Interaction Notes
Note 295

29 March 1976
Single Port Equivalent Circuits for Antennas and Scatterers

Carl E. Baum
Air Force Weapons Laboratory

CLEARED
FOR PUBLIC RELEASE
ONLY AS AMENDED
AERL/ 2D 7
2-2-2/
i Abstract

This note takes the singularity expansion of the response
of antennas and scatterers in free space and converts it into
equivalent circuit representations. The object is assumci to
have a gap (port) which is treated from both short circuit and
open circuit points of view. Considering the solutions for the
response to an incident wave as well as for excitation at the
gap equivalent circuits with both impedance elements and sources
are developed which represent the solution to both problems.
From the short circuit point of view this is done by the purallel
combination of voltage sources in series with pole admittauces.
From the open circuit point of view this is done by the series
combination of current sources in parallel with pole impedances.
Modified forms of these basic types are also considered and
realizability and approximation problems are discussed.
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I. Introduction

In the complex frequency (s) plane there can be various equiv-
alent representations of the same electromagnetic problem. The
singularity expansion method (SEM) expands the solution in terms of
s plane singularities such as poles, branch points, essential singu-

4,5 Power series (Taylor, Laurant,

larities, and entire functions.
or Rayleigh series) expansion around s = 0 is another approach if
there are no singularities other than poles at s = 0. In a more
general case one can have an asymptotic series around s = 0 with
more general types of terms. One can also have an asymptotic series
for s + «» with its argument appropriately restricted. All of these

s plane expansions represent the same physical problem.

It is possible that two physical problems can have the same
solutions if the corresponding variables are appropriately inter-
preted. One problem is said to be an analog of the other. Equiva-
lent electrical circuits are often used to represent various

physical problems.

Considering a general electromagnetic scattering or antenna
problem onewould like to have various ways of representing pertinent
electromagnetic quantities as electrical parameters in an equivalent
circuit. Such representations could be helpful for several reasons

including (but not necessarily limited to):

1. physical insight

2. computational convenience 7

3. capability of using established circuit transformation
techniques ’ :

4. combination of the electromagnetic analysis with

physical circuit elements, transmission lines, etc.
which are constructed as part of an antenna or scatterer

5. use of existing computerized circuit analysis programs

This note dwells on the use of SEM representations for con-
structing equivalent circuits of antennas and scatterers at some

"gap" or "port.' While the present note considers representations




for a single port, some future notes could extend this to multiport

circuits for multiport antennas and scatterers.

In this note let us concentrate on objects (such as finite
size objects with sufficiently simple media in free space) whose
delta function response to an appropriately defined source (such
as an incident wave) has only poles as singularities in the finite
s plane. Complex conjugate pole pairs can be thought of as resonant
circuits and this observation forms the basis of the circuit repre-
sentations used in this note. TFor convenience only first order poles

are considered.

For purposes of forming equivalent circuits certain electro-
magnetic quantities are used which have direct electrical circuit
interpretation. Having defined some port for the antenna or
scatterer then one can calculate open circuit voltage, short circuit
current, and driving point admittance or impedance. A circuit can
be constructed to have the same port properties, matching the above

guantities for frequency and time domain uses.

One approach to equivalent circuits has been to construct
separate circuits to match the impedance and open circuit voltage.
As will be seen the present approach puts all the terminal proper-
ties in a single network involving lumped elements (resistors,

inductors, capacitors) and sources (voltage or current).

To state the problem more precisely consider some scatterer
or antenna as illustrated in figure 1.1. Let there be a single
port for consideration which will be characterized by a current
and a voltage. For this purpose the gap region comprising the port
is assumed small compared to radian wavelengths of interest. This
allows the electromagnetic fields to be locally quasistatic (i.e.,
in the vicinity of the gap). Note that the gap is defined in
figure 1.1 such that there are two isolated sides or terminals
separated by the gap region with surface Sg' The antenna or scat-
terer surface is designated by Sa (not including the gap) so that

SaUSg designates the surface of the entire object including the

gap.
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Figure 1.1. Antenna or Scatterer with Single Port
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The gap volume is referred to as Vg and the antenna or scat-
terer volume as Va. The entire object including the gap has volume
VaUVg. Where needed there are the small surfaces S+ and S_ separat-
ing Va and Vg where S+ is the side of the gap with positive conven-

tion in figure 1.1, and similarly for S_.

One can define a current I through the gap and a voltage V
across the gap as indicated in figure 1.1. The detailed definitions
of the quantities are considered in later sections. The electromag-
netic field quantities will be reduced to such circuit type quanti-
ties as voltage, current, admittance, and impedance for use in

defining equivalent circuits.

3 » . -—>‘ -—)-
In the presence of some set of incident fields Einc’ Hinc
and utilizing the above approximations for defining the port quan-

tities one can define the open circuit voltage as

Voc(t) = V(t) . (1.1)

Physically this corresponds to removal of any electrical connections
across the gap region. The gap surface and the volume interior to
the gap surface in its immediate vicinity is free space. Note in
this approximation the displacement current across the gap is

assumed negligible.

Simiarly under incident field excitation the short circuit

current is

I (t)

sc I(t) (1.2)

V=0
This condition corresponds to making the gap region perfectly
conducting.

The driving point impedance at the gap is defined by setting
the incident field equal to zero as



7 (s) = - X2 (1.3)

I(8) | zero incident field

where a tilde ~ over a quantity indicates the Laplace transform
(two sided) over time t, making the quantities functions of the
complex frequency s. Note that polarity convention for % and E in
figure 1.1 is chosen so that Za is the antenna impedance in the
usual sense, representing power flow out from the gap onto the
antenna and radiated into the surrounding space. For this purpose
the port current or voltage (i or %) must be specified in the sense
of a source, and then the other of the two quantities calculated or

measured to determine the port impedance %a'

These port quantities are summarized in the Thevenin and
Norton equivalent circuits illustrated in figure 1.2. For this
purpose one can have some sort of load impedance (say ZL) and also

sources (say V_ or Ip) attached to the port terminals. Our concern

b
is with the circuit representation of the antenna or scatterer at
the port terminals. With the convention chosen for V and I looking

into the port from the exterior we have the relation

Vo(s) .
S = Z_(s) (1.4)
Isc(s>

with a change in sign from that in equation 1.3. For convenience

define the admittance at the port as

v (s) = 2 ()7t | (1.5)

~ ~

The four quantities voc"Isc’ Za’ and Ya (only two of which are

independent) are the basic quantities to be considered in construct-

ing an equivalent circult for the antenna or scatterer as seen from

the port of interest.

-10-
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Figure 1.2. Thevenin and Norton Equivalent Circuits of
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There are some convenient constants for normalizing the vari-
ous results. These are based on the permittivity €, and permeabil-
ity Mo of free space. We have the free space impedance and speed
of 1light

i
v = |2 , - (1.6)
o] € _E
o) 00
The propagation constant or complex wave number is
- S
y 2 (1.7)

-12-




IT. Specified Gap Electric Field for Admittance

In calculating the admittance as part of the short circuit
boundary value problem let us specify a gap electric field ﬁg which
is defined as conservative on the gap. It can be derived from a

potential function @g as

- -> -
Eg(r,t) = —VSQg(r,t) , T € Sg
(2.1)
> > >
E t) = =Vo ,t) o, eV
Ig(r, ) g(r ) , T g

depending on whether a surface or volume formulation, respectively,
is being used. This potential function assumes two different con-
stant values on S_ and on S_ (opposite '"'sides'" of the gap). The
gap voltage for circuit purposes is taken as

V(t) = 0 (T,t) -e (rt)| (2.2)

- >
r€S+ reS_

Since this gap field is conservative then we have the line-integral

relation for the voltage

V(t) = —~/' E,(F,1) + I(F) a (2.3)
C
(S}
where Ce is a contour from S+ to S_. Te is the unit tangent vector

to Ce‘ This contour is indicated in figure 1.1 on Sg, but it could
1so be in V i ide S US US ).
a i . (inside gS_ +)

Besides choosing the gap electric field as the gradient of
a potential function one could also choose it divergenceless (at

least in Vg or on Sg depending on the form of source field) as

-

- _ 2 - _
v o Eg(r,t) =0 , vV 6 (T, 1) = 0, 71c¢ Vg
(2.4)

- _ 2 > _ -
v Eg(r,t) =0 , Voo (T, 1) = 6, 7c¢ Sg

This is a chargeless gap source field.

-13-



This gap electric field is specified as a source electric ‘

field in the sense as is used as a forcing function in an integral
equation to be discussed later. In normalized form we can define

our source field as

Eg(r,t) = —V(t)eg(r)
(2.5)
. ﬁg(r,t) for r e Sg (or Vg)
Es(r,t) =
0 for r ¢ Sg (or Vg)
where . )
J£ eg(r) . 1e(r) d2 = 1 (2.86)
e

Note that V is a function of time V(t), but will be Laplace trans-

formed into the complex frequency plane as %(s) for admittance

purposes. . ‘

For a gap of length A as a cylinder with generators parallel

to the z axis let us choose a convenient example that ﬁg is uniform

and parallel to the z axis as

- - 1
E (T,t) = -ZV(t)iZ
(2.7)
> > _ 1
e, () = -% iz

This is a particularly simple form of gap field, yet useful in

practical cases.
The resulting current through the gap can be calculated one
way as
) = f I ED T G a
Ch n
(2.8)

I(t) z.jr J(r,t) - TS (¥) ds
Sy h

-14-



for surface and volume formulations respectively. For the case of
surface current density the contour Ch lies on Sg and goes around
the gap once in a right hand sense (with respect to I) as shown in

figure 1.1, ih is parallel to C, in the right hand sense as in

h
figure 1.1; ig is the outward pointing normal to Sg; ihn is perpen-

dicular to Ch and parallel to Sg with
-5

ih(}*) x 1hn<?) =1 (™)

]
[t
[ny
~
=Y
~

I, & x 1@
n (2.9)
- - - ->
ig(r) x ih(r) =1 ™
7 e S
g
For the case of volume current density Sh is a surface inside Vg
which divides Vg in two. S, is bounded by Ch' ish is the unit
normal to Sh in the direction of the gap electric field. For con-

) >
venience we can let Sh be a surface of constant Vg. This makes lsh

parallel to gg' It also makes zhn parallel to gg on Ch and Sg

Another way one might define the resulting current is based

on the magnetic field around the gap as

I(t) = f(; H(r,t) - Ih(?) as | (2.10)
h

where Ch is taken just outside Sg. However, equation 2.8 is just

the surface integral of V x A over Sh so that

$ oG - L - js [5G0 + ey BE D] - Tg (as
h h (2.11)

Note the addition of the displacement current density eoaﬁ/at in
addition to the current density J. The use of the current density

-15-



Kj describing all the charge motion (including polarization current ’

density) would seem a more natural definition. However, in many
cases the displacement current at the gap is negligible compared to
the ''charge motion'" current; in such cases the two definitions are

approximately equivalent.

Assuming that radian wavelengths are large compared to the
gap dimensions, and that the admittance for current flow into the
remainder of the object (scatterer/antenna) is large compared to
admittances associated with energy stored in the immediate gap
vicinity, then the current I is approximately a constant through
the gap. In other words I in equations 2.8 and 2.10 is approxi-
mately independent of the particular choice of the path Ch and
associated surface Sh' This is to be expected in that the contrary
(significant variation of I through the gap) would imply large
charge buildup in the gap region. We are assuming in effect that

most of the charge is out on the antenna or scatterer.

A better definition of the current I through the gap might be ‘
made by averaging the current through one surface Sh through the
gap (equations 2.6) over all such surfaces Sh in some sense. As a
simple example if the gap region were a cylinder of length A with
S. as planes orthogonal to the cylinder axis (the z axis) then one

h
might define I as

m

I(t)

%fz~{é FE ) - ?tsh@*) as!dz
h

Zy

(2.12)

t 1
/A\ B>
/\ =
o
~ i
HY ~
. MY
(—f- -
— o+
N
o+
0 b
N\
0
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The last form brings the current definition into a form which is a

symmetric product with range of integration over the gap. The form
shown is for a current density with integration over Vg' For a sur-
face current density on Sg a symmetric product with integration over

Sg is appropriate.

A subscript g is used to indicate integration over Sg or Vg
as appropriate. Similarly a subscript a is used to indicate inte-
gration over the antenna or scatterer excluding the gap. A sub-

script a+g indicates integration over the object including the gap

region.

In defining the resulting current in the gap one can look at

the form of the resulting admittance

¥ o(s) = - ) (2.13)
V(s)

In another form this is

~I(s) = %a(s) V(s) (2.14)

which leads to two power types of relations as

“i(s) V(s) = ¥ (s) ¥3(s)
_ a (2.15)
~I(s) V(-s) = ¥ (s) V(s) V(-s)

Note the use of -s in the second case. For s = iw we have (Wheré a

bar — over a quantity indicates complex conjugate)

V(s)
s=iw s=iw

V(-5)

(2.16)

V(s)

-17-



which results from the voltage being the Laplace transform (two
sided) of a real valued V(t).

One way to compute such power expressions on a microscopic
basis is to consider certain volume integrals. First we have for

"power' generated by the gap field

J(r,S) s Eg(rys)>g = <J(I‘,S) 3 (—V(S) eg<r)) g
= _V(s) J(r,s) , eg(r)::>g
= V(s) I(s) = ¥ (s) ¥2(s) (2.17)

where we have taken as our generalized definition of i(s) the

expression

o

I(s)

<

This definition is consistent with the special case of averaging in

(r,s) , eg(?)>g (2.18)

equation 2.12. The admittance is then

Y (s)

- - _ (2.19)

where %(s) and gg(;) are fundamental properties of the defined gap

electric field.

An alternate approach to the same result is to use a power:
relation with one term conjugated (or better, s replaced by -s to
preserve analyticity in the complex frequency plane) as

-18-




il

<3G, L B G- >, =< 3G L (Ve E 0>,
=< FGE e D >,

V(-g) I(s) = §a(s) V(s) V(-s)
(2.20)

where our current definition is the same as in equation 2.18. This

gives an admittance as

%a(s) = - 18

= _ £ (2.21)

which is the same as in equation 2.19,.

Conveniently the current definition as an average in equation
2.18, together with the chosen general gap field as in equations
2.1 through 2.6 making the field conservative and factorable into a
space part times a frequency or time part, gives an admittance which
is independent of whether or not one term in the ''power'" expression
is conjugated. Let us take this average type of definition as stan-

dard for our purposes. In time domain this is
1) = < FE e D83 >, | (2.22)

Later formulas in some cases will not be dependent on the
exact form of the definition. However, some interesting special

results will be obtained for which the definition simplifies matters.

-19-



III. Specified Gap Surface or Volume Current Density for Impedance

In calculating the impedance as part of the open circuit bound-

ary value problem let us specify a gap current density jg or surface

current density 3Sg' Letting this be a divergenceless (solenoidal)
function we can define it as the curl of an appropriate vector poten-
tial as
F o(r,t)=v_ x T (¥, t) | Tes
S s g g
g (3.1)
> -> ->
J (r,t) =V x¥ (¥t , eV
g(r ) g(r ) rev,
with the property
-+ -+ -+
VS . JS (r,t) =0 , resS
X (3.2)
Ved(r,t) =0, Trev
g g

In addition we reguire that none of this source current in the gap

Cross Sg’ i.e.

ig(r) . 3Sg(r,t) =0, Tes,
ig(r) . Jg(r,t) = 0 s reSg (3.3)
jg(r,t) =0 , r¢Vg

i

~~
sy

-+

e
i

I(t) j_ (¥) , TeS
g Sg & o
) (3.4)

i
VaanN
Rt 2
ot
p—g
H

I(t) §g<%) , TeV
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so that just as in the case of a source electric field (section II)
the source current density is specified as a function of space
times a function of time. The normalized gap current density sat-

isfies the condition

Fi® 1 B a-a
C g n
h (3.5)

>

f§(?)-18(?)dz=1
h o

and the source current through the gap is

I(t) = Jo(r,t) - 1 (F) ae
%f. sg hn
h - (3.6)
I(t) = J (r,e) « I, (7)) ar
[ o,
h

where the contour Ch around Sg and bounding a surface Sh in Vg are

discussed previously.

The current can be also related to the vector potential ¢g

by an integral transformation as

I(t)

f [v x ?g(?,t)] . ’ish das
S

h (3.7)
f ?g(?,t) . ih ds
Ch

It

and similarly for the limiting form of surface current density as

-21-



(3.8)

where Cp, consists of points taken as the limit T - Sg from the

outside.

For use in integral equations the gap current density dis-

cussed above is used to define a source current density as

-> - -
I(t) Jg (r) for rssg

N g
38 (r,t) =
g ->
: 6 for r¢Sg
I(t) jg(r) for reVg
Eg(%,t) =
3 for ;¢Vg
(3.9)
fj’s(?)-ih s = 1
g n
Ch
S 3@ i as=1
S h
h

This general form of 3Sg will be used to specify a gap source current

with integration over Sg or Vg as appropriate.

The resulting voltage across the gap can be calculated from

V(t) = ~f B(F,t) » 1 (%) as (3.10)
Ce

29




where, as before, Ce is a contour in Vg or on Sg from S+ to 8_ (two
equipotentials at the ends of the gap). Note that there is an
infinite number of possible choices for Ce' Assuming that radian
wavelengths are large compared to gap dimensions, and that admit-
tance for current flow into the rest of the antenna is large com-
pared to those in the gap region then V(t) as defined by equation
3.10 is approximately independent of the specific choice of Ce.

The electric field is locally quasi-static (local to the gap) and

is hence locally approximately conservative.

A better definition of the voltage V across the gap can be
found by averaging the form in equation 3.10 over all paths Ce in
some sense. Suppose the gap region were a cylinder of length A
and cross section area A with Sh as planes orthogonal to the cylin-
der axis (the z axis) with all Ce taken parallel to the z axis.

Let the current density be uniform in this volume. Then we have

Z
V(t) = _% f T OB(T,t) “iz dzlds
Sh z,
- _f B(T,t) - [% iz} av
v
g
= _f B(T,t) Eg av
v
g

-<E<i«*,t) ' 3g>g (3.11)

with integration over the gap volume. Similarly if the current is
concentrated on the surface Sg of perimeter P and is uniform we

have

-923-



Z
V(t) = - % .¢r Jf T EE,t) - 1) azla
Ch z+
= = . ._];
= -‘/' B(F,t) [P iz] ds
S
g
= ~~/° B(F,t) - js as
s g
g

1

with integration over the gap surface.

Corresponding to the admittance discussion in the previous

section we have the impedance

Z(s) = - L&) (3.
I(s)

Writing this as

V(s) = - Z(s) I(s) (3
we have power types of relations as

T(s) I(s) = -7, (s) i2(s)

(3
V(s) I(-s) = -Z,(s) I(s) I(-s)

For cdmpafison to these macroscopic power formulas one can
consider the local gquantities integrated over the gap region.

Corresponding to the first of equations 3.15 we have

—24-

-<BG, ) 3Sg>g | (3.

12)

13)

.14)

.15)




= —%(s) i(s)
which gives the impedance as
~ %(s)
Z_(s) = - 2
a I(s)
_ <::E(r,8)», Jg(r,S)::>g
1%(s)
i B¢, | jg(r)::>g
I(s)

Z, (s) 2(s) (3.16)

(3.17)

Using the power relationship with one term having s replaced by -s

we have

i

which gives the impedance as

<EF,0) | §g<z,-s>>g

-95

—ﬁ(s) T(—s)

za<s> I(s) I(-s)
(3.18)

(3.19)



which is the same as in equation 3.17.

The voltage definition as a gap average in equations 3.11 and
3.12 together with the factored divergenceless chosen form for the
current density in equations 3.1 through 3.6 gives an impedance
independent of whether or not one term in the "power" expression
is conjugated (for s = iw). Let us take this average ﬁypewgf defin-~
ition for present purposes. For a general gap and time domain this

is

vV(t)

il

-<’E*<§:~*,t) j?g(?)>g (3.18)

with integration over volume or surface as appropriate, and where
Eg can be replaced by jsg as required. Note the similarity of this
definition of voltage for impedance purposes to the definition of

current for admittance purposes in equation 2.22.
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Iv. Short and Open Circuit Boundary Value Problems

The short and open circuit boundary value problems are defined
by setting any impedance loading the gap of the antenna or scatterer
to be respectively zero and infinity (or zero admittance). The for-
mal solution of such boundary value problems is representable by
integral equations where the domain of integration is the antenna
or scatterer of interest, including or excluding the gap depending

on which problem is being solved.
A. Integral equations

For the developments in this note consider an impedance inte-

gral equation8’12 which we write in the general form
3 > :;-)f - 3
E (r,s) = <::P(r,r',s) , JS(r‘,s)::>
3 4 3 (4.1)
F(r,7ys) = Z(F,718) + Z,(F,8) 6(F - )
mere z s L,
Z(r,7';s) = su_ G (¥,r';s)
O (o]
6 F e = [z i Jﬁw] NERTIN
Y (4.2)
-y |T -~ 7
éo<?’?"8) - S - -
dv|r - ']
3 100 \ - > > > >
i= (o010 =311 +11+3 71 = identity dyad
00 1 / X X vy A

with care taken to properly evaluate the integrals near ? = r!
and where %g(?,s) is any added load impedance in the object. Equa-
tion 4.1 is written for surface current densities but applies
equally to volume current densities (and volume load impedances)

as well as mixed volume and surface forms.

For our short and open circuit boundary value problem we have

denoted the antenna or scatterer (less the gap region) by Sa’ or
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merely by a subscript a. We have denoted the gap region by Sg or .
subscript g. Let our general integral eguation be of the form

B (F,s) =< T 550 1 T 3 ,s) > (4.3)

Then the short circuit boundary value problem has the form

B (Fs) = <FEF5e) | I Gre) 3, Fesus,
F(F, 759 | ffs(?',s)>a (4.4)

+ <::?(?,?‘;s) : 38(§';s)::% , ?‘eSaUSg

where SaUSg is the entire antenna or scatterer, considered as sur-

faces here, but not necessarily so.

The open circuit boundary value problem has the form

:)_ . .
>, . >, >
= <::P(r,r‘,s) , js(r ,s)::a , reSa (4.5)

~

The resulting electric field Eg and voltage V in the gap region is

evaluatable as an integral over the current on Sa as
Bt - Be - <BGFe | Tde)

where ﬁs(?,s) is any source electric field (such as an incident

(4.8)

electric field) which may be present.

If there is a source current density jsg(?,s) present in the

gap region then one would write
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%(?,s) =% (r,s) - <::§(?,?';s) , I (r,8) + J (r,s)::>+g , reS US
g
= <::22(r,s) (v - 17') | ﬁs(r,s)::%+g , reS_US
= %g(?,s) > ?eSg (4.7)

This formulation allows for the presence of both source and response
currents and for possible impedance loading in the gap region. The

details depend on the specifics of how the gap region is driven.
B. Incident field

Sections II and III have discussed manners of specifying the
gap electric field or current density so as to define the source
electric field in the integral equations (section IV.A) for calcu-
lating admittance and impedance. For determining the short circuit
current and open circuit voltage one needs some sort of incident

field for the source field.

A source electric field in the form of a general incident
electric field can be defined as

N3

-

(r,s) = Einc(?,S)

ea

Il

S

B, 20 () 3 (Fe)
P (4.8)

il

EgF.0) = B (F,0) = By Q) £ (0)*8 (T, 1)

b
where the subscript p indicates different incident waves character-
ized by various polarizations, angles of incidence, and more general
spatial forms consistent with Maxwell's equations. In a generalized
sense fp(t) is the incidenf waveform and gp(;,t) is the general

spatial form.

The summations in equation 4.8 might represent a single inci-
dent wave, some finite number of incident waves, or even an infinite
number of incident waves. Such a sum can even be replaced by an

integral over a continuous spectrum of incident waves 1f desired.
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For a plane wave propagating in the direction _il P with ‘
with

polarization iz’p

s
X
b
i
s

> >
Lpxly,=1,
(4.9)
- > >
3,0 * Tp T 2,
Tl,p ) I2,p - i2,p ] i3,p - TB,p ) il,p =0
then iz D gives the electric field orientation and iB o gives the
magnetic field orientation. The general spatial form becomes
o> >
~ -yl °r
g (?,s) =1 e 1.p
p 2,p (4.10)
> -
- ll T
S (r,t) =1 S - P
P 2;p C

which is a propagating delta function. In such cases fp(t) is the
incident waveform at all spatial points except for a simple time
delay.

Not just any spatial form gp(;,s) of the incident electric
field can be used. It must be consistent with Maxwell's equations.
Plane waves in free space (equations 4.10) form one type which are

consistent. Many other types are also possible.
C. Notation for short circuit quantities

The various electromagnetic quantities to be used in con-
structing equivalent circuits such as natural frequencies, eigen-
impedances, etc. will be distinguished as to which of the two types
of boundary value problems they pertain. For the short circuit
quantities let us use a subscript sc if the gquantity is used, for
both short circuit current and admittance. For those pertaining

only to the short circuit current use subscript ssc; for those
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‘ pertaining to admittance use subscript y. Some of these are listed
in table 4.1.

= t - t * . .
ST (8,8 )sc (BSC,BSC) index set for shgrt circuit
natural frequencies

3@ short circuit natural modes
sc
ﬁ' . admittance coupling
o o
scC coefficient
Ha short circult current
sc coupling coefficients
Bsc index set for short circuit
eigenmodes
Table 4.1 Short circuit guantities
D. Notation for open circuit quantities

Similarly use a subscript oc if the quantity is used for both
‘ open circuit voltage and impedance resulting from the open circuit
boundary value problem. For those pertaining to the open circuit
voltage use a subscript ocv; for those pertaining to the impedance

use a subscript =.

a = (B,B") = (B__,B' ) index set for open circuit
oc oc oc” oc natural frequencies
.+
Vg open circuit natural modes
oc
n’ , impedance coupling
o PO
oc coefficients
Ny open circuit voltage
ocC coupling coefficients
Boc : index set for open circuit

eigenmodes

Table 4.2 Open circuit quantities
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V. N-Port Representation of Boundary Value Problems

In discussing eguivalent circuits for antennas and scatterers
it is instructive to consider an N-port representation of such
objects. This can be defined from the moment method (MoM) numeri-
cal representation of the object in a certain format. As in the
previous section let our integral equation be an impedance integral

equation of the general form

~ 3 -~
E(F,s) = < F(F,7159) ) 3@Frs) >
3 3 3
F(F,Fris) = 2(F,Frs) + 4,(F,8) 8(F - F) (5. 1)
¢ > - 3 > >
1 - 1

%(r,r ;s) 1IN ao(r,r 1S)

3 ->

where fg(r,s) represents impedance loading of the object.
Following Harrington12 we expand the response js in a set of

n
basis functions with coefficients 3n and the excitation %s in a set
of testing functions with coefficients §n' This gives a matrix

equation
(V,(s)) = (T, ,(s)) + (I,(s)) , n,m=1,2,3,...,N  (5.2)

and we can say that we have matricized the integral operator of
equations 5.1. The matrix elements fn m(s) are the generalized

b

impedances as defined by Harrington.

Figure 5.1 shows the N-port network representation of the
antenna or scatterer. The En are the port currents and the %n are
the port voltages. A slightly more general form of the kernel of
our integral equation

3
(?,?';s) + 7 ?,?';s) (5.3)

—H
D 42

> =
(r,r';s) =

with corresponding impedance matrices
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(T a0, .

(A, p(s) :

b
+
<

A. Current and voltage conventions

=
oINS

1 + - 1
D 5 -
Q=0 V , OO
I 1 I
1, 4
~ 4._12_. +~ - ‘i ~
(Zn m(s)) , ——:———(h——O\EBO———O——:——' (ZQ (s)) ,
’ I I n,m
—2 5 P—N
(Y, p(s) . . . (¥, ()
. . . ’
[ ] ® L
N + - Iy
C_A 7 J\q.._
: —0- o\Nc o -
N N
__..’& A______b
B. Two N-port network conventions
. Figure 5.1. N-Port Circuit Representation of Antenna or Scatterer

Including Loading
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~

(Tp () = (B () + (B (s)) (5.4) @

n,m

which separates the scattered (or radiated) field part of the gen-
eralized impedances from the loading part. Figure 5.1A shows the
single N-port representation of antenna or scatterer. Figure 5.1B
shows the representation as two N-port networks with the (in’m(s))

and (Zzn m(s)) separated. Note that the case of only local effect

of the 1mpedance loading as in equations 5.1 has the matrix (Zgn m(s))

as a diagonal matrix; with the Zg appearing as series elements

n,m
to the input of the (Z (s)) network this assumes subsectional

basgsis and testing functlons have been used so as to have the b (s)
and Vn(s) represent the 1oca1 currents and electric fields on the

body.

There is a matrix of admittances

-1
CS))]

where the matrix elements An m 2re generalized admittances. We

k3

(A, () = (Fy N7 = [(2n,m<s>) + (2,

n,m (5.5)

also have

-1 (5.8)

(Y, n(s)) = (B, ()
as the admittance matrix corresponding to the perfectly conducting
body (i.e., without loading). For the loading we can also definc

¥, (s =, (s»7T (5.7)

n,m n,m

!

With the identity matrix as

—_

O

—
il

(Zy () + (¥ ()

(5.8)
‘ 1 for n = m

lO('orn#m
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we also have

. N . 5 N ~1
By w(s)) = (T, (D) + (B (s)) - [(zn,m(sn (2 m(s))]
5 N N N -1
= (¥, L(s)) - {[<Zn,m<s)) 3y m(s))] - (Yn,m(s))}
i T -1
= (T, s - {%,m £y () (Yn,m(s))} 50
or in another form
- ] . R
(A (s)) = (¢ + (Y (s)) = (2 (s)) - (Y (s))
n,m { n,m n,m 2o,m f n,m (5.10)

Note that when using the admittance form the diagonal element An a

. T = +
appears in parallel at the nth port, whereas Tn N Zn,n Zzn,n

>

appears in series at the nth port.

In terms of the equivalent N-port network one can now consider
the open circuit and short circuit boundary value problems discussed
in the previous section. For this purpose let one of the ports
n = 1,2,...,N denoted by n = p correspond to our antenna or scatterer
port of interest. The convention for in is that for power into the
antenna or scatterer while for I we are considering power into the

load. Hence we have

Il

I(s) -Ep(s)
(5.11)

V(s)

i?p<s>

For thc short circuit boundary value problem we have the con-

Mgurations illustrated in figure 5.2. For the admittance we have
ﬁn(S) =0 , n#p
5 (5.12)
Y (s) = EESE& = _ 2(5)
2 V() V(s)
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Figure 5.2.

(T m(s))

(A, n(s))

L
.
L
1
‘.—E—_—
1 n p
1 i
[ ]
¢
[ ]
[ ]
[ ]
I
<_L +

A, Admittance

(T (),

(An,m(S))

B. Short circuit current

I(s) = -Ep<s>
V(s) = %pgs)

~ I(s)
Y (s) = -2

a'® V(s)
V. (s) # 0
ISC(S) = —Ip(S)

N-Port Configurations Corresponding to Short
Circuit Boundary Value Problem
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For this situation one might wish there to be no impedance loading
across the gap so that '"all'" the current from the antenna/scatterer
is available to the load. Actually the capacitance across the gap
will still remain but the loading is thereby minimized in a restricted
sense. Stated another way one may wish that the loading impedance

.72 be infinite in the gap. For the short circuit current we have

%n(s) %70 , all n
7(5.13)

ISC(S> = —Ip(s)

where the vn(s) are sources given by the incident field.

For the open circuit boundary value problem we have the con-

figurations illustrated in figure 5.3. For the impedance we have

%n =0 , n#p
N (5.14)
~ V_(s) 5
Z (s) = 20 = o X(S)
Ip(s) I(s)
For the open circuit voltage we have
%n(s) # 0 , alln
ip(s) =0 (5.15)

%Oc(s) = %p(s)

where the Vn(s) for n # p are sources given by the incident field
and the open circuit voltage is ﬁp(s) which is the voltage across
the nth zone including both the incident field and the mutual terms

from the remainder of the network.
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Figure 5.3.

B.

(T (),

(R, ()

A. Impedance

(T m(s))

(R p(s)

Open circuit voltage

I(s) = -1,(s)
V(s) = Vp(f)

~ _ V(s)
Z_(s) = = =

a I(s)
ﬁn(SD 0
ipcs) = 0

Voe(s) = Vp(S)

N-Port Configuration Corresponding to Open Circuit

Boundary Value Problem
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Concerning the pth port and its relation to the antenna port
there are some subtle points regarding the way the current is
brought from the antenna/scatterer to the load. The detailed design
of the port (gap) needs to be considered in treating the local pth

contributions to the port voltage, current, and admittance/impedance.
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VI. Some Limiting Admittance or Impedance Properties of Port

In constructing equivalent circuits for antennas/scatterers
at a port it is useful to consider some of the physical properties
of the port in limiting frequency or time regimes. These results
may in turn be used to help define the short circuit current, open
circuit voltage, and admittance/impedance of the antenna/scatterer
at the port of interest. The high and low fregquency properties

establish constraints on these functions.
A. High freguency impedance

In the 1limit of high frequencies (or early time) one can
consider the antenna/scatterer. response according to the character-
istics of the gap geometry. As illustrated in figure 6.1A there

are various specific gap geometries one can consider.

In calculating the impedance for high frequencies let s + ©
in the right half s plane with |arg(s)| < m/2 - § with § > 0. This
corresponds to early time after turning on the source field or cur-
rent density in the gap. Only the immediate gap vicinity influences

this early-time result.

As an example consider first the circular biconical gap geom-
etry in figure 6.1A. Let the port shrink toward the conical apex.

Then the impedance has the limiting forml

0
1
z Cot(‘z—)

1im 7 (s) = =2 1n (6.1)
s v e a cone 2T cotiig
[arg(s)ls§—6 ' P)

where 61 and 62 are the two polar angles specifying the two con-

ducting circular conical surlaces.

Another example is the distributed source gap with a uniform
axial source electric field on a circular cylinder as illustrated
in figure 6.1A. With a source band of length A and radius a the
high frequency limiting impedance considering only fields exterior

to the cylinder is
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2 (s) - constant 2 (s) » constant
& > 0 l a > 0 .
3y

for some angles:

—

constant I (s) >0
nstant sc

&

I_(s) ~ port
sc S . l
VOC(S) - 0
% (s) + constant
oc IS
conical gap region cylindrical gap region
A. High frequencies
%a(s) inductive
or
Za(s) capacitive resistive
~ h ‘.‘\
I .(s) - (constant)s | ' }port N : } ¢ port
Isc(s) - !
constant
o or 0
Voc(s) + constant 7 N
Vsc(s) -
(constant)s
open object with closed object with
respect to port respect to port

B. Low frequencies

Figure 6.1. Some Limiting Properties of Port
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lim Z_(s) = Z 3ma (6.2
S > ® - a cylinder © 27a
[arg(s)|s§«6 exterior

If the interior fields are also included then the appropriate high
frequency impedance driven by the source distribution on the cylin-

drical surface is

= Zo A A
lim Z (s) = e = = 7 (6.3)
s 5 w a cylinder 2 2ma o 4ma
il :
|arg(s) |<5-6 exterior
and
interior

Viewed in a more general manner a surface gap has a surface
. . > —9. . . .
electric field ﬁs(r,s) which results in a surface current density

38(;,8). At high frequencies this becomes

42

lim J (v,s) ~ 2 % (*,s) ' (6.4)
s Z S
s + ® o

|arg(s)|<g-3

Using the specified electric field from sectionll as

~

-V(s) é’g(}’) (6.5)

=N
—
}-f
n
~—
il
=
~—
L}
0]
—
11

we have the high frequency admittance

. g 2 -+ > S
1 Y = = > 6.6
. imm a(S) Z_ eg(r) ) eg(r) 2 ( )

Iarg(s)[s%—&

Similarly one can regard the surface current density as the source

48 in section III as

() (6.7)
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We have the high frequency impedance

~ Z > > e -
Lim Z,(s) = 2 <Jsg(1’) L3 > (6.8)

S -

larg(s) IS%-C‘S

Here the inside and outside fields are both included from equation
6.4. If only exterior fields are to be included then one can reduce
the high frequency admittance (equation 6.6) by a factor of 2 and
increase the high frequency impedance (equation 6.8) by a factor of
2.

These considerations indicate that in general the high fre-
quency impedance is a positive constant, i.e. resistive. One can
postulate an inductive or capacitive high frequency impedance by
the addition of _a lumped ideal series inductor or parallel capacitor
at the gap. However, real physical structures are better described
as distributed at high frequencies than as lumped. Except in spe-
cial cases then one can regard Za(s) as a constant resistance at
high frequencies (in the right half s plane).

The distributed gaps considered here have been those with
source surfaces. With source volumes the considerations may be
somewhat different, but one should be careful regarding the physical
characteristics of the gap distributions chosen. Various types of
gaps could be considered and their high frequency impedances tabu-
lated. In turn these results can be used to impose contraints on

the high frequency gap impedance.
B. High frecquency short circuit current and open circuit voltage

The high [(requency short circuit current and open circuit
voltage are rclated by the corresponding impedance or admittance via
equations 1.4 through 1.5. Since, for the cases we are considering,
the high frequency impedance is a positive constant (resistance) the
short circuit current and open circuit voltage have the same high

frequency behavior.
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Consider a step function plane wave in time domain incident
on our antenna/scatterer of interest. Assume that there is no
focusing of scattered high frequency fields onto the gap from other
parts of the object, i.e. the fields incident on the gap region are
bounded in an early time sense without unbounded steeply rising
transient fields arriving later in time. For the conical gap region
in figure 6.1A let the incident wave arrive with a propagation direc-
tion between the two cones. Just after the incident wave reaches
the apex (say a time At after) the apex can collect energy from a
volume with linear dimensions At into some resistive load or back
into the high frequency resistive impedance. This energy propor-
tional to (At)3 can be equated to an energy given by V and I both
proportional to At. This gives a response in Laplace formrpropor-
tional to s_z. The response of such a gap to a delta function
plane wave then falls off like s_l. Faster falloffs at high fre-
quency are also possible if the direction of incidence is not
between the cones or if the polarization of the incident wave is

appropriately orthogonal to the gap region.

Another example to consider is the circular cylindrical gap
region shown in figure 6.1A. An incident step function plane wave
can give an early time gap voltage for a surface type gap propor-
tional to (at)t/2

provided the direction of incidence is perpendicular to the cylinder

from a surface integral as in equation 3.11,

axis. This corresponds fto s_3/2 in complex frequency form. For a
delta function incident plane wave this is an s—l/2 dependence. For
other directions of incidence the response (open circuit voltage and

short circuit current) fall faster to zero at high frequencies.

Here we see that different types of high frequency gap response
(short circuit current and open circuit voltage) are possible. How-
ever, their high frequency responses to delta function plane waves
all go to zero, except in special limiting cases applying to special

gap designs.
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Using high frequency techniques such as GTD (geometrical
theory of diffraction) the high frequency response characteristics
of various gap designs can be tabulated. These results can be used
as constraints on the representations of the short circuit current

and open circuit voltage.
C. Low frequency impedance

At low frequencies one can consider the antenna/scatterer
response as a quasi-static problem involving the total object geom-
etry. As illustrated in figure 6.1B there are some basic object

topologies one can consider for this purpose.

In this note we have restricted our attention to finite size
objects in free space. Such objects are known to have delta function
responses with only pole singularities in the complex frequency
plane.4’5 Note that for our impedance/admittance problem the gap
region must be either of finite non-zero dimensions (no delta gaps
which would give infinite admittance allowed) or of special limiting
zero dimensions preserving a finite non-zero admittance for fre-

quencies near (but not necessarily at) zero.

In addition when we are dealing with an impedance/admittance
problem for a passive antenna/scatterer we have a description as a

positive real function. This implies that any pole at zero fre-

guency is at most of first order. We can then expand such a function
as
7 (s) = Z s_l +7 s°+7 sl +
a a_q a, aq
(6.9)
Y (s) = Y s—l +v 2 +v st
a a a a
-1 o 1

which are of course related. LEither Za has a first order pole at
s = 0,

is a non-zero constant at s = 0, or has a first order zero
at s = 0.

These are summarized as
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1. impedance pole (admittance zZero) at s = O .

Y, =Y =0 ,

-1 o (6.10)
7 = vl 9

-1 a1

2. impedance constant (admittance constant) at s = 0

Y =0
a_1
7 =0 , (6.11)
a_1
-1
Z, =Y, >0
O O

3. 1impedance zero (admitténce pole) at s = O

© | - (6.12)

Note that these results still apply with the reduced assumption of
stability for the antenna/scatterer instead of passivity. This is
seen by noting that under open circuit or short circuit conditions
the object would be unstable if higher than a first order zero or

pole, or non-positive leading coefficients were allowed.

Divide antennas/scatterers into two classes, those which
allow no current to flow at DC (s = 0) in response to a voltage at
the gap, and those which do allow such a current. The former can
be considered topologically as two objects joined only through the
gap, while the latter can be considered as a single object which
has two small portions of its surface additionally joined through
the gap region. The former has current paths through the gap never
closed in the object, while the latter has all current paths through
the gap closed in the object (in a low frequency sense). The former

has a capacitive impedance as s » 0 and the latter has an inductive

or resistive impedance as s - 0.
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Considering the former object as illustrated in figure 6.1B
as an open object with respect to the port we have the case given
by equations 6.10. The object has a capacitance Ca (as measured at
the port) and we have

= 71 -
Ya(s) = Za (s) = sCa +

(6.13)

Y = z"1 =C >0
a

21 2_1
Considering the latter object as illustrated in figure 6.1B as a
closed object with respect to the port we have the cases given by
equations 6.11 and 6.12. The object has inductance La and perhaps
resistance Ra (if none of the closed current paths is perfectly

conducting along its entire circuit of the object) and we have

- =1
Za(s) = Ya (s8) = Ra + SLa +
- v-1 _
Za = Ya = Ra > 0 for Ra £ 0 (6.14)
0 0 _
Za = Y;1 =L >0 for Ra =0
1 -1 a
D. Low frequency short circuit current and open circuit voltage

The low frequency short circuit current and open circuit volt-
age are related by the low frequency impedance just discussed. Now
since the low frequency impedance can be capacitive, resistive, or
inductive the short circuit current and open circuit voltage can

have different low frequency behavior.

For the opcen type of object in figure 6.1B the open circuit
voltage at low Trequencies is proportional to the incident electric
field. Considered as an clectromagnetic field sensor this is an
olec;rjc field sensor characterized by an equivalent height Keq
with

~

Voo(s) = —heq . Es(s) , s >0 (6.15)
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Note that this has no singularity as s > 0 but may have a zero if
Einc is orthogonal to Eeq; here ﬁs(s) is assumed to be a uniform,
constant, non-zero vector for s - 0. The short circuit current on

the other hand is given by an equivalent area as

ISC(S) = fszeq . 5S(s) , 8-> 0
_ s-1
= Z7(s) ¥ _ ()
~ (6.16)
=gsC V_ (s , s~=>20
a oc
= -gC_h - B (s , s=>0
a eq S
e &k =Ch
o eq a eq

The open type of object then has its delta function response to an
external incident field (electric) as a constant for open circuit
voltage, but a zero for short circuit current. This type of object
is characterized as an electric dipole.at low freguencies both in

transmission (driven at the gap) and in reception (by reciprocity).

For the closed type of object in Tigure 6.1B the open circuit
voltage is proportional to the time rate of change of the ingident

, . . . 2
magnetic field via an equivalent area as

¢

QOC(S) = sk . %S(s) , s >0 (6.17)

eq

The open circuit voltage response to a delta function incident
field then has a zero at s = 0. The short circuit current is given
by
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~ _ ~_7 ~
ISC(S) = Za (s) VOC(S)
= (R + sL)" T ¥ (g) >0
a a ocC !
_ -1 L2
= s(Ra + SLa) Keq BS(S) , s >0 (6.18)
For non-zero resistance we have
~ _ -1 . e
I .(s) = sk, Zeq E’S(s) , s+ 0 (6.19)

which gives a zero for the delta function response at s = 0. For

zero resistance the response is characterized by an equivalent

length as
I (s)y =112 <8 () s > 0
sc a eq s ’
- B + 0 (6.20)
- eq S(S) s S .
UoKeq = La eq

The short circuit current for a closed object then has its delta
function response to an external incident field (magnetic) as a
zero for the open circuit voltage, a zero for the short circuit
current for. a resistive object (Ra > 0), and a constant for the
short circuit current for an inductive object (Ra = 0). This type
of closed object is characterized as a magnetic dipole (loop) at
low frequencies both in transmission (driven at the gap) and in

reception (by reciprocity).
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VII. Analytic Properties of Impedance and Admittance in the

Complex Frequency Plane

Assuming that we have a passive linear object (antenna/
scatterer) there are certain useful properties of the associated
impedances and admittances. Specifically these are positive real
(PR) functions, much as used in circuit theory except applied to
distributed electromagnetic systems. Let us here consider ébme of
the implications of the PR property. These can be applied to the
antenna/scatterer impedance and admittance at the port (equations
1.3 through 1.5) and to the eigenimpedances and eigenadmittances8
of the scatterer for both the short circuit and open circuit bound-
ary value problems (as well as any specific case of passive linear

load at the antenna gap).

In this context let us restrict consideration to impedances
which are ratios of the Laplace transforms of voltages to currents
or electric fields to current densities, where such voltages, cur-
rents, etc. are real valued time functions. Then since the Laplace
transform é(s) of a real valued time function g(t) is conjugate

symmetric, i.e.
g(s) = g(s) (7.1)

where the Laplace transform exists. The ratio of two such trans-
forms is also conjugate symmetric so that we have for the impedance

and admittance

(7.2)

=

2!

S
i

()

Similarly for the eigenimpedances and eigenadmittances (eigenvalues
of impedance or admittance operators) we have the same conjugate
symmetric property. This particular characteristic of conjugate
symmetry applies not only to impedances and admittances, but to any

Laplace transform of a real valued time function.
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This property of conjugate symmetry is often stated in another
form as é(s) is real for real values of s. Conjugate symmetry immoe-
diately implies this as can be seen by setting s real in equation
7.1. One should be careful in applying this conjugate symmetric
property to consider only those s for which the function is uniquely
defined. For cases with only pole singularities in the finite s

plane only the precise pole locations need be avoided.

The passive property of the object is reflected in the non-

negative real part on the iw axis of the s plane as

v
(@]

Re[ia(iw)] >
Re[?a(iw)]

for the impedance and admittance at the port. This is seen by

(7.3)

fv
o

requiring for CW excitation of the gap that real power flow from
the source at the gap into the object and surrounding space, or at
least not flow back into the source if the object is purely reactive

(such as in the case of a perfectly conducting cavity).

If at time t = to one drives the gap with a current source
which is bounded in amplitude then the gap voltage grows slower
than an exponential at late time, otherwise the object wbuld be
unstable and hence not passive. The voltage (the response) also
commences no sconer than the source current. Hence the Laplace
transform of the voltage is analytic throughout the half plane.
Letting the current be simple, say a step function, its Laplace
transform is analytic with no zeros in the right half plane. Hence
the impedance is analytic throughout the right half plane. Inter-
changing the roles of voltage and current by driving the gap with a
suitable voltage source we find that the admittance is also analytic
throughout the right half plane. Since the impedance and admittance
are mutually reciprocal and since each is analytic and therefore

finite in the right half plane for Is] finite, then the reciprocal
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of each has no zeros in the right half plane (possibly excluding at
infinity). Hence we have

analytic (no singularities) and # O

¥, (s) for Re[s] > 0 (7.4)

For s » » in the right half plane the restriction of equations
7.3 implies that such functions be no more singular than a positive
constant times s or go to zero no faster than a positive constant
" divided by s. Note that an exponential function, for example, repre-—
senting a delay in the impedance would represent an advance in the
admittance (and conversely) giving a non-causal and therefore non-
passive object. The gap current or voltage must immediately respond
to the other quantity with a time behavior lying between first deriv-
ative and first integral (or s and s—l) for early times. Stated

another way

ia(s) ~ Agd s -
Y (s) ~ A4 larg(s)| < % -8
(7.5)
A >0
-1 £ g =<1
§ >0

where we restrict the result away from the iw axis to allow for
cases of alternating zeros and poles on the iw axis as in cavities.
Recall the discussion in section VI.A that for antennas and scat-
terers with finite, non-zero gap dimensions characterized by surface

source distributions the impedance tends to a constant, i.e.
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S > o

(7.6)
. 1, larg(s)] < 5 - 6

Combining these results noting that Re[ia] and Re[?a] are
positive on the iw axis and on a semicircle near infinity in the
right half plane with no singularities (points of non-analyticity

~

of Za or §a within the right half plane) we conclude

Re[ia(s)] >0 for Re[s] > O
(7.7)

\
O

Re[?a(s)] > for Rel[s] > ©

This results from the well known property that the maximum and mini-
mum values of the real and imaginary parts of a function, analytic
within a contour, are achieved on the contour.

On the iw axis we may have zeros and poles. However, they

must be simple with real coefficients. Suppose we have

p+i

~ ~-1 . p _
Za(s) Ya.(s) = Bp(s - Sa) + Bp+1(s Su) +

(7.8)

S iw , Re[s ] =0
o o o
Then p > 1 and p < -1 would violate equations 7.3 For integer p the

acceptable cases are

p = #1 with B]O > 0
(7.9)

T
il

0 with Re[B ] >0 , |B_ | #0
P b

For cases of brach points at s = Sa in equations 7.7 one might allow
non-integer p with -1 < p < 1 with suitable restrictions on Bp to

insure compliance with equations 7.3.
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While equations 7.8 and 7.9 are for poles and zeros on the
iw axis they can be applied in an approximate sense to poles and
zeros near the iw axis. Consider a zero with small negative real
part. Then if the nearest zeros and poles are far away compared
to the distance of the zero from the iw axis the coefficient B
would have small imaginary part or small Iarg(Bp)[ compared to m/2
where arg is defined to range as -7 < arg < 7 for its principal
value. Under such circumstances the zero would also have to be
simple (first order). Similarly for a pole with small negative
real part isolated away from other poles and zeros the pole would
have to be first order and have a residue with small imaginary part

or small argument.

The requirement of non-negative real part in equations 7.3

and 7.4 can be put in another format as

IA

- % < arg(za(s)) % , Rels] >0

A

- % < arg(?a(s)) ~‘% ; Refs] > o ' (7.10)
arg(Z,(s)) + arg(Y, (s)) = 0

where the iw axis is included except at zeros and singularities at
which points arg is undefined. Defining the principal branch of the
logarithm such that arg is zero on the positive real axis of the s

~

prlane (where Za and Ya are positive) we have

In(Z,(s)) = 1n(|Z,(s)|) + i arg(Z,(s))
analytic for
Re[s§ > 0

In([¥,(s)) + i arg(¥_(s))

1n(Y,(s))
(7.11)
ln(ia(s)) + 1n(§a(s)) = 0

Hence the logarithms of PR functions are analytic throughout the

right half plane.'
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Consider the logarithms of PR functions as functions of 1n(s)
instead of s. The right half of the s plane is described by

In(s) = In(|s|) + i arg(s)
(7.12)

3

m
-5 < arg(s) < 5

Now s is here an analytic function of 1ln(s) with no zeros provided
we exclude s = 0. Hence in the right half s plane ln(%a) and
1n(?a) are analytic functions of In(s). Consider the PR function

é(s) and form the new function
g'(s) = 1n(g(s)) - In(s) | o (7.13)

which is also an analytic function of 1n(s) in the right half s

plane. Restrict our attention to the first gquadrant of the s plane

(0 £ arg(s) <= m/2). On the positive real axis we have
Im[g'(s)] = [arg(g(s)) - arg(s)] =0 (7.14)
s>0 s>0
On the positive imaginary axis we have
Imlg' (s)] = [arg(g(s)) - arg(s)] (7.15)
s=iw s=iw
w>0 w>0
but
arg(s) =5 . -5 < arg(g(s)) <X (7.16)
s=iw : s=ip 2
w>0 w>0
giving - o - )
-1 < Im(g'(s)) <0 ‘ (7.17)
s=iw
w>0
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Since Im(é'(s)) is zero on the real axis and non-positive on the
positive imaginary axis, it is non-positive in the first quadrant.

Hence in the first quadrant

arg(g'(s)) - arg(s) < 0 (7.18)
or
arg(g(s)) < arg(s) | (7.19)

Similarly defining

g"(s) = 1n(g(s)) + 1n(s) (7.20)
we find that Im[g'"(s)] is non-negative in the first quadrant or

arg(g(s)) + arg(s) > O (7.21)
or

~arg(g(s)) < arg(s) ' (7.22)
Combining equations 7.19 and 7.22 gives for the first quadrant

larg(g(s))| < arg(s) (7.23)

Repeating this procedure for the lower half of the right half
plane (the fourth quadrant) we find

larg(g(s))] < -arg(s) . (7.24)

This is also directly obtainable from equation 7.23 using the con-

jugate symmetry of é(s). Combining the results gives
larg(g(s))| < |arg(s)| for larg(s)]| < % (7.25)

except for zeros or poles on the iw axis and for s = 0 where arg

is undefined.
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Applying this result to our object of interest we have

]arg(ia(s))l < |arg(s)] for |arg(s)| <

noj =

(7.26)

IA
oA

larg(?a(s))] < larg(s)] for |arg(s)]

This is a somewhat tighter result than that in equations 7.10,

although they can be derived from each other.lo

Following Guillemin11 we can say that a function of s which

is real for s real is PR if:

a) It is analytic in the right half plane.

b) Its real part is non-negative on the imaginary axis.

c) Any imaginary axis poles are simple and have positive

real residues.

Here we have applied this concept based on physical principles
(passivity) to distributed systems such as impedance/admittance at
a port of an antenna/scatterer. It can also be applied to eigen-
impedances and eigenadmittances8 but a detailed discussion of this

is reserved for a future note.

In approximating a PR function corresponding to the impedance
or admittance of a distributed object one has the problem of an
infinite number of poles or zeros. Make a pole expansion of our
general PR function as

g(s) = ZOL: g (s - s, %+ g (s) (7.27)
where ée(s) is an entire function and n, is a positive integer indi-
cating pole order. Since we are considering finite size objects in
free space there are no branch singularities which would have to be

included also for more general objects.

Let us try to approximate é(s) by a finite sum of poles plus
an entire [unction which we write as a truncated power series about

the origin. Assuming first order poles we have
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nf
g(s) = Y g, (s - sa)—l ) gl s" (7.28)
n=0

1
gn real

where Aa represents some set of natural frequencies Sy taken in
conjugate pairs for those Sy not on the real axis. This set Au
may for example include all the poles within some specified radius
of the origin of the s plane.

As discussed previously a PR function can behave no more sing-
ularly than sl as s > « in the right half plane. One might use this
property to restrict n' = 1, i.e. restrict the entire function
approximation to two terms. If one further restricts the behavior
to a positive constant for s - « in thé right half plane as dis-
cussed in section VI.A, then one would have

B(s) = 3. g (s -s )7+ gl

o g! >0 (7.29)
ocf-:Ad

o)
In order to determine the value of gé one might set

1im g(s)
g >

|arg(s)|<5-8

i

'
gO

(7.30)
g(®) > 0

giving the proper high frequency behavior. An alternate procedure

has a match made near s = 0 by rewriting equation 7.29 as

> g l(s - sm)'l + s;ll + g(0)

QEA&

g(s)
(7.31)

> g, =(s - sa)—l + £(0)

o s,
acA
o
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provided g(s) has no pole at s = 0. This latter form allows one to

match g(0) from the low frequency properties of the scatterer.

These procedures allow one to approximate Za(s) and ?a(s) in
a sense which has a finite number of "exact'" poles and residues, and
is "exact' in either the high or low frequency limit. In addition
as more poles are added to the approximation the previous s, and g,
as well as gé or g(0) will not have to be recomputed, assuming their

exact determination from g(s).
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VIII. Admittance

In finding an equivalent circuit based on the short circuit
properties of the antenna or scatterer let us first consider the
admittance at the port. For this purpose the gap electric field
is specified as discussed in section II. This gap electric field
is introduced into the short circuit boundary value problem dis-
cussed in section IV. The integral equation is solved in singular-
ity expansion method (SEM) and eigenmode expansion method (EEM)
forms. This solution is substituted into the admittance formulas

of sections I and II.

A, SEM form
With the source field as ﬁ we have the surface current den-
sity (assuming first order poles) as3’4’5’6’7
F e = )T g 5 () ( )™t
s r,s = 7 n& vOt r s - S(Y.
o} o sc sc sc

(8.1)

+ entire function

In this form %(s) and ZO are first factored out of the surface
current density before making the singularity expansion. The
remainder is then of a normalized delta function response for the

current density (Laplace transformed).

The natural frequencies, modes, and coupling vectors satisfy

3 > > . —)-(js) - >
<::?(r,r';sa ) vy (r') g T 3, reSQJS
sSC sC . g (8 2)
X .
> - I -
U (r) , F(F,7';s )> =0, T'eS_US
%se %se ate a &
where for symmetric operators we can set
(3
I ERER RN €D (8.3)
sc sc
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However, let us use the dec in the formulas to allow for cases
that equation 8.3 does not apply. The coupling coefficients are

given by

(8.4)
where the integral in the numerator is only over Sg since the gap

electric field is non-zero only there.

From section II we have the admittance as

sy <3,(F,s) ] e, (1) > s 5)

2
5
N
0
p—
1l
NMJ
&
Q
N
[0)]
1
0]
Q
N’
|
|3
+
w2
N
n
N

- sc sc g
2a B Zo ~ x
T <G, A Ray NI
Hy (1), 55 T(r,r';s) s v, (T e
sc _ sc
S=s
o
sc

where Y (s) 1s an entire function admittance. The normalized

sce
. . . . -1 .
admittance residues B0 have dimensions s ~. Note the symmetrical

expression for the Qoge for symmetrical operators we have
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(J)
B, (¥ v, S
sc sc (8.7)
(J) .
<3, 5T 5 e
7 Cse g g
aQ =
o o = rn
sc <5,3<3S)(r) 2 2200 SR
) N s 3 1 ¥
~ o, s e Ogq atg
o
sc

Note that the formulas in equations 8.6 and 8.7 are of such a form
that they can be applied to line and volume integral equation for-
mulations directly, as well as to surface integral equation

formulations.

Viewed another way the admittance can be written as

Yy = D) ¥ (s) + ¥ (s

Oge  SC : , (8.8)

S 1 -1
Y (s) = = a (s - s )
“se Zo %sc %se

The §asc can be referred to as pole admittances; these are elemen-
tary terms for use in constructing equivalent circuits.

For certain types of objects, in particular those with zero
admittance at s = 0, it is convenient to write the admittance in

ahother form as
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2

1 -1 -1 3
(s) = 5 a [fs - s ) + s ] + Y (s)
a ZO 8 OLSC OLSC o sce

o s sce
sc
ay
o -1 -1 -1 1 sc S
Y' (s) ¥ = a [(s - s ) + 8 } = =
%sc Zo %se %se “sc Zo Sa S = S,
sc sc
=Y + -1
=Y, () +5-a, s, (8.9)
sc o) sc sc
G _ 3 1 -1
Ysce(s) B Ysce(s) Tz 2: S Sa
o 4 sc sc

sC

The §dsc(s) can be referred to as modified pole admittances or zero-
subtracted pole admittances; these can also be used in constructing
equivalent circuits. In using this modified form the explicit entire

function admittance is changed to %‘ (s) which can be referred to

sce
as a modified entire function. The two forms used here differ only
by a constant in the case of the admittance (assuming a convergent

sum) .

Both §asc(s) and %dSC(S) will be used later in considering
finite sums of poles together with finite polynomial entire functions
in approximating the admittance and short circuit current in circuit

form.

Note that the modified form of the admittance poles can be
used only if there is no sq , = 0 (no short circuit natural fre-
quency at the origin in the s plane) with non-zero residue. Hence
such a form is inappropriate for the admittance of a perfectly con-
ducting loop. It is, however, quite appropriate for the admittance
of an electric dipole antenna consisting of two separate parts
joined only through the gap region and surrounded by a non-conducting

medium.
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B. EEM form '

Consider now the eigenmode expansion form of the admittance.
The surface current density associated with the source electric

field ﬁg in the gap is

L, G.o 08, >
N - ~ -1 > sc g g
js(r,s) = -V(s¥ D rg  (8) g (T,9) - = — ~

Fee  SC sc <::RB (r,s) , Lg (r,s) 2tg

sC sSC

=)

~ (8.10)
where the operator with kernel %(;,?‘;s) is assumed diagonalizable.

Here the eigenvalues, right eigenmodes, and left eigenmodes satisfy

3 ~ ~
> . > -> g > -
I'(r,r';s) , R (r',s) = A (s) R -
<:: Bsc ::§+g Bsc Bsc(r,s), rsSapSg
~ 3 N (8.11)
T, (%,s) . T(¥,7';s) =X, (s) T, (¥',s), r'eS_US
<:: BSC ate Bsc Bsc a &
and where for symmetric operators we can set
fg (F,s) = %B (7,s) (8.12)
sc sc
The admittance is then
3 >
sy = - 1) o SCACOREROY:
2 V(s) V(s)
= Y
égi BSC(S) (8.13)
> - > - 3 - « > >
N S <fBSC(r,s) , eg(r)>g<§BSC(r,S) , ep(T,8)_=
g) = S
BSc Bsc <::§B (%,s) : ig (;,S) atg
sc sc
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which for symmetric operators reduces to

2
w

Ve

'1

n

A

oV

£

- _ 3 _
BSc Bsc <::ﬁ8 (?,s) : ﬁB (;,s)

sC sC

(8.14)
atg

The operator can be conveniently taken as an impedance operator as
discussed in section IV.A. 1In this form the eigenvalues ABSC(S)
are eigenimpedances ngc(s) with PR properties for cases of passive

loading impedance.

Comparing the EEM form to the SEM form of the admittance
there are certain similarities, particularly in the symmetric forms
of the terms in both expansions. Setting

Coo = (Bsc’Béc> (8.15)

. . . 8
as discussed in a previous note  we have

Yo ()= ), Y, o (s) + Y, (s) (8.16)

,sce
sc B! sc, sc sc

where §B s (s) accounts for any additional entire function required

in expandlng the eigenvalue a88001ated admittances YB (s) in terms

of the appropriate pole admittances YBSC’BSC(S)' Note that we have
s - 1 -1
Y v (8) 2 5~ a y (s = s v
BSC’BSC Zo Bsc’Bsc BSC’BSC
< >< s ) (F) 5 8 (P >
Hg g (r) , (r) (r) , e (T)_+3
a = Y
B ;B, O -~ -5
Sc SC <—> -> 3 ——-; - —>(JS) -
U L (F) == F(¥,T';s) Y . (')
BoerBa 5 . Bac Bic atg
- t
Bsc’Bsc
(8.17)
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-1
a THa_or 18,0 35
A (s)
olos B )

sc (
S=S - > e S
B._.,B. U . (r),v y (1)
sc’“se <:: Bsc’Bsc Bsc’Bsc atg

N
3

where a relation for the kernel derivative in terms of the eigen-
value derivative (with respect to s) discussed in a previous note

is used.8

The EEM form of the admittance involves terms which are more
complicated functions of s than in the SEM form. However, each
EEM term can be divided down into pole admittances (SEM) plus a
possible entire function. The eigenmode form gives an ordering or
grouping of the SEM terms which can be used in the ordering of the

circuit elements and sources in equivalent circuit representations.

The eigenvalue associated admittances can be also expanded

in terms of modified pole admittances §ésc’3éc(s) using

YBSC(S) ) 2: Yésc’BéC(S) i Yésc’sce(S)
B '
sc

o 1. -1 ~1
Y, ., (s) = a ' (s -8 , ) + s . ]
BscB Z BL ’Bsc[ Bsc’Bsc Bsc’Bsc

SC SC S
— | (8.18)

t
sc’“sce Bsc’Bsc

-1
B 1

i 1
Y! (s) =Y (s) - =— a . S
] sce B sce ZO 3; Bsc’Bsc Bsc’ sc

This form is appropriate for cases that §Bsc(s) has no pole at

s = 0.
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IX. Short Circuit Current

Consider now the short circuit current induced by some inci-
dent or other source field. The source field can be an incident
plane wave or other spatial form. The various spatial dependences
appear as part of the integrand in determining the coupling coeffi-
cients in the SEM solution or mode coefficients in the EEM solution.
The short circuit current is compared to the admittance in the sense
of a ratio of coupling coefficients or mode coefficients. This
shows how the admittance and short circuit current fit together in

a single representation which can be used for equivalent circuits.

Let the incident (source) electric field have the general

form as specified in section IV with

~

B (F,s) =B, (P.s) = E > %p(s) gp(?’,s) (9.1)

ine o
P

Here the index p is for different incident waves which may be planar
or of other type as described by gp(?,s). The incident waveform is

fp(s) and Eo is a convenient normalization constant.
A, SEM form

The surface current density (assuming first order poles) is

-
- E . (J) -1
I (F,8) =52 D F <s>‘Z Ay 5 Vg o (F) (s = sy )
o p p lasc sc’ sc sc
+ entire function (9.2)

In this form EO, Zo’ and %p(s) are factored out of the surface
current density before making the singularity expansion. The
portion in braces is the delta function response to the pth inci-

dent wave.

The natural frequencies, modes, and coupling vectors are the

same as in the admittance calculations (equations 8.2 and 8.3).
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The coupling coefficients for the case of the incident field with .

shorted antenna gap are

- <>
- uasc(r) , gp(r,sasc) atg
o ,p =17
=¢ ° > 3§++ —>(J)—>
9 [ y S x>
<&, B ZTEF 3, SN >,
scC _ sc
S=s
o
sSC

(9.3)

The short circuit current is found as an appropriate average
over the surface current density. As discussed in section II there
are various ways to define this average. The position in the gap
region where the short circuit current is calculated is avoided to
some extent by averaging over the current density as in equation
2.18 in the form

1_.(s) = <3S(?,s> ; Eg(?)z (9.4)

where the weighting function gg is chosen the same as for the gap

electric field for the admittance calculations.

The short circuit current is then

[ R4

(s)

sSC

1
h
o]
~~
n
L
™
(@]
o
~—
|
[y
| ]
()}
Q
[}
ol
~
~r

(s - Sy

o
sc’p sc

(s)

sce

i
=[]
2
jto]
—~
0
~
|
<
o
&
Q
~
0
i
0
e
~
l
[
<32
0]
o
o
o]
~
0]
S

(9.5)

where iqco p(s) denotes a set of entire functions for the short

circuit current. The normalized short.circuit current residues

are
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sSC SC sC g g
x (J)
- . - - s -> . >
<3, @ §,(x,s, )::§+g<::va r) , e (r)::é
-7 sc s sc
© % (3 )
-+ < 3 > ¢ T gl
<1—1a (r) ’ _a_g ?(I‘,r :S) » \)Cﬂ (r ) a+g
scC SC .
S=8
OLSC
(9.6)

The normalized short circuilt current residues are written in the

form

EDb =V a (9.7)
© 0Lsc’p 0Lsc’p Q‘sc

where a@sc is the normalized admittance residue introduced in
section VIII. This defines what we will call the voltage source

coefficients Vo, ,p Which can be written as

o
= T sc S
v, b = E = -~ — (9.8)
sc’ b, (r), eg(r) 2
sc
Note that gp is dimensionless while gg has dimensions of m—l; EO

has dimensions V/m. Thus Vdsc’p has dimensions of volts as required.
Also note that V@sc>p is simpler in form than 2age and basc’p' The
kernel derivative cancels as does the integral used in defining the
current; only the integrals over the source electric field remain.

An addition c¢lementary voltage source coefficient is that associated

with the entire function as
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~

~ I (s)
A (s) = _Sce,p 7 (9.9)

sce,p 3
Ysce(s)

assuming the denominator is not identically zero. Here the voltage
coefficient is written as a function of s for purposes of generality.
In this note it will find some use as a constant when considering

finite expansions for circuit approximations.

In terms of the pole admittances the short circuit current

is written as

I_(s) =Y {Z Va_ b %p(s)}s?a (s)

C{'SC P S{e

+ {%: frsce,p(s) %p(s)} Y () (9.10)

If %;Vdsc:P%p(S) is interpreted as a voltage source or a series
combination of voltage sources which are placed in series with the
pole admittance §@sc(s)’ and if such series combinations of admit-
tances and voltage sources (including entire function part) are
placed in parallel the short circuit current and admittance of the
circuit will both be that required. This observation forms the

basis for the equivalent circuits to be developed.

For the case that there is a short circuit natural frequency
Stge (an admittance pole) at s = 0 one expects in general that the
corresponding voltage source coefficients Vo,p are zero. This is
so as to give a [inite response for CW excitation in the static
limit. For plane wave incidence this result is required by
reciprocity together with no radiated power at zero frequency.
In a more general sense as long as the incident electric and mag-
netic fields are bounded as s -+ 0 and satisfy source free Maxwell's
equations in the vicinity of the object, there is no short circuit

current pole at s = 0.
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As was done in the case of the admittance the short circuit

current can also be written in the form of modified poles as

E
3 _ S o) -1 -1 -
Isc(s) = f (s) lig ;E: b oD Ps - sasc) + sasc} + sce p(s)
1 -1 -1
= s) 5-—- Vg a Bs - s, ) +s ]
p (Zo g: ,p OLsc “sc Cse
+ Véce p(s) Yéce(s) (9.11)

In this form the voltage source coefficient associated with the

explicit entire function is

~

ol Tsce p(s)
sce p(s) —— (9.12)

Y$celS)

which can be considered as a function of s for generality.

The entire functions in this modified form can be written in

terms of the unmodified entire functions to give

~' —,\, ——9 _1
Isce,p(s) sce p(s) Z z: ba , D Sa

~ ~ 1 -1
Vsce,p(s) Ysce(s) - 7; g: Vasc,p adsc Sasc

V! (s) Y' _ (s)

sce,p sce

v v 1
Vsce,p (8) ) ¥gee(s) - 3 E: ) Sa
o o, sc  “sc
S (9.13)
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Hence the voltage source coefficient for the modified entire func-
tion is related to the unmodified one as

-1
. 5 1
Vsce p(s) Vecels) = 7~ Z Vo p %a_ Sa
- ’ o a., sc’ sc sc
V! (s) = =
SeeP Yocels) - éL'E:’ 2a S;l
o o, sc sc (9.14)

assuming the denominator is not identically =zero.

In terms of the modified pole admittances the short circuit

current is

+ {Z Vi J(s) f (s)p YL (s) (9.15)
D ’ |

Just as in equation 9.10 where unmodified pole admittances are
used the same voltage sources Z Vo
P sc

,p%p(S) appear, except in
series with (multiply) the modified pole admittances ?&Sc(s).

Parallel combination of such voltage sources in series with modi-
fied pole admittances can also be used for constructing equivalent

circuits including modified entire function terms.
B. EEM form

The eigenmode expansion of the surface current density is

) L, o) 0 3 e

at+g

I (F,s) =EOZ,~p(S) > Xgl (s) By (F,9) z se_ 3
Bee  SC sc <8 (r,s) , Ly (r,s)

sSC sC

(9.16)

-T2

atg




where EO and }p(s) are factored out for convenience.

The short circuit current is

I = I @ ) 8, >

(9.17)

(*,s) g (r S)::%+g

B
° i, G 3g<¥>>g

sc

where ?g (s) is the admittance associated with each eigenmode as
dlscussed in section VII The voltage source coefficients are
Vgsc,p(s),fthese together with the incident waveform(s) f (s) con-
vert the admittances associated with each eigenmode to short circuit

currents associated with each eigenmode.

In a circuit sense 2: 'VBSC,p(S) fp(s) can be interpreted as
a voltage source or a serles combination of voltage sources placed
in series with the eigenmode-associated admittance YBSC(S) Such
series combinations of voltage sources and admittances can then be
placed in parallel to give both the admittance and short circuit
current required.

As discussed in section VII the admittance associated with
each eigenvalue §B '(s) can be written as an SEM expansion in terms
of the pole . admlttances YBSC Bsc(s) or of the modified pole admlt—
tances YBSC’ SC(s).

Note that the voltage source coefficients from the eigenmode
expansion (equations 9.17) equal those from the singularity expan-

sion (equation 9.8) at the appropriate natural frequencies as
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A

8 =V

(s ¢ o) (9.18)
BSC’BSC

1
sc’ P BSC,BSC,p
This property gives a direct connection between the eigenmode and
singularity expansions of the short circuit current. The residues
of the poles for the short circuit current are now their correct

values on an eigenmode by eigenmode basis.

The individual eigenmode expansion terms for the short cir-
cuit current can be singularity expanded as

L, <::igsc<?,s> Z §p<%,s>j:3+g<::§gsc(%,s) HEWEIP

Ey 2o £,(s) Ag~ (s) %
p sc <:: 3 (r,s) , LB

sSC scC

(t,s)

=il

atg

1
sc’Bs sc’ " sc

- { é; v, b %p(s)} T, g (8
+{2{78
p

(s) %p<s>} Yg (s)

so SCe

SC,SCG,p

= v .t <s>} g L (8)
{; Bsc’Bsc’p p . 8 8

Bsc sc’ " sc
+ V! (s) f (s)} Y! (s) (9.19)
{zp: By SCE,D P B SCe

where the pole admittances ?Bsc’géc(s) are given by equations 8.17
and the modified pole admittances §ésc’ (s) are given by equations

8.18 with equations 8.17.

'
Bsc

The associated entire function portions of the eigenmode

expansion terms for the voltage sources are given by
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5 (s)

N - "B .rSce,p
VB sce p(S) = —
sc YB ,sce(s)
sc
~ (9.20)
- IBSC,sce,p(S)
Vé sce p(S) = <
2 J 1
sc YB ,sce(s)
sc

Here EBSC,SCG,p(S) is the possible entire function associated with
a particular term (denoted by BSC) in the eigenmode expansion; it
corresponds to I (s) in equations 9.5 and is obtained by writing

sce,p ~
as B B! to form a double summation. Similarly Iésc’sce»p(s)

“sc sc, sc
is the possible entire function associated with a particular term
in the eigenmode expansion where the individual terms have been
expanded in terms of modified pole admittances; it corresponds to
\ . . . . , e
Isce,p(s) in equations 9.11 Wlthvasc split as BSC,BSC. The entir
function portions of the singularity expansion of the eigenvalue
associated admittances ?Bsc,sce(s) and Yésc,sce(s) have been pre-

viously discussed (eguations 8.16 and 8.18).

The entire function voltage source for the eigenmode expan-
sion terms can be related for modified and unmodified pole admit-

tance terms through

E
x - -1
I (s) =1 (s) - =2 D, : s :
BgcrSCELD BgerSCE,P Zg, 5T Bgo'Bsc'P BgorBge
: = 1 -1
= (s)Y (s) - “"‘ZV 1 a v S 1
BoerSCE,DP B Sce ZOBSC Beo'Bgo'P BoorPge BserBse
=V, o o (8) Y] (s)
ByorBCe,Dp BgerSce:
5 S 1 -1
= V! (s) {Y (s) - = a . S '
Bsc’sce’p BgcrSce Zo Ble Bsc’Bsc Bsc’Bsc
(9.21)
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X. Equivalent Circuits for Admittance and Short Circuit Current

From the previous two sections we can now construct equivalent-
circuit representations to give both the admittance and short circuit
current, i.e. the complete equivalent circuit at the port. These
equivalent circuits involve both admittances and sources, taken for
convenience as voltage sources. Both SEM and EEM forms can be pro-
duced, and the two related. The individual pole terms give what
can be termed elementary circuit modules with formulas for individual
circuit elements. Elementary circuit modules can be combined by
conjugate pairs to form individual resonant (or tank) circuits cor-
responding to pole pairs, although this complicates the form of the

circuit modules somewhat.

The reader should note the equivalent circuits developed here
are in general formal circuits in that the individual impedance
elements (resistors, inductors, capacitors) exhibited are not neces-
sarily realizable as lumped, passive elements. The element values
may even be complex. While certain aspects of these circuits have
realizability properties associated with positive real functions,
this does not mean that any form of circuit with same mathematical
response is realizable element by element. Certainly these aspects

need further development.
A. EEM form

Consider first the form of the equivalent circuit based on
the eigenmode expansion as illustrated in figure 10.1. This con-
sists of an infinite set of parallel subcircuits, each subcircuit
being associated with a different eigenmode with index Bsc' Each
subcircuit consists of the series combination of an eigenvalue
associated admittance YB (s) and a corresponding voltage source

NB C’p(s) T (%) comblnlng the eigenmode voltage source coeffi-
c1ent% VBSQ p(s) with the incident waveforms f (%) Note that the
voltage source coefficients are in general frequency dependent,
and that the eigenvalue associated admittances, having some number

of poles, are in general a complicated circuit.
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The circuit of figure 10.1 is rather simple in its general
form. Note the ordering of the subcircuits with Bsc = 1 nearest
the port. The corresponding eigenvalue is taken as that with its
zeros (natural frequencies) clustered nearest s = 0 in some sense

in the complex frequency plane.
B. SEM form

Using the pole admittances and voltage sources we have the
eguivalent circuit as indicated in figure 10.2. Note the parallel
combination of circuit modules, each module consisting of the
series combination of an admittance and a voltage source. Corres-
ponding to each admittance pole there is an admittance Y (s) and
a voltage source Z:Vdsc,p f (s). The voltage source coefficients
V@sc:P are scalar constants (1n general complex); the source wave-
forms are fp(s) in complex frequency domain and the voltage sources
have direct time domain representations by use of fp(t), the given
transient source waveforms. When listing specific pole terms say
with (Bsc’Béc) = (1,1) an additional subscript of sc is added for

clarity.

For convenience the circuit modules corresponding to poles
are grouped together according to which eigenvalue they belong.
Furthermore if one superimposes a complex frequency plane on
figure 10.2 with the origin at about the port location, then the
circuit modules can be envisioned as being located at the pole
locations SBee,Bac in this s plane. Note the conjugate arrange-
ment of the circuit modules corresponding to conjugate pole pairs.
Each of the sets of circuit modules corresponding to an eigenvalue
is grouped in what can be referred to as arcs designated by

g =1,2,... as discussed in a previous note.

The entire function contributions associated with each eigen-
value are also indicated by the series combination of the admittance
YBsce(S) in series with the voltage source 2: 'Vgsc,sce p(s) f (s)
These are also grouped in their appropriate arcs Alternatlvely

it may be more convenient to group all the entire function
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Figure 10.2. Equivalent Circuit for Admittance and Short Circuit Current Based on
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contrlbutlons together in a single circuit module with admittance
Sce(s) and voltage source Z:Véce,p(s) f (s). For this case
collect the entire function circuit modules in figure 10.2 into

one such module located near the port terminals.

This particular circuit format can also be used with the
"modified" circuit quantities by replacing the pole admittances
by modified pole admittances §&sc(s)’ and by substituting the
modified entire function admittances and voltage sources for the

unmodified ones.
C. Elementary circultf modules

The admittance associated with each pole can be cast in the

form of circuit elements as

o _ 1 -1
Ya (s) = 7 a8, (s - S, )
sc o sc sc
-1
= [SL + R ]
(e [e4
sc sc
L g _1 , : (10.1)
sC o aO!,'
sc
Sas
R = -7 € = _g L
[s4 o a [s] s

sSC o SC sC

where 2o is a complex constant characteristic of the admittance
residues as given in equations 8.6 and 8.7. This gives a circuit
form for the pole circuits as illustrated in figure 10.3A. The

modified pole admittances can be written in terms of circuit ele-

ments as
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~ i -1 1
Y (s) = = a (s - s ) L = Z
Ysc Zo “sc “sc %sc © &,
sc
Sa
R = -7 s¢
o o a
sc Coe
+ +
ZV@ o £ (s) Zp:vocsc,p fp(s)
) sc’ P - S "~
- A. Pole circuit modules
Q
a
a o
To(s) = L _se = =G =
se ZO Sy, s - s, sc o s,
sc sc ‘ sc
s
o
R = 7 sc
o a
sc %se
+ +
v £ () DV £ (s)
— p asc’p p — p asc’p p

B. Modified pole circuit modules

Figure 10.3. Elementary Circuit Modules for Pole Terms for
Admittance and Short Circuit Current

-89~




il 1 -1 -1
Yu(s) = 5 oa, [(s - s, ) + S J
e} sc sc sc
%q
_ L sc S
ZO Sa s - Sa
sc sc
o -177?
=5 a, S, -5, S
e} sc sc sc
-1
1
= ! +
[#usc sC’ ]
sc
N (10.2)
o
CY =__]_‘._ SC
7, 2
sc o S
o
sc
Sa
R' = 7 SC—_-______}.__.__.—_._R
¢ 1
sc © &y Sa C ®sc
sc sc “sc

Combined with the voltage source this gives the circuit represen-

tation in figure 10.3B.

While these circuits are simple in form the circuit element
values are in general complex numbers. For computer purposes
these formal circuit elements should still be useful. For reali-
zation as actual circuit elements these are somewhat 1imited,
although they may be useful in some limiting cases such as Soge
near the real or imaginary axes. The consideration of specific

examples should be enlightening in this regard.
D. Entire-function circuit modules

The admittance associated with the entire function contribu-
tion is somewhat more problematical. If we use the considerations
of section VI the entire function admittance may be approximated

by a constant term based on high and low freguency considerations.
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If the admittance ?a(s) is capacit%ve for s - 0 then one
might use the modified pole admittances Y&sc(s) which are capaci-
tive for s = 0 and thereby avoid the use of an entire function
admittance (restricted to a constant, i.e. a conductance). For
cases that the ?asc

appropriate admittance is found from equations 8.9 as

(s) (unmodified pole admittances) are used the

~

! t
YSCG(S) Gsce

1

il
o

YSCG(S) sce

12
o
i
o) IH
™
o
Q
n
i
[

sc OCsc (10.3)

where the entire function admittances are approximated as constant
conductances. The summation, instead of extending over all %ge
might be restricted to those Oge which are used in a finite approxi-

mation to the circuit of figure 10.2.

If the admittance is inductive or resistive as s > 0 (as in
a loop) then one can evaluate the admittance as s - 0, subtract
off the pole terms (or only those pole terms used), and match the
remainder with a constant conductance near s = 0. This gives

Ysce(s) = Gsce
Ysce(s) “ Ysce
(10.4)
1 -1
' = —
Gsce Gsce Z 2: aa S
o sc sc
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In the case of a resistive loop the conductance at s = 0 can be

used to establish
G! = Ya(O) (10.5)
However, for the case of a perfectly conducting loop we have

+ cqs +: - (10.6)

a sL €0 1

The first term is a pole which is subtracted. If the pole at zero
frequency is left in unmodified form because the s = 0 value cannot
be subtracted, and if the other poles are put in modified form,

then the entire function admittance corresponds to Co-

The entire function voltage sources can be approximated by
considering the short circuit current as s » 0. It is assumed
that the incident waves have, for the delta function response, zZero
time adjusted so that the short circuit current begins exactly at
t = 0. Then as discussed in section VI the short circuilt current

has simple behavior for both s =+ 0 and s =+ «,

For a capacitive antenna as s + 0 we have ESC(S) -+ 0 for a
delta function incident wave. If the modified pole admittances
are used and if the entire function voltage source is approximated
as a constant then we have to still make the short circuit current

zero at s = 0. These requirements give

~

V! (s) = V! (not used with zero admittance)
sce,p sce,p o
N I (0) I (0) (10.7)
7 (s) =~ V - fce,p _ _sce,p
sce,p sce,p ¥ (0) c
sce sce
e -1
ZVO‘ c YO‘ c(O) ;Vasc’paascsasc
_ “sc sc,p S _ sc
B = - -1
Z YOLSC(O) ocZ aoLscsuso
%sc sc

-85-



For a capacitive antenna the use of modified pole admittances would

seem to simplify matters.

For inductive or resistive admittance as s > 0 consider the
behavior of isc(s) as s > 0. For a resistive loop isc(s) +~ 0 as
s - 0 for a delta function incident wave. In this case if one
uses modified pole admittances then this condition is met with no
additional entire function voltage source to go with Géce in equa-
tion 10.5. For a perfectly conducting loop we can have Isc(s) -+
constant as s > 0 for a delta function incident wave. TFor use with
modified pole admittances one could use

~

t ~ T i
Isce,p = Isce’p(O) (10.8)
summed with %p(s) as a current source noting that the pole admit-
tance of the form 1/(sL) is not modified. This gives a voltage

source for this one pole as

~ ~

Vsce,p(s) =~ sl Isce,p(o) (10.9)
which is frequency dependent in a simple form. Note that this
prevents the short circuit current from unphysically growing as

s - O for a delta function incident wave.

For use with resistive admittance as s + 0 (as in equations
10.4) then we have for unmodified pole admittances
I e, (0)

v o~ = _Sce,p .
Vsce,p(s) vsce,p 3 (0)
sce”

I
sce,p )

Gce ‘

S (10.10)

-2V Yo (0)
o sC
SC

— -
GSC@ OCZ YOLSC(O)
Sc
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where Géce is the admittance for s > 0, and where as before the

summation over aéc may be a finite approximation.

Considering the various forms of possible circuits based on
the short circuit current and admittance it would appear that this
type of circuit might be more readily useful for some types of
antennas/scatterers than for other types. Note in particular how
convenient is the use of modified pole admittances with appropriate
voltage sources for capacitive objects, since the entire function
admittance is approximated as zero and the corresponding voltage

source is ignored.
B. Conjugate pair circuit modules

In attempting to realize circuits to give the correct admit-
tance and short circuit current by the procedure in this note one
is faced with the difficulty of the presence of complex element
values. Corresponding to natural frequencies on the negative real
axis of the s plane (Im[saSC] = 0) the element values are inher-
ently real as long as our original integral equation deals only
with the Laplace transform of real-valued time functions. Like-
wise one can combine conjugate pole pairs to produce something
with the same properties, although the circuilt form be more
complicated thereby. Note that while the circuit elements pro-
duced are then real valued they may not be always positive.
Similar comments apply to the entire function admittances (real
but not necessarily positive).

To begin define S and Sy such that
Sca sc._ ' '

SC_ SCy (10.11)
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forming a pole pair. As indicated in figure 10.4 one can form ‘

thevenin equivalent circuits of such conjugate pairs of pole cir-
cuit modules. The conjugate pair (cp) admittances are

~

Y, (s)

sc Ydsc (s) % Yusc )
cp + -

1
N

(10.12)
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Y&Sc (s) YOLSC (s) YOLSC (s)
+ - cp
+ + +
ENEY ) C TV, B Cbzvu () T(8)
sc, N 7/ p Tsc_ /D Tsc,
I 1o}
A. IEquivalent for pole circuit module conjugate pair
~Y NY NT
YGSC (s) Ya (s) Yusc (s)
" sc_ cp
+ + +
f(s) C SV [ (s) <>§:\7' (s) £ (s)
SC+,D p \ ;>p QSL_,D P /5 asccp,p P

o

B. Equivalent for modified pole circuit module conjugate pair

Figure 10.4.

Thevenin Equivalent Circuits for Pole Pairs
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v (s) =Y, (s) + ’}O; (s)

sSC
cp SC+ -

oNh“

™
)

I

[0)]
p—y
Pania®
[0

1

43|

for pole pair admittances and modified pole pair admittances
respectively. Note that all coefficients of powers of s are real

numhors.

The short eircuit currcent associated with a conjugate pole

pair can be written as
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sc (s) = Isc (s) + Isc (s)
sc %sc “sc
cp + -

=i

~

pr(s) [Vu oYy (v, Y (s
9 sc, sc, sc_ sc

(10.13)
which is quite frequency dependent due to the pole admittances.

The open circuit voltage associated with such a pair can be written

as
I (s) + I (s)
SCOL SCOL
~ sc sc_
Voo (8) = — =
S Yu (s) T Ya (s)
cp sc, sc_
- XF SENE
; o p(®) Ep(®)
cp (10.14)
v, D Y, (s) +V, . Y, (s)
- sc sc, SC_ sc_
Va p(é) = = -
Sccp Yusc (s) + Y&SC (s)
+ —
Y, (s) - Y, (s)
SC+ SC_
= Re[va p] + i Im[vOC ] _ _
SC+’ sc, Yd (s) + Ya (s)
sC sSC

-+ —_

Il the pole voltage source coefficients V@s0>p are real numbers
then the thevenin voltage source for the pole pair simplifies
somewhat to involving only the same simple coefficients. However,
for general complex V@sc,b the resulting voltage source coeffi-
cients V“sc ,p(s) are frequency dependent. For practical circuit
realization then one might prefer real or almost real pole voltage

source coefflficients.
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The short circuit current associated with a modified conju- .

gate pole pair is

I (s) = 1! (s) + I (s)
SCOLSC SCOLSC SCOLSC
cp + -

Zp:fp(s) [Vo‘s N A Y&SC_(s)]

c, sc, sc_
(10.15)
The open circuit voltage associated with a modified pole admittance
pair is
I (s) + I! (s)
sc,, sc,
- sc, sc_
Vie (8) = ~— =
4
ST Ya (s) + Ya (s)
cp sc, sc_
= %' S %
DT, n) ®
cp (10.16)
N! ~|
Vu D Yu (s) + V D Yu (s)
. sc sc, sc_ sSc_
V. pts) = = =
sc,, ’ Y& (s) + Ya (s)
b sc sc
+ j—
Y& (s) -~ Y& (s)
sc, sc_
= Re Vu + i Im}V — po
sc+’p sc+’p YQ (s) + Y! (s)
sc, sC_

Again real valued v@sc,p lead to simpler equivalent circuits for

the modified conjugate pole pairs.

The admittance of a conjugate pole pair can be put into the

form of circuit elements. Write the admittance in the form
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scC

cp

. CSS + C4S + 05
fe) cls + c2
C — —
4 c1
+

1
sL +
%e R(p)
Ccp aSC
cp
C Z
7 -3 = o
o C

93—
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(p) 4 273 5
R = Z —_ - e L =
o o}c 2 c

sccp 1 c4 2

c c c,c

Lc(xp) = 2 “c:’é - E‘?l - 125
sccp 2 1 Co

where these terms can be written out in terms of susc+ and aasc+
using equations 10.12. This circuit form is shown in figure
10.5A. Since it only involves inductances and resistances then
for highly rescnant cases (poles near the iw axis) one or more
negative elements must be involved. However there are various
ways to make a formal circuit which gives the proper pole-pair

admittance. The above one is merely illustrative.

The admittance of a conjugate modified pole pair can be

written as

-2 -1
- cls + c¢ls + ¢/
Y'_1 (s) = % 3 4 5
“sc © c‘s—l + ¢/
cp 1 2
C’ C!
3 ! 5 -1
' ¢! - — ¢, - — C. )s .
_ s _q < 4 cy 2 cg 1 Cg
= %59 s F -1 i
1 cys + co 2
-1
= 11 -+ 1! + Sc(p>' + R'!
Scu R(p) 0Lsc sc
Sccp ST cp cp
Ccp

(10.18)




Y (s)
“sc (p)
cp R
scC
cp
+
()Z\? (s) £_(s)
1Y %c ’
o
A. Conjugate pole pair circuit
§&SC (s)
cp ' ()"
“se
cp
+
V! s) [ (s
Zp)%c p(8) [ (s)
- ‘Cp

B. Conjugate modilied pole pair circuit

Figure 10.5. Circuit Element Possibilities for Pole Pair
Equivalent Circuits

-95-



asc+ OLsc_‘_ ‘
Re S
o
1
cr _1°%1__ 2 C+
Sccp Zo €3 Zo S, 2
sc,
aasc
- _ 2 +
t 7 ke 2
OLsc+
= C& + C! = 2 Re Ca
sc, sc_ sc,
cg Z
R =z 2= ©
sc © €9 )
cp se,
2 Re
Sa
sc,
2
B
-1 1 -1 sc
- [R' * B 2 Re[R‘
sc sc o
L e ]
+
r(p)! 7 sfg _%2%3 %5
1 1
%se © lcl c'2 Co
cp 1
: -1
1 1 1t A1
o' 1 )% %3 _ %1%
Oge ZO Co Cq [ 2
cp 2

which is illustrated in figure 10.5B. Note in comparing equations

10.18 to 10.17 that the various constants cﬁ correspond to ch 1o}
that the modified pole circuits can be more readily compared to

the pole circuits. This relationship between the two types of
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circuits is reflected in the interchange between inductances and

capacitances with resistances remaining
since only resistances and capacitances
cuit illustrated here negative elements

near the iw axis. This circuit is then

as resistances. Again
are involved in the cir-
are involved for poles

merely illustrative.

In converting from pole or modified pole circuits to conju-

gate pair circuits the element values for the admittances can be

made real. However this does not necessarily make the element

values positive. The foregoing give two kinds of conjugate pair

circuits. Which one is more useful likely depends on the appli-

cation, i.e. on what specific type of antenna/scatterer is being

considered.
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XI. Impedange

Consider now an alternate way to construct equivalent cir-
cults based oh the open circuit properties of the antenna or
scatterer. Eeginhing with the impedance the gap current density
is specified as in section III. This is introduced into the open
circuit boundary value problem discussed in section IV. Using the
SEM and EEM forms of the open circuit response the impedance is

found from the formulas of sections I and II.
A, SEM form

Assume a source current density jss on the gap surface (or
perhaps in the gap volume). Let there be no impedance loading in
the gap region. We have the general form of the surface current

density on the object as

3 > ~ ->(j >->- -
38(1‘,8) = I(s) E nyv, S(r)(s - Sy ) !
’ uOC ocC ocC 'OC

+ entire function (11.1)

For the open circuit problem the natural frequencies, modes,

and coupling vectors satisfy

-}) > > . —>(js) -> >
<::F(r,r‘;s Y , v (r') =0 , reS
o o a a
oc oc
x (11.2)
- > > > > -
. — t
<::pu (r) , P(r,r‘,sa )::% = 0 r ESa
oc oc
where for symmetric operators we can set
(F )
- ¥ 2 I -¥
My, (r) = Vo, (r) (11.3)
oc oc

which is not used in many of the formulas to provide for greater

generality.

-98—




In order to find the coupling coefficients let us first find
an appropriate source electric field incident on the object (with

no other incident field) as

. 3 .
3 > > > > . 3 -
E (r,s) = —<Z(r,r ;s) , Jg (T ,S)>g (11.4)

where there has been assumed no impedance loading in the gap region.
The coupling coefficients for the current density on the object are
then

(11.5)

Note that the gap source current density is discontinuous at the
two ends of the gap, implying an infinite gap charge density there
with corresponding influence on,ﬁs. This needs to be compensated

by a discontinuity in 33 at the object ends just outside the gap.

From scction III we have the impedance as

N = g |
7 (s) = - Y(s) g (11.6)
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The electric field is obtained from the current on the object as

~

well as the source current in the gap form
(7,758 I

(;,S) = —<:: (r,7':8) | %S(¥',s)::% _<::
g

~ 3 - . +(3 ) -
= ~I(s) z: n! %(r,?';s) , V S (;') (s - s ) 1
o o a o,
oc

a
oC

N2
DI ¢

(r',s)

e

g

+ entire function

I
I
— 2
7~
1]
A
————
=
Q -
DI 42
—~
=Y
=Y
0
Q
L
<+
QL M~
n
~
¥
\/
Vo
)]
I
n
Q
g
{
jauy

(11.7)
3 > > i +(js) 1
Z'(r) = 1lim s 2: n& <::§(r,r',s) , 'V (r') 2 (‘ S )
s+ 0 oc ocC o
oc oc
+ 2F ) 38g<§'>>

Here the entire functions have all been lumped into one. Note the
pole at zero frequency introduced by the impedance operator; this
allows a pole in the impedance at s = 0 such as would occur for an

open (capacitive) object.

The impedance can now be written as
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5 -1 -1 ~
Z2,(s) =12 ;Z: aaoc(s - Saoc) + aoocs } 2 .(8)
oC
(11.8)
~r -~ -+
T, B <EGEs, 213 GOn KRG s, 010, G T,
1 %oc ’ L 0‘oc’ Sg £ a %oc %oc a " So g
aLO‘oc "z, 3 &)
. .- >
T, Bt (F,7058) 3, STGY
o] 9s o a
oc s=s oc
o
ocC
~ - ~
B, <R Ee, 01, GO <Oy S0 <EGEs, )1, I3
- L %oc ’ %] Sg & % %oc Sg g a
. ) :
0 = NN C PO
F, (BNEFGF5s) B, S GH >
oc s=s oc
¢4
ocC
1 1
a, = - z—<<:7 (r) . 3y (D) =
oc o g

~

where the symmetric property of the impedance kernel 7(? ?"s) has

been used and where Z sce (s) is an entire function impedance. For

symmetrical integral equation kernels %(r r';s) we have

O ¢
My, (r) = v 7 (1)
oc ocC (11.9)
N 3
ey i <Ears, i oY
1 0‘oc ] ’ ) Ococ , Se g a
&y 7 . j
“oc o NI z N CID N
<vOt STFy a_as F(F, 7' s) v, T (x>
ocC S—5 OocC
OCOC
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While the formulas in equations 11.8 and 11.9 are in the form of ‘

surface integrals, they can be readily interpreted in terms of line
and volume integral formulations as well.

In another form let us write

Z,(s) = 25 2y () + B ()
%oc  ©C (11.10)

ia () -1

)

V) -
o o (s Sa
ocC oc oc

where the 2046 term is absorbed into the e index for convenience
of notation. Note that the possible pole at s = 0 still needs

special treatment. The %ro can be referred to as pole impedances.

For certain types of objects, in particular those with zero
impedance at s = 0, one can write the impedance in another conve-

nient form as

~ _ -1 -1 ~
Za(s) = Z, Z &y [(s - Sa ) *os, ]+ Zéce(s>
& oc oc oc
oc '
= Z_i‘ (s) + 2! (s)
£ SN sce
oc
8y
X -1 -1 oc S
¥ = - -
Zaoc(S) ) ZO aoLoc ES ® oc) v SO‘oc:] ZO Sa S = 8y
oc oc
=7, (s) + Z, a s~1
oc oc “oc
(11.11)
~' _ ~ _1
sce(s) - Zsce(s) - 4, E 8 Sa
o oc oc
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The ié are referred to as modified pole impedances, or zero sub-

tracted pole impedances.

The modified pole impedances are appropriate for cases of a
zero in the impedance at s = 0, say for a perfectly conducting
loop. For a resistive loop with a finite non-zero impedance at
s = 0 such a form is also useful. Such a modified pole impedance
form is inappropriate, however, in the case of an object with an

impedance pole at s = 0, such as a capacitive electric dipole.
B. EEM form
The eigenmode form of the impedance is derived from the sur-

face current density on the object associated with the source

current density in the gap as

>
B a
(11.12)
where the eigenvalues, right eigenmodes, and left eigenmodes
satisfy

3 - ~
T(F,75s) ) B, (Fr,s) > =3, (s) K, (s) , reS
<i: Boc a Boc Boc a
(11.13)
. 3 o
<i8 (r,s) | ?(%,%‘;s)>a =iy (s) L’B (T's,) , r'es,
oc oc oc
where for symmetric operators we can set
iB (r,s) = ﬁB (T,s) (11.14)
oc oc ]

and where the appropriate source electric field in equation 11.12
is given by equation 11.4. The response current density can then
be written for feSa as
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i, &) <EF 193, Frs) > 3
c g

3 ey = -2 x5t (s)ﬁ8 (F,s) o

s ~ =
B ocC cC -ﬁ > 'z >
ocC (r;S)J (rts)
<:: Boc Boc ::%
-> . 5o > +' * -+
i s <fsoc(r,s),<§(r,r ;s),JSg(r)>g>a
= -I(s) Z '/\6 (S)RB (r,s) = pre _i =
Boe OC oce <::RB (r,s), g (r,s)_ 2

oc oc
(11.15)

The electric field at the gap is obtained from the current

on the object plus the source current in the gap as

l<%(;,;';s) R (r',s>a<ieoc(?,s) P <lEEEe )T, G

= i) 20 55t (o = - " -
foe CoC Ry Gio) I Good
‘ oc oc
- <§(r,r',s) , Jsg(r‘,s) %

(11.16)

The impedance is then
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i (e = - 18 T
I(s) I(s)
= 7 s) + 7 _(s
BZ IRORENE |
oc (11.17)
) < @ en<BEEe, ¢ B ECICEIEN A A8 >
Zy (s) =35 (s - e .
oc oc oL <ﬁ8 (r,s) ., iB (r,s)>a
oc QcC
3 . 5
. <i:330C<r,S),<::§(r,r‘;S),js (r‘i:E%::§<::BBOC(r,s),<::Z(r,r‘,S),JS (r'i:>§::§
=AB (s) £ = . =
oc . <§B (r,s) ’.iB (r,s) %
oc ocC
~ . :; - .
2.0) = -<g (B L EERe I, 3O
g g

d
where the symmetric properties of i(?,;';s) have been used. Note
the appearance of a gap impedance term ig(s) associated with the
electric field from the gap current. For symmetrical integral

. > >
equation kernels I'(r,r';s) we have

BOC 8oc
(11.18)
NI 1t 3 TRURIE e 2
~ . -4 . <::Rgoc(r,s) , <::Z(r,r ;S) Jsg(r i::%::%
Z s) = A s
Boc Boc <::ﬁ8 (;,S) ; ﬁB (?,s)i:%
oc - “oc

If the operator of the integral equation is an impedance operator

as discussed in section IV.A then the eigenvalues XBOC(S) are
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Z

a

eigenimpedances %Boc(s) with PR properties for cases of passive

loading impedance.

Comparing the EEM and SEM forms of the impedance we first
set

Gpe = (BugsBle) (11.19)

and then expand the eigenmode associated impedances as

"25 (s) = 2, 7% (s) + 28 (s) (11.20)

B B! sce

1] 3 3

oc Boc oc’ oc oc

where EBOC,SCG(S) accounts for any additional entire function
resulting from expanding the eigenvalue associated impedances
ZBoc(S) in terms of the associated pole impedances ZBoc:Béc(s)'
Note that we have

-1
, {8y = Z a , (s - s . )
Bsc’e’sc © Boc’Boc 8oc’Boc
(11.21)
3 - 75 TN SR S
i (3, <8z, s N F > B, 8 () <UEL T s C 3L (B>
- _1_< BocrBoc BocBoc Sg >g a =~ BcrBoc Boc'Boc Sg ga
B __,B! Z - j
oc oc o - +.a->-)-—> "*(S) -+
¥ C (F) == F(F,F'58) v , (B
< Boc’soc 3s s=s Boc;’soc >a
Boc’Boc
3
- 3.
i , (), <B(r,r s CY S 3 ()
fg_ e < BooBls) ' Us 2 2
1 9 3
= z— B_S AB (S)
N T 0 < I
s=s - -> > > .
B 'B‘ v ' (I‘) ' (I‘,I";S 1 ) y J (rl)
6c oc 8oc:’Boc Boc’Boc Sg g a
-+ ) -
i L (F) SV S (D)
Boc:’B Boc’3 c >
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where the kernel derivative is converted to the eigenvalue deriva-

tive (with respect to s) as discussed in a previousrnote.8

The eigenvalue associated impedances can also be expanded in

terms of modified pole impedances Zéoc,Béc(s) as
Z, (8) = 2 Zy ge () + g (s)
oc B! oc’"oc oc’
o -1 -1
Z} ! (S) = Z a 1 5 - 8 t ) + s ' ]
Boc’Boc © Boc’BocE Boc’Boc 8oc’Boc

8 1

oc’ oc S
= Z

o s ¢ 8 - 8 ,
Boc,Boc Boc’Boc

(11.22)

- ~ :Z: -1

A (s) =272 (s) - Z a 1 S 1

B ,sce R sce o 43 Boc B Poc’Poo
This form is appropriate for cases that 2goc(s) has no pole at

s = 0.

Recall the appearance of the gap impedance term %g(s) in
equations 11.17 this is considered as an extra term in the eigen-
mode expansion. Near s = 0 it can have a significant effect.
Recalling the problem discussed earlier of no current crossing the
gap ends for each of the natural modes or eigenmodes, appropriate
limits of the current on each side of the gap '"ends" need to be
used to have the solution correspond to the physical situation.
Specifically one should avoid a capacitive open circuit in series
with the gap so that the correct low frequericy impedance (an induc-
tance or resistance in the case of a loop) is attainable. One
might leave ig(s) in its present form, or perhaps apportion it

amongst the eigenvalue associated impedances.
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XII. Open Circuit Voltage

In the presence of an incident field with no current in the
gap (no loading and no source current in the gap) let us now con-
sider the open circuit voltage at the port (gap). As before
consider an incident wave of the general form specified in section
IV as

eal2d
~
H
0]
~

Il

- ~ 3

Eino(Fis) = By D0 £ ()3 (F,8) (12.1)
b

where again %p(s) is thg waveform of the pth wave with spatial

dependence contained in gp(?,s) (typically a delta-function plane

wave), and Eo is a normalizing constant.

The open circuit voltage and impedance are compared in that
they have different coupling coefficients or eigenmode coefficients
for the same mode sets. This allows one to combine the impedance
and open circuit voltage in a single circuit representation.

A, SEM form

The surface current density on the object (assuming first

order poles) is

. E &
> ~ -1
J(Fi8) = 52 20 1 (s) iy pe o (B)(s = sy )
o p e oc’ ocC oc
+ entire function (12.2)

The natural frequencies, modes, and coupling vectors are the same
as in the impedance calculations (equations 11.2 and 11.3). The
coupling coefficients for the case of incident field with open gap

are
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ﬁa b = ZO oC - oC —
o CGEE S X1 - 50
UCX (r) as (r;r }S) ’ v (I') a
ocC _ oc
S-—Sa
ocC
(12.3)

As discussed in section III the open circuit voltage is

found as an appropriate average over the electric field as
~ 3 > o - N
V() = ~EGE,®) Jsg(r)::% (12.4)

where the weighting function jsg is chosen the same as for the
source current density in the gap for impedance calculations. Then

we need the electric field in the gap which we obtain from

~ 3 ~ ~

B(F,s) = <23, F e ) T F e >+ B Es) (12.5)
giving

E % (J)

3 > o ~ - > o> o > T gl -1
BEe) =52 2t 2 iy, <BGEFs, )3, S @ Sses, )

o p e oc oc oc oc

+ entire function} (12.8)

where the ﬁs term is part of the entire function

The open circuit voltage is now

VOC(S) ; fp(S) EO O('Z bO{,OC,p(S - SOL ) * Vocer<S)
oc

ocC

Il

s -1 ~ ~
2; ip(s) %Zo ;E: Iy p2a (s - s, ) * Ioce,p(s) Zoce(s)

ocC QcC ocC
ocC
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where {7 (s) denotes a set of entire functions for the open '

oce,p
circuit voltage. The normalized open circuit voltage residues are

ocC

- “oc oc oc oc g
3 (3
- . . -
)2 T, Es) S ST(E)
o 9s a
oc a=s oc
o
ocC

(12.8)

The normalized open circuit voltage residues are written in the form

= a (12.9)
° oLoc’p © moc’p oc

is the normalized impedance residue introduced in section

where 205¢

XI. This defines the current source coefficients I&oc’p as
3 >
<ua r) | 3p(r,sa )>a
I - F . oc oc
c’p o > - . Z > > . > ->
<3, & <TEFus, )03, (r')>g>a'L
oc oc g
(12.10)
is dimen-

Note that % integrated over Sg has dimensions of ohms, §p

. x . . -1 . . :
sionless and Jsg has dimensions of m =, giving I@oc:p dimensions of

amperes as required. Also note that I“oc:P is simpler in form than

2960 and b@oc,P' The integrals over the derivative of the integral

equation kernel cancel as does the integral used in defining the
response current. Only the integrals over the source electric field
from the incident wave and from the gap source current remain. An

additional elementary current source coefficient is that associated

with the entire function as
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H
Q
¢)
@

'S

T | (1210
oce

assuming the denominator is not identically zero. The entire func-
tion current source coefficient is here written as a function of

s for generality. However, for some purposes it is later approxi-
mated as a constant when considering finite expansions for circuit

approximations.

In terms of the pole impedances the open circuit voltage is

written as

Tos) = 2 12 F(s)bz (s)
b

. o o
o oc’p p ocC
ocC

+ %: Foe p(8) T(8) { B oo(s) (12.12)

Here 2; I@oc,p%p(s) can be interpreted as a current source or a
parallel combination of current sources in parallel with the pole
impedance iaoc(s). Such a representation gives both the impedance

and open circuit voltage.

For the case of an open circuit natural frequency Saoc (an
impedance pole) at s = 0 the corresponding current source coeffi-
cients IO p are in general zero, as long as electric and magnetic

H

fields in the incident wave are bounded for s - O.

In terms of modified pole impedances one can also obtain the

open circuit voltage. Rearranging equation 12.7 gives

(04
ocC ocC

o P s -1 -1 I
U (s) = 2 E()E, D5 b, ’p[(s -5, ) hes ]+ Ve ()
18 ( OLOC N ocC

~ -1 -1
Z fp(s) 24 EIOL ) \:(S T Sy ) * sy ]
o aoc ocC, oc

ocC ocC

~! ~l
Isce,p(s)zoce(s) » (12.13)
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The current source coefficient associated with the explicit entire

function in this new form is

~

t
3 (s) = Voce,p's? ~ (12.14)
oce,p 2, (S)
oce

The modified entire functions can be written in terms of the

original ones as

. . -1
Voce,p(s) - Voce,p(s) - By ;Z: buoc,p S@OC
oc
_ = 2 -1
N Ioce,p(s) Zoce(s) - Z, ;E: IaOc,p aaoc Saoc
oc
- Ioce,p(s) Zice(s)
_~v o -1
= Ilee p(5){Zgee(s) - g ;E: % S (12.15)
oc

Hence the current source coefficient for the modified entire func-

' tion is related to the unmodified one as

- . -1
Ioce,p(s) Zoce(s) - Zo ;Z: Iuoc,p auoc Saoc
Ioce,p(s) = — = 2:(x: T
’ Z (s) - Z a s
oce © a4 e %oc (12.16)

assuming the denominator is not identically =zero.

In terms of the modified pole impedances the open circuit

voltage is written
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v () = E 5(1 L jfp(s)} %& (s)

ocC

* {? Lo p(S) (s)} 70 o (S) (12.17)

Just as in equation 12.12 where unmodified pole impedances are
used the same current sources Z:I@oc’pf (s) appear, except in
parallel with (multiply) the modlfled pole impedances Z@OC(S)
Series combinations of such current sources in parallel with modi-
fied pole impedances can also be used to construct equivalent

circuits along with modified entire function terms.
B. EEM form

The eigenmode expansion of the surface current density on the

object associated with the incident field is

<L, Goo) 8,39 >

ocC

e
~
]

> ~ ~-1 z =
,s) = E F s 2 (R, (F,8) .
s ° zp: PN oo Boe R, (Gue) Ly (B9 3

ocC ocC

(12.18)

The resulting electric field at the open gap is

3 -
sy = <23 s) | T e >+ B (FLs)

(el
N
=Y

= ~-1 ocC oc
O:%; b éz: Boc <i:§ (r,s),i (?,s)
oc Boc Boc 7 a
+ %p(?,g) (12.19)
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The open circuit voltage is
~ A . % >
Voo (s) = —<i:ﬁ(r,3) L 3 (ri:ié

< e eex<ie i, G, 63
= P 3T oc
= EO pip(S) BZ'\BOC(S) <§3 (;,S):is (;'S)>a

oc oc

Isis i, (?,s):ﬁp(¥,si:>3<::§goc(?,8):<::%(?,?';S):Fsg(?')::%::g
B D E (s){ 2,357 () == e~ -
"2; PN Poc | <::ﬁsoccr,s),fBOCFr,si:>a

. <::§p<?,s)235g<¥>::%
T {5k,

BOC

(o]

c’p(s)fp(s)}zsocss) +'{%;Ig,p(s)fp(s)}zg(s)

) (12.20)
) <::38 (r,S),gp(r,s) A
I (s) = E Sk :
Boc’p 0 <::i > . % > > o >y
Boc(r,S),<:: (r,r ;S),Jsg(r i:?g::g
% *

i <::§p(r,8),38 (¥) >,
I, p(8) = E, = =

<3’Sg<?> G5, ¢ >

where iBOC(s) is the impedance associated with each open circuit
eigenmode as discussed in section XI. The corresponding current
cource coefficients are IBOC’p(S); these together with the inci-

dent waveforms fp(s) convert the impedance associated with each
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eigenmode into a corresponding open circuit voltage. Note the
Presence of a 'gap" cgrrent source with coefficienfs Eg,p(sz and
associated impedance Zg(s). In a circuit senseaé;lgoc,p(s)fp(s)
can be interpreted as a current source or parallel combination of
current sources placed in parallel with the eigenmode associated
impedance QBOC(S). The gap current source% ig,p(s)%p(s) and impe-
?ance Zg(s) fit into the circuif in the same manner. Note that if
Zg(s) has a pole at s = 0 then Ig,p(s) has a zero there (for
bounded incident fields at s = 0).

In relating the EEM form of the open circuit voltage to the
SEM form the current source coefficients relate at the natural

frequencies as

) =1 , (12.21)
Boe Boe:P

o p(sg

N !
oc’p oc’Boc

The gap current source coefficients are more problematical in this
regard. Note that wavelengths are generally assumed large com-
pared to the gap.

The individual eigenmode expansion terms for the open cir-

cuilt voltage can be expanded as

o <G GG, G <BEEell ¢
E z:f (s)A (s) oc¢ oc .
044 ptSitg e
p oc <:: o (F,8)L, (T,8) >
oc oc
=Z EI : £.(s)Z . (8)
Boe { p Boc'Boc PP ; BscBsc
+ %2;1800’Sce’p(S)fp(S)}ZBSC,OCQ<S)
- 20l EeNE ()
Bécg o BOC,BOC,p P } BSC’BSC
-+{%;Iésc,s0e,p(s) fp(S)%Zésc,oce(s) (12.22)
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where the pole impedances 2886,006(5) are given by equations 11.21
and the modified pole impedances ééSC:BéC(S) are given by equations
11.22 with equations 11.21.

The entire function portions of the eigenmode expansion

terms for the current sources are given by -

(s) = —
B ,oce,p
oc ZB ,oce(s)
oc
(12.23)
N?
. VBOC,oce,p(S)
Ié oce p(s) B
oc’ g ZB oc (s)
oc’ €

Here ﬁsoc,oce,p(s) is the possible entire function associated with
a particular term (denoted by Boc) in the eigenmode expansion; it
corresponds to Voce,p(s) in equations 12.7. Similarly Véoc,oce,p(s)
is the possible remaining entire function after an eigenmode term
has been expanded in terms of modified pole impedances; it corres-

- ' . .
ponds to Voce,p(s) in equations 12.13.

The entire function current source for the eigenmode expan-
sion terms can be related for modified and unmodified pole impe-
dance terms through

ﬁéoc,oce,p(s) = %BOC,OOG,p(S) - B gELbBOC’BéC’psgiC’BéC
= ieoc,oce,p(s)%soc,oce(S)
-1
" ggi IBOC’Béc’pasoc’eécsBOC’Béc
B féoc,oce,p(s)~é ,oce(s)
= iéoc,oce,p(s){%BOC,oce(s) - 2 ;EiaBoc,Bécséic’Béc

(12.24)
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or ~ ~
I (s)Z (s)-ZOZI -1

1 a‘ t S 1
- Boc,oce,p Boc’oCe Béc Boc’Boc’p Boc’Boc Boo’Boc
I} (s) =
,oce, > -1
Boc b ZB oce(s) - ZoZaB g s8 g
oc’ Béc oc’"oc Toc’TocC

(12.25)

In comparing the EEM to the SEM form for the open circuit
voltage one should consider the contribution of the additional
"gap' term in the EEM solution. In the SEM solution this term is
naturally included in the form of any pole at s = 0, or entire
function, it may contain. In the EEM solution it is a separate
term but should be considered when expanding the EEM solution in

SEM form so that all the contributions are present.
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XIII. Equivalent Circuits for Impedance and Open Circuit Voltage

From the discussion of the previous two sections let us now
consider the equivalent circuit at the gap for the open circuit
boundary value problem. This equivalent circuit gives both the
open circuit voltage and impedance based on a series combination
of parallel impedances with current sources. The individual open
circuit pole modules give what can be referred to as elementary
circuit modules with formulas for individual circuit elements.
Conjugate pairs of pole circuits can be combined as well to form
circuits with real valued circuit elements (inductances, capaci-

tances, and resistances).

As in the case of the short—circuit‘based equivalent circuits,
those of the open-circuit type still have the problem of realiza-
bility of the individual impedance elements (resistors, inductors,
capacitors). The element values may be complex numbers and their
nearness‘to being positive real numbers may be of significant

interest.
A. EEM form

The form of the equivalent circuit based on the eigenmode
expansion is shown in figure 13.1. It consists of an infinite set
of series subcircuits, each subeircuit being associated with a
different eigenmode with index Boc’ or with the gap term with sub-
script g which might be considered to correspond to a special value
of Boc (say Boc = 0). Eagh subcircuit is a parallel combination of
an impedance, ZBoc(S) or Z (s), and a current source,

%; IBOC’p(s)fp(s) or %; Ig,pgs)fp(s), combining the eigenmode
current source coefficients IBOC;p(S) with the incident waveforms
fp(s). The current source coefficients are in general frequency
dependent and the associated impedances are complicated circuits

since they have a number of poles in each such impedance.

In the circuit of figure 13.1, after the gap portion, the

subcircuits are ordered with Boc = 1 nearest the port. The
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corresponding eigenvalue is taken as that with its zeros (natural
frequencies) clustered nearest s = 0 in some sense in the complex

frequency plane.

In approximating this type of circuit with series modules,
note that after truncating the series the circuit must be closed

(shorted) to complete the current path to the load.
B. SEM form

The pole impedances and current sources are included in the
equivalent circuit in figure 13.2. The gap impedance and current
source is also listed for completeness, although one may prefer to
only include the pole impedances associated with this term (such
as at s = 0) and include any entire functién contribution with
entire functions from other eigenimpedance terms. Corresponding
to each impedanc? pole there is an impedance iaoc(s) and a current
source %;I@oc;pfp(s)' The current source coefficients I@oc:p are
scalar constants (in general complex); the source waveforms are
%p(s) in complex frequency domain and the current sources can be”
directly represented in time domain by use of fp(t). A specific
pole is listed by (BOC,Béc) = (3,1), for example; in this case an

additional subscript of oc is added for clarity.

The circuit modules correéponding to individual poles are,
grouped together according to which open circuit eigenvalue they
belong. If one superimposes a complex frequency plane on figure
13.2 with the origin at the port location, then the circuit modules

can be envisioned as at the pole locations SB5c,Bde in this s plane.

The entire function contributions associated with each eigen-
value arc also indicated by the parallel combination of the impe-
dance iB,oce(S) with the current source %;EBOC,Oce’p(s)£p(s).
These are grouped in their appropriate eigenvalue arcs. Alterna-
tively one might more conveniently group all the entire function
contributions together in a single circuit module with impedance

Zoce(s) and current source 5 Ioce,p(s)fp(s)' For this case collect
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the entire function circuit modules into one such module located

near the port terminals.

This particular circuit format can also be used with the
"modified" circuit quantities by replacing the pole impedances by
modified pole impedances %&OC(S), and by substituting the modified
entire function impedances and current sotrces for the unmodified

ones.

Again note that at the truncation of the sets of circuit
modules associated with each eigenvalue, as well as with the entire

circuit, the current path must be closed (shorted).
C. Elementary circuit modules

The pole impedances are written as

5 _ -1
Za (s) = Zoau (s - Sa)
oc oc
= [SC + G ]"1
o o
oc oc
_ 1 (13.1)
Ca T 7 a
oc o%a
oc
s
“oc
G = - 725 =_5 C
o 7Z a o]
ocC o o oc oc
oc

where Q0 is a complex constant characteristic of the impedance
residues as given in equations 11.8 and 11.92. The corresponding
circuit form is given in figure 13.3A. The modified pole impedances

are written in terms of circuit elements as
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> -1 ~1
14 —
Zu (s) = Zoaq ‘}s - S, ) s, ]
oc ocC oc oc
2a
- Zo . oc . _ss
%oc %c
~1
- 2 -1
= 7 au [Sa _ s = ]
oc oc oc
_ [ I
- o S
oc e
(13.2)
2a
! = —ZO oc
0Loc 2
Sa
oc
Sa
GI =.L_.._O__C.=,_-—_1__r___=_G
oc Z a Sa L o c
© Cse oc ~oc ©

Combined with the current source this gives the circuit represen-

tation in figure 13.3B.

As in the admittance case the circuit elements for the pole
impedances and modified pole impedances are in general complex
numbers. For computer purposes such formal circuit elements are
still quite useful. In trying to realize actual circuit elements
the present complex ones are somewhat limited, except they may be
almost real for limiting cases of S@oc near the real or imaginary
axes. The consideration of specific examples should help clarify

these issues.

3

D. Entire~function circuit modules

Again using the considerations of section VI let us approxi-
mate the entire function impedance as a constant based on high and

low frequency considerations.
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If the impedance is inductive for s = O then the modified
pole impedances zuoc(s) which are inductive for s - O would be

appropriate and avoid the use of an additional entire function

(restricted to a constant resistance). For this case we have

71 ~ T -
Zoce<s) * Boce 0
o . _ -1 (13.3)
Zoce(S) ® Boce = % Z 20 So

o oc ~oc

oc
oc

where the entire function impedances are approximated by constant
resistances. The summation, instead of extending over all oo
might be restricted to those ae which are used in a finite approxi-

mation to the circuit of figure 13.2.

If the impedance is capacitive as s > 0 or resistive (as in
a loop) as s =+ 0, then one can calculate the impedance as s > O,

subtract off the pole terms (or only those pole terms used), and

match the remainder with a constant resistance near s = 0. This
gives
Zoce(s) = Roce
71 ~ !
Joce(s) Roce
(13.4)
-1
! 1 —
oce Roce Zo ;Z: &y S
o oc ocC
oc
- Roco * Z Zoc (0)
o oc
oc
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In the case of a resistive loop the resistance at s = 0 is

R!,o = 2,(0) (13.5)

However, for the case of a capacitive object we have

Z (s) = é% + c. +t ¢

0 1S+ : (13.8)

The first term is a pole which is subtracted. If the pole at zero
frequency is left in unmodified form, because the s = 0 value can-
not be subtracted, and if the other poles are put in modified form,

then the entire function 1mpedance corresponds to Co-

The entire function current sources can be apprOX1mated by
considering the open circuit voltage as s + 0. It is assumed that
the incident waves have, for the delta function response, zero
time adjusted for short circuit current beginning at t = 0. As
discussed in section VI the short circuit current has simple
behavior for both s + 0 and s + =,

For an inductive antenna as s » 0 we have §oc(s) +~ 0 for a
delta function incident wave. If the unmodified pole impedances
are used and if the entire function current source is approximated

as a constant then we still have to make the open circuit voltage

zero at s 0. These requirements give

Téce p(S) =~ Iéce D (not used with zero impedance)
. V(0 V. (0) (13.7)
1 (s) = I _ oce D _ _oce,p ‘
oce,p oce,p (0) R
oce
5 -1
I ' (0) I a s
2: ,p % az: Goe'P Cue Oge
- - ocC
S > ey o |
o, oc o oc “oc
oc . oc
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For an inductive antenna (for s > 0) the use of modified pole
impedances would seem to be simpler.

For capacitive or resistive impedance as s + 0 consider the
behavior of %Oc(s) as s + 0. TFor a resistive loop (closed object)
Voc(s) - 0 as s > 0 for a delta function incident wave. For such
a case modified pole impedances can be used with no additional
entire function current source included witg Réce in equation 13.5.
For a capacitive (open) object we can have Voc(s) + constant as
s + 0 for a delta function incident wave. For use with modified
pole impedances one could use

Vice.p = Véce,p(O) (13.8)
summed with %p(s) as a voltage source, noting that the pole impe-
dance of the form 1/s() is not modified. This is expressed as a
current source for this particular pole as

~ ~

t o~
Ioce,p(s) ~ sC Voce,p<o) (13.9)
which is a special frequency dependent form. This prevents the
open circuit voltage from unphysically growing as s + 0 for a delta

function incident wave.

For resistive impedance as s - 0 (as in equations 13.4) then
for unmodified pole impedances we have
\ 0
(s) = I _ oce,p( )
oce,p

2

oce,p =
Zoce(o)

v
oce,p

R
oce

—;Z: I, 7 (0)
oC

,p-o
ocC ocC
- R (13.10)
R' - Z  (0)
oce OLZ OLOC
ocC



oce

where R’ is the impedance for s - 0, and where the summation .
Qver e may be approximated as a finite summation.

As in the short circuit case the open circuit case leads to
various types of possible circuits. For the case of inductive
objects (closed with zero resistance as s - 0) the use of modified
pole impedances would seem to simplify matters somewhat by elimin-
ating the constant entire function impedancerand current source,

at least as an approximation.
E. Conjugate pair circuit modules

As in the case of the short-circuit-~based circuits; the
open-circuit-based circuits have the problem of complex element
values. For special cases such as real axis poles and entire
function contributions the elements (inductances, resistances,
and capacitances) are real but not necessarily positive. Cdn—

sidering the case of conj@gate pole pairs let us define

S = g - ' ,-, P — — e - - [
Otoc_ Oéoc:+ - ' .
, : (13.11)
Im[s J > 0
o
oc,
forming a pole pair. As indicated in figure 13.4 one can form
norton equivalent circuits of such conjugate pairs of pole circuit

modules. The conjugate pair (cp) impedances are
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Z, (s) Z, (s) éu (s)
OC+ OC_ OCCp
m - )
——0 O —0
Zpluoc+’pfp(s) %I%c ’pfp(s)r %I%C ’p(s)fp(s)
- Ccp

A. Equivalent for pole circuit module conjugate pair

N
N2

L () 't (s) Z (s)
04 (6 64
OC+ OC_ OCCp .
F F T T
%;Iaoc+’pfp(s) %;Iaoc ’pfp(s) %;Iuoc ,p(S) p(S)

- cp

B. Equivalent for modified pole circuit module conjugate pair

Figure 13.4. Norton Equivalent Circuits for Pole Pairs
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(s)

ocC

o (s) + Z, (s)
oc, - oc_
f -1 -1
O(au (s - S, ) + oa, (s - S, )
oc, oc, oc_ oc_
1 = -1
012 (s - Sy ) + a, (s - Sy, ) S
oc, oc, oc, oc,
a, (s - s ) +oa, . (s - s, . )
oc, oc, 0 oc,.
e (s - S, Y(s - S )
oc, oc,
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Zo  (s) =13, (s) +7Z, (s)
occp oc,. oc_
A, &y,
oc oc
= Z + S + - S
0 Saoc S - 8, . S s - 8,
+ oc, oc_ oc_
&, ga
oc
=7 + ] + OC+ S
o )s - — -
o S Sa S s —- 8
oc, oc, aoc N
+ +
Ay, 5&
oc ocC
+ — +
= (s - s, J)st = (s - s, s
o o
oc oc, oc ocy
-z + +
© (s - s Y(s - s )
uo a
c, oc,
a s
Otoc aLOLoc OLoc
+| 2 + +
2 Re s - 2 Re S
Sa Sa
oc oc
_— + +
2 2
© s - 2 Rels s + |s
%se %oc
+ +
2 -
dls™ + dls dls 1 + d/
=z 2 1 -7 1 2
© d'sz + d!'s + d! o d's_z + d's—l + d}
5] 3 3 4 5

for pole pair impedances and modified pole pair impedances respec-

tively. ©Note that all coefficients of powers of s are real numbers.

The open circuit voltage associated with a conjugate pole

pair can be written as
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\ o

~

(s) =V (s) + V (s)
OC(X . OCO& . OCOL
(9] cp O + OC_

<2

oc oC

PERCIE: 7 (s) +1I Z. (s)
D b [ aOC+’p o . a —:p uOC_

(13.13)

which gives a short circuit current

v (s) + V - (s)
OC06 OCOL _
OC+ OC_

-2

sc (s) = =
0LOC: ZOC <S) + ZOL (S)
cp oc oc

+ -
- 21,
p

,p(S)fp(S)

Occp (13.14)

Ia p(s) — . =
occp , Za (g) + Za (s)

A (s) - ia (s)

aoc oc
=ReP@ p]+—iImPu p]~
oc+’ oc+’ Z

<+ -—
C(s) + B, (s)

OC+ ocC_

(01

Again, as in the short circuit case, if the pole current source
coefficients I@oc,p are real numbers then the norton current source
for the opcn circuit pole pair simplifies somewhat. However, for
%eneral complex,f&oc,p (s) the resulting current source coefficients

I ,p(s) are frequency dependent.

Oﬂoccp
The open circuit voltage associated with a modified conjugate

pole pair is




<3
—
[0}
S~
Il
<
N
0]
~—
+
<2
O
—
0]
~

o o o
oc oc oc
cp + -
— = NY ’Vl
= pr(s)[la A O I N Ot (s)]
P oc oc oc oc
+ + - -
(13.15)
which gives a short circuit current
V! (s) + V (s)
oc, oc,
oc,. oc
L, ()= ——
e 7 Za (s) + Zu (s)
cp oc oc
+ -
= 1! s % =
; o, pE®
cp ' (13.16)
IU ,pza (s)‘+ I ,pzu (s)
- oc, oc, oc_ oc_
I (s) = = =
oc_ P Z! (s) +Z' (s)
cp o o
oc oc
+ -
Z& (s) - Z& (s)
oc, oc_
= Re Ia + i Im I& ol = -
oc+’p oc+’ Z& (s) + Z& (s)
oc, oc_

Again real wvalued I lead to simpler equivalent circuits for

Gsc,P
the modified conjugate pole pairs.

The impedance of a conjugate pole pair can be put into the

form of circuil clements. Write the impedance in the form
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2
-1 _ 1 938 *dys +dg
Z (s) = =—
OLoc : Zo dls * dz
cp
d d
3 5
i, - == d, - == d, |s
_ 1 d_ss+(4 4G 2 4G 1) )
ZO d1 dls + d2 d2
-1
1 1
= sC + + + G
OLoc G(S) sC(S) 0Loc:
ep %c %oc cp
cp Ch.
c _ 1% _ 1 1
e Zo d1 7z 2 Re[a ]
cp oc,
c, 12
-1 oc
- C—l + C—l _ +
o o4 2 Re[C }
oc oc o
+ - oc
+
2
Sa
. _ 1 d5 _ 1 oc,
) Z d. T~ 7Z_ 2 Rela 5
ocCp o 2 | o} [ aoc+ aoc+]
__1 1
B 7 a
o e
2 Re h
So
oc,
G 2
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Y %43 95
Z d 2 d
occp o 1 d1
o) 1% %4 44
ro Zo d2 d1 d2
cp

where these terms can be written out in terms of sy
using equations 13.12.

and ag
+ oC+
This circuit form is shown in figure 13.5A
Again conductances and capacitances require negative elements for
high resonant cases. However the above choice is but one of many.
The impedance of a conjugate modified pole pair can be
written as

. 1 dls™? + drs”t o+ ay
[ — 4 5
Z (s8) = =—
%ec Zo d‘s"1 + 4/
cp 1 2
t !
.93 o dg ) 4
a. dg a7 92~ g7 /s a
1 )% -1 1 2 5
_T !S + ~ ”_1 +a—r
o) 1 d!s + dé 2
, -1
G oc oc
oc, SN cp cp
P cp
—a& Ea
oc oc
Re _ + +
i O‘oc+
L' =7 == = -27 =
o o d s} 2
oc 3 S
cp “%oc
+
2o
oc,.
= —ZZO Re 5
Sa
oc,
= I,
o
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A. Conjugate pole pair circuit

ocC

,p(s) fp(s).
Ccp

(s)

B
Q -

ocC

B. Conjugate modified pole pair circuit

Figure 13.5.
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Circuit Element Possibilities for Pole Pair

Equivalent Circuits
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(13.18)

oc Zo dé Zo &0,
cp oc,
2Re
SCX
oc,
G 2
-1 OLoc
i [%‘_1 i G&—l - o )
oc, oc_ 2Re Gu
oc,
t 4 ! !
(s)! dg dgdy  dg
Gy~ (s) T T T
ocCp e} 1 d1 i 2
-1

t ' T 1
(s)' _ d4 d3 d1d5
L, (s) = 20 \FI T ar T e

oc 2 1 d'

cp 2

which is illustrated in figure 13.5B. Note in comparing equations
13.18 to 13.17 that the various constants d' correspond to d So
that modified and unmodified pole circuits can be directly compared
These can also be compared to the results for the short circuit
pole pairs in section X which have dual form to the results of this
section. The use of only conductances and inductances requires

one or more negative elements for highly resonant cases, but other
more general forms are possible.
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XIV. Admittance and Impedance from Short Circuit and Open
Circuit Quantities ‘
Having considered the equivalent circuits resulting from the

short circuit and open circuit Poundafy value problems, let us con-

sider some results obtained by combining the results of those two

problems. Specifically consider the admittance Y (s) and impedance

v (s) and construct these from both sets of natural frequencles

Hence let us try a form as

> _ -1 h(s) %se sc
Z (s) =Y “(s) Ze (14.1)
a a J—r(s - s, )

oc oc

where Z is some scaling constant with dimensions of impedance
(ohms). Of course there is some interpretation of the infinite
products required to make the ratlo converge to the proper_answer.

Here h(s) is an entire functlon included for generality; eh(s) has

no zeros in the finite plane as well.

In line with the approximations discussed in section VII,
together with the high and low frequency limiting forms discussed
in section VI, let us consider only a finité portion of the natural
frequencies clustered near the origin of the s plane. Define a set
of short circuit natural frequencies'by A@sc’ and similarly a set

of open circult natural frequencies by A“oc' Then equation 14.1

becomes 7_T
g achAa (s - Susc)
= - h(s) ° sc ,
Z (s) = Ze (14.2)
& I'7 (s - s, )
o €A o
oc T oc
ocC

Here Aa sc and Aa oc are defined so as to include conjugate pairs of
natural frequencies in the left half s plane plus natural frequen01es

on the negative Re[s] axis. To avoid exponential behavior in the
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right half s plane let us require ﬁ(s) +~ constant for s =+ « with
larg(s)| < 7/2-38 with § > 0. Then to have asymptotic behavior
proportional to s, a constant, or s_l as s » « in the right half
plane, let us constrain that the number of natural frequencies in
A@sc and A“oc differ by at most one (1). Referring back to sec-
tions VIII and XI note that this type of rational function is
already constrained; for consistency with these previous results

let us set

h(s) = O (14.3)

m

Note that Z is now of necessity a real constant.

If we wish to make the impedance match the asymptotic form
at low frequencies to contain the scaling constant, then it is

convenient to write the impedance as

1 _ S
m, (e
s sL l o €A’ s¢
- sSC .
Z (s) = )R SC
a 1 - S
EN I
sC aoch& oc
oc
(14.4)
Aa = A06 - (any S, = 0, if such ex;sts)
sc sc sc :
A& = Au ~ (any s = 0, if such exists)
oc oc %ec

Here three choices are listed.

a. dinductive (short circuit natural frequency at s = 0)

Z (s) » sL as s > O (14.5)
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b. resistive (no natural frequency at s = 0) .

za(s) + R as s >+ 0 (14.6)

c. capacitive (open circuit natural frequency at s = 0)

~

Za(s) > é% as s +~ 0O (14.7)
If in addition A@sc and A@oc are chosen to have the same number of
natural frequencies then Za(s) will tend to a real constant at high
frequencies as desired. By observing that any real natural fre-
guencies away from s = 0 are negative, and that all other natural
frequencies come in conjugate pairs, and that L, R, and C in equa-
tions 14.4 are positive, we find that 2a(s) so chosen tends to a

real and positive constant at high frequencies,.

An alternate representation is based on high frequencies as

ﬂA <1 _ So‘ssc)

o4 €
scC

o
7 (s) = A S¢S (14.8)

ST bl

o €A
oc o
oc

where again AQSC and A@oc are constrained to have the same number
of natural frequencies as well ds include natural frequencies in
conjugate pairs when off the real axis of the s plane. Then as

discussed in section VII we have

Za - A > 0 for s » = ' : (14.9)
larg(s)| < 5 - 8
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Hence if we know A (such as from the considerations in section VI),
then with the short and open circuit natural frequencies an approxi-
mation to Za can be readily constructed. However this may have
limited accuracy for low frequencies, or a large number of natural
frequencies may be required.
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XV. Summary

As one can see there is quite a lot of information to be
obtained in considering the results of more than one boundary value
problem together as a single problem related to a given antenna or
scatterer viewed under different conditions of excitation. This
note has considered a single object with external incident waves,
with excitation at a gap (port), and under short circuit and open

circuit conditions at the gap.

Owing to the similarities in the representation of the solu-
tion for incident waves and for gap excitation certain term-by-term
correspondences can be made to give equivalent circuit representa-
tions, involving both sources and impedance elements, which repre-
sent the solution to both problems (at least approximately). Here
we have treated the equivalent circuits on both short circuit and

open circuit bases, and to some extent combined the two.

Other forms of equivalent circuits should be possible.
Present considerations have centered around the poles from the SEM
form of the solutions, with some assist from the EEM form. Other
types of expansions might be able to produce other forms of infinite
size networks, such as ladder forms, or others common in circuit
theory. Along with these there is the problem of synthesizing

realizable impedance elements with simple sources.

Another generalization of the present considerations is to
N-port equivalent circuits for objects with N gaps (ports). The
present technigques should provide a direct way of doing this but
off-diagonal admittance and impedance elements are somewhat more
complicated than sclflf-admittance and self-impedance (driving point).
Hopefully this note will have introduced some of the basic concepts

ol this type of synthesis to the reader.
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