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ABSTRACT

Equations by which one can determine the natural fre-
quencles of prolate and oblate spheroids are derived using
the boundary-value-problem approach. Both transverse magnetic
and transverse electric excitatlons are considered. Numerilcal
results are given for the natural frequencles of transverse-
magnetlic-excilted prolate spheroids with various eccentricities,
demonstratling natural mode dependence on eccentricity. Numerical
difficulties, however, precluded obtalning natural frequenciles
for oblate spheroilds, transverse-electric-exclted prolate
spheroids, and transverse-magnetlic-exclted prolate spherolds
with sheaths.
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Introduction

Metallic structures excited by incident pulses radiate complex frequencies natural
to the structures pulsed. These natural frequencies can be determined using integral-
equation methods and boundary-value problem-formulation techniques, two classical
analytical procedures. Integral equations, for example, have been used to find the
natural frequencies of cylinders and the boundary-value problem formulation has been used
in studying spheres. The integral-equation approach, however, can be applied to
a wider variety of shapes than boundary-value problem formulation. Consequently, the
majority of natural-frequency data available has been obtained using integral equations.
Nonetheless, boundary-value-problem results are useful and are used in this study to
examine the natural frequencies of prolate and oblate spheroids (ellipses rotated about
their major and minor axes, respectively).

These spheroidal shapes are 2 of the 11 different orthogonal coordinate systems
for which the scalar wave equation is separable. The other coordinate systems
include: rectangular, circular cylinder, elliptic cylinder, parabolic cylinder,
spherical, parabolic, conical, ellipsoidal, and paraboloidal. For these 11 systems,
there are only 3 finite-sized, constant-coordinate surfacesl: the sphere
(occurring in the spherical and conical coordinate systems), the prolate spheroid
(occurring in the prolate spheroidal system), and the oblate spheroid (occurring in the
oblate spheroidal system). Our interest in prolate and oblate spheroids arises from the
fact that many weapons problems (e.g., electromagnetic scattering from missiles and
aircraft) concern finite-sized bodies.

While the natural frequencies of spheres have been tabulated extensively,z’s’4

the
natural frequencies of prolate and oblate spheroids have not. Equations governing these
frequencies can be determined, however, using a boundary-value problem-formulation

technique analogous to that used in determining the natural frequencies of a sphere.



Background Information

It is assumed here that the reader is familiar with the spherical coordinate
system, but unfamiliar with the prolate and oblate spheroidal coordinate systems5 (Figs.
1 and 2, respectively). Ellipses of various sizes are described in both the oblate and
prolate systems by the parameter £. For the prolate system, § > 1, with £ = 1
representing a needle and £ + « representing a sphere. For the oblate system,

0 < & <=, with € = 0 representing a disc and £ > « representing a sphere.

The parameter n describes a system of hyperbolas for both systems, and the variable ¢ is
equivalent to the right circular cylindrical coordinate system variable ¢. A degenerate
case of both prolate and oblate spheroids is a sphere, occurring when the major and minor
axes of the ellipse are equal.

Here, we are concerned with the source-free excitation of these finite sized
bodies, with interest in both the transverse magnetic (TM) and transverse electric (TE)
modes of oscillation. Because these natural modes have to satisfy the radiation
condition at infinity, they must be outward-propagating modes. The radiation condition
is automatically imposed on the natural-frequency model solutions for spheres and prolate -
and oblate spheroids.

When the sources of a field (thus, the field itself) do not vary with the

coordinate ¢, Maxwell's equations, expressed in the rotationally symmetric coordinate

system (u,v,¢), reduce to6
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Fig. 1. The prolate spheroidal coordinate system (£ = semifocal length, a = semiminor
axis, b = semimajor axis).

The quantities hu, hv’ h¢ are scale factors for the coordinate system, and (Eu, E , L
and (Hu, “v’ H

¢

¢) are, respectively, the orthogonal components of the electric and

magnetic field intensities in the (u,v,¢) coordinate system. The u,v,¢,hu,hv,h variables

are identified in Table 1 in terms of the different coordinate-system variables.

Combining Eqs. (1) through (3) or (4) through (6) and defining A = h¢H¢ or
A = h¢E¢ results in
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Fig. 2. The oblate spheroidal coordinate system (% = semifocal length, a = semiminor
axis, b = semimajor axis).
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where s is the separation constant and the quantities fl(u), fz(v), hvh¢/hu’ and
huh¢/hv are given in Table 2. Also given in Table 2 are the solutions of Eqs. (8) and

(9) in the respective coordinate systems. 6
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Table 2, Useful relationships for use in Egs. (8) and (9) and the characteristic
solutions of these equations

Spher1cal | Prolate spher01dal - Obiaté-sphefbidal
_______ ; ——— _ - ~, = :
fl(u) =1 fl(u) = 2 E fl(u) = 7
£,(V) = 0 £,00) = -2%n7 £,0) = 2°n°
h h h h h h
2 2 Vg .2
Vo _ T z ¢ _ LES - D = LET + 1)
u u u
h h h h h h 2
B9 - sin’ 6 U9 - (1 -0 2P - e - 0%
v Vv Vv
U) = rzﬁi)(kr) UGu) = vE? - 1 Rgi)(c,a) Uw) = vE% + 1 Rgi)(—ic,ig)'
V(v) = Pz(—cos 0) V(v) = V1 - n2 S1 (c,m) V(v) = V1 - n2 Sln(—ic,n)

The constant coordinate variable specifying a sphere is u=u =T, that specifying
a prolate spheroid is u=uo=£o, and that specifying an oblate spheroid is u=uo=Eo. For
metallic spheres and spheroids, the tangential electric fields on the metallic surface
u=constant=u are zero. This constraint specifies the natural frequencies, as shown in
the following paragraph.

For TM fields (E E ,H the surface tangential electric field is Ev' Using

)
¢ >
Eq. (2) and applying the boundary condition at the surface u,» : g
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The quantity h¢H¢=A satisfies Eq. (7), with solutions given in Table 2. Using Eq. (10)
and the results in Tables 1 and 2, we can show that the source-free TM excitation of a

metallic sphere satisfies

g;- [r héz)(kr)] -0, (11

Tr=T
(o]

the source-free 1M excitation of a metallic prolate spheroid satisfies

?E

d {@2- ] Rﬁau,a] -0, (12)
o

and the source-free TM excitation of a metallic oblate spheroid satisfies

L}
o

d
5T (13)
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£=t,

In Eqs. (11) through (13), the radiation condition on the source-free solutions has been ‘

imposed on the appropriate U(u) functional behavior described in Table 2 [i.e.,
2™ (kr) = hﬁz)(kr), Rgﬂ)(c,g) - Rgs)(c,g), and Rgz)(-ic,ig) - Rgﬁ)(—ic,iﬁ)l.

Equation (11) is the well-known condition for determining the TM natural
frequencies of a metallic sphere.z’3 Equations (12) and (13) are the not-so-well-known
conditions for determining the TM natural frequencies of metallic prolate and oblate
spheroids, respectively. These results can be inferred, however, from previous work
pertaining to metallic prolate7_9 and oblatelo—12 spheroids with TM excitation.

For TE fields (Hu,Hv,E ), the surface tangential electric field is E¢. Using

Eqs. (4) through (7), Tables 1 and 2, and the condition E¢ = 0 at u=uo,

D‘lr——l

E =

p ; U(uo) V(v) = 0 . (14)

Thus, from Table 2, it is seen that the source-free TE excitation of a metallic sphere

satisfies

(2) -
h ““(kr ) =0, (15)

the source-free TE excitation of a metallic prolate spheroid satisfies

R (eg) =0, 8 (16)

In
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ce-free TE excitation of a metallic oblate spheroid satisfies

Rgi)(—ic,igo) -0 . (17)

Here, Eq. (15) is the well-known condition for determining the TE natural
frequencies of a metallic sphere,z’3 and Eqs. (16) and (17) are the not-so-well-known
conditions for determining the TE natural frequencies of metallic prolate and oblate
spheroids, respectively. These results also can be inferred from earlier research on
metallic prolate9 and oblate 0”12 spheroids with TE excitation.

The prolate spheroid with TM excitation has been studied previously by Marin,13
who sampled the field at 32 locations and used an integral-equation formulation to
determine natural frequencies. In this study, we compare the exact boundary value with
approximate integral-equation results for a prolate spheroid to illustrate their close
correlation.

Also of interest is the effect a sheath surrounding a metallic object has on tche
natural frequencies of the object. This effect can be determined for a sphere (for TM
and TE excitations) and for a prolate spheroid14 (for a T™M excitation). The governing
equation for a TM-excited metallic spheroid (described by & = Ein) surrounded by a
confocal sheath (between the surfaces & = Ein and £ = Eout) is that the determinant of

A is zero, where

. Pr P2 4y
= 18
A P, P, O (18)

Ry Ry 8

with Pl, P2, PS’ P4, Rl, and R2 being diagonal matrices in which the mth elements (with

m odd and ¢ = X ; 1) are
= gD
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®2ee = Rim Cins Sout? > (20)
- .
Py = 35 |ES -1 R (e 00 , (21)
L 4§ e=g,
o = o | -1 RP(c, .0 , (22)
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- S
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Matrices Q1 and S1 are general matrices with elements of (with m and n odd and

_m+ 1 _n+ 1
L = —=and k = —3)
_ (4
(Ql)zk - -Nmann (Cout’ gout) > (25)
€.
_ in d /.2 (4) .
(51)2k T T Nmn FI3 [ & -1 Rln (cin’g)] ? (26)
out £=¢
out :
where
+1
Nmn ) _/- Sln(cout’n) Slm(cin’n) dn . (27)
-1

Note that, although matrix A is infinite, it can be truncated to a large, but finite,
size. One can then vary c to approximate natural frequencies for various combinations

of . € ; .
in’ Tout’ ot g1n’ and gout

Numerical Studies

It is recognized, of course, that degenerate cases of both prolate and oblate
spheroids can be spheres. A second degenerate case of a prolate spheroid is a needle, .
and a second degenerate case of an oblate spheroid is a disc. In this study using the
boundary-value-problem approach, we are interested in the behavior of natural frequencies
for spheroids between these two extremes. As noted earlier, others have presented
boundary-value-problem results for spheres,z_4 and approximate integral-equation results
for prolate 5pheroids.13 The numerical studies reported here are meant to complement
this previous work,

The numerical approach used in this analysis was to evaluate the spheroidal
functions15 of complex argument c (c = w/pel) for a number of ¢ values and to use
optimization procedures to determine those values of c that best meet the prescribed
conditions. This approach has been used previously for the sphere.

Numerical results for the natural frequencies of a TM-excited, perfectly conducting
prolate spheroid in an infinite medium are shown in Fig. 3. The results shown are for the
first layer of poles. Several shape factors are presented (spheroid major-to-minor axis
ratios b/a of 1, 5, 10, and 100) to illustrate the dependence of the natural frequencies
on object shape. As the eccentricity of the spheroids is enhanced (%-+ ©) , the poles
approach the asymptotic limit of poles for a thin cylinder,16 a result demonstrated in

previous studies.4’13 .

The boundary-value-problem results shown in Fig. 3 were compared with the integral-

equation results obtained by Marin,l3 and the agreement was good. This can be seen by

comparing Marin's integral-equation results with the boundary-value-problem results for

10 _



st layer of poles (see Tables 3 and 4). Agreement is quite good, considering the

1fferent approaches used in determining the natural frequencies.
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Fig. 3. Locus of natural frequencies for TM-excited prolate sphercids with various
! eccentricities. (Note: Yy = w/ue, b = ZEO.)
: Table 3.

Integral-equation versus boundary-value-problem results for yb with a major-
to-minor axis of 10:1.

Pole number Integral equation Boundary-value problem

1 -0,265 + 1 1,458
b LA e o7
3 -0.497 + 1 4,510
4 -0.582 + i 6.051
5 -0.658 + 1 7.598
‘ 6 -0.727 + i 9.149
7 -0.793 + i 10.703
i 8 -0.855 + i 12,260
!
? 11
i

.263
.391
. 485
.562
.630
.690
.744
.795

+

i 1.453
i 2.955
i 4.467
i 5.985
i 7.506
i 9.030
i 10.56
i 12,08




Table 4. Integral-equation versus boundary-value-problem results for yb with a m
to-minor axis of 5:1,

Pole number Integral equation Boundary-value problem

-0.336 + i 1.374 -0.335 + i 1.402

1

2 -0.516 + i 2,817 -0.512 + i 2,807
3 -0.655 + i 4,277 -0.648 + i 4,257
4 -0.773 + 1 5,745 -0.761 + 1 5.713
5 -0.876 + i 7.220 -0.860 + i 7.175
6 -0.970 + i 8.698 -0.949 + i 8.639
7 -1.057 + i 10.180 -1.03 + 1 10.11
8 -1.138 + i 11.666 -1.10 + i 11.57

An interesting sidelight was to compute the angle functions Sln(c,n) for the values
of ¢ corresponding to natural frequencies. (The functions were normalized using
Flammer's5 normalization procedure.) This was done for various eccentricities as there
was some speculation17 concerning the natural mode behavior for spheroids of various
eccentricities. As shown in Figs. 4 through 9, the angle functions Sln(c,n) are
predominately real, but have a finite imaginary component. This is consistent with
Marin's observations.13 Also, as eccentricity increases, the variation of the angle
functions Sln(c,n) departs from Legendre function behavior and approaches that of a pure,.
real angle function of sin Ill-g-r—]-and cos E%D-.

Unfortunately, numerical difficulties were encountered in solving the oblate-
spheroidal and the TE-excited prolate-spheroidal problems. A few poles could be found,
but the overall layer structure could not be defined. Due to the large number of
numerical problems encountered, this effort was terminated.

A number of attempts were made to attain reasonable answers to the problem of a
TM-excited prolate spheroid with a sheath. lowever, after much effort with no discernible
progress, this effort was abandoned. Several root-finding procedures” ’ were tried,
but reasonable results were precluded by the numerical noise generated in formulating

the spheroidal functions, the errors contributed by using a truncated matrix to

approximate the infinite matrix, and the sensitivity of the root-finding procedures to

noise,

Conclusions

This study demonstrates that the analytical expressions by which one can determine ‘
the ™ and TE natural frequencies of prolate and oblate spheroids can be derived using
the boundary-value-problem approach. Also, numerical results for the natural

frequencies of a TM-excited, prolate-spheroidal, metallic object can be evaluated using

1" P



technique. Moreover, these boundary-value-problem results compare favorably with
previously obtained results based on integral equation formulation. Numerical
difficulties, however, prevented obtaining natural frequencies for oblate spheroids, a

TE-excited prolate spheroid, and a TM-excited prolate spheroid with a sheath.
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Fig. 4. Natural frequency behavior of Sll(c,n) is predominantly real and appears to

pass from Legendre function behavior (for b/a = 1) to cos E—n behavior as

eccentricity increases. (Note: 2z = ngn.) 2
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Fig. 6. Natural frequency behavior of Re(Slz(c,n)) is predominantly real and appears to

pass from Legendre function behavior (for b/a = 1) to sin mn behavior as
eccentricity increases.

15




LY e T . o i |

12— a b/a=10
8 % b/a= 100 1

Fig. 7. Natural frequency behavior of Re(S ,N)) is predominantly real and appears to

12(c
pass from Legendre function behavior (for b/a = 1) to sin 7n behavior as
eccentricity increases.




0 0.2 0.4 0.6 0.8

Fig. 8. Natural frequency behavior of SlS(C’n) is predominantly real and appears to

pass from Legendre function behavior (for b/a = 1) to cos .231 n behavior as
eccentricity increases.
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Symbol Definitions

V-1

Angular frequency
Permittivity of the medium

Permeability of the medium

J

w

>

U

2 ' Semifocal length

c w/pER

u,v,9 Three orthogonal coordinates

£ System of ellipses describing the u variation in the oblate and
prolate spheroidal coordinate systems

n System of hyperbolas describing the v variation in the oblate and

prolate spheroidal coordinate systems

r,0,0 Spherical coordinate system coordinates
h¢’hu’hv Scale factors for the u,v,} coordinate system
Eu’Ev’E¢ Orthogonal components of the electric field intensity in the u,v,¢
coordinate system
Hu’Hv’H¢ Orthogonal components of the magnetic field intensity in the u,v,¢
coordinate system
U(u) Separable part of the field that varies with u ‘
V{v) Separable part of the field that varies with v
™ Transverse magnetic (Eu’Ev’H¢)
TE Transverse electric (H ,H ,E )
u’> v’ ¢
Zﬁl)(x) Spherical Bessel function of order n and type i
héz)(x) Spherical Hankel function of the second kind of order n
P:(x) Legendre function of order n and degree m
Rgi)(c,g) Prolate spheroidal radial function of order n and type i
Sln(c,n) Prolate spheroidal angle function of order n
R%il(-ic,ig) Oblate spheroidal radial function of order n and type i
Sln(-iC,n) Oblate spheroidal angle function of order n
b Semimajor axis dimension (b = &)
a Semiminor axis dimension G1= £ Ez -1
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