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Abstract

A thin straight wirec is characterized in hoth free
space and above a conducting ground planc using the
singularity cxpansion mcthod. Based on matrix and
numerical methods the natural resonant frecquencies, modal
current distributions, transient and stcady state rcponses
are given. Some of the anomalous behavior of the struc-
ture over the ground plane is discussed.



SECTION 1
1.1 Brief review and matrix formulation of SEM
Consider a perfectly conducting scatterer ih a linear homogeneous
isotropic medium as shown in Figure 1. Assuming an et time dependence,
the scattered electric field ﬁsca(F,s) at any point P can be written in
terms of the induced surface current distribution 3(?,5) on the object

with boundary ] as [1 |

gsca _ ;]i(%[kzx + v(v-X)] (1.1)
and -jk| T2 :
. =%;£ Q—JI—II:—I—I—do' (1.2)
-1’

where T and T' are space vectors denoting the field point and source
point variables and X is the magnetic vector potential. Hence, by

substituting (1.2) into (1.1),

Si> >, 1

gsca(? s) = A _s2 + 9y- f j(;- s) E:Eif:i:l_da- (1.3)
’ se :2- t ’ 41{]?"?' I

where the usual representation of the fields in the frequency domain
as Fourier transformed quantities is interpreted instead in terms of
the slightly more suitable bilateral Laplace transformed quantities.
This is done simply by the change of variables s = jw, which implies

that the propagation constant

= ik = S =
y = jk = 2

0ja

o (1.4)
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Figure 1. Perfectly conducting scatterer in a
linear, homogeneous, isotropic medium.




where c = 1/Yue is the speed of light in the medium.
If fl(r,s) represents the Laplace transformed external incident
field, and if we require the tangential components of the total electric

field to vanish on the surface of the conducting surface }, we have
n x Ea*i(is) + Esca(if,s)] =0 (1.5)

Expressions (1.3) and (1.5) yield the following integro-differential

equation for the unknown induced surface current distribution j(?,s),

Sy> =+,
z 277
n x ;ljj§7-+ VV{I J@x,s) SL_t:f:_‘— do'
selc 4u)r-7'|
= n x BYZ,s) (1.6)

We shall use the method of moments [2 | and expand j(?,s) in

terms of a known basis set

J@E,s) = [ L(SF (D (1.7)
n

n=1,2, ..., N

where the set of vector expansion functions ﬁn(?) has only components
tangential to the boundary surface ] and constitutes a suitable set of
basis functions, and the unknowns In(s) are the corresponding constant

current coefficients which depend only on s. The expression (1.6) may
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be rewritten in operator notation as
nx&@ =nx B (1.8)

where & is a linear integro-differential operator. Substituting (1.7)

into (1.8) yields the functional equation
) In[ﬁ xB ()] =nx T (1.9)
n

The above functional equation is reduced to a system of linear algebraic
equations by ''testing'' both sides of (1.9) with a set of testing func-
tions Wm(?). A suitable inner product for the problem may now be defined

for vectors with tangential components only as

<P,0 = £ P-Q do' (1.10)

The method of moments then requires that

Z In <Wm,;1x.f.(f5n)> = <Wm,;lei>
1}

m=1,2, ..., N (1.11)

which in matrix notation forms a linear system of equations

T()T(s) = V(s) (1.12)



wh -
ere r—-Il(S)
I,(s)
I(s) = (1.13)
| NG|
Rw*l, oty |
W, noLs
V(s) = . _ (1.14)
<WN, ﬁxfi>
/ _
and -
Z(s) = (2]
My, nxBED> ... <, At |
= . . (1.15)

<WN, nxL{?1)> - <WN, nxL(FN)>

1

While other forms of integral equations are derivable from (1.6), the
net result after the application of the moment method is a form similar
to (1.12).

Both the current expansion and the number of testing functions have

been truncated to some number N so that the equation (1.12) is an N x N
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matrix equation for the unknown current coefficients I (s). The no-
tation in (1.12) is chosen to emphasize the similarity between the
present problem and the similar problem of finding the port currents
for an N-port network if the voltages at each port and the impedance
matrix are specified. Accordingly, the matrix %is) is called the
""generalized impedance matrix'" and V(s) and T(s) are the 'generalized
voltages and currents'' respectively. For most of the following dis-
cussion, we may alternatively think of %:as the integral operator of
equation (1.6), T as the surface current J, and V as the incident ex-
citation ﬁ X Ei. With this interpretation, equation (1.12) may be
thought of as equation (1.6) written in operator notation. The solution

of (1.12) is

T(s) = 7 Y(s) V(s) = Y(s) V(s) (1.16)

where Y(s) is the so-called generalized admittance matrix, the inverse

of the impedance matrix. The elements of Y(s) are given by

D™ s (s)
(s) = ¥ (8)) = NO) (1.17)

=

where 4 (s) is a minor determinant of Z(s) formed by deleting the

m-th row and the n-th colum, and A(s) is the determinant of Z(s).
Examining the analytic properties of the various quantities in
(1.17) in the complex s-plane, we observe that every element of the

matrix Z(s) in (1.15) is analytic throughout the finite complex s-plane
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cxcept for a possible pole singularity at s = (. Because the quantities
Amn(s) and A(s) are found by taking product factors of all the elements
in:%(s) they are also analytic everywhere except possibly at s = (.
Hence the only possible singularities of §ks) are the zeros of A(s)

(and at s = 0) which are therefore poles of %ks).

We now write (1.16) in a partial fraction expansion

4

T(s) = ) V(is) + W;(s) (1.18)

i 575

In equation (1.18), the singularities of Y(s) are located at s = 3

and Y§ denotes the corresponding matrix of residues of Y(s), given by

7 - lim [(s-siﬁ(s)] e [)

S$*S.
1 1

and W;(s) is a column vector whose elements are entire functions, i.e.,
it has singularities only at infinity. For convenience in notation, it
is assumed here that all poles are of first order, as always appears to
be the case for perfectly conducting objects. If higher order poles
are present the above development must be modified accordingly. We
will also drop the term Wé(s), assuming it to be zero. This has been
found to be the case in a number of exactly solvable geometries, but

it has not yet been shown to be true in general. We will take the
point of view that the singularities at infinity, if they do exist,
seem to have negligible effect on numerical results. Hence, the

expression (1.18) becomes

e
T(s) = g s_;i V(s) (1.20)

8



It is possible to further simplify the expression (1.20) to a form
that is very compact and convenient for numerical computation. At the

so-called natural resonant frequencies, s = s., there exist non-trivial

i’

solutions T& to the homogeneous problems

Z,I. =0 (1.21)

where fi = ZIsi). There also exist non-trivial solutions to the homo-

geneous adjoint problem

o =7
1 1
>
%*H-ﬁ 1.22
or ii_ | (.2)

where T denotes the transpose, the asterisk denotes complex conjugate,
and the dagger denotes complex conjugate transpose or adjoint. In

order for (1.21) and (1.22) to hold, the determinant
a(s) = |Z(s)| (1.23)

mist vanish at s = S;- We will assume for convenience in the following
that A(s) has only simple zeros and that there is only one set of
solution vectors T& and ﬁi of equations (1.21) and (1.22) respectively.
The extension to the more general case where A(s) has multiple zeros or
when (1.21) and (1.22) have a degenerate set of solutions is relatively
straightforward but introduces uninteresting notational complications
in the development.

Wemay write the solution of (1.12) in several equivalent forms:
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-1 %r
T(s) = Z(s) V(s) = ¥(s) V(s) = Z =

V(s) (1.24)

Since we assumed that A(s) has only simple zeros, %ks) has only simple
poles. The elements of ?ks) are all meromorphic functions of the complex
frequency variable and the numerical methods discussed in Appendix A
may be used to evaluate the residue matrix §§.

If it were necessary to use the form of the singularity expansion
of T(s) given in (1.24), SEM would be somewhat impractical for numerical
computation because the residue matrix %? would have to be stored for
each resonant frequency. For most practical problems, this requirement
could quickly use up all available machine storage. Fortunately, it can
be shown that 5? is a dyadic; that is, its elements can be calculated as
the product of elements taken from two colum vectors. One of these
column vectors is just the modal current Ti of equation (1.21). To show

this we note that

%(s) Y(s) = Y(s) Z(s) i
e Zﬁfcs)
B 5_?_ i 55y

where U is the identity matrix. Hence

2im (s-si) %(s) %(s) 2£im (s-si) %(s) %(s)

+S . S .
SS1 SS1

S"'Si
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or equivalently,

and - —
Z’{ Y]i”= K] (1.25)

Comparison of (1.25) with (1.21) shows that the columns of Yg must be

proportional to T& and the rows must be proportional to ﬁ;. Hence

Y? can be written in the form
Y = 5. T.H (1.26)

where Bs is a constant to be determined. Using (1.26), Y(s) may be

expressed as

- TiFrir
Y(s) = g B3 55, (1.27)
To determine Bi’ we note that
- 7 H = at Td = 2
H;.f Z(s) Y(s) Hy = H; UH, = ||A;]| (1.28)

where ||A]| denotes the norm of a vector &,
[IKI| = VE'R

With (1.27) and (1.28), we have
11



If we note that

1]
Q—i-
T
=+
i
]
ol

. 3 - -H- 2

g By S-S5 J

We now take the limit on the left hand side as s approaches S and

note that
Z(s) - Z. —
vin T
S+S. Si 3y
]
where 2; is the derivative
dz7 _ %3
ds|__ j
5=5;

and Gij is the Kronecker delta. The result is

- 2 _ 1112
o MZ TN |17 = |1

from which we conclude
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By = ‘m—?l—'— ) (1.29)

(1.30)

Note that since T} and Hi are solutions to the homogeneous equations
(1.21) and (1.22), they may be defined only to within an arbitrary
constant. That this constant is arbitrary can be seen from the fact
that these vectors appear in (1.30) in such a vay that each term in
the expression is independent of the choice of normalization. There-
fore, from equation (1.20) and (1.26)

I(s) = | 8, T;H! Vi(s) (1.31)
1

11 S-S.
1 1

Equation (1.31) is the most important result in SEM. We see that
once the residue matrices Yz are known along with the various poles

S =S5, the entire frequency response can be found by substituting

s = jw. Hence from expression (1.31),

T(w) = | 8,T,H V(uw) (1.32)

1 11 ju- S;
i J

Alternatively, the time domain response is usually obtained by ex-
panding V(s) in terms of its singularities, if any, and using the

well known Laplace transform pair relationship for simple poles,
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t

S,
F(s) = , f(t) =u(t)e? - (1.33)

=-S.
s 1

where heo
F(s) = J £(t) e 5t at C(1.34)

is the Laplace transform of a time dependent function f(t) and u(t) is
the Heaviside unit step function. We see immediately in (1.33) that
the poles must be either in the left half of the s plane or on the
imaginary axis in order to exclude fields which grow exponentially
with time. Poles on the imaginary axis, however, correspond to un-
damped sinusoids which therefore do not lose energy by radiation.
Hence poles on the imaginary axis of the s plane must correspond
to interior resonances (cavity resonances) which do not radiate
fields on the exterior of the scatterer and, furthermore, do not
couple to the incident fields.

Many of the familiar results of circuit theory also apply to
the problem at hand. For example, we know that in order to obtain
real time responses, the poles must appear in complex conjugate pairs
and their residues must be complex conjugates. Furthermore, one may
interpret resonances in the frequency domain in terms of the nearness
of the given frequency to a pole.

Hence for expression (1.31), the time domain solution is given

by the Laplace inversion formula

_ ey oSt
i) = %J E 8, T, ﬂg%ds (1.35)

Cp
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where Cg is the Bromwich contour (Figure 2) in the complex s plane.
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Figure 2. Illustration of the closure of the
Bromwich contour in s-plane.
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SECTION II

FINITE CIRCULAR CYLINDER

2-1 E-field integro-differential equation

In this section, an isolated finite circular conducting cylinder is
analyzed by SEM to characterize the structure's transient scaftering
properties when a time varying step plane wave is incident. This
problem has also been independently treated by Tesche [ 3 ] using
slightly different numerical processing and showing somewhat differ-
ent data than that presented here.

In Figure 3, a circular cylinder of total length L and of radius a
is placed along the z axis in free space. If Ei(z,s) is the component
of the incident field along the z direction,Iz(z,s) is the correspond-
ing induced current on the surface of the conducting structure, then
equation (1.6) becomes the Pocklington E-field type integro-differen-

tial equation

22

—4nsaOEi(z,s) = ,’E—z - x{[A(z,s) (2.1)

where L
A(z,s) = J Iz(z',s)K(z,z',s)dz'
0

and where K(z,z',s) is the regular kernel function given by
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Figure 3. Geometry of isolated circular cylinder,
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-yR

K(z,2',s) = fr (z.zj
and

R2 = a2 + (z-z')2 _ (2.3)

y=2 (2.4)

For Ee-polarization, the incident electric field along the z

direction is given by

-y COs 6 z

Ei(z,s) = —Eo(s) sin 0 e (2.5)

A convenient way for solving the integro-differential equation
(2.1) is by the method of moments as outlined in section I, equations
(1.7) to (1.11), which leads to a numerical solution for the current.
The accuracy of the solution is entirely dependent on the choice of the
expansion function, the testing functions and the accuracy of numeri-
cal integrations.

The integro-differential equation (2.1) is reduced to a matrix
equation of the type (1.12) by dividing the structure into a number
of sub-sections and expanding the unknown induced current distribution
into a set of piecewise linear functions (Figure 4) over each of the
sub-intervals. According to the boundary condition, the current
must be zero at the ends of the structure. The resulting functional
form of the expression is matched at various discrete points on the

structure after approximating the differential operator by finite
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PIECEWISE
LINEAR

Figure 4. Piecewise linear basis set and position
of match points used in the Pocklington
difference-integral equation.
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differences. Hence, we obtain the matrix equation

Z(s)TI(s) = V(s)

(2.6a)
where
2(s) = [z ]
Zon = AZpe1»8) - [Y282+42]A(z,8) + A(z,_,S)
n
= 1 _ t [
A(z,s) = KJ (2'-z _;1K(z;»2",5)dz
zn-1
Zn+l
1 '
+ Z'J [zn+1-z']K(zm,z',s)dz
z
n
m = 1’ 2’ 3’ ’ N
n=1, 2, 3,>°°, N (2.6b)
V(s) = [VI;I]
Vo= - %F— y a2 EO(S) sin g e Y €05 8 7 (2.6c)
I
T(s) = | . (2.64d)
Iy

In the above

is

expressions, the length of the sub-section intervals
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L

) (2.6e)
and the impedance of free space is
1
n = [ug/egl® = 1207 (2.6f)

2-2 Application of SEM to the isolated circular cylinder

Every element Zmn of the matrix 715) defined in the expression
(2.6b) is analytic throughout the finite complex plane and hence the SEM
as described in chapter I, equations (1.16) to (1.20), can now be
applied to the matrix equation (2.6a).

The solution for the induced current distribution on the circular

cylinder is given by

T(s) = T L(s)V(s)

and from (1.20), (1.26) and (1.31)

0

I(s) = [ 8T (2.7)
1

1 S-Si

i
4

where s=s; are the poles or the complex natural resonant frequencies
of oscillation, T} is the modal current distribution, ﬁi is the
coupling vector, and By is just a normalizing constant. The vectors

T} and ﬁi may be evaluated as the solution to the homogeneous equa-
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tions (1.21) and (1.22). In Note 152 [8],a numerical procedure is dis-

cussed for evaluating first the residue matrix

¥ - 6. T.H - g_;llsni(s-si)f ‘1(5)_ (2.8)

1 111

and then the quantities T&, ﬁi and 8, which are derived from the
residue matrix by the methods discussed in Note 152 [8]. Because the
original integral operation satisfies the reciprocity theorem, it is
possible to show that in the present problem using subdomain basis and
testing functions, we should have,

T. « H.* (2.9)

1 1

where the approximation becomes better the more accurately T} and
Hi are calculated.

The frequency domain solution corresponding to the time har-
monic plane wave excitation (or the frequency response of a time
domain delta function plane wave excitation) is obtained by substi-

tuting s=jw in the expression (2.7);

TGw) = ] 8T, ‘J’Jml‘g)l- (2.10)
1
where
V(w) = [V,] (2.11a)
Eq(s) = E, (2.11b)
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and "
-J¢ cos ] z

Vh = -E0 sin g e (2.11c)

The time domain solution is obtained by taking the Laplace

inverse of the expression (2.7)

T(t) --2_1*J ] srﬁ*is-li—ds (2.12)

111 Sb
Gy

where C, is the Bromwich contour in the complex s-plane (Figure 2).

B
Hence from equation (2.12)

T(t) = ] 8, T.H! ¥, (v) (2.13)

i1

where

vi(t) = [v ;(D)]

1 [V .(s)eSt |
Vmi (V) = 73 f B s (2.14)
Cy 5755

For a step function plane wave incident, Eo(s) in (2.5) is equal to

Eo/s. Therefore, the expression (2.14) becomes

1 J M %{ct-cos ) zm]

vmi(t) = 7y | s 55, e ds (2.15)

Cp

where
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M= —EO sin ©

Expanding (2.15) in terms of partial fractions yields

S . - -
=[ct-cos 6 2z
BTN e [T
vmi(t) = 7 j Me lfi 5, Sisst (2.16)
C
B

The contour integral (2.16) can be evaluated using the Cauchy
residue theorem either by closing the Bromwich contour CB along
C: or C; in Figure 2, depending on the sign of the exponent term
Ct-Ccos 6 z. Because of the fact that all poles are located in the
left half plane, for ct<cos 6 Z0s the integral (2.16) is zero because
the path may be taken along CB+C: in the right half plane. ‘ For
ct>cos 8 2., closing the contour CB along C; in the left half plane so
that all the poles are included, (2.16) becomes

S.

1
—r

u(v)|e® -1 (2.17)

IZ

Vmi(t) -

%]

i

where

T =Ct - cos 6 zm

Because of the appearance in (2.17) of the Heaviside unit step
function u(t), the expression exhibits a causality behavior. Sub-

stituting (2.17) into (2.13), the time domain solution is obtained.

2-3 Numerical results for finite circular cylinder in free space

The results of the application of SEM to the circular cylinder
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are presented in this section for a cylinder of diameter to length
ratio of 2a/L=0.01.

Figure 5 shows the location of the resonant frequencies of an
isolated circular cylinder in free space. Basically, they appear
in layers parallel to the jw-axis and the poles closest to the

jw-axis are located at approximately

as one might expect from the well-known fact that dipole antennas
are resonant at frequencies such that the dipole is approximately an in-
teger multiple of a half wavelength in length. In order to have a
real response in the time domain, the poles must occur in complex
conjugate pairs and in the figure only the upper left half s-plane
poles are shown. There are, of course, no singularities in the
right half of the s-plane. The resonant frequencies are dependent
only on the shape of the structure, viz., the length and its radius.
They should, of course, be relatively independent of the type of
formulation and the numerical procedure used to determine them. Table
1 gives the results of the first few resonant frequencies closest to the
jw-axis as determined by different types of integral equation
formulations and current expansion sets:
a) Pocklington type integral equation, piecewise linear
current expansion set, differential operator replaced
by finite differences and point matching (Section 2.1)
b Pocklington type integral equation, piecewise sinusoidal

current expansion set with weighting functions chosen
to be the same as the expansion set (Galerkin solution [ 4 ])
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C) Hallen type integral equation, pulse current expansion
set and point matching {5 ]

d) Hallén type integral equation, entire domain current
expansion set (Tillman's sinusoidal basis set) and point
matching [ 6]

Figures 6 and 7 show the trajectories of the first and the
second resonant frequencies as the radius of the structure is in-
creased. The poles move away from the jw-axis indicating that
more damping is introduced as the structure becomes thicker. As
the structure gets thicker, one should take into account the end
effects. Figure 8 shows the location of the poles for a thicker
case 2a/L=0.1. These are obtained according to the method discussed:
in [ 7] using Pocklington type integral equation with piecewise
sinusoidal basis set and point matching. Flat end caps are in-
cluded at both ends of the structure and their effects are taken
into account using quasi-static approximations.

It is also a matter of interest to analyze a prolate spheroid
and compare its resonant frequencies in the limit as the eccentri-
city approaches unity with those of a thin wire structure. Figure
9 shows the pole locations for a thin prolate spheroid 2b/L=0.1407
as determined from the Pocklington formulation [7 ], treating the
structure as a body of revolution. In the limit as the reciprocal
eccentricity e approaches unity, the pole locations of the prolate
spheroid, indeed, approach the pole locations of the thin circular
cylinder; The trajectories of a few of the axial resonances of a
prolate spheroid as a function of the reciprocal eccentricity are
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shown in Figure 10. As the center radius is increased, the object
approaches a sphere in shape.

The real and imaginary parts of the first few natural modal
current distributions corresponding to the poles of the circular
cylinder closest to the jw-axis are shown in Figure 11. For very
thin structures, the real part dominates and is approximately
sinusoidal.

In Figure 12 and 13, the frequency domain solution obtained
from SEM calculations at different points on the structure is
given corresponding to a time harmonic plane wave incident and the
results are compared at the center of structure by solving the in-
tegral equation by direct moment method solution. Also in Figures
14 and 15 are given the time domain current distribution as obtained
by SEM for Ee-polarization with a step function plane wave incident
and these results are checked at the center point by direct Fourier
inversion of the frequency domain data obtained by solving the in-
tegral equation.

Figure 16 shows the convergence of the time domain current at
z/L=0.75 as the number of poles closest to the axis is increased.
As can be seen in the figure, the late time response corresponding
to the time ct/L>3, can be constructed with the 3 or 4 poles closest

to the jw-axis.

2-4 Finite circular cylinder parallel to conducting ground plane

In this section a finite circular conducting cylinder placed

parallel to a perfectly conducting ground plane is analyzed by SEM
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and the results are presented showing the effect of the ground plane
on the resonant frequencies and other transient scattering character-
istics of the structure.

In Figure 17, a circular cylinder of total length L and of
radius a is oriented along z axis. A perfectly conducting ground
plane is placed parallel to the structure in the xz plane at a dis-
tance y=d. A Pocklington type integro-differential equation for
the currents induced can be developed for the circular cylinder
over the ground plane similar to that developed for the isolated
case (equation 2.1) with appropriate modifications to take into ac-
count the effect of the ground plane. Applying image theory, the
ground plane is removed and an image structure is placed at y=2d. If
Iz(z,s) is the induced current distribution on the structure corres-
ponding to the incident z component of the electric field, Ei(z,s),
equal and opposite currents are induced on the image structure, so
that only the kernel function in the integral equation (2.1) is
modified. Hence the Pocklington E-field type integral equation for
the circular cylinder placed parallel to a perfectly conducting

ground plane is obtained as

i 32 olag
—4n350 E (z,s) = |[— - v*|A®(z,s) (2.19)
z 2
9Z
and L
Ag(z,s) = jIz(z',s)Kg(z,z's)dz'
0
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Figure 17. Geometry of circular cylinder parallel to a
conducting ground plane.

43



where Kg(z,z's) is the kernel function defined as

1 _
-yR -yR
e e
Kg(z,z's) =g - Rl (2.20)
and
RZ = 2% + (z-21)2 (2.21a)
) 2 2 ,
R* =a" + 44" + (z-z') (2.21b)
y = % (2.21c)

For Ee-polarization, the incident electric field along the
z direction is given by equation (2.5) plus the reflected field term

due to the ground plane, viz.,

E;(z,s) = -Ey(s) sin o g Y COs 6 2z

. E v sine (Zd):l 2.22)

Paralleling the procedure followed for the isolated case, the
integro-differential equation (2.19) can be solved by the method of
moments for the currents induced on the cylinder over the ground
plane. In section 2.5 the results of SEM are presented. The fre-
quency domain solution is again calculated by the expression (2.10)
with the incident electric field term replaced with equation (2.22).
Also the time domain solution for the circular cylinder over the
ground plane is calculated using the expressions (2.13), (2.14)

and (2.22)
by



I(t) = § 8, T,H v, (1) (2.23)
1

where _
v () = [vg; (8)]
°i
and = T1
=M c .
vmi(t) = g;-u(tl) e 1
e,
-Lue) e T (2.24)
i
Ty = Ct - cos & z (2.25a)
T, = Ct - cos 6z - 2d sin 6 (2.25b)

2-5 Numerical results for circular cylinder parallel to ground

plane

In this section are presented the results of the application of
SEM to a circular cylinder parallel tqQ a conducting ground plane. Pole
trajectories are given showing the influence of changing the distance
above the ground plane. Also shown are modal currents and time do-
main and frequency domain current responses. It is found that the
pole trajectories are considerably more complicated than iﬁ the case
of an isolated cylinder.

Figure 18 gives the location of the complex natural frequencies
and also serves to identify the indexing of the poles (s,, denotes
the nth pole in the layer £). Oniy the upper left half s-plane

poles are shown in the figure and their complex conjugate counterparts

45



]
o

L—, o4 * ofl2

ax 7410

X
! X
43
- ®x o6
X 14|
N -
® X
* x, 14
X
" 3’” @
‘ 9o 21 12
» . 2
x X
41 11’J
- P Y Y .
a 31 2

qzl.-'e 6 -4 0

Figure 18. Natural frequencies of circular cylinder over
ground plane, 2a/L = 0.01,2d/L = 1.0.

46



are omitted. The poles appear to be located in layers parallel
to the jw-axis, and those poles closest to the jw-axis (first
layer) are slightly perturbed compared to those of the isolated case

(Figure 5) but are still located roughly at

The poles located in the remaining layers (2=2,3, ...) are apparently
due to the parallel interaction between the circular cylinder and its
image. Furthermore, each pole is designated as either even or odd
depending on the evenness or -the oddness of the corresponding modal
current distribution with respect to the center of the structure.

The trajectory of the pole S11 with the radius of the circular
cylinder held constant and the distance d over the ground plane
varied is shown in Figure 19. For the cylinder very close to the
ground plane, the pole tends toward wL/2c = n/2, the first resonant
frequency of the two wire transmission line formed by the wire and its
image. As the distance above the ground increases, the trajectory
appears to spiral around the pole location of the isolated case until
another pole from the next layer passes sufficiently close to the
spiral, in which case the two poles seem to exchange roles. That is,
the original pole near the free space pole leaves the spiral path
and begins to approach the origin while the new pole takes up the

spiral trajectory left by the original pole. This pole makes only
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one circuit around the free-space pole and then is in turn displaced
by the next pole in the same layer. Thus, for any distance of the
structure above the ground plane, there is only one pole circling
the free space pole. From numerical studies, it was observed that
the above trajectories further depend on the radius to length ratio
of the structure. For comparatively thin structures, the 591 pole
spirals many times around the pole location of the isolated case
before another pole from next layer comes close enough to displace
it. In Figure 20, the second and the third layer pole trajectories
are traced. Observe that as the distance to the ground plane is
increased, they tend to move towards s = 0. For thin structures,
the second and third layer poles pass close to and interact with the
S11 trajectory, but they ultimately miss the spiral path of $y1 @S
distance d over the ground plane is increased. It was observed

that the closer these secondary layer trajectories come to the
region of the free-space pole the more perturbed the spirals become.
The same trajectories are shown again in Figure 21, plotted with an
alternative normalization. The normalization to distance above the
ground plane in Figure 21 emphasizes the association of these

poles with the interaction of the ciicular cylinder with its image,
as seen by the relative insensitivity of the imaginary part of the
normalized resonant frequency to changes in distance over the ground
plane. We further note that the spacing between the pole trajectories

is approximately nm along the wd/c axis, which is consistent with the
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requirement that the cylinder-to-ground interaction should be approxi-
mately resonant when the spacing d is ébout a half wavelength or an
integer multiple thereof. Further we note that the longer the wire,
for a fixed distance d, the larger '"Q" of the resonance, or equiva-
lently, the smaller the damping constant. The S17 pole trajectory is
shown in Figure 22 as the distance over the ground plane is increased.
It spirals approximately at twice the rate of the 511 pole trajectory.
If the structure is made slightly thicker, the 512 trajectory would
behave similar to the S11 trajectory.

In Figure 23 are shown the real and imaginary parts of the
modal current distributions corresponding to the first layer poles.
The real part of the modal current distribution resembles closely that
obtained for an isolated case (Figure 11). The modal current distri-
bution along the circular cylinder is, of course, influenced by its
distance over the ground plane, but the numerical results show that
these influences are relatively minor. The magnitude of the modal
current distribution of the second, third and fourth layer poles is
shown in Figure 24. It is interesting to note that the modal current
distribution of the second layer is similar to the modal current dis-
tribution of the first pole in the first layer (511) and this layer
is the one whose poles interact with it. Similarly, the modal cur-

rent distribution of the third and fourth layer poles resemble some-
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what the modal current distribution of the second and third poles,
respectively, of the first layer.

The normalization constant Bon 35 defined in Equation (1.29)
is calculated according to the procedure explained in Appendix B and
in Figure 25 is shown the variation of By as the distance d above the
ground is varied. Byg varies somewhat cyclically with respect to
distance over the ground plane until the point is reached where the
pole S11 leaves and a new pole enters the spiral path about the free
space pole, at which point Bll changes phase and has a very large
magnitude. The same variation 1in Bao is depicted in Figure 26 when the
new pole s,, enters into the spiral péth. Also, the variation of B35
Figure 27, corresponding to pole 539 is rather smooth along its tra-
jectory until it too enters into the spiral path about the free space
pole at a still larger distance above the ground plane.

According to Equation (1.32), the current response is propor-
tional to the normalization constant an. Figure 28 shows the cur-
rent response in the frequency domain in the vicinity of the pole
s at the center point of the structure due to a delta function
plane wave normally incident. Neglecting the excitation due to the

reflected field from the ground plane, the quantity of interest is

I(ju) = X Tor 51
n

where the summation includes only the poles (and their complex
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conjugates) S11 and S92 which is on the verge of entering the spiral
path of S11° Even though the constants BynVary abruptly in this region;
their effect is smoothed somewhat on the jw-axis of the s-plane because
of the tendency of the terms to cancel and because the denominator
factor is largest in the same region. Hence, as one would intuitive-
ly expect, the magnitude of resonances in the frequency domain is not
so strongly influenced by the distance of the wire above the ground as
the spiral pole trajectories and the anomalous behavior of the Bon
might suggest.

In Figure 29, the frequency domain current obtained from SEM
calculations (Equation 1.32) at three points on the structure is
given corresponding to a time harmonic plane wave incident and the
results are compared at the center point of the circular cvlinder
by solving the integral equation by direct moment method solution
in the frequency domain. The time domain current distribﬁtion is
given in Figure 30, as obtained by SEM for Ee-polarization with a
step function plane wave incident and these results are checked at
the center point by direct Fourier inversion of the frequency domain
data obtained by solving the integral equation. The resultant time
domain current at the center point of the structure obtained by
the superposition of the incident and the reflected fields is shown
in Figure 31. The figure clearly indicates the time delay involved

in the reflected field due to the presence of the ground plane.
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Figure 32 shows the convergence of the time domain current as the

number of poles closest to the jw-axis is increased.
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