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ABSTRACT

The charge density induced on the surface of a highly
conducting prolate spheroid in the presence of a plane wave
electromagnetlc field is obtalned. The derlived formula is
approximate except at the tips of the spheroid, where it
yields exact results. In the theoretilcal development shad-
owing effect 1s ignored. One application of the theory is
the determination of the total permissible current in a missile
whose axis is perpendicular to the ground plane, for a verti-
cally polarized incident field, before dlelectric breakdown of

the ambient medium occurs at the tlp of the missile.




INTRODUCTION

A few years ago an exact formula was obtained for the total axial
current in a prolate spheroidal receiving and scattering antenna when the
incident field is directed parallel to the major axis of the spheroid.1
In the ‘theoretical development the circumferential variation in surface
current density was not considered, l1.e. shadowing effect was ignored.2
Nevertheless, when the ratio of the major to minor axis of the prolate
spheroild is large accurate values for the surface current density are
obtalned because the phase shift of the incident field along any diameter
of the structure is small.

Both analytical and numerical solution techniques are presented in
this paper for determining the charge density induced on the surface of a
prolate spheroid by an incident plane wave with the electric field directed
parallel to the axis of the spheroid. Although the shadowing effect is
ignored, the analytical formula becomes exact at the tips of the spheroid
where the charge density generally reaches a maximum. The analytical fornula
is obtained via a boundary value problem solution and in most cases is less
convenient to evaluate than the numerical solution. However the analytical
solution is the more accurate. But a comparison of the two results
irdicates that the numerical solution may be sufficiently accurate in many
cases.

Penetration of electromagnetic energy through electrically small
openings in otherwise shielded enclosures has been studied recently.3"6
In the sequence of steps to solve the problem it is necesséry to determine

the charge and current densities established on the structure by the total




electric field and magnetic field at the position of the opening when
metallically closed.3 Since a prolate spheroid is geometrically similar
to a missile the charge density expression obtained in this paper is
directly applicable to the shielding problem.

In concluding this section of the paper, the writers wish to mention
that a method for estimating the electric field near the end of an antenna
has been developed by King.7 This result has application in the study of
the proximity field hazard of linear antennas and in the study of the
power handling limitation due to dielectric breakdown of the ambient
medium. A comparison of King's expression with the corresponding result

of the presented formulation is made.




ANALYSIS

1. ANALYTIC SOLUTION

The electric field incident on a prolate spheroid may be expressed

by the relation
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Since the prolate spheroid is perfectly conducting, the induced surface

charge density is

P = g % . (Ei + EB) . (3)

where €, is the dielectric constant of free gspace. In the rationalized
mks system of units, € = 8.85 x 10712 F/m. Using (1) and (2) in (3)

yields,
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where (£,n,¢) are the prolate spheroidal coordinates.

Of considerable interest is the charge density at the ends of the

spheroid, i.e., ps(il,¢). Before evaluating (4) note that

7Tty L2t -
n 2n!
_ n=0,1
Lim(1l - n2)7% sz(c,n) = (5)
n+l 0 otherwise
- Y o LDl m=1
n 2n!
;ﬁ d =0,1 E
1im(l - n2)* — s (c,n) ={ (6)
ol dn "mg ’
0 otlterwise

where ¢ = kF and diz(c) are defined in the literature.® (Tre interfocal
distance of a prolate spheroid is 2F.) Here and in the sequel, the prime
over the summation sign indicates that the summation is over only even
values of n when & is odd, and over only odd values of n when % is even.

Using (5) and (6) in (4) yields
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The expansion coefficients of the scattered field are

where
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Substituting (8) into (7) yields
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Using the Wronskian relation®
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Note that (1l1l) is an exact equation for the charge distribution at the

tips of the gpheroid. However, it is not possible to develop a corre—

sponding relationship for the charge distribution over the complete

surface of the spheroid, but it is possible to obtain an approximation to

the charge distribution which applies for electrically thin spheroids.
For an electrically thin prolate spheroid the surface current

dengity is approximately

. I -~
js(n)  Zre(m) " (12)

where I(n) is the total current through the cross section of the prolate

spheroid at n with cross section radius r(n) given by“

£(n) = F[(E2 - 1)(L - n2)TF .




From the equation of continuity the charge distribution is obtained as
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The total axial current induced on a prolate spheroid is!
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Substituting (12), (14), (15), and (16) into (13) yields for the surface
charge density
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Note that if (17) is evaluated at the tips of the spheroid
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As expected, (18) is in exact agreement with (11). This occurs since the
electrically thin condition assumed for (13) is always satisfied in the
vicinity of the tip of the spheroid.

Whenever the interfocal distance of the spheroid assumes an odd
integer multiple of a half wave length the expressions for the current and ‘
charge on the spheroid assume particularly simple forms. For ¢ = mn/2, where

m is an odd integer,1

I(n) = 1I(0) cos (% n) (19)

Using eqn. (19) in egns. (12) and (13) yields
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In terms of the axial coordinate, z, the total axial length, 2h, and the

midsection radius, a, the foregoing becomes

I(z) = I(0) cos(g—“%) (21)
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Keep in mind that (22) becomes an exact expression for z = th and (21)
is always exact.

If eqn. (22) is applied to a driven antenna where I(0) becomes the
antenna terminal current then eqn. (225 can be used to estimate the
intensity of the fields near the ends of a driven antenna. Using a highly
approximate methodology Kinz’ has developed an estimate of these fields
for a cylindrical antenna that is very thin and i . operating near
resonance, i.e. kF = mn/2. King's estimate agrees exactly with (22)

although it is determined b:r a completely different procedure.
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2. NUMERICAL SQLUTION

By using the so called method of moments an integral equation can be
solved to obtain the axial current induced on a prolate spheroid. A com-
parison of the numerically obtained results with analytical results yielded
agreement to about three significant figures (see ref. 10). However there
were no charge density comparisons.

A knowledge of the axial current is sufficient to determine the
surface charge density provided the spheroid is electrically thin. The
surface charge density on a body of revolution such as a prolate
spheroid 1gl0

O R AR T COEROY (24)

where a(z) 1s the radius of the body at the axial coordinate z and t is
the surface ccordinate measured from one tip of the spheroid. It is

readily shown that the foregoing yields
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where the prime indlcates a derivative with respect to the axial coordi-

nate z. For the prolate spheroid

a(z) = —5———:‘1 2 - 22] (26)

noting that h = FE and a = FYg2 - 1
In ref. 10 the current distribution 1s represented by a piecewise

gsinugoid, i.e.

N

I(z) = nzl £ (2) X3z ,z_,.) (27)

11




where

I(zn+l) sin k(z - zn) + I(zn) sin k(zn+l - z)
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exhibits discontinuities at the z points., 1If the current derivative at

the discontinuity is defined to be the arithmetic mean then one obtains

k

I'(zn) 2 sin k(zn_l_1 - zn) [I(zn+1) - I(zn—l)] (29)

for n:= 2,3,--+, N. No special procedure is required to obtaln the
current derivatives at the end points z, and Zypl

Using eqns. (26), (28) and (29) in eqn. (25) allows the numerical
determination of the surface charge density induced on a prolate spheroid.
It is of interest to compare the numerical results with data obtained
from the analytical expregssion., In particular it is important to

determ’ne the accuracy of the numerical formulation inasmuch as the

current expansion used ylelds a discontinuous charge distribution.
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NUMERICAL RESULTS

First the charge densities from the analytical and numerical
solution techniques are compared. The following dimensions are considered:
h = 10.125 in and a = 0.9965 in. Hence £ = 1.0048787 and from the

numerical solution technique for £ = 290.2 mHz (kF = n/2),

I0) = (4.5168 + § 0.22130)117¢ m A

where Einc is the amplitude of the incident electric fleld directed
parallel to the axis of the spherdid. Using the foregoing in (22) allows
the computation of the charge density from the analytical formula. The
corresponding numerically obtained charge density is compared with the
regults from the analytical formula and exhibited in Table 1. Of course
the analytical results are more accurate but the agreement between the
numerical and analytical results indicates that for most practical
applications the numerical solution may be sufficiently accurate.

A second calculation is presented to illustrate the determination
of the maximum current (and incident field) that occurs just before corona
breakdown appears. Consider now kF = n/2 and £ = 1.00063. At sea level
corona breakdown occurs at about 3 x 106 V/m. Tte maximum current on the

spheroid is that which would produce a charge density
p (1) = e (3 x 105 V/m)

at the tip of the spheroid. Thus from (22) the maximum current occuring

jus t before corona breakdown is
[k 1(0)] = 98.99 A/m (30)
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TABLE 1l: Surface Charge Density Induced on a Prolate
Spheroid with the Incident Electric Flux
Density, DIRC parallel to the Axis.
& = 1.0048787, 2h = 0.51435 m and £ = 2.902 mH=z

pS/Dinc
n = z/h ANALYTICAL SOLUTION NUMERICAL SOLUTION
0 0 0

0.1 0.11507 -~j 2.3486 0.04954 ~j 1.6825
0.2 0.23114 -3 4.7174 0.10318 -j 3.3761
0.3 0.34954 =-j 7.1340 0.16548 -j 5.0951
0.4 0.47248 -j 9.6429 0.24181 -j 6.8656
0.5 0.60385 -j 12.324 0.34025 -j 8.7425
. 0.6 0.75140 -3 15.336 0.47301 -j 10.828
0.7 0.93158 -j 19.013 0.66316 -—j 13.348
0.8 1.1877 —j 24.240 0.96699 -3 16.912
0.9 1.6858 -3 34.407 1.5840 -3 23.932
1.0 5.3045 -j 108.26 7.7833 -3 109.62
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To determine the incident field r:quired to produce such a current (16)

is used. From (16)
|kI(0)| = o0.02737 g™ (31)
Combining (30) and (31) yields the maximum incident field

1P - 3.6 kV/m

above which the induced charge distribution causes corona breakdown to
occur. A corresponding computation can be made for-determining the
maximum input power to_a spheroidal antenna occurring just before corona

breakdown.
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CONCLUSION

Using the boundary-value-problem approach an exact solution is
obtained for the surface charge density induced on the tips of a prolate
spheroid by an incident electric field directed parallel to the axis of
the spheroid. Also obtained for the total surface charge density is an
expression approximately valid for electrically thin spheroids. Data
from this approximation is used to verify the method of moments solution
for the charge density.

Also a sample calculation is presented for determining the maximum
current (and accompanving incident field) supported on the prolate

spheroid just before corona breakdown occurs.
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