A DD
Interaction Notes

Note 269
January 1976

The Tapered Antenna and 1its
Application to the Junction
Problem for Thin Wires

Ronold W. P. King and T. T. Wu
Harvard University, Cambridge, Massachusetts

Abstract = When electrically thin conductors of different cross-sectional
size meet, the continuity of current is assured by Kirchhoff's current law.
Additional conditions must be imposed on the derivatives of the currents or
the charges per unit length., The nature of the required conditions is deter-

mined from an analysis of the tapered antenna,



1. INTRODUCTION

In order to determine the total axial currents in n confluent electri-
¢ally thin conductors with different radii when excited by an externally e
maintained electromagnetic field, n conditions must be imposed on the cur-~
rents and their axial derivatives at the junction. In general, these are
Kirchhoff's current law and (n - 1) conditions on the derivatives. Since the
total current in a typica; conductor i obeys the equation of continuity (cen-
gservation of electric charge), viz.,

dIi
-+ jmqi =0 ‘ (1)

ds
where s is the variable along the axis of the conductor, a condition on
dIi/ds is equivalent to one on Qy . With fotational symmetry, q; = 21raini
where qy is the charge per unit length and ny is the surface density of

charge. It has been assumed by some investigators [1], [2] that the appro-

priate condition at the junction is the continuity of the surface density of
charge in the form ny =vqi/2ﬂai. It follows that‘with Ny T Ng = ees =Ny =
cee =N at a junction, the charge per unit length on each conductor as the
junction is approached, viz., q; = Zﬂaini, is proportional to the surface
area 2ma,.of the conductor in question. The corresponding conditions on the .

i

derivatives of the currents are:
a"l(al /3s,) = al(s1. /s ) = = a'l(al [3s,) (2a)
1 1 1 2 2 2 s i i S

An alternative condition would require the charges per unit length {and not
the surface densities) to be the same.- That is, I S gy = <o =

a9, at the junction, This is equivalent to

= - = 2b)
aIl/asl 312/352 cee BIi/asi ves (
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Note that the two conditions (2a) and (2b) are the same only when all radii
are equal,

Which of these conditions is correct? Or is perhaps neither right? An
answer to these questions is sought from an investigation of the behavior of
the charge per unit length along a tapered antenna when driven at an arbitrary
point by a delta-function generator. How do the quantities q and n vary with

the radius of the wire, r(z), when this is not a constant?

2. DIFFERENTIAL EQUATION FOR THE CURRENT IN A TAPERED ANTENNA
Consider a long tapered conductor with its axis along the z-axis of the
cylindrical system (r,¢,2z). A section of the conductor is shown in Fig. 1.
Since rotational symmetry obtains, the tangential electric field on the sur-
face of the conductor due to the currents and charges in i; has the compon-

ents Er and Ez in the combination

Etang = E, cos 6 + E_ sin 6 3

where 6 is the angle between the tapered surface and the axis as shown in

Fig. 1. It is related to the varying radius r(z) by the relation
Ar = ot
Um(ZZ) = tan 6 = ar(z)/9z = r'(2) (4)

The components of the electric field can be expressed in terms of the compon-

ents of the vector potential K(V x R = %) as follows:

9A 3A
- Jw 1l 5 z T
Ez B k2 [ r or r( 3r 9z N - Ga)
9A A
- Juw 3 T z
i k2[ z (52 )] (5)

where Az depends upon the large axial current Iz’ Ar on the small radial com-
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FIG. 1. SECTION OF TAPERED ANTENNA
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ponent Ir' Since

4] << 18] ©

it follows that

3A 2
Juw,1 3 z Jw, 3 2
E & o (=2 r —2) = o (== + k)A (7a)
z K2 T ar 3r kZ 322 z
2
3 A
2 du__z

E =~ 2 9201 (76

where the form on the right in (7a) is a consequence of the fact that

(7% + k®)A_ = 0 at all points, With (3) through (7) it follows that
2

2

Jw 82 2 8 Az '

tang == 2 cos & [( __§'+ k )Az + 9zor r'(2)] (8)
k 9z

Except at the generator, Etang = 9 80 t?at
2 o%a
-ty t )
( 5 + k )Az + 5552 © (2) 0 €))

oz

It is Iimportant to note that the partial derivative aAzlaz does not re-
present the total rate of change of Az with respect to z. The operator for

the total derivative is
d/dz = 3/3z + r'(z) 3/3r , (10)

When the conductor is electrically thin so that for all z in the range

-hl <z< h2 the following inequalities are satisfied:
kr(z) << 1 , (h1 + hz),>> r(z) (11)

with (11) advantage can be taken of the special properties of the real and



imaginary parts of the quantity e_ij/kR = (cos kR - j ein kR)/kR, where
R=[(z - z')2 + rz(z)]llz, to simplify the z-component of the vector poten-
tial, viz,, Az = AzR 4 jAzI' The two ﬁarts (of which each is complex) are

defined by:

u hZ i hZ
- 0 1y cos kKR ., =_.0 ¢ty Sin kR . ,
Ap = Tr i I(z') =5—dz' ; A v [ 1% S dz (12)
-hy --hl

In the first integral the integrand has a sharp, high peak when z' = z
and {cos kR)/R + 1/kr(z) >> 1. It follows that with this weighting factor it

is a good approximation to set
L "o
Ar * 7y V(2)1(2)] (13)

where, as shown in the Appendix, ¥Y(z) 1s a proportionality factor that de-

pends only on the radius of the wire at and near the point z, Specifically,
¥(z) = 2{n[2/kr(z)] - v} (14)

with v = 0.5772. The corresponding formula for a wire of constant radius
with r(z) = a is in the literature [3]. In the second integral in (12) the

radius of the conductor .ecan be neglected with the result

hy

i
0
= Ir [ 12"

-hl

.sin k(z - 2z")
z -z'

. t
AzI dz ' (15

which is independent of the radius of the wire.

It is shown in the Appendix that with (10)

2
b . 3 2 ~ " 2
;E{-;;§-+ k ]AZR i [I"(2) + k"I(2)]¥(2) {16)
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an d har 21'(2) /x(2) ' an
Mo 3z or z)ixiz .
a2l K21A . = K2g(z) (18)
Yo az2 2l 8 (
where
k(hz-z)
g(z) =2 [ I(u,z) [u cos u ; sin u:]du ' (19)
—k(hl+z) u

for an antenna that extends from —h1 to hz.

When these quantities are substituted in (9), the resulting equation is:
[1"(z) + KI(2) 1¥(2) - 2[r"(2)/2(2) 11" (2) + §K g(2) = O (20)
However, with (14), d¥/dz = ¥'(z) = -2r'(z)/r(z) so that
I"(2) + (¥ (DY (2) + KL(z) = =3k g(2)/¥(2) (21)
This 1is the'differential equation for the zero-order current ;n the tépered

wire,

3, THE CHARGE PER UNIT LENGTH AND ITS SCALE FACTOR
The charge per unit length is related to the current through the equa-

tion of continuity (1). Thus, with I'(z) = -jwq(z), (21) becomes
Q' (2)¥(z) + ¥'(2)a(z) = (Jk*/0) [1(2)¥(2) - jalz)] (22)

In order to determine the local behavior of the zero-order charge per unit

length near any point z, the near-zone or quasi-stationary approximation is

adequate, This is obtained from (22) by neglecting the terms with kz = w2/c2
as a coefficient. The result is the simple differential equation
q'(z2)¥(z) + ¥'(z)q(z) = O (23)



or
L la@¥@] &0 (24)
This has the solution
q(z)¥(z) = constant, (25)

This 1is an importantvresult. It indicates that the radius-dependent scale
factor for the charge per unit length along a tapered conductor is ?-l(z)
where ¥(z) = 2{&n[2/kr(z)] - y}. That is, q(z2) ~ constant/¥(z).

An informative application of the constancy of the quantity q(z)¥(z) is

to a conductor that has the radius al from z = -hl to z = 0 and the radius a2

from z = 0 to z = h2. Over the range -hl <z < -Sal, the radius-dependent

1

where Y

scale factor for the charge per unit length is ¥.™ where ¥, = 2[£n(2kal) -v]s

1
= 2[in(2/kay) - v].

2 2

<z< 5a2, the scale factor chaunges

over the range 5a <z< h2’ the factor is ¥

2
In the electrically very short range -Sal
continuously from W;l to Wzl with most of the change occurring quite near

z = 0, Tt follows that no significant error is introduced in a zero-order

1 1

the factor ?El in the range 0 < z < h, with a discontinuous change at z = 0

instead of a rapid by continuous one. Thus, the condition (25) can be ex-

approximation if the scale factor ¥ is used in the range -h, < z < 0 and

pressed as follows for the junction between two sections of conductor with

radii ay and a, and a step at z = 03
9;¥y = 9,%, (26)
vhere q, = ql(—Sal) = ql(O); q, = qz(Saz) = q,(0); and

¥, = 2{zn(2/kal) -yl , ¥, = 2[2n(2/k32) - vl 27




For example, when ka. = ,01, ka, = ,02,

1 2

Yl = 2{2n 200 - ,5772] = 2[5,298 - ,577] = 2 x 4,721 = 9,442

¥, = 2{gn 100 - ,5772] = 2[4.605 - ,577) = 2 x 4.028 = 8.056

Evidently,

qllq2 = wzlwl = 0,85 (28)

4, GENERALIZATION AND CONCLUSION
The behavior of the charpe per unit length along a tapered cylinder in-
dicates that the product of the charge per unit length and the expansion
parameter ¥ is the quantity that is constant in a change of radius. Since
for electrically thin conductors the surface area of the junction itself is
negligible and the transverse distribution of charge is unimportant, it may
-be concluded that in addition to Kifchhoff’s current law the following condi~-

tions must be satisfied at a junction of n conductors with different radii:
q¥p = dp¥p = eee = Ag¥y = o =¥y * (29)

In (29) a4 is the charge per unit length on a conductor with radius ay and

Wi ] 2[2n(2/kai) - v]. When the conductors are all electrically very thin,
all of the Wi's may be so large that the relations (29) become approximately:
qléqzé...éqié'._éqn : (30)

There appears to be no justification for the conditions (2a) or their equiva-

lent:

q
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6. APPENDIX
1. Evaluation of ¥(z)

The function ¥(z) is defined as follows:

h2 k(hz-z)
‘{’(z) - f E.O_S’R.lc..r-{-dz' = 5 2
-h, ~k(hy+z)  [U7 + A"(2)]

cos[U2 + aZ(z)1}/2
173

dU (A-15

where A(z) = kr(z). The integral on the right can be separated into.two

parts as follows :

k(h,-~2z) k(h,=z)
2 dy 277 1 - cos[U? + A%()]}/?

‘{/(z) = -
~k(hy+2) [U7 + AZ(z) 112 k(htz) (U7 + A% ()]

dau

(A-2)
Since Az(z) is negligible everywhere except in the range -5kr(z) < U < 5kr(z)

near U = 0 in the first integral, (A-2) may be approximated as follows:

' k(h,~2z)
. 5kr(z) -5kr(z) 2 .
V(z) = | du/[u? + A2(2)11/2 4-(] + [ du/u - Cin k(hy - 2)
-Skr(z) —k(hl+z) 5kr(z)

- Cin k(hl + z) (A-3)

where Cin x = /¥ [(1 - cos U)/U}dU. Since r(z) is assumed to vary slowly

0
over distances of the order of 5r(z), it is satisfactory to treat A(z) as ap-
proximately constant over this small range in the first integral at the value

where U = 0 and its contribution is sreatest.,

With these considerations the integrals reduce to
¥(z) = tn[4(h; + 2)(hy = 2)/r(2)] = Cin k(h, = 2) = Cin k(hy + 2) (A-4)

If it is now assumed that the conductors are sufficilently long so that over

most of their extension except close to the ends the conditions

k(h1 +2) >w/2 k(h2 - z) > n/2 (A-5)

11



obtain, the following approximations can be made:

Cin k(‘n2 - 2) =y + &n k(h2 - 2z) : V(A-6) a

Cin k(h1 +2) =29 + fn k(h1 + z) (A=7)

When these are substituted in (A-4), the final result is
¥(z) = 2{en[2/kr(z)] - v} (A-8)

which is independent of the length of the conductor,
2. Evaluation of derivatives

Wwith (10), the following derivatives are readily evaluated:

3A
b ZeR AT Td ey 3, W[ e 2
W 5 g (& - 2t & - @ & |ue@ran

or

- L@V + T (DY) - r () B | 0o

= ~27(2) [r'(2)/r(z)] + I'(2)¥(z) + 2I(z)[r'(z)/x(2)] = 1'(2)¥(2) (A-9)

Similarly,
2
3 A C
. f’%~—;—§-& ir@ -5;]1'<zw<z) = 1%(2)¥(2) (4-10)
z
Also,
41 aAzR 3¥ (2) 21(z)
— - I(z) [T, (A"'ll)
¥y r 3r r(z)
i AR T4 3 1(2) 21" (2)
a4 AR L. 3 — - o e -
Mg 9z 9t [dz r'(2) ar] [ 2 r(Z)] r(2) (4-12)

12




It follows that

2
, _

Since AzI is independent of r, aAzI/Br = 0 and (15) gives:

4y aAzI h2 k cos k(z - z') in k(z - 2")
-‘I—'——a—;-- - f I(z") [ z - 2! -2 2 ]dz' (A-14)
0 —-h1 (z - 2")
2 h
4n ? AzI - - IZ I(z") [_ kz sin k(z - z') 2 cos k(z - z')
— a1
Mo 922 ~hy -z (z - 22
!
4 2 8in k(z = ) } dz" (A-15)
(z - 2")
It follows that
4n [ 3% .2 g K K ( ") sin k( D)
= (—-——2—+k )Azl=2 / I(z')[ gos Xz -2 ) _EnxEo % ]dz' (A-16)
0 \3z --h1 (z -~ 2") (z - 2")
With the substitution u = k(z - 2z'), this becomes
4o [ 32 . 2 2 ~
T
Yo 9z
- where
o k(h,-2)
glz) =2 | I(u) [ ncos y 3 sin “]du (A-18)
-k(h1+z) u
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