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ABSTRACT

A computer program is developed for calculating the transmis-
sion characteristics of a rectangular aperture in a perfectly con-
ducting plane excited by an incident plane wave, The solution is
obtained from the integral equation for the equivalent magnetic cur-
rent using the method of moments. The expansion functions and testing
functions are pulses in the direction transverse to current flow, and
triangles in the direction of current flow. Quantities computed are
the equivalent magnetic current and the transmission cross section
patterns., To illustrate the solution, computations are given for
narrow slots and for square apertures. The computer program is de-

scribed and listed with sample input-output data.
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PART ONE

THEORY AND EXAMPLES

I. INTRODUCTION

Formulas for the computation of plane wave transmission through

a rectangular aperture in a perfectly conducting plane are derived in
Part One. The computer programs which use these formulas are given in
Part Two. The general theory of solution is derived in a previous re-
port [1]. Basically, the procedure is an application of the method of
moments to an integral equation formulation of the problem. The unknown
to be determined is the equivalent magnetic current over the aperture
region, which is proportional to the tangential electric field in the
aperture. The solution is expressed in terms of an aperture admittance
matrix, which is dual to the impedance matrix for the complementary con-
ducting plate. Once the equivalent magnetic current is obtained, the
electromagnetic field can be computed via potential integrals. The nota-
tion used in this report is the same as that used in [1]. We abstract
equations from this previous work as we need them, referring to them by

equation number. We do not attempt to summarize the theory here.

Previous studies of aperture problems include those for small aper-

tures [2,3], and those for circular apertures [4,5]. Some results for

[1] R. F. Harrington and J. R. Mautz, "A Generalized Network Formulation
for Aperture Problems," Scientific Report No. 8 on Contract F19628-73-C-
0047 with A.F. Cambridge Research Laboratories, Report AFCRL-TR-75-0589,
November 1975.

[2] H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev.,
vol. 66, pp. 163-182, October 1944.

[3] €. J. Bouwkamp, '"Diffraction Theory," Repts. Progr. in Phys.,
vol. 17, pp. 35-100, 1954,

[4] G. Bekefi, "Diffraction of Electromagnetic Waves by an Aperture in
a Large Screen,'" Journ. Appl. Phys., vol. 24, No. 9, pp. 1123-1130,
September 1953.

[5] C. J. Bouwkamp, '"Theoretical and Numerical Treatment of Diffraction

Through a Circular Aperture,” IEEE Trans. on Antennas and Propagation,
vol. AP-18, No. 2, pp. 152~176, March 1970. '
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Fig. 1. Rectangular aperture in a conducting plane.



apertures of arbitrary shape have been obtained using Babinet's
principle plus a wire grid approximation to the complementary con-
ducting plate [6,7]. The reader may consult these papers for other

references.

IT. STATEMENT OF THE PROBLEM

Figure 1 shows the probhlem to be considered and defines the coordi-
nates and parameters to be used. The infinitely conducting plate covers
the entire z=0 plane except for the aperture, which is rectangular in
shape with side lengths LxAx and LyAy in the x and y directions, respec-
tively. The excitation of the aperture is a uniform plane wave incident
from the region z < 0., The field to be computed is the far zone magnetic

field in the region z > 0, at the angles 6,4.

The solution is expressed in terms of the equivalent magnetic current
¥_= é x E, where é is the unit z-directed vector and E.is the electric
field in the aperture. To compute M, we use a linear expansion in terms
of basis functions ﬁi and evaluate the coefficients by the method of
moments. This involves determining a generalized admittance matrix,
evaluated in Section III, and an excitation vector. To determine the
field produced by M, we need a measurement vector. The excitation and

measurement vectors for the present prohlem are of the same form, and are

evaluated in Section IV.

IIT. ADMITTANCE MATRIX

According to [1, Eq. (28)] and [1, Eq. (10)], the admittance matrix
[Y] is given by

Y., = (Y2 + Yb)ij = - 4<u, H(Mj)> (1)

1)

[6] A. T. Adams, C. B. Varnado, D. E. Warren, '"Aperture Coupling by
Matrix Methods," 1973 IEEE EMC Symposium Record, New York City,

June 1973, pp. 226-240.

(7] J-L Lin, W. L. Curtis, M. C. Vincent, "On the Field Distribution
of an Aperture," IEEE Trans. on Antennas and Propagation, vol. AP-22,
No. 3, pp. 467-471, May 1974.




where ﬁﬂgj) is the magnetic field produced by Eﬁ radiating in free
space. The magnetic field ﬂ(uj) can be expressed in terms of an elec~

tric vector potential F and magnetic scalar potential ¢ as [8]

HM,) = - juF, - V¢ (2)
w1 SIS
where
-jk -t
€ e :
F, = & M, ————-d 3
~] b [J ~] [r_rvl s (3)
apert. A
-3k|r-r'|
1 e
.= &4 4
¢J 4y IJ pJ [r-r'[ S )
apert. -
K' M,
p, = —=1 (5
J -3

where r and r' are respectively the vectors to the field and scurce
~ -~
points in the aperture, u is the angular frequency, € is the capaci-

tivity of free space, u is the permeability of free space, and

k = w/ue is the propagation constant in free space. Substituting

[1, Eq. (7)] and (2) into (1), we obtain

Y., =4 JJ W, » (juF, + T¢,)ds . (6)
apert.

Because of the identity

apert. apert. apert.
(6) becomes

¥y = 4o ” (E, -+ ¥, + ¢,0,)ds (8)
apert.

[8] C. H. Papas, Theory of Electromagnetic Wave Propagation, McGraw-
Hill Book Co., New York, 1965, p. 23.




where VW
e !

9

pi -jw ®)

We choose the set of testing functions Hi equal to the sét of
expansion functions Ei' The rectangular aperture 0 < x j_LxAx,
0 <y f_LyAy where Lx and Ly are integers is divided into rectangular
subareas of length Ax in x and Ay in y. The set ﬁi of expansion func-
tions is split into a set %2 of x directed magnetic currents and a set

Mz.of y directed magnetic currents defined by

% x( ) y( ) p = l,z,...Lx—l ( O)
ME o =R T Py, 1
~pt(g-13(L -1) =~ 'p q q=1,2,...L
y
y p=1,2,...L
M "
~pH(a-D1_ = § TZ(y) P (x) , * (11)
! P q=1,2,...L -1
y
where T (x) and TZ(y) are triangle functions defined by
" x - (p=1)Ax - i
Axe (p~1) Ax < x < pAx
T¥(x) = 4 {BFDAX - x phx < x < (p+1)Ax (12)
P Ax - -
0 X - prl > Ax
= (Z;l)A (a~D)dy <y < qdy
q by -7 =
0 ly - aay| > ay

and P:(x) and PZ(y) are pulse functions defined by



1 (p-1)Ax < x < plx

P¥(x) = (14)
P 0 all other x
"1 (q-1)Ay <y < qby
Pl (y) = (15)
! 0 all other y
. X y . . . wX y
The magnetic charge sheets, sav p~ and p’ associated with and M°
are obhtained from (5) as
X X y
K ) (Pp(x) Pp+l(x))Pﬂ}y) (26)
pt(q-1) (L_-1) -jwix
y _ oY X,
v _ (Pq(y) .qﬂ(y))Pp\x)
0 - an
p+(q-—])LX -juwldy
Introduction of the two types of expansion fuuctions MY and M and
. : x S “ .
the two types of testing functlons_bgi and ii into (8) gives rise to
four Y submatrices defined hyv
uv v u v u
= 42 . + X 18
Yij 4iw f[ (Ej Ei bjpl)ds (18)

apert.

v v
where u is either x or y and v is either x or y. In (18), Ej and ¢j
v
are the electric vector and magnetic scalar potentials due to §j'
The inteprations over the "field" magnetic current and charge
g; and p; explicit in (18) are approximated by sampling the integrands

at two points. Hence,

xv 1 v 1 v
Y. = 4jwaxay [ (F. - 2) + 5 (F, « )
s ~~ ’ V4 Aay “s B

H ‘o *p*7q I p+l,7q

1 \'4 1 v

-~ = (¢.) + = (¢.) ] (19)
A swhx
Jwix J Xp,Yq JWEX ] xp+1’yq



YV _ s LV .3 LY.y
Y7 = 4jwaxty [ (F. * y) + 5 (F, * )
ij 2 i N Xp ,yq 2 wj A Xp ,yq+1

1 v 1 v |
- (¢:) + (4. ] (20)
Judy TT3Tx sy, Juby TITESYo4

where v is either x or y and

ft

X (p - .5)8x (21)

P

y (q - .5y (22)

q

To determine p and q in terms of i in (19) or (20), refer to (10)
or (11).

Substitution of (10), (11), (16), (17), (3) and (4) into
(19) and (20) vields

xx _ jhxby 1 o teq) - & - -
Yij s [2 Ic(s p, t-q) > Ix(s p+l, t-q)

o {sop + 3/2) *2' 3/2) I_(s-p+l, t-a) + % I (s-p-1, t=q) - (e ;3/2'Ic(s-p-1,t-q)

+ =1 (I (s-p+1, t-q) - ZIc(s—p, t-q) + Ic(s-p—l, t-q)) ] (23)

kZsz
¥ = —1_[-1 (s-p, t-q) + I (s-pt+l, t=~q)
ij nnkz c c

+ Icks-p, t-qg-1) - Ic(s—p+1, t~q-1)1 (24)

xy _ _ 1 . _ - _ —at
Yij nnkz [ IC(S p, t qQ + IC(S p, t-a 1)

+ I_(s-p-1, t-0) - T (s-p-1, t-q+1)] (25)



yy _ jéxty (1 _ oy 1 _ _
Yij — (5 I.(s-p, t=q) - 3 Iy(s p, t-q+l)

+ (a3 1 (o, eegr1) + © I (s-p, t=g-1) - {£2923/2) 1_(s-p,t-q-1)

+ —5— (I_(s-p, t-g+1) - 2I (s-p, t-q) + I (s-p, t-a-1))] (26)
AY Cc C C

k

where n =1/£-= 376.730 ohms is the intrinsic impedance for empty space

and where

(t+1/2) Ay (s+1/2)Ax e_jk x2+y2
Ic(s,t) = k dy dx ——————— (27)
y=(t-1/2)av x=(s-1/2)4x sz + y2

. (t+1/2) Ay (s+1f2)ﬁx -3k /X2+y2

Ix(s,t) = i dy j x®dx —mmMmm— (28)
y=(t=1/2)dy x=(s=1/2)ax  Yx> + y>
. (t+1/2)Ay (s+1/2)Ax e_jk ’x2+y2
Iy(s,t) = iy [ ydy dx —————— (29)
y=(t-1/2)Ay x=(s-1/2)Ax 1/x2 + y2

Ic(s,t) is even in both s and t, Ix(s,t) is odd in s and even in t,

and Iy(s,t) is even in s and odd in t. In (23) to (26), ng is the
- interaction of the expansion function yg with the testing function
u

. : . X
M.. For the testing function M),
wd g

i=p+ (@-D(C -1, (30)
q=1,2...L

whereas for the testing function My,
wi

P = 1,2,...Lx
i=p+ (q—l)Lx, (31)



. . X
For the expansion function M7,
.nﬂ"!

0
]

1,2,...Lx—l
i=s+ (=D D, NG
= 1,2,...L

y

t
I

whereas for the expansion function Mg,

s = 1,2,...LX
ji=s+ (t-l)Lx, (33)

ct
1]
=
-
£
-
.
.
-1
)
—

The four dimensional array Yi? of (23) in which s, p, t, and q
vary separately can be constructed from the two dimensional array

obtained by varying the two integers (s-p) and (t-q) in (23). In (23),

(8]
|
|l
A

< (s-p) < Lx—2
1 -1 < (t-q) <L -1-
- -y
but because (23) is even in hoth (s-p) and (t-q),

(s-p) = 0,1,2,...Lx-2
(34)

0,1,2,...L -1

(t-q) v

is sufficient. 1In (24),
1 -_Lx < (s-p) < Lx~2

2 - L < (t-q) <L -1
y — @V -y
but because (24) is odd about (s-p) = -1/2 and odd about (t-q) = 1/2,

(s-p) = O,l,Z,...Lx-Z
(35)

]

(t—q) 1,2,3,...Ly-l

is sufficient. In (25),

e



2 - Lx < (s=-p) i.Lx'l
1-1L < (t- < L =2
y_(q)_y

but because (25) is odd about (s-p) = 1/2 ond odd about (t-q) = -1/2,

(s-p) = 1,2,3,...LX—1

(36)
(t-q) = 0,1,2,...L -2
y
is sufficient. Finally, in (26),
1 - L, < (s~p) < Lx-l
2 -1 < (t-q) <L =2
y — vz y
but because (26) is even in both (s-p) and (t-5),
(s-p) = L -
(s-p) 0,1,2, Ix 1
(37)
(t-q) = 0,1,2,...L -2
q) v
is sufficient, From inspection of (23) to (26) and (34) to (37),
s =-1,0,1,...L_~1
X
(38)
t=

-1,0,1,...L -1
y
is adequate in (27) to (29).

The integrals (27) to (29) are evaluated by using the following

four term approximation

-jkr 2 3

oikr o °r1 -~ jk(r-r ) - %T (r—ro)z + 1%— (r-ro)3] (39)

where

10



r =z’ +y° (40)

ro=1/zsAx)2 + (tAy)2 . (41)

Substitution of (39) into (27) vields

2.2 3.3

k o jk o dxdy
Ic(s,t) = [k(1 + Jkr0 - - % )ff -

2.2
2 jk r, 3 1 jkro
+ k(-] + kro + 5 )ff dxdy + k7 (- 7 —7f—9 ff rdxdy

., b ~jkr
+ l%—-ff rzdxdy]e ° (42)

where the limits on all the integrals in (42) are the same as those
in (27). The approximations to (28) or (29) are given by (42) with

an additional factor of either X or L in the integrands. Three of

Ax Ay
the required integrals are
JJ dxdy = AxAy (43)
2
JJ xdxdy = sAx Ay (44)
2
[{ ydxdy = tAxly (45)

The indefinite integrals associated with the rest of the required

integrals are

IJ é%?z = x log(y + r) +y log (x + 1) (46)
r 3 3
{f rdxdy = E%—-+ %r log(y + r) + %r log (x + 1) 47)



2 r2 .
(f r dxdy = xyr (48)

xdxdy T x2
= Lt 4 ?T-log (y + 1) (49)
X

7;0 + 5 log (y + 1) (50)

I
/
[[ setossy = sty o 2 -
I
i

4 6
dxdy Xr 2
X—;—h = 7r-+ %T-log (x + r) (52)
r 2 4
yrdxdy = xr(I§-+ %;}#%r log (x + 1) (53)
2 2 zi x2
yr-dxdy = y°x (4 + 77) (54)

The reader can verify (46) to (54) by showing that, in each case, the

mixed second partial derivative of the right hand side is equal

9
9Xoy
to the Integrand on the left hand side. The definite integral is ob-
tained from the indefinite integral by addine the indefinite integral
evaluated at both upper limits to that at both lower limits and sub-
tracting both evaluations of the indefinite integral at the mixed (one

upper, one lower) limits.

IV. PLANE WAVE EXCITATION AND MEASUREMENT VECTORS

The plane wave excitation vector 31 of [1, Eq. (32)] and the
plane wave measurement vector " of [1, Eq. (37)] are of the same form
except for a minus sign. We therefore need to evaluate only one of
them, say the measurement vector fm. We specialize it to four princi-

pal plane patterns as

12



apert. '
apert. -
P gy = =2 ” My e g MY 0% axay 57)
apert.
mu u ~ Jky cos ¢
(Pi )xx = -2 M ke dxdy (58)
apert.

The superscript u is necessary because ai has been split up into g:

and 35}1’ of (10) and (11). 1In (55) to (58), 8, §, ¢, and X are unit
vectors in the 6, y, ¢, and x directions respectively where, as shown

in Fig. 1, 6 is measured from the positive x axis in the y = O plane

and ¢ is measured from the positive y axis in the x = 0 plane. For
measurement vectors, 0° < 8 < 180°, 0° < ¢ < 180°. (Pt;_m)ey is for a

Q polarized measurement in the y = 0 plane, (PI;U)yy is for a‘z polarized
measurement in the y = 0 plane, (P?u)¢x is for a é polarized measurement
in the x = 0 plane, and (P?u)xx is for a % polarized measurement in the
x = 0 plane. Because our set of testing functions Eﬁ is the saqi as the
set of expansion functions En’ the plane wave excitation vector P~ of
[1, Eq. (32)] is obtained by putting 180° < 6 < 360°, 180° < ¢ < 360° in

the negative of one of the equations (55) to (58).

Substituting (10) and (11) into (55) to (58) we obtain, with the

help of [9]

[9] H. B. Dwight, Tables of Integrals and Other Mathematical Data,
fourth edition, Macmillan Co., New York, 1961, Eq. 567.1.

13



kAx cos ©

sin ————— 2 p=1,2,...L -1
mx _ 2 jkpAx cos® X
P =
ot (q-1) (L “1))gy T 28x0Y Sin b (i) e ’{
- L] ’l..
X _2——— q"l 2 Ly
(59)
m'v = i = —-—
(Pi )ey 0, i 1,2,... Lx(Ly 1) (60)
mx
PT g = 0 1= 1,2, (@ -DL (61)
. kAx cos 6
" 3 = _2rxA (51n 2 ) jk(p-1/2)A% cos 8 P = 1’2""Lx
p+(q-1)L_“yy =Xy kAx cos 6  © ’
x SR q=1,2,...L -1
y
(62)
mx . _
(®; )¢x =0, i=1,2,... (L_~1)7T (63)
kAy cos ¢
sin -2 . p=12,...L
Y . 2 kqly cos¢ |’ e X
(Pmy _ ) = 24xly sin ¢ ( ) €A%y ,{
p+(q 1)Lx dx kdy gos ¢ q = 1’2""Ly'1
(64)
. kAy cos 3 o -
(p™X ) - _2axA (51n 2 ) ejk(q—l/Z)Ay coségp_l’z""Lx L
p+(q-l)(Lx-1) XX y kAy cos ¢ ’
2 q=1,2,...L
y
(65)
my -0 i = _
(Pi )xx 0, i 1,2,... Lx(Ly 1) (66)

V. REPRESENTATIVE COMPUTATIONS

A versatile computer program has been developed using the pre-

ceding formulas.

of this report.

program are given in this section.

14

This program 1is described and listed in Part Two

Some representative computations obtained with this



The first computations were made for a narrow slot, of widtﬁ
A/20 and of variable length L. The far-zone quantity plotted was the

transmission crcss section, defined as [1, Fq. (39)]
T = ZWrZIHmfz (67)

where Hm is the component of magnetic field being considered. We

use the notation:

T 2ﬂr2|He{2 in the y = 0 plane,

oy (68)

0 plane.

~
[

2 2
5 2nr IHXI' in the x
For the case being considered, the orthogonal components of Hin
these two planes were zero. Figure 2 shows plots of Tay and 1, for
x-directed slots of width X/20 and length (a) L = A/4, (b) L = A/2,
(¢) L = 3X/4, and (d) L = X. 1In all cases the excitation was due to
a plane wave normally incident on the conducting plane with the mag-
netic field in the x direction. Note the large transmission cross
section for L = X/2, case (b), due to the slot being near resonance.
The plots of t are of the same form as scattering cross section from

the complementary conducting strips, as known from Babinet's principle.

Figure 3 shows plots of the equivalent magnetic current in the
aperture region for the same slots. Since M = g_x E, they are also
plots of the tangential component of E in the slots. Again note the
large value of M for the case L = A/2, which is near resonance. Note
also that, for short slots (L < 3)/4), the M is almost equiphasal and

closely approximated by a half sine wave.

Next, computations were made to test the rate of convergence of
the solution as the number of subsections was increased. A slot of
width .A/10 and length 2)X was chosen for the study. Again the excitation
is a plane-wave normally incident on the conducting plane with the mag-
netic field in the x direction. Figurg 4 shows plots of Tey and Tex
" for the cases (a) 39, (b) 19, (¢) 9, and (d) 4 triangular expansion

15



| g

Fig. 2. Transmission cross section for slots of length L in the x
direction and width A/20 in the y direction. (a) L = 1/4,
) L=2Xx/2, (c¢) L= 3A/4, (d) L = x. Excitation is
by a plane wave normally incident on the conducting plane
with magnetic field in the x direction.

16



8 4180°
g 61 - ¥, S A —490°
2 w
iy L ! ! ! 0 4
g T
< a
= 2+ —1-90°

o —L — 1 1 1 Nigoe

0

(a)
8} -180°

MAGNITUDE

Fig. 3.

8l ADD 4 4180°
gsr- 490°
E w
24 1 1 og 2
(&) —t—a0 X
< o
=2 4 -90°

087 1 ! o-{80°

(b)
8 ~4180°
6} - 90°

MAGNITUDE
H
1>

[\
1

O
Q-

(d)

Magnitude and pﬁase of fM/Ell, where M is the x-directed
is the incident electric field,

magnetic current and F

for the same slots as for Fig. 2.

(¢) L =32/4, (d) L = 2.

angles denote phase.
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(a) L =

A/4, (b) L = 1/2,

Circles denote magnitude, tri-




(a) (b)

(c) (d)

Fig. 4. Transmission cross section when the number of expansion func-
tions is (a) 39, (b) 19, (e¢) 9, and (d) 4. Computations are
for a slot of length 2X in the x direction and width A/10 in
the y direction. Excitation is by a plane wave normally
incident on the conducting plane with magnetic field In the
x direction.

18
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5.

Magnitude and phase of,[M/Flf, where M is the x-directed
magnetic current and E' is the incident electric field,
when the number of expansion functions is (a) 39, (b) 19,
(¢) 9, and - (d) 4. Circles denote magnitude, triangles
denote phase. Computations are for the same slot as

for Fig. 4.

19



(a) (b)

Tox /A

Fig.

(c) T (d)

Transmission cross sections for a square aperture of side
length L, excited by a plane wave with H in the xz plane
and incident at an angle 9 from the normal direction in
the H plane. (a) L = A/4, 8 =0. (b) L =A/4, 6 = 45°,
(¢) L=2Xx2,08=0. (d L=2xr/2, 06 =45°.

20



functions respectively. Note that the patterns (a) and (b) are essen-
tially the same, and pattern (c¢) is only slightly different. They dif-

fer appreciably from (d), which results from only 4 expansion functions.
The difference in the solutions as the number of expansion functioms is
decreased is better illustrated by plots of M, as shown in Fig. 5. These
are for the same cases as the corresponding cases of Fig. 4. It can be
seen clearly how the computed equivalent current in the slot region changes
as the number of subsections is reduced. As a rule of thumb, for near-
field quantities (such as M) one should use subareas of length A/10 or less

and for far-field quantities (such as 1) length )/5 or less.

Finally, Fig. 6 shows some computations for wider apertures and
excitations by waves not normally incident on the conducting plane. All
cases shown are for square apertures, of side length L. -Figures 6(a) and
(b) are for L = A/4, with the plane wave normally incident for (a) and
incident 45° from the normal direction in the H plane for (b). Figures
6(c) and (d) are for L = A/2, with the plane wave normally incident for
(¢) and 45° from the normal direction in the H plane for (d). Note that,
for the relatively small slots chcsen, there is little difference in the
shapes of the patterns as the incident wave direction is changed from the
normal direction. There is, however, an appreciable difference in the

amplitudes of the patterns.

Vi, DISCUSSION

The computer program, Part Two, Is written explicitly for
rectangular apertures, but the formulas are valid for any aperture
composed of fectangulaf subsections. Other apertures, such as L-shaped,
T-shaped, square Oéshaped, etc., could be treated by appropriately
changing the computer program. Apertures of arbitrary shape could be
treated by approximating them by rectangular subsections. As with all
moment solutions, the size of the apertures which can be treated depends
upon the size of the matrix which can be computed and inverted. The ex-
amples indicate that the rectangular subsections should have side lengths

not greater than (0.2 wavelengths for reasonable accuracy.
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The aperture admittance matrix has application to any problem

in which one region is bounded by a plane conductor, as shown in

reference [1]. Hence, it can be used for waveguide-fed apertures in a

ground plane, and for cavity-backed apertures in a ground plane. It is

planned to treat these latter two problems in future reports.

(1]

[2]

(3]

(41

(51

(6]

[7]

(8l

[91]
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PART TWO

COMPUTER PROGRAMS

I. DESCRIPTION OF THE MAIN PROGRAM

The main program computes the complex coefficients Vh which
determine the magnetic current M according to [1, Eq. (5)], the trans-
mission coefficient T of [1, Eq. (44)], and four patterns of the trans-
mission cross section [1, Eq. (40)] per square wavelength r/kz. The
four patterns of T/Az are written on the first record of direct access

data set 6. The main program calls the subroutines LINEO, YMAT, and

PLANE which are listed later on in this report.

One data card is read early in the main program according to

READ (1,11) X, LY, LI, NTH, DX, DY, TH
11 FORMAT (4I3, 3E14.7)

The LX aﬁd Ly appearing in (10) are read in through LX and LY respec-
tively. Here, LX > 2 and LY > 1 which means that the long dimension of

a rectangular aperture only one subsection wide must lie along the x

axis. DX is Ax/X and DY is Ay/)\ where Ax and Ay appear in (12) and (13)
and A is the wavelength. The plane wave excitation vector [1l, Eq. (32)]
is the negative of expression (54 + LI) where LI is either 1,2,3 or 4 and
where the angle (either & or ¢) in degrees appearing in equation (54 + LI)
is TH. The four patterns of the transmission cross section [1, Eq. (40)]
per square wavelength T/A2 are generated by evaluating the plane wave

measurement vectors (55) .to (58) at angles (8 or ¢) equal to (J-1)*180./

(NTH-1) degrees, J = 1,2,...NTH.

Minimum allocations are given by

COMPLEX Y(N*N), P(4*N), V(N)
DIMENSION TA(4*NTH)

where
N = (ILX-1)*LY + LX*(LY-1) (69)
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Statement 27 uses LX, LY, DX, and DY to store j;;Ly [Ya + Yb]

where [Y2 + Yb] is the admittance matrix appearing in [1, Eq. (14)]

by columns in Y. Here, n = /E:= 376.730 ohms is the intrinsic impedance
for empty space. At the time statement 27 is executed, LX and LY are
still the original input data, namely the numbers of subdivisions in x
and y but DX and DY are kAx and kAy instead of the original input data
Ax/X and Ay/X.

Statement 28 inverts the N by N matrix stored in Y.

-1 i

i 2AxAy Pm
P(m + (K-1)*N), K = 1,2,3,4, m = 1,2,...N, where Pm is the plane wave

Statement 29 uses TH, 1X, LY, DX, and DY to store in
excitation [1, Fq. (32)] and, in particular, the negative of expression
(54 + X). At the time statement 29 is executed, TH is the angle 9 or ¢
(see (55) to (58) and Fig. 1) in radians which specifies the direction
from which the exciting plcne wave comes, IX and IY are the numbers of

subdivisions in x and y, DX is kAx and DY is kAy.

Nested DO loops 16 and 17 multiply the matrix stored in Y by the
column vector stored in P(l + (LI-1)*N) through P(LI#*N) and use the con-
stant UV = j2mn in order to store V of [1, Eq. (14)] in V. Substituting

[1, Eq. (28)] into [1, Eq. (13)] we obtain
"W = > 1 (70)

which simplifies [1, Eq. (44)] to

s
T = L Re (¥ T (71)
2nS cos 6
inc.
g 1i*
DO loop 16 accumulates %K;Z;—-in U2. Statement 31 stores the trans-

mission coefficient T of (69) in T.

[1, Eq. (40)] simplifies to

4
on? = o [ (72)
3277 n

24



DO loop 19 stores the transmission cross section per square wavelength
T/Az of (72) in TAU(K). Statement 30 uses TH = (J-1)*n/(NTH-1) radians,

1 m 1 >m
~1)*
1X, 1LY, DX, and DY to store Ihxby Pn in P(n + (K-1)*N). Tor t§e+ hxby P
stored in P(1+(K-1)*N) through P(K*N), DO loop 21 accumulates gz;z;-in Ul.

Next, 'r/?\2 of (72) is stored in both TAU(K) and TA(J+(K-~1)*NTH).

Statement 32 writes TA on the first record of data set 6 for possible

input to the plot program listed later on in this report.
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C LISTING OF THE MAIN PROGRAM AND SAMPLE DATA

C

// EXEC WATFIV

//GD.FTO06F001 DO DSNAME =FEQ0N34,REVI,.DISP=0LD,UNIT=3330,

7/ DCB=(RECFM=VS ,RLKSIZE=2596 LRECL=2592)
//GN,SYSIN DD =

$JOR MAUTZ,TIME=1,PAGES=40

C

r. MAIN PROGRAM

C THIS PROGRAM CALLS THE SURRDUTINES LINEQ,YMAT,PLANE

COMPLEX U,UV,Y(2500),P(200),Ul,U2,V(50),CONJG
DIMENSION TAU(4),TA(1168)
PI=3,141593
ETA=376.730
U=(Oo'10)
UV=2.5PI*ET A=Y}
PEAD(Ls11) LX4LY,LI4NTHsDX4DY,TH
11 FORMAT (413,3E14.7)
WRITE{3,12) LXsLY LI ,NTH,NDX,DY,TH
12 FORMAT (' LX LY LT NTHY,,5X,"0DX* 412X,*NY?",12X,*TH'/1X,413,3E14.7)
BK=2.%*P]
DX=DX*RK
DY=DY*8K
PB8=180./PI
TH=TH/ P8
27 CALL YMAT(LXsLYDXaDY,Y)
WRITE(3,13)(Y(I},1=1,3)
13 FORMAT({* Y'/({1X,6E11.4))
N=(LX=1)*LY+L Xx(LY~-1)
28 CALL LINEQ(N,Y)
WRITE(3,13)(Y(I},I=1,3)
29 CALL PLANE{TH,LXsLY:DX,DY,P)
WRITE(3,14)(P(1),1=1,3)
14 FORMAT(®* P*/1X,6E11l.4)
[TA=1+(LI-1)%N
IB=1A+N-1
uz2=0.
DG 16 J=1,N
ul=0.
J1=J
DO 17 I=IA,IP
Ul=Ul+Y{J1)*P(1)
J1=J1+N
17 CONTINUE
viJd)=Ulxuv
J1=TA+J-1
U2=U2+V(J)*CCNJG(PI(U1))
16 CONTINUE
WRITE(3,241{(V(I)}yI=1,N)
24 FORMAT(* COEFFICIENTS V OF MAGNETIC CURRENT EXPANSION FUNCTIONS®
1/701X46ELlLle4))
31 T=REAL(U2)/ (LX*¥LY*ETA*SIN(TH))
WRITE(3,18) T
18 FORMAT(' TRANSMISSION COEFFICIENT T=',E14.7)
CT=DX*0Y/(PI*ETA)
CT=CT*CT/(8.%PI)
DTH=PI/(NTH=-1)
WEITE(3,23)
23 FCRMATI(*'0 ANGLE'y4X, 'TAUL® yTX " TAU2®, TX,*'TAU3',7X,*TAUS")
DO 19 J=1sNTH
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TH=(J-1)*DTH

CALL PLANE[THsLXeLYDX4DY4P)
TH=TH*P8

J1=0

J2=J

DO 20 K=1ly4

ul=0.

DC 21 I=1.N

Ji=Jl+1
Ul=Ul+P(JLlI%V(I)

CONT INUE
H=U1%CCNJG(UL1)
TAU(K)=CT*H
TA(J2)=TAU(K)
J2=J2+NTH

CONTINUE

WRITE(3,22}) TH,,(TAU(I),I=1,4)
FORMAT(L1XyF7.294E11.4)
CONTINUE

KA=J2-NTH

REWIND 6
WRITE(6)(TA(J) yJ=1,KA)
STGP

END

30

21

20

22
19

32

$DATA
5 1

$STQOP

/ *

/7

1 19 0.5000000E~91 0.5000000E-31 0.2700000E+03

PRINTED OQUTPUT
LX LY LI NTH DX DY TH
5 1 1 19 0.5000000E-01 0.5000000E-01 0.2700000E+03
Y
-0.1531E+02-0.6525E-01

Y
-0.9999E-01 J.4015E-02-0.6822E-01 J.5537E-02-0.5131E-01 0.5523E-02

p
-0.1000E+01~0.3034FE-06-0,1000E+01~-0.6067FE-06-N0.1000E+01-0.9101E-06
COEFFICIENTS V OF MAGNETIC CURRENT 'EXPANSION FUNCTIONS
0.4511FE+02 0.5916E+03 0.6238E+02 0.8153F+03 0.,6238E+02 0.8153€E+03
0.4511E+02 0.5916E+03
TRANSMISSION COEFFICIENT .T=

N,6646F+01~0.6463E-01 0.1312E+01-0,6275E-01

0.1141254E+Q0

ANGLE TAUl TAU2 TAU3 TAU4

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70,00
80.00
93.00

100.00
110.00
120.00
130.00
140.00

0. 0000E+Q0
0.5B85E-04
0.2308E-03
0.5016E-03
0.8462€-33
0.1228E-02
0.1602E-02
0.1918E-02
0.2129E-02
0.2204E-02
0.2129E-02
0.1918E-02
0.1602E-02
0.1228E-02
0.8462E-03

0.0030F+00
0.N0ONOE+00
C.000Q00E+00
0.0000E+00
J.J000E+03J
0.0000E+00
0.0000E+00
0.0000E+QO
0.0000E+00
C.J0Q0E+QO0
0.0000E+00
0.0000£+00
J0.J000E+00
0.0CNOE+NO
0.J0000E+Q0

0. 0Q000E+00
0.0000F+00
0.0000E+G0O
0.0000E+00
J.J000F+00
0.00005+00
0.0000E+00
0.0000F+00
0.0000E+00
3.0000F+00
0.0000E+00
N.0000£+00
0.00N0F+00
0.00N0E+0Q0
0.00Q00E+0Q0

27

0.2186E-02
0.2186E-02
0.2188E-02
0.2190E-02
0.2193E-02
0.2196E~02
0.2199E-02
0.2202E~-02
0.2203E-02
3. 2204E-02
0.2203E-02
0.2202E-02
0.2199E-02
0.2196E-02
0.2193F-02



aNe]

150.00 0.5016E~03 0.0000E+00 0.0000F+00 0.2190E-02
160.00 0.2308E~03 0.0000E+00 0.0000E+C0 0.2188F-02
170.00 0.5885E~-04 0.0000E+00 N.0000E+00 0.2186E-02
180.00 0.7663E~15 0.0000E+00 0N.00005+00 0.2186F-02

LISTING OF THE SUBPROUTINE LIMFD

SUBRCUTINE LINEQILL.C)
COMPLEX C(250N)4STOR,STO,ST,S
DIMENSION LR(S50)
D0 20 I=1,LL
LR(T)=1
CCNTINUE
M1=0
DO 18 M=1,LL
K=M
K2=M14+K
S1=8BSI{REAL {C{K2)))+ABSIAIMAGICI(X2)))
DO 2 I=M,LL
Kl=ML+I
S2=ABS(REAL (C{K1) ) )+ABS(AIMAG(C(KL}))
[F(S2-S1) 2,2,6
K=1
S1=S2
CONT INUE
LS=LR (M)
LRIM)=LR(K)
LR(K)=LS
K2=M]1+K
STOR=C(K2)
J1=0
DO 7 J=1,LL
Kl=J1l+K
K2=J1+M
STO=C (K1)
C{K1)=C(K2)
C(K2)=STO/STCR
J1=J1+LL
CONT INUE
Kl=ML+M
C{K1)=1,/STOR
DD 11 I=1l,LL
IF(I-M) 12,11,12
Kl=M1+]
ST=C{K1l)
C{K1)=0.
Ji=0
DO 10 J=1,LL
Kl=J1l+1
K2=J1+M
CiK1)=C{K1)—-C(K2)}=ST
Jl=Jdl+LL
28



10
11

18

14

21

13

CONTIMNUFE
CONTINUE
MI=ML+LL
CONTINUE

J1=0

DO 9 J4=1,LL
IF{J-LR{J))}) 14,8,14
LRJ=LR(.})
J2=(LRJ~-1) %L}
DO 13 I=1,LL
K2=J72+1
Kl=J1+1
S=C(K2)
C{K2)=C(KL1)
CIK1) =S
CONTINUE
LREJ)Y=LRILR S
LR(LRJI=LRY
IF(J-LR(J}) 14,8,14
Ji=Jl+LL
CONTINUE
RETURN

END
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IT. DESCRIPTION OF THE SUBROUTINE YMAT

The subroutine YMAT(LX, LY, DX, DY, Y) uses the input variables
m{¥] |

1LX, LY, DX, and DY to calculate and to store -
jAxAy

y columns in Y where

[Y] is the admittance matrix (1) dealt with in Part One. With regard

to the input variables, 1X and LY are the numhers Lx and Lv (see (10)) of
subdivisions in x and y, DX is kAx and DY is kAy where Ax and Ay (see (12)
and (13)) are the lengths of the subdivisions in x and y. We require that

IX > 2, and 1Y > 1.

Minimum allocations are given by

COMPLEX TC(J1), TX(J1), TY (1), YXX(J2), Y(N*N)

where
Jl = (LY + 1) * (LY + 1)
J2 = MAX ((IX-1) * LY, T.X * (LY-1))
N = (LX -1) *# LY + ILX * (LY-1)

Here, MAX denotes the maximum value.

Mested DO loops 15 and 16 put Ic(s,t) of (42) in TC(JST), Ix(s,t)
in TX(JST), and Iy(s,t) in TY (JST) where

s = JS -1
t=JT -1
JST =

s + 2 + (t+1)(Lx + 1)

As mentioned in Part One, the expressioms for Ix(s,t) and I (s,t) are
similar to (42). The variables x and y of integration in (43) to (54)

are changed to kx and ky with the result that x and y is replaced by kx

and ky everywhere on the right hand sides of (43) to (54) and the dangling
factors of k, kz, k3, and k4 in (42) disappear. The logic inside DO loop 16
is best understood by building up a table of variables in YMAT versus expres-

sions in terms of variables appearing in Part One, Sectiom III.
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Variables in YMAT

YL
YU
XL
XU
R1

Ul

u2

U3

EX

S1

S3

S5

TC (JST)

S5

56

TX (JST)

S5

S6

TY (JST)

J‘

Expressions in Part One, Section III

(t - .5)kAy
(t + .5)kAy
(s - .5)kax
(s + .5)kiAx
kro k k3r3
1+ jkr0 - —5—2-— i ——gg

22
T

kzri
-j + +
j + kr i
_1_ K%
2 2
~jkr

kx log (y + r) + ky log(x+r) evaluated at x,y limits

k3x3 log(y+r) + k3y3 log(xtr) evaluated at x,y limits

Sor 13,3 3,3
——%X—-+ 6X log (v+r) + igz—-log(x+r) evaluated at

X,y limits

Ic(s,t)

4

3 2
k4({§—-+ §§Z£ + %;-log(y+r)) evaluated at x,y limits

52 2 vz
kK™x"y C%r-+ <) evaluated at x,y limits

6
I%(s,t)
4 3 zxr 4
K (%%—-+ z§_—'+ %;-log(x+r)) evaluated at x,y limits

2 2
k5y2x (%r-+ %r) evaluated at x,y limits

Iy(s,t)
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In the preceding table, the first, second, and third S5 and the first
and second S6 correspond respectively to the first, second, and third

uses of S5 and the first and second uses of S6 in DO loop 16.

- If Ly = 1, the logic between the statements 44 and 18 uses the
fact that (27) is even in s to store IC(—l,O) in TC(Lx+2). Similarly,
Ix(-l,O) is stored in TX(LX+2) and Iy(—l,O) in TY(Lx+2). If Ly # 1, the
logic between statements 44 and 18 stores Ic(s,-l) in TC(s+2),
s = - 1,0,1,...Lx-1 and IC(—l,t) in TC(1 + (t+1)(Lx + 1), t= 0,1,...Ly-1

and similarly for Ix and T .

Nested DO loops 19 and 20 store - D __ y¥X here Yir is given by (23)
joxAy ij ij
with
(s -p) =J5 -2
(¢t - q) =JT - 2

in YXX(s—p+1-+(t—q)(Lx—l)). See (34) for bounds on (s-p) and (t-q).

: XX
Y where i and j
jtxdy ij J

Nested DO loops 24, 23, 22, and 21 store
are given by (30) and (32) where

= JP
q = JQ
= JS
t = JT

in Y(i + (j=1)*#N) where N is given by (69). If
s -p>0
t-q>0

the subscript for YXY inside nested DO loops 24, 23, 22, and 21 is

s -p+ 1+ (t=q)(L -1
The more general subscript

[s = p| + 1 + ‘t-qi(LX -1

X

3 of (23) is even in both (s—-p) and

X
is a consequence of the fact that Yi

(t-q).
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Nested DO loops 25 and 26 store jKZLy Y{? where Yi? is given by
(24) with

s -p=JS -2

t-q=JT -2

in YXX(s~p + 1 + (t—q—l)(Lx - 1)). See (35) for bounds on (s-p) and (t-q).

Nested DO loops 30, 29, 28, and 27 store-flu%— v’¥ where i and j are
joxdy i

given by (31) and (32) where

p = JP
q = JQ
s = JS
t = JT

in Y((L, = 1 L, + 1+ G-1). If

the subscript for YXX inside nested DO loops 30, 29, 28, and 27 is

s-p+1+ (t--q--l)(LX - 1)
The more general suhscript
1 1 1 1
s - p+ 5[ 5t (lt - q - 5[ T A Y

for YXX is a consequence of the fact that Yi; of (24) is odd about

s-p = ~ %-and odd about t-q = %.
Nested DO loops 31 and 32 store it v where Y is given by
JaxAy “1ij ij

(25) with
s -p=JS -2

t -q=JT -2

in ¥YXX (s-p + (t-q)(Lx - 1)). See (36) for bounds on (s~p) and (t-q).

Nested DO loops 36, 35, 34, and 33 store = 0 ¢v¥Y where 1 and i
jaxdAy ij

are given by (30) and (33) where
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p =JP
a = JO
s = JS
t = JT

in Y(N*(Lx - 1) * Ly + i+ (3-1)*N)., 1If

the subscript for YXX in nested DO loops 36, 35, 34, and 33 is

s - p + (t=q) (Lx - 1).

The more general subscript

b3

ls-p-3H+F+dt-a+3z -Pa, -

for Y¥X is a ccnsequence of the fact that Y?: of (25) is odd about

s-p = % and odd about t~q = - %. )
Nested DO loops 37 and 38 store ,ﬂn YYY where YYY is given by
jaoxdy 1] ij
(26) with
s - p=J8 -2
t ~q=JT ~2

in YXX (s-p + 1 + (t—-q) Lx). See (37) for bounds on (s-p) and (t-q).

Nested DO loops 42, 41, 40, and 39 store 3 A YYY where i and j
! jAxdy 1]
are given by (31) and (33) where

p = JP
q = Jq
s = JS
t = JT

in Y((N+1) * (Lx - 1) * Ly + i+ (3-1) * N). 1If
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s-p2>40
t-q>0
the subscript for YXX in nested DO loops 42, 41, 40, and 39 is
s -p+1+ (t—q)LX
The more general subscript
s - pl + 1+ |e - alL

for YXX is a consequence of the fact that Yi? of (26) is even in

both (s-p) and (t-q).
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LISTING OF THE SUBROUTINE YMAT

SUBROUTINE YMAT{LX,LY,DX,DY,Y)
COMPLEX UsUL,U25U3,4,U4,EXsTCIL00),TX(L100),TY{100),YXX{100),Y(2500)
DX2=1./7(DX®*DX)
DY2=1./(DY*DY)
DXOY=0X*xDY
NX=(LX-1)*%LY
NY=({LY-1)*_X
N=NX+NY
LXP=LX+1
LYP=LY+1
LXM=L X-1
LYM=LY~-1
U=(0esl.)
Us=.1666667*U
JST=LX+1
DD 15 JT=1,LY
JST=JST+1
YL=(JT=-1.5)*DY
YU=YL+DY
YL2=YL*YL
YUZ2=YU*xYU
Y1=(JT-1}*NY
Y2=YLl=Yl
DO 16 JS=1,LX
XL=(JS5~-1.5) *DX
XU=XL+DX
AL2=XL*XL
x J2=XU*XU
1=(J4S-1)1*DX
X2=X1*X1
2=X2+Y2
R1=SQRT(R2}
RUl=1le=e5%R2
Ul=RUL+R1*¥(1e—-s1666667%R2) %Y
U2=R1-RU1l*U
U3=—.5~.5%R1%U
EX=COS{R1)-U%XSIN{(R1]}
JST=4ST+1
R5=XL2+YL2
R6=XU2+YL2
RT7=XL2+YU2
R8=XU2+YU2
R1=SQRT(RS)
RZ2=SQRT(R&}
R3=SQRT(R7)
R4=SQRT(R8)}
AYL=YL*ALOG( (XU+R2)/ (XL +R 1))
AYUsYU=ALOG{ (XU+R4) /(XL +R3})
AXL=XL*ALOG((YU+R3)/{YL+R1))
AXU=XU*ALOGI{YU+R4)/(YL+R2})
Sl=AXU~AXL+AYU-AYL
AYL=YL*AYL
AYU=YU*AYU
AXL=XL*AXL
AXU=XU*AXU
S3=XURAXU=XL*AXL+YUXAYU~YL*AYL
XY 1=XL*YL

XY2=XU*YL
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16
15

44

45

L7

18
46

20

19

XY3=XL*YU

XY 4=XU*YU

$5=43333333%x( XY4*R4~XY3I%¥R3I=XY2*%R2+XY]1*R]1)+.1666667%S3
TC(JST)-(Sl*U1+DXDY*U2+SS*U3+.3333333*(XY4*R8-XY3*R7-XY2*R6+XY1*R5
1)*U4) *EX

YR1=YL%R1

YR2=YL*R2

YR3=YU%R3

YR4=YU*R4 '
$5=,8333333E-12({YR4*RE3-YRI*RT~-YR2*XRH6+YR]LI*R5] +,125%( XU2*(YR4~YR2}-X
1L2%{YR3=-YR1)+XU2%AXU~XL 2*AXL)

S6=,25%DY,{ XU2%XU2~-XL2%XL2)+.3333333%X1=DX%{ YU2XRYU-YL2*YL)
TX(JST)=u5% (YR4~YR3B3-YR2+YR1+AXU~AXL)*UL+X1*DXDY*U2+S5%U3+S6%U4%
TX(JST)=TX{JST}*E X /DX

XRl=XL*R1

XR2=XU%*R2

XR3=XL*R3

XR4=XU%R4
S5=2.8333333E-1%(XR4%xRB~XRI*RT=XR2%X¥RH6+XR1*¥RS) +,125*%({ YU2*[XR4—-XR3)-Y
LL2*% (XR2=XRL)+YU2Z®AYU-YL2%AYL)

S6=.25%DX*( YU2xYU2-YL2*YL 2)+.3333333%Y]1%DVY*{ XU2%xXU-XL2%XL)
TY(JST)I=e5%(XR4—=XRI-XR2+XR1+AYU~AYL )xUL+Y1.DXDY*U2+S5*U3+S6*U4
TY{(JSTY=TY(JSTY*EX/DY

CONTINUE

CONTINUE

IF(LYM) 44,44 ,45

Jl=LXP+]

J2=J1+2

TCUJLLY=TC{J2)

TX{(JL1)==TX(J2)

TY(J1)=TY(J2)

GC TO 46

J1=2%L XP+1]

DO 17 JS=2,.LXP

Jl1=Jl+1

TC(JS)=TC{J1}

TX(JS)=TX{J1)

TY(JS)==TY{J])

CONT INUE

J1=1

DC 18 JT=l,LYP

J2=J1+2

TCLLL)=TClJ2)

TX{J1)==TX{(J2)

TY{JL)I=TY(J2)

J1=J1+LXP

CONT INUF

Jé=L X+2

JY=0

DD 19 JT=2,LYP

00 20 JS=2,LX

J3=J4

Ja=Ja+l]

J5=J4+1

JY=JY+1

YXX{JYI= 5% (TC(Jo ) +{JS~eS)*TC(IS)I=(JS-3.51%2TC(I3)-TX(JI5)+TX(J3)}+D
1X2*¥({TC(JS)=2.*TC(J4)+TC{43))

CONTINUE

Je=J4+2

CONTINUE 37




21
22

23
24

26

25

27
28

29
30

32

31

Jy=0
DO 24 JT=1,LY
DC 23 JS=1l,LXM
bC 22 JQ=1,LY
JTQ=LXMkJABS(JT-4Q)+1
DO 21 JP=1l,LXM
J1=JTQ+IABS (JS~JP)
JY=JY+1
Y(JY)I=YXX(J]1)
CONTINUE
CONTINUE
JY=JY+NY
CONTINUE
CONTINUE
IF{LYM_EQ.O0) RETURN
Ja=2% XP+]
Jy=0
DO 25 JT=3,LYP
DO 26 JS=2,LX
JY=JY+1
Ja=J4+1
J3=Ja-LxP
YXX(JY)=(=-TC(JA)+TC(I3)+TC(I&+1)-TC(J3+1))}/DXDY
CONTINUE
Ja=J4+2
CONTINUE
JY=NX
DO 30 J4T=1l,LY
D0 29 JS=1l,LX™
DO 28 JQ=l,LYM
JTR=2%(4T-4n)-1
J2=L XM= TABS(UTQ)=1) /2
DO 27 JP=1,LX
JSP=2%(JS-4P)+1
J1=J2+ (1 ABS{JSPY+1)/2
JY=JY+1
YOJY)=YXX(J41)
[IF(JTO*JSP.LT.Q) YUUY)=-Y(JIY)
CONTINUE
CONTINUE
JY=JY+NX
CONTINUE
CONT INUE
JY=0
Jé=LXP+2
DO 31 JT=2,LY
DO 32 JS=3,LXP
J3=J4
Jé=Ja+1
J5=Ja4+LXP
JY=JY+1
YXX{JIY)=(=TC{JI4)+TCLI3)+TC(J5)-TC(JI5-1))/DXDY
CONTINUE
Jé=J4+2
CONT INUE
JY=N*xNX
DD 36 JT=1,LYM
DD 35 JS=l,LX
DO 34 JQ=1l,LY
JTQ=2%(JT-JQ)+1
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33
34

35
36

38

37

39
40

41
42

J2=ULXMx( [ABS(JTQ)-1)/2
DO 33 JP=1,LXM

JY=JY+1
JSP=2%(JS-JP)-1
J1=J2+(1ABS(JSPI+1)/2
Y{JY)=¥XX(J1)
IF(JTQ*JSP.LTL0) Y(JY) ==Y (JY)
CONT INUE

CONTINUE

JY=JY+NY

CONTINUE

CONTINUE

Jy=0

Ja=0LX+2

D0 37 JT=2,LY

DO 38 JS=2,LXP

JY=JY+1

Ja=J4+]

J5=J4+LXP

J3=J4~LXP

YXX(IY )= 5% (TC(Ja e {JT=-o5)12TC(IS5)-(JT-3.51%TC(I3)-TY(JI5)+TY(J431))+0

LY2%{TC(JS)=-2.%xTC(Je)*¥TC(J3))
CONTINUE

Je=J4+1

CONT INUE

JY={N+1) *NX

DO 42 JT=1,LYM

DO 41 JS=l,LX

DO 40 JQ=1,LYM
JTQ=LX*[ABRS (JT~JQ) +1
DO 39 JP=1l,LX
J1=JTQ+IABS(JS—-4P)
JY=JY+1
Y{JYY=YXX(J1l)
CCONTINUE

CONTINUE

JY=JY+AX

CONTINUE

CONTINUE

RETURN

END
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IIT. DESCRIPTION OF THE SUBROUTINE PLANE

The subroutine PLANE(TH, LX, LY, DX, DY, P) uses input variables
1
TH, LX, LY, DX, and DY to store 3hxhy
(59) to (66) in P(i), P(N_+ i), P(N + 1), P(N + N_+ 1), P(2N + 1),
P(2N + Nx + i), P(3N + 1), and P(3N + Nx + i) respectively where

times the plane wave measurements

i

p+ (q-l)(Lx -1 in (59) and (65)

i=p+ (q-1) L, in (62) and (64)

Nx = (Lx - 1) Ly

N = Nx+ Lx(Ly -1

Both angles 6 and ¢ appearing in (59) to (66) are equal to TH radians.
The arguments LX and LY of PLANE are the numbers Lx and Ly of subdivisions
in the x and y directions and DX and DY are the electrical lengths kAx and

kAy of the x and y subdivisions. We require that LX > 2, and LY > 1.

. 1
Nested DO loops &1 and 87 store 2hxby times (59) with
p =JP
q = JQ
. 1
in P(p + (q—l)(LX -~ 1)). Nested DO loops 82 and 88 store 3hxdy times (62)
with
p=JP
q = JQ

in P(N + Nx + p + (q—l)Lx). Nested DO loops 83 and 84 store
with

1
m times (64)

p = JP

q = JQ

in P(2N + Nx + p + (q-l)Lx). Nested DO loops 85 and 86 store times (65)

with

1
2AxAy
p=JP

q = JQ

in PN + p + (@-1)(L_ - 1)).
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a0

89

87
81

88
82
993

84
83
91

86
85

LISTING OF THE SUBROUTINE PLANE

SUBROUTINE PLANE(THsLX,LYyDXsDY,P)
COMPLEX U,Ul,P(200)
U'—'(O-'l.o)

LXM=L X~1

LYM=LY~-1

NX=L XM*LY

N=NX+LYM*ELX

NG =N*4

D0 89 J=1,N&

P(J)=0.

CONTINUE

SN=SIN(TH)

CS=CNS{TH)

X2=DX*CS

X3=,5%X2
S1=~SIN{X3)/X3
S2=S1%S1*SN

DO 81 JP=1,LXM
S5=JpPxx2
UL=S2%{COS(S5)+UxSIN(S5))
J1=JpP

DO 87 JQ=l,LY
P(J1)=U1

J1=Jl+LXM

CONTINUE

CONTINUF

IF(LYM.EQ.0) GO TD 90
DO 82 JP=1,LX
SS=(JP-.5)%X2
UL=S1*(COS{S5) +UxSIN(S5))
J1=N+NX+JP

DO 88 JO=1,LYM
P(J1)=U1

Jl=J1+LX

CONTINUE

CONTINUE

Y2=DY*CS

Y3=,5%Y2
S1==SIN(Y3)/Y3
§2=51*S1*SN

J1=2%N+NX }
IFILYM.FQ.O0)Y GO TN 91
DO 83 JOQ=1,LYM
$5=JQ%VY2
U1=5S2*(COS(S5)+UXSIN(SS))
DO 84 JP=1,LX

Jl=J1l+1

P(J1)=Ul

CONT INUE

CONTINUE

DO 85 JQ=1,LY
$S=(JQ—~.5)*Y2
UL=S1*(COS({S5)+U*SIN(S5))
DO 86 JP=1,LXM
J1=J1+1

P(J1)=U1

CONTINUE

CONT INUE
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RETURN
END
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IV. DESCRIPTION OF THE PROGRAM TO PLOT PATTERNS

This program plots patterns of the transmission cross section per

square wavelength T/A2 read from direct access data set 6.
Punched card data is read according to

READ (1,22) NTH, NP
22 FORMAT (2013)
RFAD(1,22) (IP(K), K = 1, NP)
READ (1,10) (SCL(K), K = 1, NP)
10 FORMAT (6E11. 4)

The patterns of T/Az are read from direct access data set 6 according to
REWIND 6
J1 = NTII*NP
READ(6) (TA(I), I = 1, J1)

TA(J + (K-1)*NTH) is the value of T/J\2 at angle (J-1)*n/(NTH~1) radians

on the Kth pattern. Here, J =1,2,...NTH and K = 1,2...NP. If LP(K) = O,

the Kth pattern is not plotted. If LP(K) # 0, the Kth pattern is multi-
plied by SCL(K) and then plotted in inches.

Minimum allocations are given by

DIMENSION LP(NP), SCL(NP), SN(NTH), CS(NTH),
TA(NP*NTH), X(NTH), Y(NTH)

DO loop 15 plots the Kth pattern if LP(K) # 0. DO loop 16 puts
tick marks on the vertical axis drawn by statement 25. DO loop 18 puts
tick marks on the horizontal axis drawn by statement 26. Statement 27
plots the pattern whose horizontal and vertical coordinates have been

stored in X and Y by DO loop 20.
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C LISTING NF THE PROGRAM TO PLOT PATTERMS

C
/7 EXEC FORTGCLG
//FORT ,SYSIN DD =*
DIMENSION LP{25),SCLI2S) ,XX(4),yYY(4),SN(T3),CS(T73),TA(1168)
NDIMENSION X{(73),Y(73)
PEAD(I.Z.’Z) NTHQND
22 FOEMAT(2013])
WRITE(3,11) MTH MO
11 FORMAT (' NTH NPt/ 1X,213)
FEAD(1,22){LPIK} K=]4NP)
WRITE(3,231(LPIK]) 4K=1,NP)
23 FOFMAT(* LP'/7(1%X,2913))
READ(L1,13Y{SCLI(K) ,K=1,MP)
1O FORMAT (&EL1] . 4)
WRITF{3:.24) (SCLIK} ,K=1,MP)
24 FORMAT(* SCL'"/{1X,56F11.4))
XX(1)=1.
YY({l)=1.
XX(2)=1.
YY{2)=9.
Xx{2)=1.
YY (2)=5.
XXt4)=5,
YY(4)=5,
PI=3,141592
NDTH=PI/NTH=1)
DN 19 J=L.MThk
ANG={J=-1)%DTH
SN{J)Y=SINIANG)
CS{JV=COS{LMNC)
19 CONTINUE
CALL PLNTID
REWIND 4
12 41 =NTH*xNP

READ(O){TA{IY, =101
WRITE(3,14}) TALL)
14 FORMAT({Y TA=*,Fl11.4)

J1=0
DC 15 K=1,%P
I[FILP(K)LEQ.™) S0 TD 2]

25 CALL LIMFIXX(1),YYil)y42,1+43eD)
S3=9. -
CO 16 J=1.9

17 CALL SYM30U({!1.,83,.14,13,9%..~-1)
S3=S3-1.

16 CONTIMUE

26 CALL LINEIXX(3),43Y 7 (3} 4241400
S1=5.
DC 18 u=l.4 :
CALL SYMABOL (S1e5.valb,413,0.,~1)
S1=S1l-1.

18 CONTIMNUE
DO 20 J=1,NTH
J2=J1+J
S1=TA(42V*SCL {x)
X{JYr=1.+S1%SN(LJ)
Y{J)=5.,+S1=CS(J)

20 COMTINUF

27 CALL LINMECX{1)4Y{1)sNTH,1,3,9)
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CALL PLOT(6.a¢M.,4-3)
21 J1=J1+NTH
15 CONTINUE

CALL PLOT(S.,+044-3)

STrp
END

/*
//GO.FTO6F00] DD CSMAME =EF0034.REVL,DISP=0LD,UNTT=3330,
/7 DCR=(RFECFM=VS yBLKSIZE=2596,LPECL=2592)
/7/GN.SYSIN DD *

19 1

1

D.1000E+04
/%*
Y
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