance region, but rather at an inter-
mediate region. Moreover, in order to do a proper design of a target
identification system it is necessary to know the target response over the
entire frequency spectrum. This permits a valid trade off between the best
identification from a theoretical viewpoint and the cost and practicability
of implementing such a system, It allows the testing of a paper design at
minimal expense compared with the best present approach available, viz., to
build it and hope. Thus, since both the low frequency or long pulse response
and the high frequency or short pulse response are known, it remains to bridge
the wide gulf that now exists between them.

12
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There are several approaches to this problem. One approach would be
to start at the optics limit and then attempt to extrapolate downward. First,
Keller's geometric theory of diffraction’ has met with success in considering
simple shapes such as flat plates and right circular cylinders. The technique, -
however, is inherently scalar in nature, depends upon extrapolating the solu-
tion of a canonical problem (i.e., the wedge), and becomes very difficult to
extend to more complex targets,

Another approach has been to start with the approximate impulse re-
sponse computed using the physical optics approximation and then modify the
response in some way so that the first two moment conditions were satisfied.
This yields a better approximate impulse response.8 but still contains a large
uncertainty since the moment conditions give information about the integral
of the response but not about its shape.

The only finite, three dimensional target for which there exists an
"exact"” frequency response, or "exact” impulse response over the entire
spectrum is the sphere. The frequency response is given by the Mie series
and can be easily computed numerically from this series up to moderate body
size. Senior and GoodrichlO have passed the Mie series through a transform
to obtain an expression which can be used for numerical computation at larger
body sizes. Combining these two pieces yields the "exact" frequency response
of the sphere over the entire spectrum, The "exact" impulse response of the
sphere can then be obtained from the frequency response using a procedure
outlined in Sec, 2.3.1 of this report.

A third technique for computing the impulse response or the frequency
response has been developed for targets whose geometry can be obtained by
deforming a sphere. In particular, this_technique has been demonstrated in
a prolate spheroid with axial incidence. This technique consists of the
following procedure, First the impulse response of the sphere is integrated
twice to yield the ramp response of the spnere, Next, the ramp response of the
sphere is "stretched” in the same way that the sphere would have to be stretched
to form a prolate spheroid. This yields the approximate ramp response of the
prolate spheroid. Next the ramp response is differentiated twice and then
fitted with an exponential sum to yield the approximate impulse response of the
prolate spheroid. Finally, the Fourier transform is carried out to obtain the
approximate frequency response of the prolate spheroid. This result is in
reasonable agreement with frequency domain measurements which have been per-
formed. However, it is limited to target shapes which are close to a spnere
and contains substantial uncertainty due to the approximations used.

There appear to be two basic approaches to the extension of the space-
time integral equation approach to the large body problem. One approach would
be to consider and try to determine the detailed behavior of the surface
currents, Alternately, the far-field could be considered directly, which would
greatly simplify the problem. This study deals with the second approach to the
large body problem,

14



In this report a new technique for obtaining the impulse response
and frequency response of an arbitrary target over the entire spectrum is
described. The impulse response augmentation technique utilizes the proven
computational procedure of determining the smoothed impulse response of an
arbitrary target by numerical solution of the space-time integral equation and
the known variation of the impulse response due to the specular return., These
two results provide both low and high frequency information exactly and are
combined in a natural and rigorous manner to yield the frequency response over
the entire spectrum and total impulse response with a minimum of uncertainty.

2.2 IMPULSE RESPONSE AUGMENTATION TECHNIQUE

The space-time integral equation approach3'4 solves the scattering
problem directly in the time domain where the units of time are in light meters.
(A light meter is defined as the time it takes an electromagnetic wave moving
at the speed of light to travel one meter. It has the effect of normalizing
time by the speed of light and is computed by multiplying time in seconds by
the speed of light in meters/second). The space-time integral equation is
valid fer any excitation. The impulse response of a target, if known, could
be used to compute the response of the target due to any excitation by a
simple convolution procedure, and thus an impulse excitation would yield the
universal solution for a particular target. However, present-day computer
limitations preclude the direct numerical solution of the space-time integral
equation for the impulse excitation., The most useful excitation has been
found to be a regularized (or smoothed) impulse of the form

e—(na)2(t/a)2

alcr/a) = L (1)
Nl

where H'(t/a) is the incident magnetic field at the origin of the coordi-
nate system

a is the characteristic linear dimension of the target

n is the parameter which controls the width of the smoothed
impulse e(t) and is chosen such that the product (na) is a
constant

which is the standard Gaussian regularization of an impulse in the theory of
distributions.

The response rOHS(tf/a) due to this excitation is thus a regularized
(or smoothed) impulse response and can be computed exactly with the space-time
integral equation, The smoothed impulse response has gein obtained for body
sizes up to several pulse widths using this technique.”**® The smoothed impulse
response can also be used to caliculate the response of a target due to any
excitation waveform whose frequency spectrum is contained within the frequency
spectrum of the incident smoothed impulse. 1In particular, the frequency
response of the target can be calculated by dividing the Fourier transform
of the smoothed impulse response by the Fourier transform of the smoothed
impulse excitation. The smoothed impulse response has been used to obtain
the frquany'response'of targets ranging in size from zero to several wave-
lengths, ™~
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In order to simplify the notation in this report the electromagnetic
field variables are equated to their linear system counterparts as described
below:

Hi(t/a) = e(t) = incident pulse

roHs(tf/a) = r(t) = smoothed impulse response

h(t) = impulse response

t/a =t = time

Hi(ka)/a - E(w) = transform of e(t)

rOHs(ka)/a = R(w) = transform of r(t)

H(w) = frequency response

ka = w = frequency

where
Hi = incident magnetic field intensity
B = far scattered magnetic field intensity
r, = distance of far field observer from origin
t/a = normalized time
ka = normalized frequency
a = characteristic linear dimension of target.

The scaling and normalization that is indicated above yields curves which are
independent of target size, as described in Sec. 8.1.

The impulse response augmentation technique, first suggested in 19683,
deals directly with the smoothed impulse response of targets in the far field.
As described earlier, the smoothed impulse response is computed using the
space-time integral equation approach and has yielded good results up to body
sizes of several pulse widths or, equivalently, up to body sizes of several
wavelengths. The regions of slow variation in the smoothed impulse response
remain the same in the exact impulse response; thus it is only necessary to
determine the structure of the singular regions and any other regions of fast
variation. But the singular portions of the exact impulse response that result
from scattering by specular points on smooth convex targets can be computed
exactly and hence do not need to be computed by solving the space-time integral
equation. The impulse response augmentation technique combines the smoothed
impulse response, the known singular contribution to the impulse response, and
the theory of Fourier transforms to produce the total impulse response and the
frequency response (system function) of the target at all frequencies.

The impulse response augmentation technique is most easily understood
by considering the most basic approach to the deconvolution (or system identi-
fication) problem. Figure 2 shows the functional diagram of a linear system
(in this case electromagnetic scattering by a target) that is characterized by
its impulse response h(t) or, equivalently, its system function (or frequency

16




e () —  hi(t) L= (1)

FIG. 2 Linear system.
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response) H(w). Of course,

h(t)e H(w) 2)

where « denotes Fourier transform. The excitation e(t) of the linear system
in this case is the regularized (or smoothed) impulse

2
e(t) = L o=(nt) (3)

Wal

which produces the regularized (or smoothed) impulse response r(t) of the
system., This response is given by

r(t) = e(t) * h(t) (4)

where * represents a convolution. In the problem being considered here, e(t)
is specified analytically and r(t) is computed by solving the space-time
integral equation. It is desired to find h(t) and/or H(w), This is the
system identification or deconvolution problem,

One way to solve this problem, at least in principle, is to transform
Eq. (4) and rearrange to obtain

_ R(w)
Hlw) = E(w)
h(t) = F L {H(w)) (5)

where
E)e— e(t)
R(w)e— r(t)
ol { } is the inverse Fourier transform,

However, the estimate of the system response T(t) that is computed contains some
uncertainty or noise. Thus, the transform of the computed or measured smoothed
impulse response R(w) also contains noise N(w) and may be written as
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R(w) = R(w) + N(w) ., (6)

Substitution of Eq. (B) and the transform of e(t) into Eq. (5) yields the
estimate of the system function A(w) as

(w/2n)2

Aw) = H(w) + e N(w) (7)

and it is clear that the noise at high frequencies in the estimate of the

system function increases exponentially. Physically this occurs because the
interrogating signal is a smoothed impulse and its transform decays exponentially
with frequency. The resulting response r(t) will contain negligible high
frequency information. Thus, this approach by itself will not yield the system
function at all frequencies, and since the impulse response is the inverse
transform of the system function, then it will not yield the exact impulse
response.

The impulse response augmentation technique is displayed in block
diagram form in Fig. 3. This technique first augments the smoothed impulse
response to remove the contribution from singular portions of the impulse
response that are known exactly. This produces the augmented smoothed impulse
response ra(t) that is given by

r (t) = r(t) - e(t) * f_(¢t) (8)
a a

where f_(t) is a suitable augmentation function that contains the known
singular portions of the impulse response.

Next, the transform of the augmented smoothed impulse response, R_(w),
is computed and divided by the transform of the incident pulse to yield the
augmented frequency response, H' (w). This function contains noise which
increases exponentially at frequgncies above some value. However, it is known
that the augmented frequency response must go to zero with increasing frequency.
Thus, an estimate of the high frequency behavior of the augmented frequency
response ﬂa(w), is of the form

H (w); wsw
a c
ﬂa(m) = (9)

Fw); w2 W,

where w, is the boundary point and F(w) is the high frequency estimate of Ha(w).
The invérse Fourier transform of Ha(m) then yields the estimate of the augmented
impulse response, ha(t).
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FIG. 3 Impulse response augmentation technique.
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Finally, the inverse of the augmentation procedure is performed on
fi_(t), which yields the estimate of the impulse response, i(t). Moreover, an
e3timate of the system function H(w), is obtained by applying the inverse of
the augmentation procedure in the frequency domain to Ha(w).

The augmentation function represents the contributions of the singular
portions of the impulse response which are known exactly from optics considera-
tions, These singular portions may contribute to not only the high frequency
behavior but also to the low frequency behavior of the response, as in the
case of an impulse. These contributions are removed by subtracting the effect
of the augmentation function f_(t) from the response to yield the augmented
response as given in Eq. (8), #hich is repeated here for convenience:

r(t) - e(t) * £ (t) 8

Qa

T _(t)
a

or

h (1) h(t) - £ () .

Since the effect of the optics or high frequency contributions have been
removed, then it remains to estimate the manner in which the lower frequency
components approach zero with increasing frequency. Various augmentation
functions are now presented and discussed.

The first augmentation function considered is the impulse response

predicted by geometric optics, which for smooth convex targets is simply an
impulse of the form

1 ————
£ (1) = §6<t/«/R1R2 N 2r0/«/_R1R2> (10)

where R, and R, are the principal radii of curvature of the target at the

specula% point~and T, is the distance of the specular point from the origin.
This augmentation function can be improved by using the physical

optics approximation for the surface currents to obtain an approximate impulse

response for the target. In the physical optics approximation the surface
currents are taken to be

25n X ﬁl(;,t): jlluminated side
0 + 1 shadow side

where

[ 3™
—



J(r,t) is the surface current

H'(r,t) is the incident magnetic field intensity
a_is the unit normal to the surface

19
(r,t) is the coordinate position in space time.

It has been shown8 that the impulse response resulting from the physical optics

approximation is given by

3%s(t_)
ts

at2

(11)

s,z 1
rOH (r,t) = o

where

S(t_) is the silhouette area of the scatterer as delineated by the
incident impulse assumed to be moving over the scatterer at one
half the free space velocity

t=t +71r
S 0

r0 = distance of far field observer from the origin,

The response for the case of a sphere of radius a is

ol

£(t) =3 6(t/a+2) + % [u(t/a + 2) - u(t/a)]

and is displayed in Fig. 4(a). The physical optics approximation yields an
approximate impulse response which is exact at t/a = -2 and satisfies the zero
order moment condition, but at the same time introduces a second step function
at t/a = 0 that is not present in the theoretical impulse response. This

second step will add high frequency components to the augmented response, and
thus, the physical optics approximation is not a suitable augmentation function.

This difficulty with the physical optics approximation can be easily
circumvented by using a triangular pulse for the case of the sphere, as shown
in Fig. 4(b). The triangular portion of the augmentation function is adjusted
so that the amplitude of the negative step at t/a = 2 maintains the physical
optics value and the area of the triangle is equal to the area of the impulse.
This second constraint preserves the zero order moment of the response wave-
fomr., For the case of a sphere with radius a this augmentation function is

_ 1
fal =35 6(t/a + 2) + wl(t) (12)

where
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FIG. 4 Augmentation functions for a sphere with radius a.
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(t/a - 2)

wl(t) =
0 : elsewhere .

The augmentation function f 1(t) introduces a finite slope at t/a = -2 and also
a discontinuity in the firs¥'derivative at t/a = 2. In the case of the sphere
and other smooth convex targets the initial slope of the response is zero and
smooth thereafter, One augmentation function which satisfies these two addi-
tional criteria by using a cosine pulse is for the case of a sphere with

radius a:

£, = F(t/a +2) + wy(t) (13)
where
-%{1+cosg(t/a +2)]; -2<st/a=2
w2(t) =

0 ;  elsewhere

a = sphere radius

The cosine pulse was specified such that the initial value of w_(t) corresponds
to the exact results and the total function f_,(t) satisfies thé zero moment
condition, This augmentation function f_,(t)“Is displayed in Fig. 4(c) and is
the function which is used together witha%he finite Fourier transform (FFT) to
numerically obtain the frequency response from the impulse response and vice

versa.,

This augmentation function introduces a nonlinear phase term into the
augmented frequency response, however, and thus increases the difficulty in
estimating the high frequency variation of the augmented frequency response,
To obviate this difficulty, an augmentation function which contains only an
impulse and step at t/a = -2 is used. For the case of a sphere with radius a

this is given by

£ 4(t) = % 5(t/a + 2) - %u(t/a +2) (14)

and is displayed in Fig. 4(d). This augmentation function adds only a linear
phase term, is exact at t/a = -2, and varies smoothly beyond that point.
This function has been used to obtain the augmented responses discussed and

displayed in this report.
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2.3 SCATTERING BY A SPHERE

2.3.1 Theoretical Impulse Response of the Sphere

In this section the method of obtaining the theoretical response of
the sphere which is used as a comparison standard for testing the effectiveness
of the impulse response augmentation technique is presented. The classic
solution to the problem of scattering by a perfectly conducting_ sphere with a
plane electromagnetic wave incident is given by the Mie series, In principle,
this yields the solution at all frequencies; however, in practice it is con-
venient to use for numerical computations at the lower end of the frequency
spectrum only. In order to extend the frequency ranqs of the exact numerical
results, the formulas derived by Senior and Goodrich™ were used. These
formulas were obtained by applying a Watson transform to the Mie series. This
work not only provided a form of the far scattered field suitable for numerical
computation at high frequencies, but also expressed the far scattered field as
the sum of optics and creeping wave terms, which provided both insight and
guidance into developing the impulse response augmentation technique. In this
study the exact far field of the sphere was obtained by using the Mie series
for a range of ka from O to 20 and the Senior-Goodrich expression for a ka
greater than 20, gn particular, for a sphere of radius a the far scattered
magnetic field r H (ka) ,

Mie series : 0 < ka < 20
r H%(ka) = (15)
0 [a 0.25 ] .

HCE(ka) + HCM(ka) +1|35 - Sk exp(j2ka) ; 20 < ka

where
4 1 %) (v 9
Moo (ka) = + J—— exp(-jTka + jT/6) 5 (1-j/3) 2\1+ 3>
T - 157 3281
B ')
. exp[ (w@%ﬂ)ﬁ —(Vr 3-j) 6OT ( - B 3>}
8
4 (6%
T . . 1 1 . 1
HCM(ka) =-J¥ exp(-jTka + jT/6) {;5 (1 + 5(1 - V3 1572 ]

2

@ Cm
. exp[ - % W3 + j) &1 T - % (vﬁ-j) éOT ]}
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Bl = 1.,01879297
al = 2,33810741
A1 = .53565666
A2 = .70121082
K 1/3
T = (—ﬂ)
2

It should be noted that in Eq. (15) only the first order creeping wave terms
in H..(ka) and HC (ka) have been retained and to this extent the expression

is approximate. %he third term in Eq. (15) is the optics term, which contains
the impulse and negativg step which occur at t/a = -2 in the impulse response,
Contributions of 0(1l/ka“) in the optics term have not been retained.

Figure 5 displays the amplitude of theoretical frequency response
computed with this procedure and Fig. 6 displays the theoretical radar cross
section,

In theory, in order to obtain the impulse response, one just takes
the inverse Fourier transform of H(w). In practice, however, it is not
possible to do this directly with an FFT due to the presence of singularities
(impulse and step) in the impulse response. The transformation is accomplished
by using the impulse response augmentation technique on the frequency response
data. In particular, the contribution of the impulse and step are removed from
the frequency response by subtracting the transform of the augmentation func-
tion W,(w) from the frequency response to obtain the augmented frequency res-
ponse To obtain the augmented frequency response, Ha(W); i.e.,

Ha(w) = H(w) - D(w) - Wz(w) (16)
where

D(w) + % 5(t/a + 2)

Wz(w) — w,(t)
1 [ n . < <
-8 1 + cosz(t/a +2); -2<s1t/a 2
w.)(t) =

0 ; elsewhere .

The augmented impulse response, ha(t), is the transform of the augmented
frequency response., The total impulse response is then found by adding the
augmented impulse response to the augmentation function,
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h(t) = h_(t) + % 5(t/a + 2) + wy(t) 1 an

This result, plotted in Fig. 7, shows the impulse and step at t/a = 2 due to
the specular reflection or optics term. Subsequently, there is a second
positive peak in the response at t/a = 3.20 due to the creeping wave.

2.3.2 Wiener-Lee Filter for High Frequency Estimate of Augmented Frequency
Response

This technique is a variation on the impulse response augmentation
technique described in Sec. 2.2. 1In this uwechnique the theory of optimum
linear filters is used to find the augmented impulse response instead of trying
to fit the asymptotic behavior of the augmented frequemcy response.

Figure 2 shows the functional diagram of a linear system (in this case
electromagnetic scattering by a target) that is characterized by its impulse
response, h(t), or its system function, H(w) The excitation e(t) of the
linear system in this case is a regularized mpulse

2
e(t) = L o~ (nt) (18)

N

and produces the response r(t) which is the reqularized impulse response of
the system. The response is given by

r(t) = e(t) * h(t) (19)

where * represents convolution.

In the problem considered here, e(t) is specified analytically and
r(t) is computed by solving the space-time integral equation. It is desired
to find h(t) or H(w),

Since r(t) is found through numerical calculations in solving the
space-time integral equation, the actual data from which the impulse response
must be calculated contains noise, That is, the smoothed impulse response
r(t) that is actually computed may be represented by

r(t) = r(t) + n(t)

where r(t) is the actual smoothed impulse response and n(t) is the noise or
numerical error introduced by the computational process. Hence, the problem
can be restated as a problem in recovering a distorted signal (the impulse
response) from noise. One way this can be done is through the use of linear

28




filters,

Figure 8 shows a functional diagram of the identification system,
The function h (t) is the impulse response of a linear filter whose output,
h(t), is a legg% mean squares estimate of h(t): i.e., h (t) minimizes the
functional opt

(=]

[ Ihw) - fewrl?ae . (20)

Note that in the diagram the incident pulse, e(t), is treated as the impulse
response of a linear system and that the impulse response of the scatterer,
h(t) , is treated as a signal. This is a valid representation, since the
convolution operation is symmetric in its operands.

The optimum filter for the system in Fig., 8 has been found13 to be

! 1
Hopt (W) = E(0) . @ (21)
+ nn
2
la(w) | 2| E(w)] 2
where
Hopt(w) is the transform of hopt(t)

E(w) is the transform of e(t)
H(w) is the transform of h(t)

wnn(w) is the power density spectrum of n(t)

The estimate of the system function will then be

A(w) 1

E(w) P (w)
1 nn

Hw) = (22)

+
|| % Ew) |2
where R(w) is the transform of T(t) .

Note that in the presence of no noise [¢__(w) = 0], the estimate fA(w)
is simply the ratio of the output spectrum to the input spectrum, and in the
presence of noise the ratio is weighted by a function of the signal-to-noise
ratio.

In order to understand one inadequacy of this method, let us substi-
tute the spectrum of e(t) into Eq. (22), which yields
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FIG. 8 Optimum identification system.
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(z2)2

A = [Hw +e 2" N | : (23)
2(5)° (@)

2n n
|H(w)l2

where N(w) is the transform of n(t). For typical spectra the estimate H(w)
indicated by Eq. (23) will fall off exponentially to zero at high frequencies.
This will yield a very poor estimate of the system function at high frequen-
cies, since in most cases the magnitude of the system function approaches

a finite constant.

In order to improve the estimate of the system function, the tech-
nique is used to estimate the spectrum of the augmented impulse response,
which does approach zero at high frequencies. 1In this case the spectrum of
the augmented impulse response becomes

R (w)
ﬁa(w) = 2 (24)

~ E(w) wnn(w)

1+
IHa(w)\zlE(w)|2

where

A

Ha(w) is spectrum of the estimate of the augmented impulse response
ﬁa(W) is the spectrum of the noisy smoothed augmented impulse response.

This technique has been applied to the scattering from a sphere with
radius a. Equation (24) requires an estimate of the noise power density pre-
sent in the smoothed augmented impulse response and an estimate of the magni-
tude of the augmented impulse response spectrum, No estimate of the phase
is required. '

The estimate of lHa(w)| used was

g
Ra ("”) . w < W
)| = ¢ E(®) c (25)
H (w )W)
L a_ e’ el .y, sy,
w C

where w = 3.43/a .



The noise waveform was estimated by taking the difference bejween the
theoretical smoothed impulse response as obtained from the Mie series’ and the
one obtained from the space-time integral equation. Figure 9 displays the
smoothed impulse response of the sphere obtained with the space-time integral
equation using a rather large space-time mesh sample size., Also displayed in
Fig. 9 is the difference between this result and the theoretical smoothed
impulse response. This difference may be considered to be the noise n(t) that
corrupts the true smoothed impulse response. Figure 10 shows the Fourier
transform of the noise waveform, and it should be noted that the noise doesn't
go to zero with increasing frequency. Based on Fig. 10, three different
estimates of the noise power density spectrum wnnfw) were made,

The first estimate of @nn(w) was
w \2

% (v) = [ kwe <2" ]2 (26)

where k = 5 X 10"3 and n = 2 ,

This estimate was an attempt to have an approximate fit to the envelope of
the noise spectrum, which was simply related to the snectrum of the input
pulse, This estimate proved to be inadequate because the actual noise spec-
trum did not approach zero at high frequencies as the estimate assumed.

The second estimate of the noise spectrum was an attempt to correct
for the defect in the first estimate and was of the form

w \2
@nn(w) = [Kwe-<2"> + A]2 (27)

where A = .2 X 10'3 .

The third estimate of noise spectrum was an attempt to determine the
best that could be done when the noise spectrum was known exactly., In this
case @nn(w) is given by

o (W) = INw) |2 (28)

where N(w) is the transform of the noise waveform,

Figure 11 displays the estimate of the frequency response H(w) that
was obtained using the second and third estimates of the noise spectrum along
with the theoretical frequency response. The result of the second estimate
indicate that the noise response was not filtered enough. The result of the
third estimate, which may be considered as the best result that could be
obtained with this approach, is still far inferior to results which will be
presented in a later section,
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Figure 12 displays the estimate of the impulse response, h(t), that
this approach yields for the second two noise estimates. Note that both
waveforms possess a substantial precursor and thus violate the causality
requirement., Moreover, both waveforms possess a ripple structure which is
also in error. As a result of this study, it is clear that the best results
which can be hoped for using Wiener-Lee filtering are not adequate,

2.3.3 Inverse Power Law for High Frequency Estimate of Augmented Frequency
Response

For this case, a sphere of radius a centered at the origin was
illuminated with the incident wave traveling in the negative z direction and
given by

e—(na)z(t/a + z/a)2

e(z,t) = (29)

n_
N
where na = 1.

The incident pulse is obtained by setting z equal to zero. This yields
an incident pulse width of two sphere diameters, as shown in Fig, 13.

The smoothed impulse response that results from solution of this
problem with the space-time integral equation is displayed in Fig. 14, 1In
this figure the normalized far scattered magnetic field intensity r H (t/a)
‘ is plotted as a function of the normalized far field time t/a, as d@scribed
in Sec. 8.1. The far field time is given by

where

T the distance of the far field observer from the origin.

tS = the surface current time.

The frequency response may be obtained by dividing the transform of
the smoothed impulse response by the transform of the incident pulse, i.e.,

R(w)
H(w) = E(w)
where i Eﬂ)2
E(w) = e 2"

and the result is displayed in Fig. 15 along with the theoretical sphere
response, There is good agreement up to a ka of approximately 3 or up to a
frequency at which the width of the incident pulse is two wavelengths, This
is also the point at which E(w) is approximately 10% of its maximum value,
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and beyond this point in frequency there are negligible components in the
interrogating signal and thus negligible components in the smoothed impulse
response. .

The augmented frequency response is obtained by subtracting the
transform of the augmentation function from the frequency response. As noted
earlier in Sec. 2.2.2, the most appropriate augmentation function to use
contains only the singularity functions which are known exactly. For the case
of a sphere of radius a this is given by

£(t) = % 5(t/a + 2) + % w (t/a + 2) . (30)

This augmentation function is infinitely smooth for t/a = -2 and upon trans-
formation yields linear phase. Both of these features simplify the high
frequency estimation procedure for the augmented frequency response, since

now the augmentation function introduces no new discontinuities in any deriva-
tives and introduces no nonlinear phase terms. The augmented frequency
response is given by

! _ R(U.))
H (@) = 535 - F_ () (31)

where R(w)e— 1(t)
E(w)«— e(t)
F (w)e— f (t)
a a

_ (2 _ 1 1) ju(2a)
Fa(w) = (2 -3 jw>e (32)

The magnitude is displayed in Fig. 16(a) and the phase is displayed in Fig.
16(b)., The effect of computation noise is clearly evident as the exponential
increase of the augmented frequency response magnitude above a ka of approxi-
mately 5. The next step is to replace the exponential increase by a suitable
estimate of the high frequency behavior of the augmented frequency response.

In estimating the high frequency behavior of the augmented frequency
response, both the amplitude and phase must be considered. It should be noted
here that since the augmented impulse response is causal, then care must be
taken so that the estimate of phase and amplitude is consistent with the
causality requirement. A more detailed discussion of the causality condition
is presented in Sec. 8.2. Both the theoretical augmented frequency response
of the sphere and the computed augmented frequency responses at lower frequen-
cies indicate a linear phase variation. Hence, in this work a linear phase
variation of the augmented frequency response is assumed at high frequencies.
This estimate is of the form
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P(w) = m» + b w > w, (33)

where m is chosen such that the phase is continuous at the fit point, w_, and
b is zero., A discontinuous phase response may yield ripples in the timé domain
together with a noncausal time response. The parameter m yields the point in
time where the high frequency portion of the augmented impulse response occurs.
The parameter b controls the symmetry of the response about this time point.

A symmetric response is obtained for b = 0 and an anti-symmetric response is
obtained for b = /2, It was found that the theoretical sphere response
yielded a value for b of nearly zero. In addition, the high frequency portion
of the augmented frequency response corresponds to the creeping wave contri-
bution, which has a nearly symmetric appearance in the time domain. For these
reasons the parameter b was taken to be zero in this work.

The estimate of the amplitude of the response is more difficult, The
frequency response cannot be simply set to zero above a certain frequency
because this will cause ripples in the time response due to truncation error
and yield a noncausal time response. It is necessary to use an estimate
which approaches zero asymptotically as w approaches infinity, To get an idea
of what to use as an estimate, consider the bounds on the high freauency
portion of the augmented frequency response.

The augmented impulse response contains one region of fast variation
which is due to the creeping wave, It seems to be a reasonable assumption that
the augmented impulse response is absolutely continuous (continuous functions
of interest are also absolutely continuous) and of finite duration. With
these two conditions satisfied, the theory of Fourier analysis indicates the
augmented frequency response will be bounded by a function of the form

Bw) = 2 (34)

where & is an arbitrarily small positive constant, This bound suggests using
an estimate of the form

Flw) = A— (35)

1+e
w

where € is an arbitrarily non-negative constant,

If it is also assumed that the first derivative of the augmented impulse
response is absolutely continuous (i.e., the slope of ha(t) is absolutely con-
tinuous), then the appropriate bound is of the form

B(w) = 25 (36)
W
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where & is an arbitrarily small positive constant.

The resulting estimate should be of the form

H

F(w) =
w2+€

where ¢ 2 0,

In summary, the estimate of the augmented frequency response, ﬁa(w),
is given by

Hakw) o ow< w
Ha(m) = (38)
F(w) eJm(w)? w 2w

where w 1is the boundary point

F(a,) P W) _ H (@) .

For the case of the sphere, the inverse power law for high frequency estimates
of the augmented frequency response of the form

Fl(w)

A/w

and

B
Folw) = =5
w

was examined. Figure 17(a) displays the magnitude of the augmented frequency
response with both estimates of the high frequency variation. The estimate
of the high frequency phase variation is displayed in Fig. 17(b). For these
estimates the following parameters were used:

w, = 1.4726

m = -3,21984
b = 0.0

A = 0.41692
B = 0.61395 .
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Note that the boundary point w_was chosen to be substantially below the value

at which the effect of noise bécomes clearly evident in the augmented frequency
response,

The impulse response that was obtained with these inverse power law
estimatgs is displayed in Fig. 18 for the A/w variation and in Fig. 19 for
the B/w= variation. Note that both results agree well with the theoretical
sphere response in all regions except in the neighborhood of the creeping wave
return at t/a = 3,2, The 1/w estimate yields a better result than the 1/w
estimate when compared to the theoretical sphere results,

The frequency response for the 1/w estimate is shown in Fig. 20 and for
the 1/0” estimate is shown in Fig. 21. Note that the 1/w estimate yields a
response that damps out less rapidly than the theoretical result, whereas the
1/w= estimate yields a response that damps out more rapidly than the theoretical
result. At this point it would seem logical to examine an estimate of the
form A/w%, where 1 < o < 2, Carrying this logic forward, the exact augmented
sphere response was plotted on log-log paper in order to obtain the appropriate
value of @, Figure 22 displays this result, and it is clear that the high
frequency portion of the augmented frequency response does not obey an inverse
power law, However, the 1/w estimate does appear to provide an upper bound,

2.3.4 Exponential High Frequency Estimate of Augmented Frequency Response

In the previous section it was found that neither a 1/w nor a 1/w2
estimate of the high frequency variation of the augmented frequency response
‘ was adequate, although the 1/w estimate did appear to provide an upper bound.
Moreover, on examination of the exact augmented frequency response the expo-
nential nature of its variation became apparent, The Senior-Goodrich expression
for the far scattered magnetic field of a sphere given in Eq. (15) for large ka
is repeated here for convenience:

s _ N a 0.25 . ]
roH (ka) = HCE(ka) . HCM(ka) + [(2 T > exp(j2ka) (39)

where HCE(ka) and HCM(ka) are given in Eq. (15).

This expression is valid for high frequencies and was used to obtain the
theoretical sphere response for ka = 20, The total response in Eq. (39) is
divided into two parts. The second part in the square brackets represents the
impulse and step contribution to the impulse response of the sphere and is
simply the augmentation function now being used in this work. Thus, the aug-
mented far scattered field is given by

S —
roHa(ka) = HCE(ka) + HCM(ka) . (40)



0.8

+ 0.6

0.2

++ + o+

|/w estimate of Hq(w)
Theoretical response

-4

-0.2

=

-0.4

FIG. 18 Impulse response of sphere with radius a using 1/w high
frequency estimate for the augmented frequency response.

r 0.8

-+t >

+ 06

/0 estimate of Holw)
Theoretical response

L 0.4

FIG. 19 Impulse response of sphere with radius a using 1/w2 high
frequency estimate for the augmented frequency response.

44




o8

0.6

r, | H*( ka)l /a

04

0.2

n E— I/w Mgh frequency estimate
- 4+ Theoretical

0 100 200 200
ka

FIG. 20 Frequency response of sphere with radius a for 1/w high

rol H® (ka)l/a
O
[s)]

0.2

frequency estimate of augmented frequency response.

I/cu2 high frequency estimate

+ + + + Theoretical

—t * —t g .- — * — —+ —

0o 100 20.0 300
ka

FIG. 21 Frequency response of sphere with radius a for l/w2 estimate

of augmented frequency response,

45



[Hg (ka)l/a

1.0
2 -
[/w” estimate
0.1
Theoretical
. |/w estimate
+
L
»
+
’L
[o]0]] Iy \
Y
+
4
- ”’
'Y
*,
’.‘\
000l
o} 1.0 10.0 100.C

ka

FIG. 22 Amplitude of augmented frequency response on log-log plot.

46




These two terms are the creeping wave response. The high frequency asymptote
of the creeping wave response obtained from Eq. (15) is of the form

rOH:(ka) = A(ka)l/3 exp [-B(ka)l/sl exp[-j(mka + b)] (41)

where A, B, m and b are constants., Moreover, on plotting the natural log

of the amplitude of the theoretical creeping wave response given in Eq. (40)
against the cube root of ka, a curve well represented by a straight line was
obtained. This suggests a simpler representation for the high frequency
estimate of the augmented frequency response is of the form

ﬂa(w) = A exp[—B(w)l/SJ exp[—j(m» + b)] (42)

where the linear system parameter w has been substituted for ka. The constants
A and B are obtained from the low frequency portion of the augmented frequency
response using two fit points, w., and w,, where w, = w_, The phase is likewise
obtained from the low frequency &ortion, where m is ch§sen such that the phase
is continuous at w_and b is set to zero. Applying this procedure to the
theoretical augmen%ed frequency response yields

w, = 1.4726
w, = 2,8839

m = -3.21984
b = 0.0

A = 2.85224
B = 2.03041

This high frequency estimate is compared with the theoretical result for the
case of a sphere in Fig. 23. The good agreement for both the amplitude and
the phase displayed in Fig. 23 demonstrates the validity of the high frequency
estimate given in Eq. (47). Moreover, since this estimate of the augmented
frequency response is directly attributable to the creeping wave, the form of
this estimate should remain the same for the creeping wave response of any
smooth convex body.

The augmented frequency response for a sphere with radius a which was
obtained via solution of the space time integral equation is displayed in
Fig. 16. Applying the high frequency estimate of Eq. (42) to this response
yields

a7
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w, = 1,4726
w, = 2.8839
m = -3,22914
b =0.0

A = 2,90426
B = 2.05085

The amplitude result is displayed in Fig. 24 and the phase estimate remains the
same as that obtained in the previous section and displayed in Fig. 17(b).

The impulse response obtained using the exponential estimate is
displayed in Fig. 25 along with the theoretical result. From this figure the
agreement is seen to be excellent, including the neighborhood of the creeping
wave response,

The frequency response for the exponential estimate is shown in Fig.
26 and the radar cross section is shown in Fig. 27 along with the companion
theoretical results, Again, the agreement is excellent.

2.4 SCATTERING BY A PROLATE SPHEROID - AXTAL INCIDENCE

The space-time integral equation technique yields the smoothed im-
pulse response of arbitrarily shaped targets which may in turn be used to
compute the frequency response well into the resonance region. The accuracy
of this technique for computing the slow variation of the impulse response and
the lower portion of frequency response has been verified for numerous target
shapes by comparison with measured data,

At the other end of the spectrum the physical optics approximation
yields exact results for the specular return in the case of the impulse res-
ponse and for the very high frequency region in the case of the frequency
response.

In the previous two sections, a technique has been developed which
combines the space-time integral equation results with the physical optics
results to yield the response over the remainder of the spectrum. The impulse
response augmentation technique was demonstrated on the sphere and gave results
in excellent agreement with theoretical responses.

For comparison, theoreticzl impulse and frequency responses are
available only for the case of the sphere ; however, approximate results (Whiih
agree well with measurements) do exist for the case of the prolate spheroid.

It is the purpose of this section to demonstrate the impulse response augmenta-
tion technique for the case of the prolate spheroid with axial incidence.

Figure 28 displays the incident pulse and the cross section of the
prolate spheroid with an axial ratio of 2:1 and with a minor axis radius of a.
The target is centered at the origin such that its major axis coincides with
the z-axis. The width of the incident pulse is equal to the length of the
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prolate spheroid: 1i.e.,

2 2
e(t) = 3:_ e'("a) (t/a) (43)
a1
where na =1,

The smoothed impulse response that was computed using the space-time integral
equation is displayed in Fig. 29, Note the spectral return at t/a = -4, the
subsequent nearly constant negative value of 0.0625, and finally the creeping
wave return at approximately t/a = 4.6,

The frequency response obtained from dividing the transform of the
smoothed impulse response by the transform of the incident pYise is shown in
Fig. 30 along with results measured by Moffatt and Kennaugh, The agreement
is good in most cases, and at points where measured values fall off the
computed curve the difference is less than the expected measurement accuracy,
as indicated by the spread of the measured data.

From the physical optics approximation the approximate augmentation
function for this prolate spheroid is '

£,(t) = -}1- §(t/a + 4) - -}z u(t/a + 4) (44)

where a is the semi-minor axis of the body. Figure 31 displays the augmented
frequency response of the prolate spheroid obtained using this augmentation
function, To this is applied the exponential estimate of the high frequency
variation given in Eq. (42) which yields the following parameters:

w, =Wy = 2.14755
w, = 3.80425
m = -4,87750
b =0
A = 2,18519
B = 1.77802

This estimate is also plotted in Fig. 31.

The impulse response of the prolate spheroid obtained with this tech-
nique is displayed in Fig. 32 along with the Moffatt-Kennaugh exponential sum
approximationll for easy reference. Both results agree well in all areas
except in the region of creeping wave return, and it should be noted that it
is precisely this region where the greatest liberty is taken in fitting the
"stretched" sphere response with the exponential sum,
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The frequency response of the prolate spheroid computed with this
technique is displayed in Fig. 33 along with the result from the Moffatt-
Kennaugh approximation. Note the good agreement for ka less than 1, where
Moffatt and Kennaugh integrated the "stretched" sphere impulse response
directly., Between ka of 1 and 6 the Moffatt-Kennaugh result is larger than
the impulse response augmentation technique result. It is over this region
that the exponential sum approximation seems to lead to the largest error,
Beyond a ka of 6 the agreement between the two results again becomes quite
good. Finally, for completeness, both the frequency response and the radar
cross section of a prolate spheroid with a 2:1 axial ratio were computed with
the impulse response augmentation technique and are displayed in Figs. 34 and
35, respectively, for a range of ka from O to 30.

2.5 SCATTERING BY A SPHERE-CAPPED CYLINDER - AXIAL INCIDENCE

The third target on which the impulse response augmentation technique
was demonstrated is a circular cylinder of radius a with spherical end caps
and a length-to-diameter ratio of 3:1. The cylinder is positioned such that
the center of the illuminated end cap coincides with the origin and the
cylinder axis coincides with the z axis, as shown in Fig. 36. This target is
illuminated with an incident wave given by

n -(na)z(t/a+z/a)2 (45)
e(z,t) = — e .
Nad
where na =1
a = radius of cylinder.

This yields an incident pulse width equal to two-thirds the length of the
sphere-capped cylinder, as shown in Fig. 36,

The smoothed impulse response that was computed by the space-time
integral equation technique is displayed in Fig. 37. The effect of the impulse
from the specular point is apparent at t/a = -2, and is then followed by the
effect of the negative step. Between t/a = -2 and t/a = 6 the response is near
zero, indicating a negligible return from the sides of the cylinder. Next, at
approximately t/a = 8.7 a negative pulse occurs that may be attributed to the
region of the join between the cylinder and rear sphere cap. This is followed
by a positive pulse at approximately t/a = 11 which is due to the creeping
wave that travels around the rear of the cylinder.

The frequency response was computed by dividing the transform of the
smoothed impulse response shown in Fig, 37 with the transform of the incident
pulse. This response is shown in Fig. 38 and indicates results which are
stable up to a ka of approximately 5. The interference between the returns
from the specular point and the rear of the cylinder is evident in the form of
ripples in the response.

The augmentation function used for the sphere-capped cylinder is the
same as was used for the sphere in Eq. (30) and is repeated here for convenience:
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£(1) = % 5(t/a + 2) - % u(t/a + 2) . (46)

Applying this function yields the augmented frequency response shown in Fig.
39. The response for this target is more complicated than it was for the
case of either the sphere or the prolate spheroid, and in particular it does
not seem appropriate to estimate the high frequency variation simply with the
exponential used for the previous two targets. The period of the fine ripples
indicates an interference between two returns which possess a time separation
of approximately A t/a = 12, or the approximate time separation between the
return from the front of the cylinder and the return from the rear of the
cylinder., Moreover, it is obvious from the smoothed impulse response shown in
Fig., 37 that the returns from these two regions can easily be separated in
time., Thus, to facilitate the estimation of the high frequency portion of the
augmented frequency response, the smoothed impulse response of the sphere-
capped cylinder, r(t), was divided into two parts and each section was con-
sidered separately.

The smoothed impulse response from the front part of the sphere-capped
cylinder is shown in Fig. 40. The frequency response that results from this
portion of the smoothed impulse response, shown in Fig. 41, is notable for its
absence of ripples. Using the augmentation function given by Eq. (46) yields
the augmented frequency response due to the front part of the sphere-capped
cylinder shown in Fig, 42. Note that the amplitude in Fig. 42(a) decreases
very rapidly and the the phase in Fig. 42(b) is nearly constant, The phase
response indicates the high frequency portion of the response occurs in time
at t/a = 0, or from the region of the join between the c%}inder and the front
sphere cap. The amplitude was assumed to possess a 1/2 /2 yariation and the
phase was assumed to be constant. Thus, the high frequency portion of the
augmented frequency response was given by

A
~ O .
H (@) = 3 exp(jb ) w > w, (47}
w2
where
w = 2.000
c
0 = -1.619
AO = 0.213

and the resulting high frequency estimate is shown in Fig, 42,

The impulse response fi,(t) due to this portion of the return is
displayed in Fig. 43 and the companion frequency response H,(w) is displayed
in Fig. 44. Note that the impulse response is time limited and has a negli-
gible precursor, which increases confidence in these results. The frequency
response exhibits very little resonant character.
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The portion of the smoothed impulse response due to the far end of
the cylinder, r,(t), is shown in Fig. 45. Since no specular points contribute
to this portion~of the response, the appropriate augmentation function is zero,
and thus the frequency response due to this portion corresponds to the aug-
mented frequency response. Both the amplitude and phase of the augmented
frequency response are displayed in Fig. 46. The phase response in Fig. 46(b)
possesses a linear phase term with a slope of approximately -11, which indi-
cates a response in the time domain at approximately t/a = 11, and can be
attributed to the creeping wave. The phase also deviates from linearity
with the same period as the variation in amplitude, or a 4 ka of approximately
2.6, This corresponds to the effect of a second, lower level response which
occurs at Ot/a of 2.4 before the creeping wave return and could be attributed
to a return from the join between the cylinder and the rear sphere cap. It
is assumed that the amplitude of the creeping wave return has the exponential
form used for the/%Phere and prolate spheroid and the amplitude of the join
return has a l/w3 form. Both are assumed to possess a linear phase variation.
Thus, the form of the high frequency estimate used for the second portion of
the sphere-capped cylinder augmented frequency response is

A
- 1/3 . . fo . .
932(w) = Al eXP(-Blw )exp(mel + Jbl) + w3/2 exp(_]wm2 + Jb2)

. w>w (48)
c

The parameters in Eq. (48) were chosen in the following manner:

wy = the approximate value of frequency at which the first maximum
in the amplitude response occurs; this was chosen

%, = the phase at w

1 1
my = 9/
Thislis the slope of the linear phase in Haz(w)
b1=0

wy = the exact point in frequency at which the phase of H_,(w) exp
(—jm&w + jbl) is zero, corresponding to the first minImum of
)

HaZ(
t., = the time at which the second join return would first appear;
J2  this was specified
m, = tj2
wq = wy + n/(my..- ml)
by =T - My

Bl = the value obtained from the sphere with radius a was used for
this parameter

A1 & A2 = these two parameters are chosen such that
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932(m2) = Ha2(w2)

932(w3) = 0.2095

Carrying out the above procedure yields the following values for these para-
meters:

u.)l = 1.48855
ml = -11.192
bl = 0.0
w, = 2.486
W = 3.470
m2 = -8.00
b2 = -4.795
B = 2.05085
Al = 3.676
- 2
A2 = 0.289

Substituting these values into Eq. (48) yields the estimate of the high fre-
quency portion of the augmented frequency response shown by the broken line in
Fig. 46. Since the augmentation function is zero in this case, this is also
the frequency response which is shown in Fig. 47 for the larger frequency
window,

The impulse response for the second part of the return from the sphere-
capped cylinder is displayed in Fig. 48 where it is noted that the creeping
wave peak occurs at t/a = 11.19, which is slightly later than the t/a = 11.14
that a wave traveling at the speed of light would appear. This is consistent
with the result obtained for the case of the sphere. The return due to the
region of the join between the cylinder and the rear sphere cap causes a sharp
negative swing in the response at t/a = 8.00 although there is a small pre-
cursor immediately prior to this time which should not be there,

Finally, the two portions of the impulse response are combined and the
resulting total impulse response of the sphere-capped cylinder is displayed in
Fig. 49. The total frequency response and radar cross section are shown in
Figs. 50 and 51, respectively. In Fig. 50 the fast variation in the response
corresponds to an interference between the return from the nose of the cylinder
and the return from the far end of the cylinder. The interference between the
creeping wave return and the rear join return is also evident in the form of
an amplitude modulation of the fast ripples.
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2.6 POLARIZATION DEPENDENT EFFECTS FOR NONAXIAL INCIDENCE

In the preceding sections, scattering from rotationally symmetric
targets with axial incidence has been considered. The back-scattered far
field in this rotationally symmetric scattering problem is polarization in-
dependent; however, as the direction of incidence deviates from the axial
case, the back-scattered far field no longer remains polarization independent.
In order to obtain an estimate of the leading edge (or equivalently, the high
frequency) response of the target, the physical optics currents have been
assumed. This assumption leads to polarization independence by virtue of the
fact that the impulse response which results may be written as the second
derivative of the target's projected area as given in Eq. (11)., The question
then arises as to whether or not the polarization dependent effects appear as
singularity functions at the leading edge of the impulse response., It is the
finding of this work that they indeed do and, to a first approximation for
smooth convex bodies, are functions of the difference in the principal radii
of curvature at the specular point and have the form of the first derivative
of the projected area. Section 2.6.1 describes the self-term correction
which is used in the numerical solution of the space-time integral equation
and which provides the approximate expression for the first interaction cur-
rents on the targets. Section 2.6.2 applies this result to compute a crude
approximation for the polarization dependent effects that appear at the lead-
ing edge of the impulse response.

2.6.1 Consideration of Self-Term Correction

The space-time integral equation for currents on the surface of a
conducting body has been derived previously3 and is given by

- _’I A\ B
] J(r, 7) x a ds
T R,

| T=t-R  (49)

i Y 2 - . ! ’
= 23 1 N SN 12
J(r, t) .an x H (r, t) + 21_[/[4 an X (] “RZ + R 3

S -

—-p
r = position vector to the observation point
—-p
r

‘= position vector to the integration point

- -
R=|r-r'
- -
I
~ _ T =T
ag R

t = time in light meters

S = surface of the scattering body
R -
a = unit normal vector at r
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-
J = surface current
sl
H'= incident magnetic field.

The integral equation in (49) may be solved exactly. Briefly, the
numerical solution of the integral equation is carried out in the following

manner. The vector integral equation (49) is written in terms of its com-
ponents:

g i i
Jr, t) =3 Q. +1)+3a Q. +1) (50)
u u u v v v
where
-5 .
‘=3 3 +3a I
u u v v
i
=23 x H
-
N 3 I
I ay Iu ay v
1 s J/|1 13 20 A e
= 5= x =+ s = . S ¢
5 { a x \L_ 5% R o7 3(r, T) X ap | ds 1)
o R —
T = t-R
- R -
a = unit normal vector at r
5u = unit tangent vector to the line of curvature u = constant
5V = unit tangent vector to the line of curvature v = constant,

Thus, the surface current J 1is written in terms of its components in the
curvature directions. This yields the two coupled integral equations

- i - -
J(r, t)=J (r, t)+1 (r, t)
u u u
(52)
i
Jv

J (r, t)

nd -
(r, t)+1I_ (r, t) .
v v

The solution of Eq. (51) is obtained by carrying out both the inte-
gration and differentiation numerically. First, the scattering surface is
divided into curvilinear square patches of approximately equal area with a
space sample point at the center of each patch. The spacing of these sample
points (and thus, the size of the patches) on the surface is chosen small
enough to give both a good representation of the scatterer and also a good
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representation of the currents that exist on the scatterer. Next, the time
increment At between the points in time at which the current is computed
must be less than the time it takes a wave, moving at the speed of light, to
travel between the closest space points. The space integration in Eq. (51) is
carried out numerically and may be represented as

-» P -+ —
_ L
I, =3, O T (g, ) Z £ix 05,
k71
(33)
- i - - >—'
Jv(ri' t) = Jv(ri' t) + Pyi Jv(ri, t) + L fvik ASk
k#i
where
-
AS, = the area of the patch centered about r,

k

f .
ulk
= the functions of the currents J and J

- u v
at other points on the scatterer and at

Lo
vik. times earlier than t - At given in Eq. (51)
s
PUIL
= the self-term correction for r; which represents
; the contribution due to the currents flowing in
Pri ) the patch on which the observer is located.

The expression for the self-term correction is derived in Appendix 8.3 and is
given by

R
1 _Asi
Pui = 4 / m (Hui - hvi)
~N
(54)
7
=1 /L K .)
Pvi ~ % T
N
where
Kui = the curvature in the u direction (which is a principal
curvature )
Kvi = the curvature in the v direction (which is the other

principal curvature).
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Equation (54) shows that the self-term correction is proportional to the dif-
ference in the principal curvatures at the observation point and to the linear
dimensions of the patch. Note that for the case where the target surface is
locally spherical (i.e., X = X_) the first order self-term correction is zero.
It should also be pointed 6ut tHat for the first order self-term correction
the components are decoupled as shown in Eq. (53) for the case where the co-
ordinate system coincides with the lines of curvature on the target surface,

It is also interesting to observe that the self-term correction has the same
magnitude but is of opposite sign for the two components. This effect will
also manifest itself in the polarization dependence of the impulse response.

Finally, the terms in Eq. (53) may be rearranged to yield

A
j (r,, t) + f . S
J > aS,

i u i L uik
J (r,, t) = — — k71
u i 1 -op .
ui
Lo (55)
i
- Jy (ri' t) +vaik ASk
I (r,, t) = kzi ‘
vi 1 -9

vi

Equation (49) has been reduced to the recurrence relation in time given in

Eq. (55), which is solved on a digital computer by simply marching on in time.
The self-term correction factor p 1is included as part of the denominator and
must be small (and thus, the patch size and curvature must be small or the
solution will certainly be unstable.

This self-term correction has been incorporated into the computer
programs and has yielded a substantial reduction in errors in the test case
of a circular cylinder, for which a "classical solution” may be obtained for
the initial portion of time before the end effects have reached the observer.
The smoothed impulse responses that follow were calculated with this improved
program.

2.6.2 Consideration of Polarization Effects in Leading Edge of Impulse

Response

In the previous section, the effect of one interaction between
currents has been incorporated into the numerical solution of the space-time
integral equation to account for the self-term contribution. In this section,
the same technique will be applied to the far-scattered field expression to
obtain a crude estimate of the first order correction to the physical optics
result.

The equation for the far field is given by
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§ = — 2e 2y 17 a /

T, H (r,tf) ) | 3, : X a, ds (56)
< J‘
S T =1t-R
where
g -
H” = the far-scattered magnetic field at r
-
r = the position vector to the observer
-
r’ = the position vector to the integration point
4, = the unit vector to the far field observer
t = the surface current time in light meters
te=t-1 (the far field time)
-

r. = |r| .
“o

The physical opties currents
- -».

2§n x H': illuminated side

po 0] ; shadow side

yield the physical optics approximation for the far field impulse response,

4 o 1 a‘?S(tf)
o po(r' tf) =57 32 gt (57)
where
S(tf) = the silhouette area of the scatterer as delineated

by the incident impulse assumed to be moving over the
scatterer at one-half the free space velocity

->.
5Hi = the unit vector in the direction of H'
Equation (57) is simply the physical optics approximation to the impulse

response, and since it is only a function of the projected area, then as
noted earlier, it is polarization independent,
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The first order correction to the physical optics approximation is
obtained by applying the more general result of Appendix 8.3, which gives an
expression for the effect of local currents on the observer. The validity of
the consideration here is restricted to the leading edge portion of the im-
pulse response.

The expression for the first order correction to the physical optics
far field is

P
R -
| 3J (r! )
-.
s _ 1 ' pol ' ’
roHp01 4n ‘}F 1\ 3T Xa, ds (56)
S T = t-r
where
-» i - -
- L R [l .13 ‘ . '
Jpol =57 \J a, x Lﬁz * R 3 Jpo(r, T) X ap ds
S -
T = t-R
- -.
J = 2§n x H1MC

| Pe

It is worth noting that this forms the second term in an iteration scheme
for the solution of the space-time integral equation that iterates over the
interactions between currents rather than simply along in time. Stepping on
in time is a far more efficient numerical solution procedure for the space-
time integral equation, but this first interaction will give an analytic
expression for the first order correction to the physical optics approximate
impulse response which includes the polarization dependence.

Since consideration is restricted here to leading edge effects, only
the currents in the vicinity of the observation point need be accounted for,
and thus the general expression for the,self-term correction as derived in

Appendix 8.3 may be used to represent Jpol . This is given by
- [’xu-hv | ﬂpz 3J OJ
Jpol B au\4n "o Jpou Tl 2 a7
KoKy I ﬂpi aJgov
M Ayl Tam Lﬂponov M 2 T (59)

. where
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pou
J_ = o2n

pov

Py = the radius of a circular integration patch about the

observer, and will be estimated from the mean area
illuminated as a function of time.

-
Substituting the expressions for Jpo into Eq. (59) yields

r s !
- Hu—l{v\ : P 3 | i
Jpol 2 4 /i "o 2 |3t 4 X 3 Hu
/H -K r mp? ~ .
! ol 2| i
2 \ 4rm !ﬂpo 2 aﬁJ n %3, Hy (60)
“

The relation for the first_jorder correction to the physical optics far field
is obtained by replacing J in Eq. (58) with the expression given in

Eq. (60), which yields pol
I _ 1 > 5 ; fy-xv@ . "Pola i gs
opol 2m 3t Tuwo \ ar P k 2 /a7 u proj
S T = t-R
X -Hu npi 3 ~] i \k
T A u{- 4 "o T2 AT Hv dS rOJ’ (61)
I _
S
7 = t-R
As a first approximation for p . the surface at the specular point is
assumed to be spherical with curvature X, which gives
o = (t+z) -8 (t+2)2 (62)
0 2

where the coordinate surface is oriented so that the incident wave is propa-
gating in the negative z direction and the specular point is located on the
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z axis at the origin. The effect of the second term in Eq. (62) is second
order, and thus for this consideration will be neglected.

Substitution of Eq. (62) (with X = 0) into Eq. (61), letting the
incident field be an impulse, and carrying out the integration yields, for
the first order correction,

-+ , St [ [x-K i KK,
roHpol = on dt I |72 T a, 2 (63)
where
S(t55 = the projected area given in Eq. (57)
“u = the curvature in tne u direction
K, = the curvature in the v direction.

Thus, from Eq. (63) it is noted that the first order correction to
the physical optics "approximation is proportional to the difference between
the principal curvatures at the specular point. Moreover, this correction
has the functional form of the first derivative of the projected area, versus
the second derivative as given in Eq. (37) for the physical optics approxi-
mation itself. This means that for the case of smooth convex targets, such
as the prolate spheroid off-axis, the step function in the physical optics
approximation will be corrected, and this sign of correction will depend upon
the polarization of the incident wave., For example, the amplitude of the
negative step will increase (become more negative) for the case of TE
polarization, whereas the amplitude of the negative step will decrease for
TM polarization. In addition, this first order correction indicates that a
ramp function is also present at the leading edge of the prolate spheroid
response which has a positive sign in the TE case and a negative sign in the
TM case.

It should be noted that the goodness of this analytical expression
as a total correction for the physical optics approximation for the far field
is a function of the goodness of the approximation used in deriving it. The
crucial area is in the use of Eq. (59) and the subsequent approximation for
6, as a function of time. In addition, the assumption that the difference
in principal curvatures remains the same in the vicinity of the specular
point may also be questioned, although to a first approximation this assump-
tion is certainly valid. Finally, the assumption that p is given by
assuming its time variation is due to a plane tangent at he specular point
may introduce errors, although this is again valid to a first approximation.

In summary, it is felt that the derivation given in this section is
valid to the extent of giving the functional form of the correction terms,
the polarization dependence they introduce, and their relationship to the dif-
ference of principal curvatures at the specular point. The exact value of the
coefficients in these correction terms should, however, be obtained directly
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from the computed smoothed impulse responses rather than from the expres§ion
given in Eq. (63). This is the technique used in the following two sections
to obtain the augmentation functions with polarization dependence.

2.7 SCATTERING BY A PROLATE SPHEROID -- NONAXIAL INCIDENCE

2.7.1 Impulse Response Augmentation Technique for Prolate Spheroid

Scattering by a prolate spheroid with a two-to-one axial ratio for
axial incidence was considered in Sec. 2.4. This section deals with the case
of nonaxial incidence in general and the cases of 30°, 60%, and 90° angles of
incidence in particular. As noted in Sec. 2.6.2, the augmentation function
of the prolate spheroid will be taken as

fa(t) = Pzé(t/a-Tz) + (S, + szZ)U(t/a'Tz) + Rzzrp(t/a'Tz) (64)
where

Pz = the impulsg coefficient given by the physical optics
approximation

SZ = the step coefficient given by the'physical optics approximation

522= the step coefficient due to the polarization dependence

RzZ= the ramp coefficient due to the polarization dependence

T_= the time at which the leading edge of the impulse response
starts,

The expressions for the physical optics impulse response coefficients
for a prolate spheroid with semiminor axis a and semimajor axis b which
are centered at the origin are derived in Appendix 8.4. The incident wave is
assumed to make an angle o« with the major axis. The resulting expressions

are

1/2
T =-28
z a
p =41 _3b (65)
z 2 B
S = - 1 a2b
7 4 B3/2

azsin2 a + b2 0052a

jus]
it
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In this work the values of S__ and R o Were computed from the
smoothed impulse response r(t) initiggly in %Tme by assuming that the total
value of r(t) 1is due to the convolution of f _(t) given in Eq. (64) with
the excitation e(t) . The values of S and® R 5 Were then determined by
equating f e with r(t) at the initf51 time pg1nts in the smoothed im-
pulse respoﬁse and solving the resulting set of linear algebraic equations.
Confidence in this approach was further strengthed by noting that the values
of S 5 and R were relatively independent of the particular time points
used £6r theirSolution.

Table I displays both the physical optics parameters and the polari-
zation dependent physical optics correction parameters for the prolate spheroid
with an axial ratio of two-to-one., 1In Table I the polarization dependent
physical optics correction parameters can represent a substantial contribu-
tion to the leading edge of the impulse response. It should also be noted
that the sign of S_, is negative for the TE case and positive for the TM
case, as predicted”In Sec. 2.6.2; however, the magnitude differs for the
two polarizations, A similar effect is observed for the R22 coeificient.

After obtaining the augmented frequency response, the procedure
followed is the same as that described in Sec. 2.4 for the case of axial in-
cidence. The exponential estimate of the high frequency variation is applied
to the augmented frequency response to obtain an estimate of the total aug-
mented frequency response,

‘ ] Ha(m) i

H <
v W (.I.)c

H(w)=)
a \

Y ¥ .
LAI exp L—Blw ] exp é_mel + Jb;] Pow 2wy (66)

where b. was taken to be zero in all cases. The parameters that result
from this procedure are summarized in Table II. Since this high frequency
estimate represents the creeping wave, the m, parameter represents the time
of arrival of the creeping wave. Note in Tab}e II that the damping (which is
represented by the B, parameter) increases with angle of incidence up
through 60° and then decreases slightly at 90°.

In the next two sections the responses obtained for a prolate spher-
oid with a 2:1 axial ratio are given. 1In all cases, the smoothed impulse
response was calculated by numerical solution of the space-time integral
equation with the improved self-term correction feature. The smoothed im-
pulse response, the frequency response obtained by direct transformation, the
total frequency response, and the impulse response are displayed for each
aspect angle and polarization.
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TABLE I

SUMMARY OF AUGMENTATION FUNCTION PARAMETERS
FOR THE PROLATE SPHEROID

Incident Polarization T P S S R

Angle z z z z2 z2

0 N/A -4.00 0.25 -0.0625 0.0 0.0
30 TE ~-3.6055 0.3077 -0,0853 -0.016 0.012
30 ™ ~3.6055 0.3077 ~-0,0853 0.032 -0.020
60 TE ~-2.6458 0.5714 -0.216 -0.132 0.130
60 ™ -2.6458 0.5714 ~-0.216 0.144 ~-0.072
90 TE ~2.00 1.00 -0.50 -0.317 0.315
9% ™ ~2.00 1.00 -0.50 0.328 -0.190

TABLE II
SUMMARY OF HIGH FREQUENCY ESTIMATION PARAMETERS
FOR AUGMENTED FREQUENCY RESPONSE OF PROLATE SPHEROID .
Incident Polarization W, Wy A1 B1 m1
Angle

0 N/A 2.15 3.80 2.185 1,778 -4.878
30 TE 1.50 2.50 2.447 1.942 -4.594
30 ™ 2.05 3.20 15,378 3.177 -5.008
60 TE 2.50 3.50 10.656 3.237 ~3.841
60 ™ 1.40 2.60 13.584 3.244 -4.925
90 TE 2.00 3.00 7.778 3.064 -3.435
90 ™ 1.50 2.40 4,674 2.688 -4,852
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2.7.2 Prolate Spheroid — TE Polarization

The smoothed impulse response for a 30° angle of incidence is dis-
played in Fig. 532, and the frequency response obtained by direct transforma-
tion of the smooth impulse response is displayed in Fig. 53. Figure 54 dis-
plays the impulse response and Fig. 535 displays the frequency response that
results by applying the impulse response augmentation technique. In Fig. 54
the initial impulse and negative step due to the specular point is seen at
t/a = -3.6 and is followed by a positive ramp, Later, at t/a = 4.6, a
positive return due to the creeping wave may be noted. The frequency response
in Fig. 55 displays a resonant character that may be attributed to the inter-
ference between the specular return and the creeping wave return.

The smoothed impulse response and the frequency response by direct
transformation are shown in Figs. 56 and 57, respectively, for a 60° angle
of incidence. The positive ramp type variation predicted by the first order
correction to the physical optics response is clearly obvious in the smoothed
impulse response shown in Fig. 56. The impulse response and frequency re-
sponse obtained using the augmentation technique are displayed in Figs. 58
and 59, respectively. It is interesting to note that the negative initial
ramp response is larger than one would expect by examining only the smoothed
impulse response. Moreover, the transition region from the obvious ramp
variation to a different function variation at approxiately t/a = -1.6 coin-
cides approximately with the time the incident wave first reaches the shadow
region. The effect seems to be present for both polarizations.

In Figs. 60 and 61 appear the smoothed impulse response and direct
frequency response, respectively, for a 90° angle of incidence. The impulse
response and frequency response for this aspect angle are drawn in Figs. 62
and 63, respectively. Note that both the amplitude of the negative step and
the positive ramp have increased but that the creeping wave is less "sharp”.
Again the transition between the initial ramp occurs at approximately t/a = 0
or the time the incident wave first reaches the shadow boundary. In the fre-
quency response displayed in Fig. 63 a resonance is still noted between the
specular return and the creeping wave return; however, it possesses a longer
period (in frequency) and is weaker than observed in the 30° and 600 cases.

2.7.3 Prolate Spheroid — TM Polarization

For a 30° angle of incidence the smoothed impulse response and the
directly transformed frequency response are shown in Figs. 64 and 65, re-
spectively. The impulse response augmentation technique yields the impulse
response given in Fig. 66 and the frequency response given in Fig. 67. The
strong resonance noted in the frequency response is due to the interference
between the specular return at t/a = -3.6 and the creeping wave return at
t/a = 3.0, as seen in Fig. 66.

Figures 68 and 69 display the smoothed impulse response and the
directly transformed frequency response, respectively, for a 60° angle of
incidence. Comparison of the smoothed impulse response shown in Fig. 68 for
TM polarization with the response shown in Fig. 56 for TE polarization
clearly illustrates the polarization dependence in the smoothed response
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FIG. 55 Magnitude of frequency response of prolate spheroid with radius a,
. axial ratio 2:1, TE polarization and 30° angle of incidence.
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axial ratio 2:1, TE polarization and 60° angle of incidence.
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ratio 2:1, TM polarization and 60° angle of incidence.
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after the specular return. The impulse response and the frequency response
for this case are shown in Figs. 70 and 71, respectively. As in the TE case,
Fig. 70 also indicates that a transition from the initial ramp response occurs
in the vicinity of the time the incident wave first reaches the shadow region.

The final example for the prolate spheroid is given for a 90° angle
of incidence. The smoothed impulse response is displayed in Fig. 72 and the
frequency response obtained by direct transformation is shown in Fig. 73. It
appears in Fig. 72 that a damped oscillation is set up after the creeping
wave in the smoothed impulse, which would be expected for the TM polarization.
The impulse response and frequency response computed using the impulse response
augmentation technique are shown in Figs. 74 and 75, respectively. Note that
the value of the initial step in Fig. 74 is less than that for the TE case in
Fig. 62, and again the transition from the initial ramp appears at approximate-
ly the time the incident wave reaches the shadow region.

2.8 SCATTERING BY SPHERE-CAPPED CYLINDER — NONAXIAL INCIDENCE

2.8.1 Impulse Response Augmentation Technique for Sphere-Capped Cylinder

Scattering by a sphere-capped cylinder with a 3:1 length-to-diameter
ratio for axial incidence was considered in Sec. 2.5. For that case, distinct
returns were noted from the nose, from both the front and rear sphere-capped
cylinder joins, and from the creeping wave. This section considers the case
of nonaxial incidence in general and the incident angles of 309, 60% and 90
in particular for both TE and TM polarizations.

The augmentation function used for the leading edge of the impulse
response of the sphere-capped cylinder was taken as

- -3/2
fal(t) = Pzé(t/a-Tz) + Szu(t/a—Tz) + Gz(t/a-TZ) u(t/a—Tz)

% _
+ Szzu(t/a-Tz) + Hz(t/a—Tz) u(t/a-Tz) 67)

where T = -2
z
PZ=1/2
Sz=_1/4
0 i Ko< 90
G =
z
-l; o = 90°
m
522= the polarization dependent correction to the
step function from the physical optics approxi-
mation
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H_ = the polarization dependent parameter from the
first order correction to the physical optics
approximation,

The expression for the first three terms and their coefficients in Eq. (67)
is derived in Appendix 8.5 and is simply the leading edge of the impulse
response obtained by the physical optics approximation. The fourth and fifth
terms are the most significant part of the first derivative of the projected
area and, as discussed in Sec. 2.6.2, are the polarization dependent first
order corrections to the physical optics results. The parameters S and
H were obtained by equating f_.(t) * e (t) to r(t) initially ifitime

afid had reasonable stability of #alue over the initial time points. The values
of these parameters for the leading edge augmentation function of the sphere-
capped cylinder are presented in Table III.. It should be noted that the lead-
ing edge response is identical to that of a sphere except at an angle of 907,
where the effect of the specular return from the cylinder is noted and the
polarization dependent correction in the step function and in HZ due to the
non-equal principal curvatures along the cylinder appears.

The augmentation function used to represent the return from the
first sphere-capped cylinder join is given by

_ % %
f .= sz(t/a—TJl) u(t/a—TJl) + Av3(t/a_TJl) u(t/a-T,.) . (68)

a2 J1

In Appendix 8.6 this functional form is derived based on the physical optics

approximation for the surface currents. The value of TJl was taken to be
the initial time of the first join return, and the valueS of A and A v3
were computed numerically by equating f__, * e with r . Again, a

reasonable degree of stability in the refulting coefficieént values was obtain-
ed. The coefficients for the first join return are displayed in Table IV,
Note that in all cases is greater than A and in most cases A 3 is
much greater than 3Thls may lead one tovsuSpect that perhaps A 5
should be zero, even %hough it is predicted by physical optics. v

By applying the augmentation functions f and f 5 and trans-
forming, the augmented frequency response H_(w) i8 obtained®® The high-
frequency estimate of its variation is made gssuming that the two contributors
to it are the second join return and the creeping wave return. Thus, the
estimate for the total augmented frequency response is written as

Ha(w) P w s w,

ﬁ' (u)) =
a 1/3 . . Ay . .
A exp(-Blw )exp(Ju)m1 + Jbl) + ;575 exp(me2 + Jbz); w > wy . (69)
The second join return is assumed here to have a w3/2 variation, which in

the time domain represents a t2 variation. It is also assumed that the

phase offset b1 of the creeping wave is zero. The damping factor B1 of

97



TABLE III

SUMMARY OF LEADING EDGE AUGMENTATION FUNCTION
PARAMETERS FOR THE SPHERE-CAPPED CYLINDER

Incident
Angle Polarization TZ PZ SZ 522 G H
0 N/A -2,0 0.5 -0.25 O 0 0
30 TE -2.0 0.5 -0.25 0 0 0
30 ™ -2.0 0.5 -0.25 0 0 0
60 TE -2.0 0.5 -0.25 O 0 0
60 ™ -2.0 0.5 -0.25 © 0 0
50 TE -2.0 0.5 -0.25 0.377 -0.3183 -0.458
90 ™ -2.0 0.5 -0.25 -0.154 -0.3183 0.195
TABLE 1V
SUMMARY OF FIRST JOIN AUGMENTATION FUNCTION
PARAMETERS FOR SPHERE-CAPPED CYLINDER
Incident
Angle Polarization TJ1 Av2 Av3
0 N/A 0. 0. 0.
30 TE -1.0 -0.008 0.150
30 ™ -1.0 0.028 0.138
60 TE -1,732 0.029 0.083
60 ™ -1.732 0.035 0.270
90 TE -2.0 0. 0.
90 ™ -2.0 0. 0. i
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the creeping wave is assumed to be the same as that of the sphere for all
aspect angles and polarizations. This is based on the fact that the creeping
wave will always travel around the back of the sphere-cap; however, it is sus-
pected that the damping factor will vary with aspect angle, since the length
of creeping wave travel will vary. The value of m, is chosen to correspond
to the time location of the second join return., Thé remaining coefficients
A, A2, m,, and b are computed in the same manner as was used for the case
o} axral 1ncidencé, described in Sec. 2.5. The values of the parameters used
in the computation are given in Table V and the resulting coefficients are
given in Table VI,

In the following two sections, results are presented for 300, 600,
and 90° angles of incidence and both polarizations. The smoothed impulse
response, which is the basis of all computations, was obtained by numerical
solution of the space~time integral equation with the self-term correction
feature incorporated into the solution procedure.

2.8.2 Sphere-Capped Cylinder — TE Polarization

The smoothed impulse response of the sphere-capped cylinder at a 30°
angle of incidence is shown in Fig. 76, and the companion frequency response
obtained by direct transformation is given in Fig. 77. The smoothed impulse
response in Fig. 76 appears to be very similar to the result obtained for
axial incidence, which is displayed in Fig. 37. In application of the impulse
response augmentation technique for all off-axis cases, the smoothed impulse
response was considered as one function because it was not possible in general
to divide it into two functions as was done for the case of axial incidence in
Sec. 2.5. The resulting impulse response and frequency response are shown in
Figs. 78 and 79, respectively. The initial portion of the impulse response
contains an impulse and a negative step, and until the first join at t/a =
-1.,00 the response should be identical to that of the sphere. Next, at
t/a = -1 the effect of the first join should appear. It is interesting to
note that in this case the contribution due to the second join was found to
be negligible since the A, coefficient is zero in Table VI. Finally, the
creeping wave return is obServed at t/a = 10.19 rather than at 10.07, which
would be expected for a wave traveling at the speed of light.

Figures 80 and 81 display the smoothed impulse response and the
directly transformed frequency response for a 60° angle of incidence. Even
in the smoothed impulse response the effect of the second join return is
apparent at t/a = 2.3 in Fig. 80. The impulse response and the frequency
response computed with the impulse response augmentation technique are dis-
played in Figs. 82 and 83, respectively. Note in the impulse response that
the initial portion of the return is identical to that of a sphere, but at
t/a= -1.73 the effect of the first join return appears as a sharp positive
increase in the respcnse. Then there is a smooth region until the effect of
the second join appears as a sharp negative swing at t/a = 2,27, Finally,
the creeping wave appears as a positive pulse at t/a = 7.50 rather than at
7.14, where a wave moving at the speed of light would appear. The effects of
the join returns are evident in the lower portion of the frequency response
as irregularities in the resonant character of this response., However, as in
most other cases, the source of the dominant response is the interference
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TABLE V

PARAMETERS USED IN COMPUTATION OF HIGH FREQUENCY ESTIMATE
OF AUGMENTED FREQUENCY RESPONSE FOR SPHERE-CAPPED CYLINDER

Incident
Angle Polarization B1 b, Wy wg Ha(w3)

0 N/A 2.05085 0 2,486 3.470 0.2095
30 TE 2.05085 0 2.976 - -

30 ™ 2.05085 0 1.690 2.348 0.280
60 TE 2.05085 0 1.610 2.211 0.1836
60 ™ 2.05085 0 1.108 1.559 0.338
90 TE 2.05085 0 2.00 - -

90 ™ 2.05085 0 1.00 - -

TABLE VI

SUMMARY OF HIGH FREQUENCY ESTIMATION PARAMETERS FOR AUGMENTED
FREQUENCY RESPONSE OF SPHERE-CAPPED CYLINDER

Incident

Angle Polarization M1 M2 b2 A1 A2
0 N/A -11.192 - -8.00 -4.795 3.676 0.289
30 TE -10.19 -5.93 - 2.741 0.0
30 ™ -10.706 -5.93 -4.930 2.987 0.303
60 TE - 7.498 -2.27 -5.275 2.101 0.126
60 ™ - 9.242 -2.27 -4.583 2.698 0.171
90 TE - 3.427 -2.00 - 4.401 -
90 ™ - 6.860 -2.00 - 1.699 -
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FIG. 76 Smoothed impulse response of sphere capped cylinder with radius a,
length-to-diameter ratio 3:1, TE polarization and 30° angle of

incidence.
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¥1G. 77 Magni tude of frequency response of sphere capped cylinder obtained by
direct transformation for TE polarization and 30° angle of incidence.
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FIG. 78 Impulse response of sphere capped cylinder with radius a, length-to-
diameter ratio 3:1, TE polarization and 30° angle of incidence.
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FIG. 79 Magnitude of frequency response of sphere capped cylinder with radius
a, length-to-diameter ratio 3:1, TE polarization and 30° angle of

incidence.

102



¢+ 0.8

ro H¥(t/a)

+ 0.4

-0.4

FIG. 80 Smoothed impulse response of sphere capped cylinder with radius a,
length-to-diameter ratio 3:1, TE polarization and 60° angle of
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FIG. 82 Impulse response of sphere capped cylinder with radius a, length-to-
diameter ratio 3:1, TE polarization and 60° angle of incidence.
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FIG. 83 Magnitude of frequency response of sphere capped cylinder with radius
a, length-to-diameter ratio 3:1, TE polarization and 60° angle of

incidence.
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between the impulse in the specular return and the creeping wave return.

The smoothed impulse response and the directly transformed frea
quency response are plotted in Figs. 84 and 85, respectively, for the 90
angle of incidence. The frequency response increase as w! 2. is due to the
cylinder being illuminated at broadside incidence in Fig. 83. The impulse
response and the companion frequency response obtained with the augmentation
technique are shown in Figs. 86 and 87, respectively. The leading edge of
the impu}se response contains an impulse, a step, a (t)=3 functional and
a (1)1 functional. The creeping wave return appears at t/a = 3.43
rather than at 3.14, as would be the case for a wave moving at the speed of
light. Finally, in the frequency response the wl/2 variation that results
from the (t)=3/2 vyariation in the impulse response is clearly evident.

2.8.3 Sphere-Capped Cylinder — TM Polarization

The smoothed impulse response and the frequency response obtained
by direct transformation are shown in Figs. 88 and 89, respectively, for a
30° angle of incidence. In this smoothed impulse response, as well as for
the cases of 60° and 90° incidence, a damped sine wave oscillation was noted
after the creeping wave return, as was expected since this structure is simply
a very fat linear antenna. Rather than perform the numerical solution of the
space-time integral until the response dies out, the solution was extrapolated
beyond the first zero crossing after the creeping wave return with an ex-
ponentially damped sine wave. As was done in the TE case, the creeping wave
damping coefficient B. was assumed to be the same as that of a sphere; how-
ever, it should be clear that this wave must travel a greater distance (along
the cylinder body) in the TM case, and thus this assumption is probably the
weakest. The impulse response and companion frequency response for this
aspect angle and polarization are displayed in Figs., 90 and 91, respectively.
In Fig. 90 the initial return coincides with that of a sphere, and then at
t/a = -1.00 is followed by a sharp positive swing from the join, which then,
interestingly enough, decays to zero at t/a =2 in an apparently linear
fashion., Next, a sharp negative swing appears at t/a = 5.9, corresponding
to the second join return, and is followed at t/a = 10.71 by the creeping
wave return, Again, this is slightly later than the time t/a = 10.61 that
would be expected for a wave traveling at the speed of light. The frequency
response in Fig. 91 shows an irregular resonant character that may be attri-
buted to interference between the specular return, the creeping wave return,
the first join return, and the second join return.

Figures 92 and 93 show the smoothed impulse response and the fre-
quency response obtained by direct transformation, respectively, for the case
of a 60° angle of incidence. The impulse response in Fig. 94 for this case is
initially identical in time to that of a sphere, as expected, At t/a = -1.73
a sharp positive swing occurs due to the return from the first join, followed
at t/a = 2.27 by a sharp negative swing due to the second join return. The
creeping wave return appears at t/a = -9.,24 rather than at -9.14, where a
wave traveling at the speed of light would appear. The companion frequency
response is shown in Fig. 95.
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FIG. 84 Smoothed impulse response of sphere capped cylinder with radius a,
length-to-diameter ratio 3:1, TE polarization and 90° angle of .
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FIG. 85 Magnitude of frequency response of sphere capped cylinder obtained by
direct transformation for TE polarization and 90° angle of incidence. .
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FIG. 86 Impulse response of sphere capped cylinder with radius a, length-to-
diameter ratio 3:1, TE polarization and 90° angle of incidence.
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FIG. 87 Magnitude of frequency response of sphere capped cylinder with radius a,

length-to-diameter ratio 3:1, TE polarization and 90° angle of incidence.
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FIG. 88 Smoothed impulse response of sphere capped cylinder with radius a,
length-to-diameter ratio 3:1, TM polarization and 30° angle of incidence.
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FIG. 89 Magnitude of frequency response of sphere capped cylinder obtained by
direct transformation for TM polarization and 30° angle of incidence. .
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FIG. 90 1Impulse response of sphere capped cylinder with radius a, length-to-
diameter ratio 3:1, TM polarization and 30° angle of incidence.

24[

)

rol H:(ka) /a0

(@]
o]

- PRSI —— e [ N - - .

0 0 20 20
ka

FIG. 91 Magnitude of frequency response of sphere capped cylinder with radius
a, length-to-diameter ratio 3:1, TM polarization and 300 angle of
incidence.
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FIG. 92 Smoothed impulse response of sphere capped cylinder with radius a,
length-to-diameter ratio 3:1, TM polarization and 60° angle of

incidence.
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FIG. 93 Magnitude of frequency response of sphere capped cylinder obtained by
direct transformation for TM polarization and 60° angle of incidence. ‘
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Finally, the results for the case of a 90° angle of incidence are
displayed in Figs. 96-99, The smoothed impulse response in Fig. 96 contains a
substantial oscillation beyond the creeping wave return at t/a =7 . The
frequency response obtained by direct transformation in Fig. 97 _clearly shows

the effect of the specular return from the cylinder with the w increase
with frequency. At its leading edge the impulse response in Fig. 98 contains
an impulse, a step, a t~ functional, and a t~ functional. The

creeping wave still is apparent in the response at t/a = 9.24 and is follow-
ed by a slowly damped oscillation, The frequency response in Fig. 99 has a
large initial resonant peak at ka = 0.5 and following that exhibits a

wl/2  increase with frequency.
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FIG. 96 Smoothed impulse response of sphere capped cylinder with radius a,
length-to-diameter ratio 3:1, TM polarization and 90° angle of
incidence.
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FIG. 97 Magnitude of frequency response of sphere capped cylinder obtained
by direct transformation for TM polarization and 90° angle of
incidence.
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SECTION 3

RELATION BETWEEN ANGLE SAMPLING AND TIME SAMPLING
IN TIME DOMAIN CALCULATIONS AND MEASUREMENTS

During the performance of Contract No. F30602-69-C-0357, a theoreti-
cal investigation into the problem of identifying targets from noisy impulse
radar returns was carried out and an optimum digital identifier processor was
developed. An integral part of the processor consists of a bank of matched
filters, one for each expected waveform, Hence, for any target that is not
spherically symmetric we must know how many waveforms must be stored in the
matched filter band in order to cover all angles of incidence. In this section
we shall develop a relationship between the angular sampling rate of a scatterer
and the bandwidth of the pulse incident on the scatterer. The basic concept
will be similar to the idea which forms the time sampling theorem; i.e., it
is known that a time waveform must be sampled at twice the highest frequency
present in order that the waveform be completely specified by its time samples.

3.1 SAMPLING THEOREM

Let us review the time sampling theorem. Tt states that if a signal
is bandlimited and is sampled at a rate which is greater than twice the highest
frequency present, then the entire waveform can be found from its sampled
values: namely

s1nw (t-nlt)
£(1) = z fenot) —2 o (t —

where Wy = m/At Nyquist frequency as long as ®q > W the bandwidth of the
signal.

The proof of this theorem can be extended to multi-dimensional func-
tions., For example, if the Fourier transform of a two dimensional function is
bandlimited in both variables, i.e.,

F(w,k) j j‘ f(t,8) e (wt+k®) dt db

and

F(w,k) =

|
[e)

|w|>w. Ikl >
c C



then the function is determined completely by its sampled values:

. z > sinwo(t-nAt) sin ko(e-mAG) 70)
= 70
£(1.8) = ) Z f(nit, ma®) Sty kg (0-mb®) ’
n=-° Mm=-® '

provided

i - T'I'— p-]

0 < 5t - %
and

ks
ko =5 2 kc (71)

The proof of this theorem is the same as thelgrggf of the one dimensional
theorem as proven, for example, in Papoulis. ™'

In general, we shall find the scattered responses will not be
exactly bandlimited in both variables. Hence, Eq. (70) will be satisfied with
some error., The analysis of these errors has been carried out in several .
reports.15v16 In general, these errors depend upon the values of the transform
for ml > w. and |k| ® k.. In our analysis we shall assume that the bandwidth,
w_ and k , 1Is determined when the Fourier transform is less than € of the peak
value: T1,e.,

F(w,k) < ¢ max {F(m,k)} for lw] > w,

Ikl >k

In the scattering problem the function f(t,®) is periodic in ® with
period 2m, Hence, it can be expressed as a Fourier series in ©:

£(t,8) = z £ (1) e*ind
n=->

where

2T

_L -jnd
£(t) = 3= J £(1,8) e e .

0
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Thus the two dimension Fourier transform will be

2 » . e - .
J fn E; fn(t)e""‘]n e j (wt+k®) dt dé

n=-=

Flw,k) =

1
[I—

I}
—
v

2rrfn(t)d’>(k-n)e'j“”t dt .

From Eq. (72) this becomes

Flw,k) = E F(w,n)6(k-n) (73)
where
Vi 0
| - L) -. e
® Fom = | | £e,0ed @) gp e (74)
(0] -2

From Eq. (73) it follows that it is sufficient to consider F(w,n).

If the bandwidth in k is equal to kc’ then the number of samples in
the angle 27 is equal to

= 20
N=%5.

From Eq.(71) the number of samples becomes

_ ﬂ 75)
N—2<Ee->22kn, (75)

Hence, the minimum number of samples necessary to represent the waveform is
2 k..
c

3.2 THEORETICAL STUDY WITH ROTATIONALLY SYMMETRIC SCATTERING MODEL

In this section we find the relationship between the bandwidth of the
incident pulse and the angular sample rate of a rotationally symmetric

. scatterer,.
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In order to obtain a simple approximate relation between the band-
width of the incident pulse and the angular dependence, we consider a target
model which consists of pairs of ideal point scatterers spaced apart by a
fixed distance d, but free to rotate in a plane about the center of a line which
connects them, The normalized impulse response of this ideal configuration
when the excitation field is incident along the line joining them is simply
h(t) = 8(t) + 8(t-2d/c), which is a pair of impulses spaced apart by the time
2d/c. Clearly, if the range resolving capability of the pulse is such that we
cannot resolve the separation 2d/c (for example, the incident pulse width
T = 1/t, where t is the bandwidth of the incident pulse, is much greater than
2d/c, the two returns are unresolvable at their maximum point of separation,
Hence, as they rotate they remain unresolved, and therefore only one angular
sampling point is required. On the other hand, if the range resolving capa-
bility of the pulse is such that we can resolve the separation 2d/c, then we
must use two dimensional Fourier transform technique on the response which is
of the form

r(t,9) = e(t+dcos®) + e(t-dcosb) (76)

where e(t) is the incident pulse.

It will be noted that this response has the property that the two pulses coincide
at two angles of incidence, namely & = m/2 and 3m/2, Most bodies have res-
ponses which can be approximated by two pulses whose separation is a function

of the angle of incidence, as in Eq. (76), but whose minimum separation is non-
zero. In order to retain the main features of Eq.(76) and yet allow a mini-

mum separation of the pulses, we shall assume that the scattered impulse res-
ponse is of the form:

h(t,8) = 6<t + 3%% + %E(a-b) cos29>

+ 6<t - %fg - %E (a-b) cos29>

where b < a, This response is independent of ¢ (rotationally symmetric}. The
response is composed of two impulses separated by maximum time of za/c at

© = 0 and decreases smoothly as a function of angle to a minimum time of 2b/c
at © = m/2, where it increases again to 2a/c at ® = T and repeats itself with
a period of T (see Fig., 100). This pair of impulses is a simple model af the
impulse response of a rotationally symmetric scatterer, which is composed of an
impulsive specular return and a creeping wave return, Since the creeping wave
return travels around the surface of the body along a geodesic of the surface,
the distances "a"” and "b"” must be measured along geodesics and they represent
the maximum and minimum dimensions measured along these geodesics. For exam-
ple, in the case of a sphere of radius r the maximum distance "a" is equal to
7r, not 2r. Put another way, 2a is the maximum distance the creeping wave
travels and 2b is the minimum distance the creeping wave travels,

The two dimensional Fourier transform of Eq. (77), from Eqs. (73) and (74) is,
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Hw, k) = Ei H(w,n)6(k-n)

n=-=

where

(>=]

om .
H(w,n) J1 J‘ h(t,8)e™ (wt+n®) 40 g0 (78)
0 -}

n is a dummy index, and k is the second argument of H. Now since h(t,®) is
periodic with period ™ Eq. (78) becomes

T ®
_i )
H(w,2n) = 2 j f h(t,9)e J@t+2n%) 0 46
0 =
H(w,2n+l) = O

where the dummy index n has been redefined as n - 2n ,

Let
T ™
RN » 5
H,(w,2n) = 2 j j 6(t+l— (a+b) + L (a-b) cos28)e J (wt+2n9) dt do
1 0 ¥ - 2c 2c
nm
s 1 1 -j (wt+2nf)
- g - = (a- 6)e™d
H2(w.2n) =2 JO J_mé(t 5a (a+b) 50 (a-b) cos28)e dt dé
Then

H(w,2n) = Hl(w.2n) + H2(w,2n)
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Integrating with respect to t, we

obtain

i +jw( 1

Hl(w,2n) =2 IO e (Ez(a+b) + (a-b)cos29>-j2n9 dé
"o

Hz(w,2n) =2 E e'Jw(%E(a+b) + L%éhl c0529>-j2ne de .
0

Making a change in

+] W(;:b)

e e

Hl(w.2n)

w{a+b)

Hz(w,2n) “2¢c e

These integrals can be recognized

variable, the integrals become

. onT L2MHT/2 Lw .
5 | e+j[2c(a-b)s1n9-ne] 48
dﬂ/z
. nm L2 /2 rW .
+ 3 E e—Jfgc(a-b)s1n9+ne] .
/2

as Bessel functions; hence we get

+J.uo(a+b)
_ 2¢ RS Cﬂ_
Hl(w,2n) = 2re (i) 3o 2c(a-b)>
;w(a+b)
- - 2c RN | (_U;)_ 7
Hz(w,2n) = 2me (i) Jn 2c(a-b)> (79)
From a well known property of Bessel functions, Eq. (79)becomes
_;w(a+b)
2c N Cﬂ_
Hy(w,2n) - 2 " 3 (5=(a-p) .
Hence the total transform is
:(a+b) :
H(w,4n) = 4ﬂ(-l)ncos&—%§—— J2n %E(a-b)> 80)
n+l . w(a+b) w .
H(w,4n+2) = 47(-1) sinm5 —— J2n(§E(a-b)> (81)
H(w,2n+1) = 0 , (82)
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Let us assume that the target is illuminated by a bandlimited pulse
with a flat passband whose spectrum is

|w|Sw

E(w) c

I}
[

(83)

I}
o

lo| > wo .

Then the resulting two dimensional Fourier transform of the scattered waveform
will be

R(w,n) = E(w)H(w,n) ., (84)

From Eqs. (80)-(84) this becomes

n__ w(a+b) w
R(w,4n) = 4m(-1)"cos—g — J2n(§(a-b)) lw] < o (85)
: - n+l . w(a+b) W
R(w,4n+2) = 4m(-1) sin—5 — J2n+l(2c(a_b)> |w| < o (86)
R(w,n) = 0 elsewhere . (87)

From Eqs. (83)-(87) we see that the two dimensional Fourier transform is not
bandlimited in the k direction, since the Bessel function does not vanish
identically for any value of n. However, the Bessel function for large n may
be approximated by

3 (x) ~ - (i’i)n (88)
0 g 2

where e is the natural logarithm base, 2,718,

From Eq. (88) we see that response approaches zero rapidly as n gets
large. It follows that the Fourier transform is approximately bandlimjted
in the k direction. Hence, the scattered response can be represented by a finite
number of samples in angle,

It can be shown that the error in using a finite number of samples is
a function of the transform at the Nyquist rate (m/At or 7/A€), Let us assume
that if the amplitude of the transform outside of the band is less than € times
the peak amplitude of the transform then the error is acceptable. .
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From Eqs. (85)-(87) the ratio of the amplitude of the transform to
the peak amplitude is of the form

B2 < s (2 ol <2,

=0 elsewhere,

Hence, for the amplitude outside of the band to be € or less times the peak
amplitude, the Nyquist rate, kc' must staisfy

€ = |Jk_(, Lé%(a-b))‘ |w| < w, (90)
5 .

From Eq. (75) the minimum number of samples M must satisfy

€ = | N/4 ( (a‘b))l |UJ| = wc (91)

A plot of |3 x)| is snown in'Fig.IOI. It is clear from Fig.10l that
for a particular value of n has its absolute maximum at its first peak.
From this we can conclude that either Eq. (91) is satisfied for all w or that

w
c
max IJN/4[§E(a-b)]| > e (92)

and that there is a value of w, which satisfies

¢ = 3y ,(32am) . (93)

Furthermore, the smallest such value of W, will guarantee that Eq. (93) is
satisfied. Otherwise

N/4< 5-(a- b)) for all w .,

A plot of Eq. (93) is given in Fig.102 for various values of €,
where A = 2m¢/w_, the wavelength of the cutoff frequency. For values of N
from 40 to 400 fhe following equations are least mean squares fits to Eq. (93).
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FIG, 101 Magnitude of the Bessel function of the first kind for
integer orders.
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e = .1 N = 12.34 3,332) ab > 1.0 (94)
¢ = .05 N = 12.60(‘"‘%’) ab > 1.0 (95)
¢ = .01 v = 13.01(%2) ab > 1.0 (96)
¢ = ,001 N = 13.46(‘"’%’) ab > 1.0 (97)
¢ = .0001 N = 14.36(‘"’%’) ab > 1.0 (98)

These equation are reasonable fits for cases in which the value of the first
peak is greater than €, For other cases, a more precise analysis of the errors
is required. However, these equations appear to cover the most useful ranges.

To summarize, the above equations and Fig. 102 give the minimum number
of sample points, N, as a function of the incident bandwidth (A = 1/f ) and
the dimensions of the body. The representation is not exact, but is accompanied .
by some error. The parameter € is the relative magnitude of the two dimensional
spectrum at the Myquist rate and is a function of the allowable error. f _ is
the € bandwidth (the frequency at which the incident spectrum falls to € $imes
the peak magnitude of the spectrum). "a" and "b" are, respectively, the
maximum and minimum dimensions of the body (as measured along its surface).

In order to use these equations on practical data, first select €
(a practical lower limit would be the signal-to-noise ratio)., Then measure
the dimensions of the body along the surface. Next find the € bandwidth of the
incident pulse. Finally, compute N, the minimum number of samples to be taken
in 360°% of rotation of the body. In the next section we apply this technique
to smoothed impulse response of a sphere-capped cylinder.

3.3 EXPERIMENTAL VERIFICATION WITH SPHERE-CAPPED CYLINDER

Measurements of the smoothed impulse response of a sphere-capped
cylinder was made in order to compare the results of the previous analysis to
analysis of a real scatterer,

Figure 103 shows the geometry of the target. The smoothed impulse
response was measured in the SRRC time domain metrology %aboratory. The res-
ponse was measured for angles of incidence from 0% to 90 at an interval of
5-5/8". This gave effectively 64 angular samples over 360 of rotation,
Figure 104 shows these measured smoothed impu%se responses. _These responses are
an even function of © about the angle © = 90", and from 180o to 360 are a .
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FIG. 103 Geometry of sphere-capped cylinder.
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FIG.104 Smoothed impulse response of sphere-capped cylinder as a function
of time and angle.
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periodic replication of the responses in the interval from 0° to 180°. 1In
Fig.104 there are two pulses ghose separation decreases from a maximum at

@ =0 toaminimum at © = 90, which is the behavior that is basically

being represented in our simple model. The maximum and minimum separation of
the pearks is in good agreement with the geodesic calculations given below.
From Fig.l03 we find that the maximum and minimum dimensions along the
geodesics of the body are

a=8"+ % 2"+ % LA
(99)
a= 8" + T 211
b=m2" (100)
Therefore
a-b = 8"
’ The two-dimensional Fourier transforms of the time waveforms were
‘ computed and the amplitude is presented in Fig., 105. We note that the trans-

form decreased to the noise level in both the k and w directions., In order
to make a comparison to the theoretical results, let us assume that we will
gllow the amplitude to be less than or equal to .l of the peak amplitude at
the Nyquist rate in both the w and k directions,

The amplitude of the spectrum of the incident pulse falls to .1 of
its peak at 3.8 GHz, We shall use this number as the bandwidth of the incident
pulse., Using a fc of 3.8 GHz, we find that

a<b fc(a-b)
AT c

2,53

From Fig.105 we find that amplitude of the two-dimensional Fourier transform
falls to .1 of the peak at k = 20. This gives the numher of samples in angle
to be 40, as compared to the theoretical result of 38 samples,

In addition, the data was bandlimited to various different band-
widths in order to obtain a variety of points for comparison, The bandlimiting
was accomplished by multiplying the transforms by Gaussian pulses of various

‘ widths, The resulting bandwidths were .5, 1, 1.5, 2, 3, and 3,8 GHz. 1In
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FIG, 105 Two-dimensional spectrum of smoothed impulse response of sphere-
capped cylinder as a function of w and k.
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Fig.106, we show the results of bandlimiting the data so that the incident
pulse had a 20 dB bandwidth of 3 GHz. As compared with Fig. 105, the spectrum
falls off more rapidly in both the w and k directions, as would be expected.
The spectrum falls to .1 times the peak at k = 16, This gives the resulting
minimum number of samples to Le 32, as compared to the theoretical result of

31 samples. A further reduction in bandwidth to 2 GHz yields the spectrum in
Fig., 107. We note that the spectrum falls off even more rezpidly than in the
previous cases, In this case the spectrum falls to .1 times the peak at k = 10,
which gives the resulting number of samples to be 20 as compared to a theoreti-
cal result of 22, The results from the bandlimiting study are presented in
Fig. 108,together with the resuits from the theoretical analysis. Figure 108
shows that the experimental results agree quite well with the theoretical
results and hence this theoretical expression yields a very good estimate of
the number of samples needed on any rotationally symmetric body.
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SECTION 4
TIME DOMAIN SCATTERING MEASUREMENTS
4.1 DESCRIPTION OF MEASUREMENTS

The functional block diagram of the scattering range is shown in
Fig. 109. The system signal source is a high-voltage switch which generates a
300 V step function with a risetime less than 100 psec. The signal is radiated,
virtually undistorted, from a wire transmitting antenna protruding through a
circular ground plane 20 feet in diameter. This wave is then reflected by a
target and the scattered waveform is received on a coaxial horn antenna, which
essentially smooths and differentiates the signal and thus provides the smoothed
impulse response of the target. The received waveform is sampled by a 12 GHz
oscilloscope that has beenr triggered by the initial pulse and whose sampling
gate deflection is under the control of a small instrumentation computer,
Unprocessed data are displayed on the oscilloscope CRT while the sampled-and-
held waveform is passed through a logq-pass filter, digitized, read into the
computer, and stored on magnetic tape automatically, This system has been
designed to correct for long-term timing drift, and/or amplifier drift. 1In
addition, the waveforms are stored in such a way that they are ready for the
subsequent operations of averaging (to remove short-term noise) and baseline
processing. The effects of a time varying baseline are subtracted from
measured waveforms to improve system accuracy.

The salient characteristics of the range are the speed and simplicity
with which multi-octave frequency-domain data can be obtained. These advantages
accrue because the time-domain scattering range yields an "uncontaminated"
interval of time between the arrival of the direct wave and the arrival of
unwanted reflections, This is most easily explained by considering the sketch
in Fig. 110 which shows the relative location of the elements on the ground
plane, and the photographs in Fig. 111 which show the range response as it
appears at the oscilloscope (no data processing has been used at this point),
The transmitted signal travels outward from the base of the wire antenna and
is received at R at time t_ = d/c (where ¢ is the speed of light). This time
is marked by the pulse at ®he left end of the trace in Fig. 111. The outgoing
wave reaches the target at t = r/c, is reflected, and arrives at the receiver
at t, = (2r+d)/c = t, + (2r/c). The targets are usually located anywhere from
2 to 5 feet from the transmitting antenna; therefore, target returns lie in
the region marked by the doublets at t, and t, in the lower photographs. The
erratic response at the right edge of %he trace which occurs after t, marks
the arrival of the pulse reflected by the table edge and the effects of the
pulse radiated from the tip of the transmitting antenna. It should be noted
that a "clear window" exists between the second doublet and the table edge.
This is required because many of the targets are highly dispersive and their
response will extend far beyond the specular reflection (e.g., see Fig. 115).
The entire region between the direct transmission and the table edge response
forms a convenient time "window" to view the target response and allows one
to "gate out"” (in time) unwanted reflections, Thus, undistorted transient
target responses can be viewed without resorting to elaborate and expensive
anechoic chambers, In addition, a single time-domain measurenent obviates
the requirement for tedious measurement of the amplitude and phase responses at
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FIG. 109 Functional block diagram of video time-domain scattering range.
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FIG. 110 Geometrical configuration of video time-domain scattering range.
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many frequencies.

The accuracy of the measurement system can be estimated by realizing
that the situation that prevails is essentially the same as the elementary
statistical problem of estimating the mean V_ of a random variable V when
given N independent sample values V.. In our case, the signal voltage is V ,
the signal plus noise is the random variable, V, and the expected value of The
noise voltage is zero. We therefore use the sample mean

~1=
3
s

<l
1

as an estimator for V_ (the signal value at a particular point t on the
sampled waveform) since it is consistent and unbiased. We take as an error
estimate the standard deviation of V,

S

O —
~_

g
v N

which is computed using the sample variance

N
z (vi-V)2
2 = i=1

N

S

as an estimate for the population variance.

The peak of the incident pulse, as measured on the sampling oscillo-
scope, is approximately 500 mV, and a typical target response has a peak value
in the vicinity of 10 mV, When using the 10 mV scale on the sampling oscillo-
scope, we estimate the standard deviation of V, as described in the preceding
paragraph, to be

c = 0,059 mv

v

if N = 64 scans are averaged. Thus, the estimated standard deviation of Vis
in the vicinity of 0.6% of the peak value of the target response,
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4,2 RESULTS

In a previous study17 the smoothed impulse response was measured B
for 23 target aspect angles. Under the present contract, the responses for
an additional 35 target aspect angles were measured. The resulting 58 wave-
forms were used on OLPARS as a basis for design of an identification processor.
The OLPARS portion of this work is described in Sec. 5. These 58 waveforms
result from measurements on nine target geometries at various aspect angles
and polarizations and are summarized in Table VII. The sphere geometry and the
four cylinder geometries are displayed in Fig. 112. In Fig. 113, the cube,
sphere-cone-sphere, UES satellite model, and SSS satellite model geometries
are shown,

In Fig. 114 the smoothed impulse response (in the backscatter direction)
of an 8 inch cube is shown for three angles of incidence. In this case, the
image plane is normal to the four cube faces. For O incidence the return
from the front face takes the form of a smoothed doublet, as expected, Next,
the response becomes small, indicating little return from the sides of the
cube, and approximately 1,4 nsec after the smoothed doublet there appears a
negatixe pulse whose timing can be attributed to the back edge of the cube,
For 45~ incidence the first part of the response is a positive pulse that may
be attributed to the front vertical edge of the cube., This is followed
approximately 0.9 nsec later by a return that may be attributed to the two
middle vertical edges. The return due to a wave traveling around the rear of
the cube at the speed of light would be expected 2.5 nsec after the return
from the front edge, and indeed the measured response does show a pulse
approximately 2,7 nsec after the initial pulse. -

In Fig. 115 the smoothed impulse response of the 8-inch cube is shown
for the case where the image plane passes through the diagonals on two oppo-
site faces. This is the case when the target on one side of the image plane
looks like a roof. For O incidence the return appears to be nearly the same
as for the case of O incidence with a normal image plane as shown in Fig. 114.
There does appear to be slight difference immediately following the initial
smoothed doublet, The response varies continuously as the angle of incidence
increases, At 90 there is an initial positive pulse due to scattering from
the edge region, followed by negligible return and then a negative pulse
approximately 1.1 nsec later that can be attributed to the top edge of the
cube, Next, there is again negligible return followed by a second positive pulse
approximately 1.4 nsec, after the negative pulse, This can be attributed to
either a "reflection”™ from the rear edge or a wave traveling around the rear

of the cube,

In Fig. 116 the smoothed impulse response of a right square cylinder
with a normal image plane that was 12 inches &ong and 4 inches square is
shown for various angles of incidence, For O incidence the first portion of
the return approximates a doublet and is followed by a negligible return from
the sides of the cylinder. The return from the rear edge of the cylinder
appears approximately 2.1 nsec later and is followed by the return due to the
wave traveling around the rear (a positive pulse at 2.5 nsec), These two
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TABLE VII

SUMMARY OF MEASURED WAVEFORMS

Polari- No.
Object Shape Class Image Plane zation Aspect Angles Waveforms
Sphere ) = 8" 1
) . . c . . 0 0 0 0
Circular Cylinder with Coincident with axis TE 0", 307, 607, 90 4
Sphere Caps ;
D=4", L= 12" Normal to axis ™
- . . s . . 0 [ 0 0 -
Right Circular Cylinder Coincident with axis TE 0 s 307, 407, 007, 3
D=4", L=12" %0
Normal to axis ™ 1
Right Circular Cylinder Coincident with axis TE 0%, 30°, 45°, 60°, 5
D - 4"' L = 8!! %o
Normal to axis ™ 1
Right Square Cylinder Coincident with axis and TE 0%, 30°, 60%, 90° a
D=4", L=12" normal to faces
Coincident with axis and TE 0®, 30°, 43°, 60° 5
diagonal to faces 900
Normal to axis ™ 00, 300, a5° 3
‘ Cube D - 8" Normal to faces 0%, 15°, 30°, 45°
)siagonal to faces o° 300, 450, 600,
906

Sphere-Cone-Sphere o
2 = 159, D, = 2", b, = 8" Coincidenc with axis TE 0, 30

(] [s] ]

, 60%, 90°, T
120°, 1502, 180°

LES Satellite Model Coincident with axis TE 0%, 30°, 45°, 60°, 5

D1 = 2", L1 = 2 g0

D, = 6" L, = 8" Normal to axis ™ 1

— an _ on

Dy = 27, Lg = 2

S8~ Satellite Model Normal to wire axis 1

o= g . . . o] (o] o o -
) EIRT R 5 .

Lo = 42, L= 1" iagonal to wire axis 206 307, 457, 607, )
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FIG. 112 Target geometries used for scattering range measurements, °
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8=30°

=450

FI1IG. 114 Smoothed impulse response of 8 inch cube with image plane normal
to faces. llorizontal scale: 0.5 nsec/div,, vertical secale:
10 mV/div.)
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6 =30°
g = 60°
g =90°

FIG. 115 Smoothed impulse response of 8 inch cube with diagonal image plane
(horizontal scale: 0,5 nsec/div., vertical scale: 10 mV/div.).
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g-0°
g=320°
g =60°
g=90°

FIG. 116 Smoothed impulse response of a right square cylinder with
normal image plane and TE polarization (horizontal scale:
0.5 nsec/div.; vertical scale: 5 mV/div.).
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returns, when combined, are "doublet-like" in shape, but are of opposite polarity
from the return from the front face. This change of polarity wogld prodsce a

180" phase shift if convolved with a sinusoidal waveform, At 30 and 60
incidence the doublet character of the initial return and the back return
disappears, but the waveform features can again bg attributed to various
geometric features of the target. Finally, at 90  incidence the large doublet
return from the side face of the square cylinder appears and is followed by
returns due to the back side (a negative pulse at 0.65 nsec) and a wave

traveling around the rear (a positive pulse at 1.1 nsec).

In Fig.117 the smoothed impulse response of the right square cylinder
with a diagona% image plane is displayed for various angles of incidence. The
response for O  incidence appears the same as for the case of a normal image
plane. The respogse shape varies continuously as the angle of incidence
increases. At 90 the return from the leading edge of the square cylinder is
in the form of a positive pulse. This is followed approximately 0.5 nsec
later by a negative pulse which can be attributed to the top and bottom edges.
Finally, 0.75 nsec after this negative pulse, a positive pulse appears which
can be attributed to either a '"reflection” from the rear edge or to a wave
traveling around the rear of the square cylinder.

The smoothed impulse response of a right circular cylinder that was
12 inches long and 4 inches _in diameter is displayed in Fig, 118 for several
angles of incidence. For 0  incidence the_gxesponse is nearly the same as
that measured for the right square cylinder. The main difference is that the
amplitude of the initial doublet is slightly smaller for the circular cylinder,
‘ as expected becguse the cross-sectional area of the circular cylinder is
smaller, At 30 and 60 incidence, slight differences in the responses from
the two cases appear, but the gross features again may be related to the actual
geometry, At 90  incidence, however, the return from the right circular
cylinder is markedly different from the right square cylinder, The initial
part of the circular cylinder return at 90 incidence approximates an impulse
and is followed by a negative swing, as predicted by physical optics, The
second positive pulse that appears approximately 2.0 nsec after the first pulse
may be attributed to a wave traveling around the rear of the cylinder. Com-
parison of this measured response with the smoothed imgglse response from an
infinitely-long circular cylinder with TE polarization shows remarkable
similarity, and indicates that the effect of the ends on a finite cylinder
for this polarization of the incident wave is small, This effect has been
rigorously discussed by DeLorenzo,

The smoothed impulse response of a right circular cylinder (TE
polarization) that was 8 inches long and 4 inches in diameter is shown in
Fig. 119 for several angles of incidence. The responses for this target are
very similar to thgse obtained for the 12 inch circular cylinder and displayed
in Fig.118. For O incidence the return from the nose is the same in the two
cases and the return from the far end appears quite similar in shape and
amplitude, However, this return for the 8 inch cylinder appears approximately
0.7 nsec earlier, than the corresponding return for the 12 inch cylinder, as
expected, For 90 incidence, both returns appear to have the same shape;
however, the 12 inch cylinder has a slightly larger amplitude.
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G -0°
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6= 60°
8= 90°

FIG. 117 Smoothed impulse response of right square cylinder with
diagonal image plane and TE polarization (horizontal scale:
0.5 nsec/div.; vertical scale: 5mV/div.).
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g =30°
8=60°
8= 90°

FIG. 118 Smoothed impulse response of a right circular cylinder for TE
polarization (horizontal scale: 0.5 nsec/div.; vertical scale:
5 mV/div.).
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FIG. 119 Smoothed impulse response of right circular cylinder for TE
polarization (horizontal scale: 0.5 nsec/div.; vertical scale:
5 mV/div.).
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In Fig, 120 the smoothed impulse responses of a 4 inch diameter
sphere and an 8 inch diameter sphere are shown., These will be used for

comparison with the responses of the sphere-capped cylinder and sphere-cone-
sphere.

The smoothed impulse response of a sphere-capped cylinder with a
length of 12 inches and a diameter of 4 inches is shown in Kig. 121 for various
angles of incidence. For 0” incidence the initial part of the return is,
as expected, identical to the return from the 4 inch diameter sphere shown
in Fig. 72(a). This is followed by a near zero signal, indicating that there
is little return from the sides of the cylinder. Finally, the return from
the joint between the cylinder and the sphere cap appears, along with thg
return due to the wave traveling around the rear 8f the cylinder, At 30 and
60" incidence the gradual modification from the O case to the 90  incidence
case can be noted., At 90  incidence the shape of the response is virtually
the same as it was for the right circular cylinder at 90  incidence. This is
as expected, since the effect of the cylinder ends appears to be negligible
for this polarization and angle of incidence, as pointed out earlier.

The smoothed impulse response of a sphere-cone-sphere (with a half
angle of 157, a large sphere diameter of 8 inches, and a small sphere diameter
of 2 inches) is displayed in Fig. 122. For the case with axial incidence on the
small sphere tip (0 incidence), Fig. 122 shows the small return from the tip,
followed by a negligible return from the conical part of the structure. Next,

a negative return, apparently from the joint between the large sphere and the
cone,appears., This is followed by the return that can be attributed to a wave
traveling around the rear spherical surface of the structure., By viewing

Figs, 122 and 123, the gradual change in character of the response from the case
of 0" incidence to the case of 180" incidence can be observed. For the case
of axial incidence on the large sphere base (180° incidence), the initial part
of the return is the same as that for the 8 inch diameter sphere shown in

Fig. 120(b), as expected. This is followed by a near zero return from the
conical surface, which by .the way is in the geometric light shadow. Finally,
the return from the tip region of the structure may be observed approximately
3.2 nsec after the initial pulse, It gs alsg interesting to note that the
initial portion of the returns for 180, 1500. 120° and 90° incidence all

possess the same shape as the initial return for the 8 inch diameter sphere
shown in Fig. 120(b).

Figure 124 displays the smoothed impulse response of the University
Explorer Satellite (gES) model with TE polarization for various angles of
incidence, At © = O the return from the small cylinder face is followed in
approximately 0.4 nsec by the return from the large cylinder face. Both of
these approximate a smoothed doublet, as would be predicted by physical optics,
The complicated interaction between the two cylinders and the various edges
present in this target follow, At 90 the return from the large cylinder now
appears first., Close examination of the response approximately 0.4 nsec later
in time reveals a perturbation which can be attributed to a return from the
small cylinder.
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FIG. 120 Smoothed impulse response of spheres (horizontal scale: 0.5 nsec/div.;
vertical scale: 5 mV/div.).
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g =30°
G=60°
g=90°

FIG. 121 Smoothed impulse response of sphere-capped cylinder for TE
polarization (horizontal scale: 0.5 nsec/div.; vertical scale:
5 mv/div.).

153



g -=30°
§=60°
g = 90°

FIG. 122 Smoothed impulse response of sphere-cone-sphere for TE polari-
zation (horizontal scale: 0.5 nsec/div.; vertical scale:

5 mv/div.).

154



g=180°
8 = 150°
* 8 =120°
8= 90°

FIG. 123 Smoothed impulse response of sphere-cone-sphere for TE
polarization (horizontal scale: 0.5 nsec/div.; vertical scale:
5 mV/div.).
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6=30°
8 =60°
8 =90°

FIG. 124 Smoothed impulse response of university explorer satellite model
for TE polarization (horizontal scale: 0.5 nsec/div,; vertical
scale: 5 mV/div.).
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In Fig. 125 the smoothed impulse response of the small scientific
satellite model is shown for the case of a diagongl image plane with respect
to the axis of the four attached wires. At 8 = O  the response from the nose
of the sphere appears first, followed by the response due to the wires attached,
which appear to dominate the response from then on., At other angles of inci-
dence the effect of the wires is also clearly evident, and comparison with
Fig. 120(a) demonstrates the marked change in response that is obtained by
simply attaching some wire struts.

The smoothed impulse response of the three circular cylinders measured
is displayed in Fig. 126 for the case of TM polarization and normal incidence.
The shapes of these three responses are similar. However, note that the
initial pulse is approximately 15 mV for the 12 inch right circular cylinder,
approximately 10 mV for the 8 inch right circular cylinder, and approximately
12 mV for the 12 inch sphere-capped circular cylinder. These amplitudes are
consistent with the "size" of the specular region in the three cases. Note
also that the period of the damped oscillation is least for the 8 inch
cylinder and most for the 12 inch flat-end cylinder, again as expected.

Figure 127 displays the smoothed impulse response of the right
square cylinder f8r TM polarization and normal incidence with three aspect
angles. At © = 0" the smoothed doublet due to the specular return from the
front face is evident. This is followed approximately 0.8 nsec later by a
negative perturbation in the response which can be attributed to the "reflec-
tion” from the back edge. The subsequent positive swing in the response is
due to a wave traveling along the length of the cylinder. It is interesting
to note that this oscillation is damped by a negative perturbation in the
response which can be attributed to the "reflection" from the back edge. The
subsequent positive swing in the response is due to a wave traveling along the
length of the cylinder. It is interesting to note that this oscillation damps
out less rapidly as the angle of incidence © increases.

The smoothed impulse responses of the UES and SSS satellite models
for TM polarization and normal incidence are shown in Fig. 128.

Finally, the waveforms which were used as the six unknown target
aspect angles for testing OLPARS are displayed in Figs. 129 and 130. These
six smoothed impulse responses correspond to the following target measurements.
No. 1 RBRight circular cylinder, L = 8 inches, TE polarization, © = 45°

No. 2 Right squareocylinder with diagonal image plane, TE polariza-
tion, 8 = 45

No. 3 Cube with noraml image plane, 6 = 15°

No. 4 Cube with diagonal image plane, 9 = 45°

No. 5 UES satellite model, TE polarization, & = 45°

No. 6 SSS satellite model with diagenal image plane, © = 45°

157



FIG.

125

8 =30°
8 =60°
8 = 90°

Smoothed impulse response of small scientific satellite model

with a diagonal image plane (horizontal scale: 0.5 nsec/div.;
vertical scale: 5 mV/div.).
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Sphere-capped circular
cylinder. (12" tong,4"dia.)

HNEEN
- EEEEE
Right-circular cylinder

(12" long, 4"dia.) N
I---l-.ill

FEEEEN
Right -circular cylinder --E’.

(8"long, 4"dia.) “ .-m
EEEEN

FIG. 126  Smoothed impulse response of circular cylinders for TM polarization
and normal incidence (horizontal scale: 0.5 nsec/div.; vertical
scale: 5 mV/div.).
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G =30°

g-=45°

FIG. 12

-~

Smoothed impulse response of right square cylinder for TM
polarization and normal incidence (horizontal scale: 0.5 nsec/div.;
vertical scale: 5 mV/div.).
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University explorer
satellite model

Small scientific satellite
model

FIG. 128 Smoothed impulse response of two satellite models for TM polarization
with normal incidence (horizontal scale: 0.5 nsec/div.; vertical scale:
5 mV/div.).
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No. |

No. 2

No. 3

FIG. 129 Smoothed impulse responses of unknown targets for testing OLPARS
(horizontal scale: 0.5 nsec/div.; vertical scale: 5 mV/div.).
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4

No. 4

No. 5

No. 6

FIG. 130 Smoothed impulse responses of unknown targets for testing OLPARS
(horizontal scale: 0.5 nsec/div,.; vertical scale: 5 mV/div.).
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SECTION 5

TAKRGET IDENTICATION USING OLPARS AND MEASURED SMOOTHED IMPULSE RESPONSES

This report describes the initial phase of a pattern recognition
research project conducted by Pattern Analysis and Recognition Corp. (PAR)
to determine the feasibility of automatic classification of object shapes using
the detected radar waveform returns. The specific objective accomplished
during this initial phase was the determination of the effects of orientation,
polarization, additive noise, epoch uncertainty, and the classification logic
type on classification accuracy. This objective was accomplished largely
through the use of the On-Line Pattern Analysis and Recognition System -

OLPARS 20, 21, 22 located at the Rome Air Development Center. The
results of a variety of classification studies conducted using OLPARS are

reported here.

Basically, four types of classification logic were designed and
tested. These logics ranged in complexity from a simple matched filter
type to a complex piecewise linear discriminant type. Each type of logic
was evaluated by testing it in a ''blind study' fashion. The individual logics
were designed using known representative sample waveforms derived from
the object shape classes. Each resultant logic was then tested by using it
to classify a set of unknown waveforms.* The accuracy of classification on
the unknown set was then used as a direct measure of the utility of that type

of logic.

5.1 DATA DESCRIPTION

The data base utilized during this research was supplied to PAR
by Sperry Rand Research Center and consisted of 57 digitized waveforms.
These waveforms were collected using the radar returns from the eight
different object shape classes listed below;

* - The unknown set of waveforms represent an independent test set which was
not used for logic design. The true object shape class identification
was supplied to PAR by Sperry Rand upon completion of the design and
testing experiménts.
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Object Class Symbol

A Sphere Cone Sphere SCS

B Sphere Capped Cylinder SCC

C Flat End Cylinder - 12'" diameter FEC - 12"
D Flat End Cylinder - 8" diameter FEC - 8"
E Rectangular Cylinder REC

F Cube CUB

G University Explorer Satellite UES

H Small Scientific Satellite SS5S

One additional class of objects was set aside for testing purposes.
This latter set was comprised of 6 waveforms whose shape identity was
initially unknown to PAR. Note that the alphabetic labels A through H and
UN are used to designate the eight object classes and the unknown class
respectively throughout this report.

Within each of the eight basic shape classes, waveform samples
were collected for varying aspect angles and polarizations. Each waveform
was digitized and represented by a string of 128 numbers. The first
operation performed by PAR was the conversion of the 128 dimensional wave-
forms to 43 dimensional waveforms, since the OLPARS system requires
dimensionalities of 45 or less, The dimensionality reduction was accomp-
lished by averaging adjacent sets of 3 numbers together; the 43rd compon-
ent being the average of the last two numbers representing the waveform.
This operation simply smooths the original waveform.

The 57 waveforms were distributed within the nine object classes
(the ninth class being designated as the Unknown class - UN ) as shown
below;

Design Subset:
Class A SCS 7 vectors
TE Polarization
Class B SCC 5 vectors
TE Polarization 0°, 30°, 60°, 90°
TM Polarization
Class C FEC - 12" 6 vectors

o]
TE Polarization 0°, 30°, 40, 60°, 90°

TM Polarization
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Class D

Class E

Class F

Class G

Class H

FEC - 8"

TE Polarization
TM Polarization

REC

TE Polarization

TM Polarization

CUB

5 Vectors

0°, 30°, 60°, 90°

11 Vectors

Perpendicular Incidence - 0°, 300, 60°, 900
Diagonal Incidence - 0°, 30° 60°, 90°
0°, 30°, 45°

Perpendicular Incidence 0°, 30°, 45°

Diagonal Incidence

UES

TE Polarization 0°, 30°, 60°, 90°
TM Polarization

SSS

TE Polarization

Diagonal Polarization 00, 30

Independent Test Subset

Class U

Unknowns

No. 1 - FEC - 8"
No. 2 - REC

No. 3 - CUB

No. 4 - CUB

No. 5 - UES

No. 6 - SSS

common time origin.
normalized) is referenced to as Data Set 1.

7 Vectors
0°, 309, 60°, 90°
5 Vectors
5 Vectors
°, 60°, 90°
6 Vectors

TE Polarization 45°

TE Polarization-Diagonal Incidence 45°
Perpendicular Incidence 15°

Diagonal Incidence 45°

TE Polarization 45°

Diagonal Polarization 45°

It is important to realize that this data was not normalized for a
The basic 57 waveform data base (non~time origin

Data Set 1 was used to create several other data bases which in

turn were utilized in our experiments. Specifically, Data Set 2 was gener-

ated by time normalizing Data Set 1.
by scanning each waveform (from left to right) to detect the point at which

the amplitude first exceeded 100g. The waveform was then shifted such

The normalization was accomplished
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that this point occupies the 329 position along the normalized waveform.

Leading and trailing zeros were inserted for a right and left shift respec-
tively.

Data Sets 3 and 4 were generated by adding randomly distributed
vectors (i.e., 43 dimensional random vectors) to the original vectors con-
tained in the Design Subset of Data Set 1. The random vectors were gener-
ated in accord with a multivariate Gaussian distribution with a covariance

matrix E = G 2 I (this is equivalent to corrupting the original wave-

forms with additive white Gaussian noise). Specifically, two data sets were
generated (for two values of U~ ) by adding 30 random vectors to each of
the original 51 data vectors of Data Set 1 in classes A - H. Data Set 3 was
obtained using a variance of 100 (i.e., G~ 2 - 100), whereas Data Set 4 was
generated using a variance of 1 (i.e., ( 2 = 1). Each of the original data

vectors, in conjunction with the random vector program, produces 31 data
vectors (30 by adding noise, plus the original).

Data Sets 5 and 6 were generated in exactly the same manner as
were 3 and 4 with the exception that the time normalized 51 vector set
(i. e., Data Set 2) was used in lieu of Data Set 1. Data Set 5 corresponds

to the large noise sample (i.e., J 2 - 100) and Data Set 6 to the low
noise sample (i.e., (O 2 . 1). The number of 43 dimensional vectors in

Data Sets 3, 4, 5, and 6 were as follows;

Class A = Sphere Cone Sphere = 217
Class B = Sphere Capped Cylinder = 155
Class C = Flat End Cylinder - 12" = 186
Class D = Flat End Cylinder - 8" = 155
Class E = Rectangular Cylinder = 341
Class F = Cube = 217
Class G = University Explorer Satellite = 155
Class H = Small Scientific Satellite = 155

Data Set 7 was obtained by removing certain TM polarized wave-
forms from the time origin normalized Data Set 2 and incorporating these
waveforms into the independent test set associated with Data Set 7, as
listed below;
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Design Subset

Class A SCS 7 Vectors
TE Polarization
Class B SCC 4 Vectors
TE Polarization 0°, 30°, 60°, 90°
Class C FEC - 12" 5 Vectors
TE Polarization 0°, 30°%, 40°, 60°, 90°
Class D FEC - 8" 4 Vectors
TE Polarization 0%, 30°, 60°, 90°
Class E REC 8 Vectors
TE Polarization
Perpendicular Incidence - 0°, 30°, 60°, 90°
Diagonal Incidence - 09, 309, 60°, 90°
Class F CUB 7 Vectors
Perpendicular I:;midence 0°, 30°, 45°
Diagonal Incidence 0°, 309, 60°, 90°
Class G UES 4 Vectors
TE Polarization 0°, 30°, 60°, 90°
Class H SSS 1 Vector

TE Polarization

Independent Test Subset

6 Vectors

Class U

UNK1 - UNK6

SCC TM Polarization 1
FEC-12'"" TM Polarization 1
FEC-8" TM Polarization 1
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REC TM Polarization 3 Vectors
0°, 30°, 45°

UES TM Polarization 1 Vector

SSS Diagonal Polarization 4 Vectors
0°, 30°, 60°, 90°

Data Set 8 was generated by adding randomly distributed vectors to
the design subset of Data Set 7. The random vectors were generated from a

multivariate aussian distribution with a covariance matrix E =1001

(i.e., G~ 2 = 100). Forty (40) random vectors were added to the original
40 vectors in the design subset. Each of the original data vectors, in con-
junction with the random vector program, produces 41 data vectors (40 by
adding noise, plus the original).

5.2 SUMMARY OF EXPERIMENTS

Although a large number of analysis procedures were conducted
during the research period covered by this report, it is possible to describe
the basic experiments in three groups. The principle distinction between
these three groups was related to the Data Sets utilized to design and inde-
pendently test various classification schemes. Group 1 experiments utilized
Data Sets 1, 3, and 4. These sets are typified by the fact that radar polariza-
tion, object orientation and time origin alignment are not utilized by the
classification logic. The object classes are only defined upon the shape of
the objects and not by the specific orientation of the object or the polariza-
tion utilized. In addition, the data within sets 1, 3, and 4 were not epoch
normalized. A second common factor to the experiments of Group 1 was
related to the logic testing procedure. Specifically, all testing was con-
ducted using the six unknown waveforms designated UN1 through UNS6.

Group 2 experiments utilized Data Sets 2, 5, and 6. These sets are
typified by the fact that radar polarization and object orientation are not
utilized by the classification logic; however, this data was time origin nor-
malized. The independent testing procedure common to all experiments of
this group utilized the six unknown waveforms (time origin normalized)
designated UN1 through UN6.
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Finally, Group 3 experiments utilized Data Sets 7 and 8. These
sets are distinguished by the fact that the orientation of the objects within
their respective shape classes is not utilized by the classification logic.
The TM polarization waveforms were not contained in the design set, how-
ever they were incorporated into the test set as described in Section 2.
Since sets 7 and 8 were originally derived from the time normalized Data
Set 2, these experimental results reflect a time origin normalization.

The individual experiments comprising the three groups consisted
of the design and independent testing of four basic types of logic. The first
type used was the Nearest Mean Vector Logic where only the mean vectors
of the object shape classes (the class mean vectors were estimated using
the design set) were used in the decision process. The unknown vectors were
classified in accord with the class associated with the nearest mean vector.
This logic is analogous to using a single matched filter per class where the
Euclidean metric replaces the correlation metric. The second logic type
used was the Nearest Neighbor Logic. This type of logic utilizes every
vector in the design set in order to compute a decision. An unknown veca=
tor is classified in accord with the class associated with the nearest vector
(in the Euclidean sense) contained in the design set. That is, the distance
between the unknown vector and each of the vectors in the design set is
computed and stored. The class associated with the closest vector is then
used as the decision class. This type of logic is quite similar to multiple
matched filters where several filters are used to represent templates for
each class and the Euclidean metric replaces the correlation metric. The
third logic type used was a Piecewise Linear Logic. This logic is composed
of K * (K-1)/2 Fisher Linear Discriminants which are functionally com-
bined as shown below. A detailed description of this type of logic is con-

tained in (1), (2), and (3).

| 3 Votes for Class 1
1/2
> 1/3 E —> Votes for Class 2
N 2
X —> .

IK-1/K
/ g L5, Votes for Class K
_ -1 [—Kl

Piecewise Linear Logic
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The vector X is the 43-dimensional waveform vector which is to

be classified. The 1/J| Tbox represents the Fisher linear discriminant

which discriminates between class I and class J. The output from the

1/J box is a binary variable. A ''one'' out is interpreted as a vote for

class I and a '"'zero' out as a vote for class J . The I is an inverter.

The ZJ box symbolically represents a vote summer for class J. Notice

that the maximum number of votes achievable by any class is K - 1, where
K is the number of classes. A positive class decision is rendered for
class J if and only if J receives K - 1 votes.

The last logic type utilized in our experimentation involved the use
of piecewise linear logic, however, the data structure of the design set was
first analyzed to determine the modal properties of inter-class data. Any
class which exhibited multi-modal structure (that is, the data resides in
disjoint parts of the 43-dimensional vector space) was partitioned into sub-
classes, The partition function was accomplished via visual cluster analy-
sis conducted at the OLPARS CRT to subdivide those classes which appeared
to be widely separated (i. e., multi-modal). The pairwise decision logic
described above was then used to discriminate all classes and subclasses.

5.3 EXPERIMENTAL RESULTS

This section presents a capsulation of the most important experi-
mental results obtained to date. The results are discussed in accord with
the grouping described in the previous section and are presented in tabular
summary form at the end of this section.

It was mentioned above that the criterion for evaluating a classifi-
cation logic was its performance in correctly classif ying the unknown wave-
forms contained in the independent test set. For this reason we shall list
here the true identification of these unknown waveforms as presented to us
by Sperry. It should be noted, however, that this information was not avail-
able to PAR at the time of conducting the majority of the experiments des-
cribed below. Furthermore, the true identification of the unknown wave-
forms was never utilized when designing any classification logic including
those experiments conducted after this information was given to PAR.,

This procedure insures a fair and unbiased evaluation consistent with the
concept of a blind study. The true identification of the six unknowns are
as follows;
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UN1 Class D Flat End Cylinder - 8' diameter
UNZ2 Class E Rectangular Cylinder

UN3 Class F Cube '

UN4 Class F Cube

UNS5 Class G University Explorer Satellite
UNb6 Class H Small Scientific Satellite

True Class Identification of Unknowns

Group 1 Experiments

The initial experiment of this group involved the design and test of
the Nearest Mean Vector Logic using Data Set 1. The OLPARS system was
used to compute the mean vectors of classes A - H. The six unknown vec-
tors, UN1 - UN6, of Data Set 1 were classified in accord with the class
associated with the nearest mean vector. This classification procedure,
although appealing due to its inherent simplicity, has been found to be un-
reliable in all but the simplest of problems and therefore it is not surprising
that its performance is inadequate. The independent classification results
are listed below:

Unknown Vectors Decision Class
UN1 D= FEC - 8"
UN2 F = CUB
UN3 H = SSS
UN4 F=CUB
UNS5 C=FEC- 12"
UN6 H = SSS

Nearest Mean Vector Test Results - Data Set 1

Notice that three of six were correctly classified while the remain-
ing three were misclassified.

The next experiment within this group involved the testing of the
Nearest Neighbor Classification Logic using Data Set 1. The independent
classification results are listed below:

Unknown Vector Decision Class
UN1 C =FEC - 12"
UN2 B = SSS
UNS3 C=FEC - 12"
UN4 F = CUB
UNS5 E = REC
UNG6 E = REC

Nearest Neighbor Test Results - Data Set 1
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Notice that only one unknown was classified correctly utilizing this
method.

The third experiment within Group 1 experiments involved the design
and test of the Fisher Pairwise Discriminant Logic using the noisy data of
Data Set 3. The design subset of Data Set 3 was used to design the Piece-
wise Linear Logic as described in Section 3. This logic was next used to
classify the vectors contained in the design subset. The resultant confu-
sion matrix is given below. The columns represent the true class and the
rows the decision class. The I,J element is set equal to ten times the
number of vectors from class J which were misclassified as class I.
For example, the twelve A's were called E. A geometric understanding
of these errors can be obtained by viewing the ""optimal discriminant plane"
shown in Figure83 . This plot shows the orthogonal projection of the 43-
dimensional vectors from classes A and E onto a discriminant plane. The
X axis of this plane is the Fisher direction between A and E . The plot
it a cluster plot in that the symbol A corresponds to the projection of one
or more vectors from class A . Overprints of A's and E's are repre-

sented by the symbol . The decision boundary is a vertical line bi-
secting the X axis.

Confusion Matrix for Tree Design Set Fisher 01

A B & D E F G H
A 0] 0 0 0 0 0 0 0
B 0 0 30 0 0 0 0 0
& 0 0 0 0 20 0 0 0
D 0 0 0 0 0 0 0 0
E 120 10 30 0 0 0 0 0
F 0 0 0 0 0 0 0 0
G 0 0] 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0
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FIG. 131 Discriminant plane projection - class A vs class E.
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This logic was next used to classify the six unknown vectors. The
results are listed below,

Vector Classification - Votes
UN1 Class D 7
UN2 Class E tied Class A 6 each
UN3 Class F 7
UN4 Class F 7
UN5 Class G 7
UN6 Class H tied Class B 6 each

Maximum No. Votes Possible = 7

Fisher Piecewise Linear Discriminant Logic Test -
Data Set 3 (G = 10)

These results were quite encouraging since no errors were made;
four unknowns were correctly classified and the other two unknowns were
tied.

The exact same procedure outlined in the preceeding experiment
was repeated for Data Set 4. The pairwise logic was tested using the design
‘ data, and perfect classification resulted.

Next, the logic was used to classify the six unknown vectors. The
results of this classification were as follows:

Vector Classification Votes

UN1 Class C 7
UN2 Class E tied Class A 6 each
UN3 Class F 7
UN4 Class F . 7
UNS Class G tied Class A 6 each
UN6 Class H tied Class B tied

Class G 6 each

Maximum No. Votes Possible = 7

Fisher Piecewise Linear Discriminant Logic Test -
Data Set 4 (G = 1)

Notice that two unknowns were correctly classified; one incorrectly
classified and the remaining three tied.
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The final experiment in this group involved the design and test of
Piecewise Linear Discriminant Logic With Mode Analysis. The analysis , -
was conducted by orthogonally projecting the eight classes A - H of the
design subset of Data Set 3 onto the plane described by the two eigenvectors
corresponding to the two largest eigenvalues of the lumped data covariance
matrix, A visual cluster analysis was conducted at the OLPARS CRT to
subdivide those classes which appeared to be widely separated. The results
of this analysis are depicted by the ''data tree' below;

Data Tree
Data Tree After
Node Analysis
Data Set 3

O
O
0'

0 9 7 8 4
Notice that classes C, E, F and G were subdivided into disjoint subclasses.

A typical eigenvector display of classes G and H is shown in
Figure 84,

The pairwise decision logic described above was designed to dis-
criminate the 13 classes resulting from the clustering analysis. This logic
was next used to classify the six unknown vectors. The results were as

follows:
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Vector Classification Votes

UN1 Class 9 ; Class C 12
UNZ2 Class A 11
UN3 Class 8 tied Class 0 ;
Class E tied Class C 11 each
UN4 Class 6 ; Class F 12
UN5 Class 7 ; Class E 12
UN6 Class H 12

Maximum Number of Votes = 12

Fisher Piecewise Linear Discriminant Logic With Mode Analysis

Test Results - Data Set 3 ( 6/= 10)

These results were considered poor since only two unknowns were
correctly identified.

It is observed that excellent results were achieved using the Piece-
wise Linear Logic designed using the highly corrupted data of Data Set 3
( G = 10). The results for all other experiments were considerably de-
graded. One would ordinarily expect that the classification accuracy would
improve directly with an increase in the logic complexity. However, this
thought was not demonstrated when one compares the Nearest Neighbor
result to the Nearest Mean result nor when one compares the Piecewise
Linear Logic result with and without mode analysis, This phenomena can
partially be explained by the fact that the data used in the Group 1 experi-
ments was not time origin normalized, Therefore, the more complex logic
may tend to ''over compensate' by fitting too closely to the design data.

Group 2 Experiments

The first experiment within this group involved the design and
independent testing of the Nearest Neighbor Classification Logic using the
time normalized Data Set 2. The independent classification results are
listed below:

Unknown Vector Decision Class
UN1 B - SCC
UN2 C- FEC- 12"
UNS3 F - CUB
UN4 F - CUB
UNS5 E - REC
UN6 B - SCC

Nearest Neighbor Test Results - Data Set 2
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Notice that only two of the unknowns were correctly classified
while the remaining four were misclassified. These results indicate a
slight improvement over the corresponding results on the unnormalized
data reported above under Group 1 experiments (1 correct, 5 incorrect);
however, the performance is still considered poor.

The second experiment within Group 2 experiments involved the
design and test of the Fisher Pairwise Discriminant Logic using the time
normalized noisy data of Data Set 5 ( G~ = 10). The design subset of Data
Set 5 was used to design the Piecewise Linear Logic as described in Sec-
tion 3. The resulting logic was next tested using the test subset of that
data. The classification results are listed below;

Vector Classification Votes
UN1 Class C 7
UN2 Class E 7
UN3 Class E 7
UN4 Class F 7
UN5 Class G 7
UN6 Class H 7

Maximum No. Votes Possible = 7

Fisher Piecewise Linear Discriminant Logic Test -

Data Set 5 (G = 10)

Two errors were committed (i.e., UN1 and UN3) using this logic,
which represents some degradation from the corresponding results obtained
on the unnormalized data reported above under Group 1 experiments. A
detailed examination of the votes indicated that the second best choices for
UN1 and UN3 were the correct classes D and F respectively.

The exact same procedures outlined in the preceeding experiment
were repeated for Data Set 6 ( G = 1). The pairwise logic was tested
using the six unknown waveforms of the test subset of Data Set 6. The
results of this classification were as follows:

Vector Classification Votes
UN1 Class C 7
UN2 Class E 7 Max. No.
UN3 Class F 7 Votes
UN4 Class F 7 Possible
UNS Class G 7 =7
UNb6 Class B 6

Fisher Piecewise Linear Discriminant Logic Test -
Data Set 6 (G = 1)
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This result indicates an improvement over the corresponding results
obtained on the unnormalized data previously reported since four unknowns
were correctly classified, one misclassified and the remaining unknown re-
ceived less than the maximum number of votes.

The fourth experiment of Group 2 involved the design and test of
Piecewise Linear Discriminant Logic with Mode Analysis. The analysis
procedure was conducted using the design subset of Data Set 5 (G~ = 10)
and the multitude of analysis tools contained in OLPARS. The results of
this analysis were reflected by a decision to subdivide classes F and C
into two nodes each as shown below.

Data Tree After Data Tree
Node Analysis Q
Data Set 5

g o—_
tg o

The pairwise logic described in Section 3 was designed to discriminate the 10
classes resulting from the mode (or clustering) analysis. This logic was
next used to classify the independent subset of Data Set 5. The results were

as follows:
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Vector Classification Votes

UN1 Class D 8
UN2 Class E 9
UNS3 Class E 9
UN4 Class 4 =F 9
UNS Class G 9
UN6 Class H 9

Maximum No. Votes Possible = 9

Fisher Piecewise Linear Discriminant Logic with Node Analysis

Data Set 5 ( G/=10)

This result may be interpreted as the best result achieved to date
since five of six unknowns were correctly classified (UN1 was classified
correctly as Class D with 8 votes since all other classes received less
votes).

The final experiment within Group 2 involved a human visual classi-
fication of the six unknown waveforms, This was achieved by comparing (by
eye) the photographs of the unknown waveforms with the photographs of the

. 52 original waveforms. Since these photographs represented time normal-
ized data, this experiment has been included under Group 2. It should be
appreciated that this experiment is of fundamental importance since we
normally cannot expect a machine to outperform a human. Thus, we might
view the results below as the optimal performance achieveable.

Vector Subjective Classification
UN1 Class D
UN2 Class E
UN3 Class C
UN4 Class F
UNS5 Class G
UN6 Class H tied with Class D

It is interesing to note that our best performance (i.e., the pre-
vious experiment) closely parallels these results, even to the extent that
UN3 was the only waveform in error for both experiments.
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Group 3 Experiments

These experiments were conducted, at the request of Sperry Rand,
to determine how a classifier would perform if polarization samples were
not included in the design set but were included in the independent test set.
To this end, Data Set 7 was constructed and used to design and test the
Nearest Mean Classification Logic, the Nearest Neighbor Classification
Logic ; Data Set 8 was constructed from 7 and used to design and test the
Fisher Piecewise Linear Discriminant Logic. The independent test set con-
tained 17 vectors as described in Section 2. The results of these experi-

ments are listed below:

Data Set 7 Data Set 8
Fisher Pcws.
True Class Nearest Nearest Linear
Mean Neighbor Discrim.,

UN1 = D E B ®
UN2 = E G C A
UN3 = F D ® ®
UN4 = F G ® ®
UN5 = G C E ©
UN6 = H A B B
TM SCC = B D A A
TM FEC-12" = C D A F
TM FEC-8" = D ® G G
TM REC-0° = E D F F
TM REC-30° = E D F F
TM REC-45° = E D F F
TM VES = G D A A
DIA $55-0° = H D ® ®
DIA SSS-30° = H ®@ E c
DIA SSS-60° = H B E E
DIA SSS-90° = H A E G
Number Correct 2 3 5




These results clearly indicate the need to include polarization data
in the design set if that data will appear in the future test sets,

Tabular Summary of Groups 1 and 2 Experiments

Group 1 Group 2
Experimental Results Experimental Results
o
g ]
. ~ I ~ 1}
o - H 2 3\ ~
P = oy = - = A | B
P N 2o Bo|lZ~|B3| A
s 182 sy (50|55 88|58y 50lss| &
=S IR = N - P (= ) 2L 8| 8 2
3|85 |a°|a”|ag|s5|e (@ |a23| 5
True Class Z |22 |~ e &= |zZ | & I S| T
UN1 = FEC - 8"
=D D C D C C B C C D D
UN2 = REC = E F B {E/A|E/A| A C E E E E
| UN3=CUBE=F H c ! F F |E/C| F E F E C
UN4 = CUBE=F F F F F F F F F F F
UN5 = UES = G C E G |G/A| E E G G G G
'
UN6 = SSS = H H E !H/B|H/B/G H B H B H |H/D
4 Correct 3 1 4 2 2 2 4 4 5 4
# Incorrect 3 5 {0 1 3 4 2 2 1 1
1
# Tied 0 o | 2 3 1 0 0 0 0 1
i
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5.4 CONCLUSIONS AND RECOMMENDATIONS

The results obtained during this research period are regarded as
significant since it appears that automatic shape classification based upon
the Sperry radar return is feasible. It is concluded that the best possi-
bilities for accurate classification lie in the use of piecewise linear discri-
minant logic. Based upon our experiments with Nearest Mean Logic and
Nearest Neighbor Logic, it would appear that methods such as template
matching or matched filtering will not provide adequate performance. It
is also clear from the results of the Group 3 experiments that polarized
returns cannot be accurately classified if such samples are not included in

the design set.

The best result was obtained using Fisher Piecewise Linear Logic
with Mode Analysis under the condition that the waveform return is time
normalized. The result obtained is considered at least as good as that
achieved by human visual classification. This fact is regarded as highly
significant since human classification performance is viewed as the basic
standard to be achieved. The classification accuracy obtained using this
method is further regarded as relatively insensitive for the following

reasons;

o The waveform was smoothed by averaging three adjacent ’
amplitudes along the wave. The effect of this operation is to
smooth the wave and thereby reduce the information content

in the resulting waveform.

o No distinction was made within a basic shape class; that is,
orientation and polarization information were neglected.
The implication is that an object's shape can be accurately
predicted independent of its orientation or the polarization
of the return.

o Excellent results were obtained when a large amount of
Gaussian (white noise) noise was added. The implication is
that the results are relatively insensitive to additive noise.

o Although there appears to be some sensitivity to the time
origin of the waveform, the results from Group 1 experi-
mentation indicate only a reasonable degradation. This sen-
sitivity may not be a problem since the method used to achieve
normalization is perhaps the simplest of all possible methods.
The thought is that even this simple method results in good

classification.
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The results reported here must be considered encouraging, par-
ticularly in view of the difficulty of the classification problem. However,
much work remains to be done if these achievements are to become of
practical significance. The basic step towards the practical achievement
will involve extensive testing of the Piecewise Linear Discriminant Logic
under all conditions which would ordinarily arise in an operating environ-
ment. It is therefore recommended that more data in the form of digitized
waveform returns be supplied to PAR for further testing. It cannot be over-
stressed that a practical solution is heavily dependent on a large represen-
tative data base.

In addition to a larger data base, it is recommended that more
sophisticated features be extracted from the waveform returns for the pur-
pose of automatic classification. The present results were obtained using
the most simplistic feature set; namely, the averaged time samples along
the wave, Features directly related to the ''shape'' of the waveform such
as the number of peaks, the location and amplitudes of peaks, zero crossings,
inflection points, etc., should be extracted and used to classify returns.

It is recommended that Piecewise Linear Logic be designed, tested and
compared to the results reported here using the new feature set.
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SECTION 6

CONCLUSIONS

In this study the space-time integral equation approach has been
extended to the solution of the large body problem. This has been accomplish-
ed by the development of the impulse response augmentation technique. This
technique combines the smoothed impulse response, which is computed exactly
with the space-time integral equation, and the specular return of the im-
pulse response, which is know exactly from physical optics, to produce a
total impulse response and a frequency response over the entire spectrum,

The validity of the impulse response augmentation technique hasbeen
demonstrated on three smooth convex targets with axial incidence. For the
case of a sphere (the only target for which there exists a theoretical check
of both the impulse response and the frequency response), the results are in
good agreement with the theory. For the case of a prolate spheroid with an
axial ratio of 2:;1 and with axial incidence, the results agree well with the
Moffatt-Kennaugh exponential sum approximation over the higher frequency
portion of the spectrum. The impulse response augmentation technique was also
demonstrated for a sphere-capped cylinder with a length-to-diameter ratio of
3:1 and yielded results which had not been previously obtained.

In addition, the polarization dependent effects for nonaxial inci-
dence on smooth convex bodies have been considered and found to modify the
step and ramp singularity terms at the leading edge of the impulse response,
These effects have been incorporated into the impulse response augmentation
technique and demonstrated for the case of the prolate spheroid with non-
axial incidence. The technique was also demonstrated for the sphere-capped
cylinder with nonaxial incidence, where the returns from both the front and
rear joins were accounted for.

The results of this study are extremely encouraging, since a tech-
nique has been both developed and demonstrated for obtaining the impulse
response and/or frequency response of the entire spectrum for smooth, convex
targets with arbitrary incidence. These results should be extended to more

complicated targets.

An expression was developed for the minimum number of orientations
at which the smoothed impulse response of a target must be measured or cal-
culated for a given time sample rate or, equivalently, a given bandwidth of
the incident pulse. This expression yielded results which were in good agree-
ment with measurements performed on the time domain scattering range. This
treatment, however, was limited to target orientations about a fixed axis,
and thus should be extended to the case of arbitrary target orientations,

Smoothed impulse response measurements were made on an additional
35 target aspect angles and polarizations. These 35 waveforms, together with
the 22 waveforms previously measured, were used by PAR,Inc. as the basis for
the design of various identification processors with OLPARS. The results of
this preliminary work encourage further study to examine the performance of
the identification processors for signals corrupted with realistic noise.
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SECTION 8
APPENDIX
8.1 SCALING

It is the goal of any study such as this to display the results in
the form of universal curves so they may be applied to a maximum number of
problems with a minimum amount of effort., The thrust of this section is to
document for easy reference the parameters which may be used as coordinates
such that the resultant curves are invariant with body size changes,

First consider the frequency domain, This discussion will be
limited to the magnetic field intensity, although the results are equally
ap?licable to the electric field intensity. The far scattered magnetic field,
ustka) g weighted by the incident field, the distance from the target r_,
and the linear dimension of the target a, and plotted as a function of ka, where
k is the wave number (k = 2/T; T = period of one cycle of sine wave in light
meters ). Thus,

r HS(xa)
o

I vs ka
aH" (ka)

yields a curve which is invariant with body size changes.

The other important parameter in the frequency domain is radar cross
section o, which is defined as

. 2
_ lim 4 r2 |Hs(ka)l

= r

0 ° |ui(ka)|?

Both the effect of the incident field and the distance from the target have
been normalized by the definition. The size may be accounted for by weighting
the radar cross section ¢ with its value in the geometric optics limit, cg o.°
Thus, «0.

- vs ka
g.O.
vields a curve which is invariant with body size changed.
Next consider the time domain. The far scattered magnetic field

HS(t/a) is weighted by the distance from the target and plotted as a function
of t/a, where t is measured in light meters. This is for the case of an

189



incident pulse excitation of the form

2 2
_h_ =(na)"(t/a)
e(t/a) = e

where n is chosen such that (na) is a constant, This specification on n
merely makes the incident pulse width constant relative to the body dimensions
and assures that the smoothed impulse response yields an invariant curve, Thus,

rOHS(t/a) vs t/a

yields a curve which is invariant with body size changes, It should be noted
that singularity functions are a special case, and in particular the function
a 8(t) when plotted vs t/a yields 6(t/a) which is "invariant" under body size

changes. That is,
&6(t/a) = a 8(f)

by standard definition in the theory of distributions,

Finally, it is of interest to document the relationships between these ‘
two domains when the curves are normalized. Define these normalized variables

as follows:

t’ = t/a

w’ = ka
roHs(ka)

H(wl) = __T_____
aH" (ka)

h(t') = r H°(t/a)
Thus,
Hw’) vs w

h(t’) vs t
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yield curves invariant under size changes.

Moreover

Flh(t)} = j h(tDed® b at’

H(w”)

o ol
ht’) F‘I{H(w')}=lﬁj Ho el v do’

8.2 CAUSALITY

Both the impulse response and the augmented impulse response of a
target are known to be causal functions. The smoothed impulse response which
is computed by numerical solution of the space-time integral equation is also
a causal function. As noted in Sec. 2.3.3, the augmented frequency response
which is obtained from the transform of the computed smoothed impulse response
yields valid results over the lower portion of the frequency range., However,
the noise grows exponentially at the higher frequencies, and since it is known
that the augmented frequency response goes to zero as the frequency goes to
infinity, an estimate of this high frequency portion of the augmented frequency
response is made. Both a phase estimate and an amplitude estimate must be
considered. Since the augmented impulse response is causal, it is desirable
that the amplitude estimate and the phase estimate be consistent with the
causality condition, In this Appendix several techniques are described, for
imposing the causality condition.

Ideally, one would like to estimate the amplitude response and obtain
a phase response which is consistent with causality (or vice versa). However,
it is not possible to do this, since obtaining unique phase from amplitude
information (or vice versa) requires that the response be minimum phase in
addition to being causal. Physically, there is no reason to expect the impulse
response to be minimum phase. However, it is known that causality implies that
the real part of the frequency response can be obtained from the imaginary part
(and vice versa), The plan then is to use the real part of the frequency
response to obtain an imaginary part which is consistent with causality, and
use the imaginary part to obtain a real part which is consistent with causality.
This technique will be applied directly to the estimate of the augmented
impulse response because the augmentation function is already causal.

Let us assume that augmented impulse response has been shifted in
time so that the impulse arrives at t = 0. Then the condition of causality is

1
o

h_(t) t<0
a

(102)

f(t) t20
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To examine what relat1onsh1p Eq. (102) implies between the real and imaginary
parts of H (w), it is convenient to express h (t) as the sum of an even func-
t1on £ (t)%and an odd function f (t):

ha(t) = fe(t) + fo(t) (103)
where

fe(t) = fe(-t)

fo(t) = -fo(-t) .

Using the causality condition Eq, (102) it is easily shown that

[T

f (t) h_(t) t >0 (104)
e a

1}
NI

f () h_(t) t>0. (105)
o a

Taking Fourier transforms of Eq. (103), we obtain

Ha(w) = R(w) + jX(w) (106)
where

R(w) fe(t) (107)

X(w) & £ (t) (108)

Hence we can construct a causal time function from the real part of the spectrum
by taking the Fourier transform of the real part R(w) , which yields the even
part of the time functiom f (t). Then by Eq. (104) we get the causal time
function haz(t)

0 t<0
haz(t) = fe(t) t=0 (109)
2fe(t) t>0
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From Eq. (104) we can obtain the entire spectrum, H, (w), for the causal time
function hy,(t) by the Fourier transformation: 2

H (w) e h_(t) . (110)
a, a,

Similarly, we can obtain a causal time function from the imaginmary part X(w)
by Eqs. (108) and (103), which yield

hal(t)

2fo(t) t>0

(111)

The spectrum of causal time is then simply

H (w)e— h_ (t) .
3 3

There is an alternative way of producing these two causal responses
from the original noncausal response. For example, let us consider the prob-
lem of constructing the causal response ha2(t) from the real part. Let us
define the following odd function of time:

ha(t) t<0
ho(t) = {0 t=20 (112)
-h (-t) t>0 .
a

Now we can form hag(t) by subtracting ho(t) from ha(t):

haz(t) = ha(t) - ho(t) (113)
or
0 t<0
h (t) = ¢ h_(t) t=0 (114)
32 a
h (t) + h_(-t) t>0.
a a
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The above expression follows because the Fourier transform of h_(t) is imaginary
and hence the operation in Eq. (113) does not affect the real pgrt of the
transform of h_(t), Since both the functions in Eq. (113) and the function
obtained from the real part (Eq. (104)) are causal and have the same real

part, they must be identified by the uniqueness of Fourier transforms.

In a similar fashion the causal function haQ(t) determined by the
imaginary part can be obtained by

0 t<0
ha (t) = (115)
1 ha(t) - ha(—t) t >0,

A third causal function can be obtained by simply setting the function to O
for t < 0, i.e.,

0 t<o0
ha (t) = (116)
3 ha(t) t=20,

During the course of this investigation we found that it was possible
to obtain a causal augmented impulse response without resorting to the above
described procedures, It may be worth noting that the amplitude functions 5
used augmented frequency response all satisfied the Piley-Wiener condition,
and thus it was assured that a phase function existed that would produce a
causal inverse., In particular, it can shown that

Aw) = e

satisfies the Paley-Weiner condition for

o<a<]

The exponential estimate used for the creeping wave was with @ = 1/3,

8.3 SPACE-TIME INTEGRAL EQUATION SELF-TERM CORRECTION

The purpose of this section is to derive an analytic expression for
the contribution due to the self term in the numerical solution of the space-
time integral equation, This self-term contribution is the contribution to
the total current due to the currents flowing in the patch on which the ob-
server is sitting. The expression for this contribution is given by
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- 1 a - = ~

J (r,t) = 5= ax‘L[J’!, 1] x a,4dS’ (117)
€ 2m S ] R
N~
€
T=t-R
where

e

r = the position vector to the observation point
e

r’ = the position vector to the integration point
Se = the patch on wnich the observer is sitting

t = the time in light meters

- -
R=|r - r'|

> o
3 (r - r’)/R

-+
the unit normal vector at r .

>
I

It is also useful at this point to_express the surface Se in a Taylor
series expansion about the point r : i.e.,

-+, - - - 1] 2 - 1] 2
r' -r=ur +vr. +5u"r + uv r + =y~ r (118)
uo Vo 2 uuo uvo 2 vvo
where
-.
- ar’
r = | =], -
uo au r =r
ndi
? _| aor
0 S - -
v oV /:r
-
2 _ aZr/
uuo 2 -+ -
du r'=r
s
.2_.
R e
u - -
uvo duav J#s _
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Let the u,v curves be lines of curvature so that

- -
a T = = curvature in i i

n HUo Ku c i u direction

N -

a T =0

n uvo

a T = ¥ = curvature in v di ti

= = curvatu Te n
n vvo v irectio
L - o
and Ku and Kv are the principal curvatures at r . Writing the surface

current in terms of its components gives

7= R (119)
where

"~ _ - -+

a - ru/ iru|

. > ~

By =1y / |rvI

Expansion of the triple cross product in Eq. (117) yields

- EN

-)
o= (4 -aLd-La -0 a } ds (120)
€ n R n R

T = t-R

Applying Eqs. (118) and (119) to the dot product terms in Eq. (120) gives

- ~ - 11 2 2

a ap = - 353} (Ku u_ + Kv v)

3 - T7=3 Ku +J Kv) . (121)
n u u \' v

Next, the terms given in Eq. (121) are combined in Eq. (120) to yield the
expression for the self term as
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(¥ u2 - K
u

o h—

5’(?,t)=1—f L{a J
€ 2n S uo u

€

where it was noted that odd functions
over Se

Only the first terms in the

and its time derivative are retained,
taken outside the integral along with

. 2 2
1l IJ va u
2m ]\ v Se R

A circularly shaped patch for S

- Ku
+ A
ay 3

vy +a J
v

ds’

with radius o

2

ds’ (122)

ol

1 (X v2 - K u2)
vo v 2 v u

of u or v yield zero on integration

space expansion of the surface current
and since they are constant they may be
the unit vectors, giving

31 [ Kv - Kou I
\' u dsl

+ =X (123)
ot Jse R2

is assumed, and to facili-

tate the integration the followiﬁg change of varigbles is introduced:

u = pcos ¢

V= psin

R = p:/‘2+v2
dS = dudv = pdedp

The integration is then

K - K
i - ( u v
j’e(r.t) =8\ "am

9
K o - ad
v u | | (s} v
\' k 447 ) | npko M ( 2 ) At T

carried out to yield

3,

p 2
_0 —
u +( 2 ) at]

(124)
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This may be further written in terms of the paich area AS as

—
TRu=5 L /S k) (5 +
€ u 4 m u v u

+ 3 JAS K, - K) (Jv +

\/n ot

1 hs 2

)

It is of interest to note that if the patch is taken to be square rather than

circular, then the expression for

e becomes

T =3 l\/A——S (X - K) (I.OSBJ +
€ u 4 ™ u v u

» 1 /oS 1
+ a, 4\//1_r (Hv - Hu) (1.083 Jv + 5

where

1.083 = 2 {n(

The only difference is that the coefficient of the
higher; otherwise the expression remains the same.

putation.

@)

/5-1

o od
1l /as v
5 /o a3t ) (125)
1 /ZS Eiﬂ
2 ;o ot
ad
S v
n 3t ) (126)
J and J terms is 8.3%

IR the work that was per-
formed in this report, Eqs. (124) and (125) were used for the numerical com-

8.4 PROLATE SPHEROID PHYSICAL OPTICS IMPULSE RESPONSE COEFFICIENIS

The purpose of this section is to derive a general expression for
the initial time portion of the prolate spheroid impulse response. This will
yield both the impulse and step singularity values which are obtained by
assuming physical optics currents on the scattering surface.
Cosgriff formula will be utilized to facilitate this derivation.8

Consider a prolate spheroid with semi-minor axis

incides with the 2z axis as shown in Fig. 133.

late spheroid is

2 2 2
X *ty .z _
2 2
a b
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a

The Kennaugh-

and semi-
major axis b which are centered at the origin and whose major axis co-

The equation for this pro-

(127)




FIG.

133

Geometry of prolate spheroid.
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To treat the case of a wave incident on the target at an angle o with re-
spect to the z axis, it is convenient to consider the (x, y, z’) coordinate
system which results when the y-z axis is rotated by an angle «o . This
transformation is given by

/ . /
zZ= -~y sinat+ z cos «

y' cos a + z' sin « (128)

()
i

By substituting Eq. (128) into (127), the equation for the prolate spheroid
becomes

z
e e (129)
r r
X y
where
_ C(C!) /
f£= B(a) Z
ri _ B(g) r2
b y
9 9 - 2 )
r2 —ab” 212 C () D)’
y B(a) Bz(a) B(a)
Bla) = b2 cos” a + a2 s1n2 o
Cla) = (b2-32) sin ¢ cos «
2
D(¢) = b~ sin2 ot a2cos2 o (130)

Thus, by Eq. (129) it is demonstrated that a plane wave incident on the tar-
get from the o direction (i.e., along the negative z’ axis) will yield an
elliptical silhouette area with principal radii r. and ry

The impulse response that results when physical optics currents are
assumed to be set up on the surface is given by

2
s __1 3 S@)
roHpo T 9q atz (131)

where S(t) 1is the projected area of the scatterer as delineated by the in-
cident impulse as it moves across the scatterer at one-half the free space
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velocity.

Thus, for this case S(t_) is simply the area of the ellipse given
. ! s
in Eq. (129), i.e.

S(z')=nr.r (132)
X'y

which may be written in the form

2 - !
sz = BE & P - 2? ) W) - 2] (133)
/2 .
where
Ma) = ab = 8Y2(y) (134)
2
C™ (¢)
Ly Bl - g3
In this case
z' = -1/2

which, on substitution into Eq. (133), yields the expression

2 - -
— 4 (@) - t2 u o t+ 2@ . (135)
8r? (wBY? () - : :

_1 _
5n S(t) =

Taking the first derivative gives

2

1 3S(t) a b Iy ) -
== = -t u 't + 2T(y) . (136)
2n 3t 4r(aBY 2 (o) - -
Differentiating Eq. (136 again yields
S 32b azb
r ? = —————— 5[t + 2[ ()] - u[t + 20(a)] .
°°P0 5B 2(y) ar? @)Y ()

So, in summary, if we represent the leading edge of the impulse response as

S - . -
roHpo = Pz 8(t/a - Tz) + Sz ul(t/a - TZ) (137)
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then

T = -9 B1/2(a)

z a

_ ab

Pz = Bla)
S = _ ﬁ_

z 4 B%2 (o)

2
B(o) = b'cos2a + a2sin2a

8.5 SPHERE-CAPPED CYLINDER PHYSICAL OPTICS IMPULSE RESPONSE COEFFICIENTS

The purpose of this section is to derive a general expression for
the initial time portion of the sphere-capped circular cylinder impulse re-
sponse. This will yield the singularity functions which are obtained by
assuming physical optics currents on the scattering surface. The area func-
tion technique will be used to facilitate this derivation.

Consider the case of a circular cylinder with spherical end caps as
shown in Fig. 134. The length of the cylinder portion is taken to be L and
the radius to be a . The axis of the cylinder coincides with the 2z axis
and the ends of the target intersect the z axis at z = -(L+a) and z = a
as displayed in Fig. 134. To treat the case of a wave incident on the tar-
get at at angle « with respect to the =z axis, it is convenient to consider
the (x, y/ z') coordinate system which is obtained by rotating the y-z axis
about the x axis by an angle «. This transformation is given by

/- 7
z -y sina + 2z coSs «a

y' cos o+ z'5in o (138)

[
It

Thus, a plage wave that is incident from the « direction travels in the
negative z° direction and the projected area function initially in "time"

is given by

ma-z"%) : 0 < o< 90°
s(z') = « _—
i n(a2-zl2) + 2L /32-2/2 : a=90° (139)
] ~

-~

The impulse response that results when physical optics currents are
assumed to be set up on the surface is given by
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FIG. 134 Geometry of sphere-capped circular cylinder with length-
‘ to-diameter ratio of (L + 2a)/2a.
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s _ 1 237S(t)
roHpo =50 >t2 (140)

where S(t) 1is the projected area of the target on the plane of the incident
wave front as it travels across the scatterer at one-half the free space

velocity. In this case

and thus,

1 —
o S(t) =
1/2 1/2
% (4a2 - t2) + %— (2a + t) (2a - t) / « o= 90°
7
(141)

This expression is going to be used only in the vicinity of the
leading edge, and thus it may be approximated in this region by

o
2 @a® - 1P+ 22) ;0 s a< 90°
1 o (142)
> S(t) = Y
H ] - 1/2
{ é (4a2 - t2)u(t + 2a) + LZE- (22 + t) u{t + 2a3) ;
a = 900
The first derivative is
r—%u(t"'Za) ; 0 < o< 9°
L s (143)
20 at
g - 1/2
L-%u(t+2a)+L—2‘ﬂ&(23+t) u(t + 2a) ; @ = 90°

The second derivative is
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: % 6(t + 2a) - % u(t + 2a) : 0sa< 90°
2
1 27S¢t) _
am 3,2 - - 372
2 5(t+2a) -+ ult + 2) - =43 (2a+ 1) 7 Tu(+2); a=90°.
2 4 4
(144)
Writing now in terms of the normalized time
t’' = t/a
gives
Tet/+2) - fut’+2)  ;0sa<90°
1 a%s) _/ (145)
2m at2
- 3/2
o+ -ty v+ o v TTTu’ + 2); o= 90°
2 4 4ma
@ Y
where the generalized function (t’) u(t’) is defined as
// - 3/2 ’ ’ - o 3/2 ]
Q ) u(t’), o(t’).= J‘ t") [o(t’) - 9o)] dt (146)
0

and it should be noted that

-3/2 \ 1/ -172 dolt /)
(t") u(t’), ot F= -5 () uth, L=

\ /

N
ol

/
ll
1
N
-
- &
o
[ud
[\
\\\\

as shown by Lighthill.24

In summary, the leading edge of the impulse response of the sphere-
capped circular cylinder is
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-3/2
s
roHpo = Pzé(t/a - TZ) + Szu(t/a - TZ)+ Gz(t/a - TZ) u(t/a - TZ) (147)

where

N
BN [—

N
N

0 :0sa< 9°

2%3 o = 90o

8.6 SPHERE-CAPPED CYLINDER FIRST JOIN RETURN

The purpose of this section is to derive a simple estimate for the
type of initial response that can be expected from the sphere-cap cylinder
join region of a sphere-capped cylinder. The approach is to use the physical
optics approximation and then reduce the problem to the determination of the

projected area function.

Figure 135 displays the top view of a sphere-capped cylinder with
radius a and with a wave incident on it at an angle « with respect to the
cylinder axis. The distance of the incident wave from the origin (the center
of the first sphere cap in this problem) is taken to be r ., The incident
wave, when it completely intersects the cylinder, will generate an elliptical
cross section with semi-minor axis a and semi-major axis b, given by

a
Co0Ss o

b =

The incident wave produces a circular area function up until it reaches the
join region, at which time the projected area is the combination of a circle

with an edge sliced off and an ellipse with an edge sliced off. The elliose.

as noted earlier, has a semi-major axis b and semi-minor axis a, and for
the initial portion of time the projected area may be approximated by a
circle with suitable radius p . Thus, for this approximation the projected

area is given by
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Incident wave front

/

FIG. 135 Join region geometry of sphere-capped cylinder.
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2 1 /p% - 2 > 2
S(t) = p tan( - J- pT -t

where now t has been suitably redefined.

The first derivative is

3S _ 2 2
3t T 2vp -t
and the second derivative becomes
525 _ t
5 = 2
at 2 2

Thus, from this expression, it is noted that at the leading edge the response
has a t-1/2 type variation,

8.7 USEFUL TRANSFORM PAIRS

In traveling from the impulse response in the time domain to the
frequency response in the frequency domain, the Fourier transform must be
used. In this work, this was accomplished by use of the finite Fourier
transform, together with the analytic expressions for the singularity
functions. It is the purpose of this section to document these analytic
transform-pair expressions for easy future reference,.

6(t - TZ) — exp (—ijz)
1 .

u(t - TZ) ij exp (—JwTZ)
1 .

rp(t -T) = T exXp (-J(.UTZ)
(Gw)

-3/2

(t -T) ult-T)e -2 /0 expl-jul + ju/d)
z

-1/2 /n
(t - TZ) u(t - T ) e o exp(-juT - jn/4)
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-1/2
(t-T)  ult-T) H% exp(-juT, - j3n/4)

w
-1/2
e ¥t-T ) 1) Wt =T ) e 0 — 1 exp | ~jwT -jitan~?
z z Jw 2 p 294
1 = c!__\ 1/4
2
w
(}— -1, Ty -‘
!1 + cos T T T ;J u(t-Tz) - u(t-Tn). —
: n "z {
e L. -
- __;5__5— wi (sin sz-sin an)—2w2 sin sz
wlw =w™)
o
-

+ j \— wi(cos sz-cos an)— 2w2 cos wTZ

- s
Yo T -T
n "z

All of the above expressions are valid for w greater than zero. For w
less than zero, the real time function feature may be used to develop the
symmetry conditions about zero, and the result can then be derived from the

above expressions,

where
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