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Abstract

A cable passing over periodic obst:éles, such as existing in an aircraft's
interior, can be modeled by a periodicallv loaded transmission line. This
report calculates the propajation characteristics of a line loaded at regular
intervals with identical, symmectrical T sections. The dispersion relation
determining the possible modes of wave excitation on the line is derived, from
which comprehensive information on the propagation constant, the passband-
stopband structures, and the phase and group velocities is obtained. The
resulits are illustrated numerically and graphically by working out a tvpical

example.
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LIST OF ILLUSTRATIONS

Model of i1 cable non-uniformity as a symmetrical T section.

The network is to be loaded on the line at the location of

the non~uniformity. The lumped impedance 2 and admittance

d
Yd are to be calculated from two quasi-static boundary-value

problems.

Section of a uniform transmission line loaded at discrete

points with four-terminal networks.

Graphical solution of the dispersion relation (42) of a
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correspond to the passbands (dotted areas).
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SECTION I

INTRODUCTION

At sufficiently low frequencies when only the TEM mode is dominant, the
propagation of voltage and current disturbances along a uniform cable can be

described by the pair of transmission line equatiomns:

v 9L
- - L3y~ /I @)
9L v
¥ - C 3t GV 2)

For a time-harmonic excitation with time factor exp(jwt) , these equations

become
%=-ZI 3)
Le-w (4)
where
Z = juL +R &)
Y= juC + G (6)

are the impedance and admittance per unit length of the uniform line at
angular frequency w . Excitations with general time variation can be resolved
into time-harmonic components by the method of integral transform. Consequently

theilr treatment can also be based on equations (3) and (4).

The uniform line is of course an idealization. In practice, non-uniformities

occur in the shape of cable bends, shield defects, or nearby conductors. These



produce local deviations of Y and Z from their uniform values, resulting
in a scattering of the waves in the cable. If the dimensions of the non-
uniformities are small compared to a wavelength, the scattering effects
can be described by an equivalent point loading of the cable. Fig. 1
shows a model of the non-uniformity as a symmetrical T section. The
network is assumed to have zero spatial extension, and is to be inserted
into the uniform line at the location of the non-uniformity. The lumped
impedance and admittance elements Zd and Yd of the discontinuity are
to be calculated from appropriate quasi-static boundary-value problems.
The general situation of a transmission line of finite length, driven at
one end by a harmonic voltage or current soufce, terminated at the other
by a given load, and loaded at an arbitrary configuration of points in
between, can be analyzed by the powerful transmission matrix method to be
described below in Section III.

0f special interest to aircraft EMP internal coupling studies is the
analysis of wave propagation along a periodically loaded transmission line.
Here the loads are identical in structure, and are inserted along the line
at regular intervals. Examples of such periodic loading in aircraft cables
can be found in periodically applied cable clamps and periodic airframe
members over which the cable runs are anchored. It is well known that a
periodically loaded line acts like a bandpass filter. The line transmits
waves with frequencies lying within certain discrete bands, while waves
with other frequencies are effectively stopped. It can therefore restrict
the range of EMP energy that can be delivered through it to the load. Hence
a determination of the passband-stopband structures as a function of the
loading is extremely helpful to the assessment of EMP vulnerability of air-
craft systems.

The objective of this report is to calculate the propagation characteristics
of an infinitely long transmission line, loaded periodically with four-terminal
networks of the type shown in Fig. 1. This study will consist of deriving
the so-called dispersion relation connecting the frequemcy with the propagation

constant, showing its explicit dependence on the loading period, and on the
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Figure 1. Model of a cable non-~uniformity as a symmetrical T section.
The network is to be loaded on the line at the location of the
| non-uniformity. The lumped impedance Z, and admittance Y
are to be calculated from two quasi—statgc boundary-value problems.




distributed and lumped impedances and admittances of the uniform line and its
lumped loads. The dispersion relation governs the propagation of the eigenmodes
of the infinite line. The reason for the interest in these infinite-line modes
is that the voltage and current excitations on the finite line encountered iu
practice are composed of these eigenmodes. The composition is determined by
"taking the applied source and the load termination as boundary conditions at

the two ends.

The contents of this report are distributed as follows. Section II
summarizes the salient features of waves on a periodic line. The transmission
matrix method for calculating wéve propagation along transmission lines is
introduced in Section III. 1In Sections IV, V and VI the dispersion relation,
the passband-stopband structures and the phase and group velocities of a
transmission line loaded periodically with symmetrical T sections are
explicitly derived. The report concludes with an illustrative example

worked out in detail in Section VII.



SECTION II

GENERAL PROPERTIES OF WAVES ON A PERIODIC LINE

The phenomenon of wave propagation in periodic structures occurs in many
areas of physics and engineering. Over the years its principal features*
have been delineated and the general procedures for its study worked out.
Before embarking on the specific calculations for the periodically loaded
transmission line, it is advantageous to anticipate the results by summarizing

below the general properties of waves in a one~dimensional periodic structure.

1. At a given frequency w , the waves on a line of period a have

the general form
veo) = e Iy (x) D

where k and uk(x) are determined by the detailed structure of the line, and

uk(x) is a periodic function with period a . Thus the excitations are "plane .

waves' modulated by the periodicity of the line. This result is known in

mathematics as Floquet's theorem.

2, Upon analyzing the periodic function uk(x) into a Fouriler series

u @ =] o exp (- 120X (8)

ne=s —x

one concludes from (7) that the excitations consist of an infinite sequence of

spatial harmonics with propagation constants
kK =k +38T 420, 21, 2 (9
n a ’ 9 =Ly =&y oo

Hence at each frequency, there are an infinite number of eigenmodes.




3. The frequency w 1s an even periodic function of k . In fact, the

dispersion relation is of the general form
cos ka = F(w) 10) .

4. When there are no resistive elements in the line, there exist an
infinite series of frequency bands in which k 1is alternately real and purely

imaginary. The line is a bandpass filter.

These general results will be verified and illustrated by the calculations
in the following sections.



SECTION III
TRANSMISSION MATRICES

Consider a length of uniform transmission line containing a number of
point loads, as shown in Fig. 2. Each load is assumed to have the structure
shown in Fig. 1. The variation of the voltage and current along the uniform
gections 1s described by the transmission line equations (3) and (4). The

variation in the loads is governed by Kirchhoff's laws.

At any reference plane along the line, such as plane A in Fig. 2, the

voltage and current can be combined into a two-component vector:

V(a)

I(a)

Then the voltage and current at any other reference plane in the same uniform
section of the line, such as plane B in Fig. 2, are related to those at

plane A through a transmission matrix Tu:

V(B) V(A)

=T, (11)

I(B) 1(a)

This matrix is determined by solving equations (3) and (4). It is given by

cosh ya -Zosinh Ya
T, = 1 (12)
-7 sinh vya cosh vya

o

where a 1s the separation between planes A and B , and
Z = Z = /Y2
0o V¥ o Y (13)

are respectively the characteristic impedance and the propagation constant of

10
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Figure 2. Section of a uniform transmission line loaded at discrete points
with four-terminal networks.




the uniform section.

Similarly, the variation of the voltage and current across a four-
terminal network, such as between reference planes B and C in Fig. 2,

can be described ky a transmission matrix Td :

v(C) V(B)
=T (14)

I(C) I(B)

Upon applying Kirchhoff's laws to Fig. 1, one finds that

2
- - 1
14+ deZd Zd ﬁded
T, = (15)

It is to be noted that both Tu and Td have determinant 1:

det Tu =1 , det Td =1 (16)

Matrices with this property are said to be unimodular.

The relation between the voltage and current at reference plame C and

those at plane A can be obtained by matrix multiplication. Thus

v(C) V(A)
=T (17)
1(C) 1(a)
. where
11 T,
T = = TdTu (18)
T T

12




with

YA
d
a+ %ded)cosh ya + zo(1 + deZd)sinh va

e
]

L]

3
]

(1 + %ded)cosh ya+Y Zosinh Ya

22 d

z]
]

12 -zd(l + &ded)cosh Ya - Zo(l + %ded)sinh Ya

T

1
21 -chosh Yya - zo(1 + &ded)sinh Ya (19)

It is easy to show that T 1is also unimodular:

det T = 1 (20)

T11T22 = Ty2Toy =
Using the transmission matrix method, the calculation of voltage and

current propagation along a finite transmission line with discrete point loads

becomes a simple matter of 2 X 2 matrix multiplicationms.

13



SECTION 1V

DISPERSION RELATION

Suppose in Fig. 2 the transmission line section between reference planes
A and C 1is reneated an infinite number of times to the right and to the
left. One obtains in this way an infinite periodically-loaded tramnsmission
line of period a . If, at a given frequency w , a wave is to propagate
down this structure, the voltage and current in reference plane C can
differ from those at plane A by at most a phase factor. This is because
planes A and C are separated by exactly one period, and are hence
physically equivalent. Let this phase factor be denoted by exp(-jka) ,
that is,

v(C) V(A)
- o Jka (21)
I(C) I(A)
This result actually follows from Floquet's theorem (7), and k can be
identified with the propagation constant of an eigemmode. Relation (21)
is compatible with relation (17) only if the phase factor is an eigenvalue
of the transmission matrix T . One therefore requires that
- o Jka
Tll e le
=0 (22)
- g Jka
T Ty - e
This condition, by (20), becomes
-j2ka _ -jka -
e (T11 + T22)e +1=20 (23)
The solution is
cos ka = &(Tll + Tzz) (24)

14



Upon substitution of the matrix elements from (19), equation (24) becomes

1 2
cos ka = (1 + dezd)cosh ya + 27 (zd + deZd

+Y dz‘f) sinh ya (25)
Q

The quantities Yd ’ Zd ’ Zo and vy are all functions of the frequency w .
Therefore (25) is a dispersion relation commnecting w with the propagation
constant k . It agrees with the general form (10). If k is a solution

of (25) at a given w , then so are -k and

kn-k+m , no=+l, 2, ... (26)

as well as their negatives —kn » because of the evenness and periodicity of

the cosine function.

15



SECTION V

PASSBANDS AND STOPBANDS

In many practical situations the resistive elements in the line are
negligible, so that all the impedances and admittances are expressible in

terms of inductances and capacitances L , C , L 4 and C 4 :

Y = juC , Z = julL

T, = juCg, 2 = Julg 27)

FProm these, one has

Zo-/%, Y=jmv’iz (28)

In this case, relation (25) becomes

cos ka = (1 - !ﬂ»zLdCd)cos(mav’ﬁ)

C,L
-&de/%—(l - !mzded + L—:E) sin(wavLC) (29)

The right-hand side is an even function of the frequency. Equation (29) can be
put into a simpler form by introducing an amplitude A(w) and a phase ¢(w)
such that

A{w) cos ¢(w) = 1 - lzszdCd

C.L

A(w) sin ¢(w) = kde\/%' 1- lszdCd + -Ld—c- (30)
d

Then (29) becomes

cos ka = A(w)cos(wa’LC + ¢(w)) (31)

16




The right-hand side is a quasi-sinusoidal function with a modulated amplitude.

After some algebra it is found that

2 2
mZL C.L
AZ(w) = 1+ —3 !mZL -4 (32)

which is greater than 1 . From this one concludes that there exist an infinite
number of frequency ranges over which the right-hand side of (31) is between the
limits 1 and -1 , and other ranges over which the expression is outside those
limits. Equation (31l) shows that k 1is real in the first case, implying
propagation; it is imaginary in the second case, indicating attenuation.
Consequently one has an infinite sequence of altermating passbands and stop-

bands. The band boundaries are determined by the condition

cos ka = *] (33)
() or
k= 5} , n=*l, 2, ... (34)

This condition corresponds to a total reflection of the waves at the loads.

° ¥



SECTION VI

PHASE VELOCITY AND GROUP VELOCITY

Let the right-hand side of the dispersion relation (29) be demoted by
F(o) :

cos ka = F(w) 35)

If, at a given frequency w in a passband, k 1is a real solution of (35),

then 8o are -k and the members of the infinite sequence

2nm
kn = Lk +-j;— s n=+1, %2, ... (36)
as well as their negatives —kn . The waves on the transmission line therefore

consist of an infinite number of spatial harmonics traveling to the right or to
the left. Each harmonic has a phase velocity

v

-t O '
oh -_‘:k 37)

a

which is different for different n's . The + sign refers to the two
possible directions of propagation. Thus, at a given frequency, there is no

unique phase velocity.

There is, however, a unique group velocity. The group velocity is the
velocity at which energy is transmitted by the waves, and is a very useful
quantity in analyzing propagation characteristics. It is given by

9
v, " ?‘5 (38)

From (35) one finds that

(39)




which has a uniquely defined magnitude at a given frequency. Again the =
sign refers to the two possible directions of propagation. By (33) and (35),

F(w) = 1 at the band boundaries. Therefore one has the general result that
the group velocity vanishes at band boundaries.

19



SECTION VII

TLLUSTRATIVE EXAMPLE

In this section a numerical example will be worked out to illustrate the
general results derived above. Consider the Jispersionm relation (29) applicable
to the case of pegligible resistive circuit elements. It is convenient to

introduce three dimensionless parameters

Q = wa/LC

L%

azLC

Qs

B = —d (41)

Hence 1 serves as a dimensionless frequency variable, and « and B are

parameters characterizing the periodic loads. Then (29) becomes
cos ka = (1 - 'ea%)cos @ - !59/3—(1 + 8 - %9%)sin @ (42)
Take ; specific set of values for o« and B :
a=0.2, B8=0.5 (43)

This choice for B 1is quite typical of practical situations. The choice for
a. corresponds to a fairly heavy loading of the line. It will be seen below
that the loading (43) produces at low frequencies a reduction of the group
velocity to about 2/3 the uniform line value.

The passband and stopband structures can be found graphically by plotting
out the righi-hand side of the dispersion relacion (42) as a function of the
dimensionless frequency variable Q , as is done in Fig. 3. The curve oscillates

with ever increasing amplitude as Q + * » ., Those portions of the curve lying

—

20
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Figur= 3.

2 49 6 8
wavLC

Graphical solution of tte dispersion relation (%2)
of a periodically loadea transmission line in the
(cos ka, w) plane. The frequency ranges for which
=1 % cos ka =1 correspond to the passbands
(dotted areas).
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between the horizontal lines cos ka = 1 and =1 correspond to the passbands.
They are indicated by the dotted areas in the figure.

Each intersection of the curve in Fig. 3 with a horizontal line yields a
pair of coordinates (cos ka , w) which form ¢ solution of the dispersion
relation. Each value of cos ka corresponds to an infinite sequence of
propagation constants ikn according to (9). 1In a passband, these constants
are real. To study the phase velocity and group velocity, it is convinient
to plot the solutions in the (k , w) plane. This is done in Fig. 4. Each
continuous horizontal curve corresponds to a passband. The passbands are
geparated by gaps representing the stopbands. It is seen that, as the
frequency increases, the passbands contract while the stopbands widen. Thus
most of the low-frequency waves are passed, while most of the high-frequency
ones are stopped. This is not surprising since four-terminal networks of
the type shown in Fig. 1 function as a low-pass filter when connected in

tandem.

The phase velocity at frequency w ,as defined in (37), is proportional

to the slope of the straight line drawn from the origin to a point with ordi-
nate ®w on a curve of Fig, 4. On the other hand, the group velocity is
proportional to the slope of the curve at that point. From Fig. 4, it is seen
that the group velocity is greatest at low frequencies. One can find the low-
frequency limit of the group velocity by expanding (42) in ascending powers

of w . The result is

-k
k o
m=i—l+u+/::(1+8)] . k,w >0 (44)
YLC [ B

Therefore, by (43), the group velocity at low frequencies is

v =20, 0.68

g 3k ~ Ac (45)

showing a reduction of some 327 from the uniform line value by the loading.

22
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Figure 4.

T ka 2w 3

Plot of frequency w as a function of pro-
pagation constant k . showing the passband-
stopband structures. The curves for negative

k and w can be obtained by reflections with
respect to the horizontal and vertical coordinate
axes.
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As the frequenéy is increased, the passbands become progressively narrower.
In Fig. 4, they are seen to approach the limit of a horizontal line. The group
velocity therefore tends to zero, implying zero energy transmission. In this
limit, the excita’ion on the line comsists of :tanding waves in the uniform

sections of the line, bouncing back and forth between two loads.

24
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