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Abstract

The equivalent lumped inductance of a bend in a parallel-wire transmission
line is calculated exactly within the thin-wire assumption. The inductance for
an abrupt bend is obtained explicitly in simple closed form. The inductance for
a smooth bend modeled by a circular arc is reduced to one-dimensional integrals
that can readily be computed. Numerical studies show that the simpler abrupt

bend is a poor approximation to the smooth bend.
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ILLUSTRATIONS

A bend in a parallel-wire transmission line and its equivalent

circuit representation.

Geometry of a bend in a two-wire transmission line. The bend

is modeled by a circular arc of radius R and angle o .

Plot of the equivalent inductance L& of an abrupt cable bend

versus the bend angle o .

Domain of integration for calculating the inductance difference

Lg between a circular bend and an abrupt bend. Nonzerc

contributions to L' come from the undotted cross—shaped region.

d

Plot of the equivalent inductance Ld of a circular cable bend

of radius R versus the bend angle o . The broken line is

the inductance Lé of an abrupt bend (R = 0).
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I. INTRODUCTION

Electromagnetic waves propagating along a transmission line are scattered
by bends in the iine. The amount of scattering Jepends on the shapes and sizes
of the bends. At sufficiently low frequencies, when the wavelengths greatly
exceed the bend dimensions, the scattering effect of each bend can be represented
by equivalent lumped network elements loaded onto the transmission line at the

location of the bend.

Figure 1 shows a bend in an otherwise straight parallel-wire transmission
line and its representation by an equivalent symmetrical T section network. The
bend is formed when the two parallel wires are deflected identically through an
angle a . More precisely, the vertical plane in Figure 1 defined by the two
parallel wires on one side of the bend intersects the vertical plane defined by
the wires on the other side at an angle w7 - a ; the line of intersection is
normal to the two parallel horizontal planes containing each of the wires

individually.

The objective of the present effort is to determine the lumped inductance
Ld and the capacitance Cd appearing in the equivalent circuit representation
of the bend in Figure 1. These lumped elements can be calculated from a pair of
quasi-electrostatic and quasi-magnetostatic boundary-value problems for the bend

geometry.

The analysis of the bent two-wire transmission line is relevant to the EMP
internal-coupling problem of an aircraft. A cable running parallel to a metallic
wall or floor in the aircraft's interior is essentially a two-wire transmission
line on account of the electrical image. A quantitative knowledge of the bend
inductance and capacitance will enable one to estimate the effect of a bend on

the EMP propagation characteristics of the cable.

The bent parallel-wire transmission line has previously been studied by
Tomiyasu [1] and King [2]. These authors limited their investigations to the
abrupt V-shaped bend. The present work improves on their results and, at the

same time, extends their analysis to the more general case of a smooth gradual
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- Figure 1. A bend in a parallel-wire transmission line
' and its equivalent circuit representatiocn.
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bend. Specifically, the bend is modeled here by a circular arc with a finite
radius. The abrupt bend is recovered in the zero-radius limit. The circular
arc is clearly a more realistic model of a cable bend. The ¢alculation shows
that the abrupt hend model becomes unreliable when the bend angle a is closa

to w .

In this report the inductance calculation of the cable bend is worked out.

The capacitance calculation will be presented separately in a companion report.
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ITI. GEOMETRY OF THE PROBLEM

Figure 2 shows a model of a bend in an infinitely-long two-wire transmission
line. The line cinsists of two identical parallel conducting cylinders. The
radius of each cylinder is a ; the separation of their center lines is 2b .

When the model is applied to the situation of a2 single conductor over a conducting
ground, the parameter b becomes the height of the conductor center line above
ground. 1In the following it will be assumed that the conductors are thin wires

so that b is much greater than a .

The bend in each wire is modeled by a circular arc connecting the two semi-
infinite straight sections of the wire. The radius of the arc is R ; the angle
of the arc is the bend angle o . The two points on the center line at which
the circular arc is joined to the straight sections are located at (x0 s iyo s

+b) with

(1)

Yo = R sin (%) (2)

The * sign of b refers to the upper and lower wires, respectively. In the
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limit of vanishingly small R , both X, and Yo tend to zero. The bend
geometry degencrates to that of an abrupt V-shaped bend at the coordinate

origin.

The total inductance and capacitance of an infinite transmission line are
infinite quantities. But the bend inductance Ld and the bend capacitance Cd
are finite since they stem from localized deviations in the line geometry. They

are functions of the geometrical parameters R , a , a and b .



Figure 2. Geometry of a bend in a two-wire transmission line. The bend is modeled
by a circular arc of radius R and angle a . ‘




III. DERIVATION OF THE INDUCTANCE INTEGRAL

Let a total current I flow down one wire of the bent two-wire transmission
line in Figure 2 and return by way of the other. If the wires are thin, the
current can be assumed to distribute itself uniformly in the wire interior.

Then the external inductance can be written down exactly in the form of a two-

dimensional integral. The internal inductance is negligible.

One first writes down the vector potential at a general point (x,y,z)

exterlor to the wires

ol x' - -
Ax,y,2) = —Z;'[ '\ &y e ey

. . S

/QX—X')2+(y—y')2+(z—b)2 /Q;—X')2+(Y‘Y')2+(Z+b)2

where x' and y' are the coordinates of the center line of a wire. The total

magnetic flux passing between the two wires due to the currents in the wires is

given by

o= [mas-| @ xmuas-§aa @

where the line integral goes around the perimeter of the area bounded by the
two wires. A general expression for the total inductance L , defined as the

ratio ¢/1 , can be obtained by combining equations (3) and (4):

u o
o dx dx'
L =2 of SX o
2_"Idyjcly (dy dy’ +l)
X —1 1

- .- (5
/(x—x')z-l—(y-—y')2+(2b—a)2



which is symmetric in the pairs (x,y) and (x',y').

To evaluate the integral (5) one must first supply from the bend geometry
the functional relation between x and y , and similarly between x' and y'

in the form
x = £(y) , x' = £(3") (6)

The relation describes the locus of the center line of a wire. For the case of

the circular bend in Figure 2, one has

R sec (g)- /Rz—y2 lyl < Y,

2
=£,0) = 7)
Q .
ly|tan (5) Iyl > v,
where Yo is defined by (2). For the case of the abrupt bend, one has
x = £,(y) = |y|tan {5 (8)
2 2
For the case of the straight transmissicn line, one has
X = f3(y) =0 (9)

By evaluating the integral (5) with the three different functional
1 f2 and f3 in (7), (8) and (9), one obtains three induc-

tances L1 s L2 and L3 . They are respectively the total inductance of a

line with a circular bend, an abrupt bend, and no bend. All three are linearly

expressions f
divergent quantities. However, the equivalent inductance Ld of the circular
bend given by the difference

L,=L -1L (10)
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is finite. 1In the following two sections the calculation of Ld will proceed

in two steps. 1In Section IV one calculates the inductance difference

L' =L -1L (1)

This quantity is the equivalent inductance of an abrupt bend. In Section V one

calculates the difference

LY =L, - L (12)

due to the deviation of a circular bend from an abrupt bend. The desired circular

bend inductance Ld is then given by the sum

Ld=L&+L'ci . (13)
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IV. INDUCTANCE OF AN ABRUPT CABLE BEND

The equivalent inductance L& of an abrupt bend through an angle & in
a two-wire transmission line is defined by expression (11). The two inductance

integrals L2 and L3 are explicitly given by

” 2 yy' ) 1
dy'1 1+ A
_my( lyy'l /.

2 2 2
A (yl-ly'h? + -y + a

[
il
o™
[N
<
—

- : : ) (14)
AZlyl-ly' D2 + 5-y1)2 + @b-a)?

and ® o

H
B e —————

v/(y-y')2 + a2 f(y—y')z + (Zb—a)2

where

A = tan (%) (16)

One can show that the contribution to L2 from those regions of integration

in which y and y' are of the same sign exactly cancel the corresponding
contribution to L3 . The nonzero contribution to L& comes from the remaining
regions in which y and y' are of opposite signs. In physical terms this
result means that the self inductances of the two semi~infinite straight sections
of the bent transmission line are unaffected by the bend; the bend inductance

L' 1is entirecly due to the change in the mutual inductance of the two semi-

d
infinite sections. This change is given by

Lc'i = F()) - F(0) (17)

wvhere ' ‘:
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" o (0
FO) = —2(1-2%) [dy[dy'( = —
0 = \Alry)? + gy’ +d

B = ) (18)
Aleyty")? + -y + (2b-a)” |

The integral F(A) can be worked out analytically by the following device.

First perform a change of integration variables:
u=y-y', v=y+y' 19

The corresponding change in the integration is

a0 1 ] u
Idy[dy' > ifdufdv (20)
0o -= 0 -u

Next make the substitution v = ut and interchange the order of integration.
The two ensuing integrations, first over u and thenover ¢t , are both

elementary. The result is

2u 42 _
—;g(b—a)l)‘l tan ll (21)

F(d) =

Using definitions (16) and (17), one arrives at the simple explicit result

Zuo(b-a)

Lé i — (¢ cot o ~ 1) (22)

This is the exact formula for the equivalent inductance of an abrupt cable bend

within the thin-wire assumption. By contrast, the more complicated expression

given by King [3] is only approximate.
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A plot of L& versus a 1is shown in Figure 3. One sees that the bend
inductance is a negative quantity. Its magnitude increases sharply as the

bend approaches a hair-pin bend (a = x).
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Figure 3. Plot of the equivalent inductance 'L(‘l of an abrupt cable bend versus
the bend angle o .




V. INDUCTANCE OF A CIRCULAR CABLE BEND

The charge Lg in the equivalent inductance when one goes from an abrupt
cable bend to a smooth cable bend modeled by a circular arc is given by
expression (12). The inductance L1 is defined by (5) with x = fl(y) and
x' = fl(y') 3 Ly is similarly defined with x = f2(y) and x' = fz(y’).
From equations (7) and (8) it is clear that fl(y) and fz(y) are identical
- for lyl >y, - Consequently the nonzero contributions to LH come from
regions of integration in which either y or y' or both lie within the

interval (-y_, y ). On the y-y' plane these regions form a cross, as
o

o
‘shown in Figure 4. The contributions to LH consist of a part from the
central square of the cross and a part from the four semi-infinite strips
making up the four branches:

Lg = Lg(square) + Lg(strips) (23)

These partial contributions are expressible as

" = -
Ld(square) G1 G2
(24)
Lg(strips) =G, -G

where the quantities G1 s G2 s G3 and G4 are double integrals given

explicitly by

) Yo Yo

Gl = Z—OIdy Id}" 1+ yy' = oo D TT T it Imt Tt
v /22 2,2 //22 Vo 2 2

Yo Yo R-y DI R™-y"') (R -y = VR=y'") + (y-y')" + a

_ B (25)

/é;gé-yz - /gz_y,z) + (y-y')2 + (2b-a)2
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Figure 4. Domain of integration for calculating the
inductance difference L' between a circular
bend and an abrupt bend.® Nonzero contributions
to Lg come from the undotted cross-shaped region.
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v, Y,

o
u v
= .9 1 + 12 yy ) 1 o
-Y, Y, AVdyl-ly'he + G-y + a
- ' -'1 : _ - (26)
2
v/AZ(IyI-Iy'I)Z + (3-y"% + (2b-a)
p/
2u_ = ° '
A 1
G =~—g[dyIdy' 1+ Y - e - 7
3 T : 5
o % RZ_Y'Z /4;;_:~;;{+A2 + /éz”Y'z) + (Y—Y')2+ a’
- — - "*2" : - : T (27)
¢4Ay - R/&+Az + /§2_y,2) + (y—y')2 + (2b—a)2
p A
2u @ O 2,
G4= ofdyjdy'(l+'A¥ > - X, — .
n [v'| Ve 2 22
y, Y, M-y DT+ gy +a
- ! I (28)

v/'/\z(y—fy'l)2 + -y ? + (@b-a)?

All four integrals are finite. The contribution Lg (square) is the shift in
the self inductance of the bent section between Yo and Y, when the bend
geometry is changed from an abrupt bend to a smooth bend. The contribution
L; (strips) 1is the corresponding shift in the mutual inductance between the

bent section and the two adjoining semi-infinite straight sections.

One integration of each of the four double integrals can be carried out.

In the case of Gl » 1t is convenient to first introduce angle variables ¢

and ¢' such that

y = R sin ¢, y' = R sin ¢' _ (29)
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as well as their difference u and sum Vv

u=¢-9', v=¢ +¢' (30)

The v-integration can at once be performed, with the following result:

2

u R™ ra
c. =-2 Idu(a - u)cos u(—lﬂ__ 1 .
2R™ + 32 - 2R2cos u

)
/éRz + (Zb—a)2 - 2R2cos u

In the case of G2 , one introduces the difference u and sum v :
b ' u=y-y', v=y+y' (32)

and then integrates over one of them. The result reads

2 %
B
G2 = ——"9~ (l+)\2) Jdu(yo—-u)( »_‘_?' - 1 )
0 /Ql+k)2u2 + a2 /Ql+k2)u2 + (2b—a)2
Yo
Uy 2
+-7r (1-27) Jdv[¢(2yo -, v) - &(v,v)] (33)
4]

where

2 2 2 2
d(u,v) = 2n u + /4 v tu +a _ (34)

u + /42v2 + u2 -+ (2b—a)2

In the cases of G and G, , one can carry out the y-integration directly

3 4
) without any change of variables, obtaining thereby the expressions
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(o]
2]1 ]
Gy =2 L I dy" (1 + ——"Z—)W(R/lﬂz - REy? |y (35)
Y1+ 2—y° /R-y'?
2u % 2
L}
g, =—2—L | gy (1+2 Jvarly'] , v (36)
4 T 2 [y l
1+A —yo

where

2
/&+12 ().yo—x)2 + (yo—y)2 + (?_b—a)2 + (1+A )yo -Ax -y
nf{—

/ﬁ+k2 /Qkyo—x)z + (yo—-y)2 + a2 + (1+)\2)yo -Ax -y

37
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The remaining integration in G2 and G4 can be performed exactly.
However, the explicit integration produces such a proliferation of terms that
the results are practically useless. The integrals Gl and G3 in (31) and
(35) contain parts which are essentially integrals of incomplete elliptic
integrals. They are beyond the limits of the art of analytical integration.
One must ultimately resort to numerical integration for their evaluation. For

numerical purposes, it is more advantageous to retain all four integrals in

the forms (31), (33), (35) and (36).

The equivalent inductance Ld of a smooth bend consisting of a circular

arc of radius R and angle o 1is therefore given by

P A - -
Ld = Ld + Gl G2 + G3 G4 (38)

where Lé is the equivalent inductance of an abrupt bend of ;ngle a as given
in (22). Th2 four G integrals are evaluated numerically for the cases b = 10a
and R = 2b and 4b . The values of Ld are plotted versus a in Figure 5.

The inductance of an abrupt bend (R = 0) is also shown for comparison. It is
seen that the dependence of Ld on the bend radius R 1is very pronounced

20
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Figure 5. Plot of the equivalent inductance L., of a circular cable bend of

radius R versus the bend angle o - The broken line is the

inductance Lé of an abrupt bend (R = 0).




for large bend angle o . At the chosen values of the parameters the abrupt

bend can be said to approximate the smooth bend only for o 1less than about

40°.
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VI. SUMMARY AND CONCLUSIONS

The equivalent inductance Ld of a bend in a two-wire transmission line
is calculated exactly within the thin-wire assumption. The bend is modeled
by a circular arc of radius R and angle a as shown in Figures 1 and 2.
The bend inductance Ld is a function of four geometrical parameters R ,

a ,a and b, where a 1is the wire radius and b is one-half the wire

sebaration.

In the limit as R tends to zero, one obtains the geometry of an abrupt
bend. The bend inductance in this case, denoted by L! , is given by the

simple formula (22). For arbitrary R the bend inductance Ld is given by

d
These integrals are defined by expressions (31), (33), (35) and

formula (38) in terms of L

G3 and G4 .

(36). The two parameters Yo and A appearing therein are related to R

and four one-dimensional integrals G1 R G2 ’

and a through expressions (2) and (16). The integrals can be easily evaluated

on the computer.

It is concluded that the abrupt bend is a poor approximation to a smooth

bend when the bend radius is comparable to the wire separation.
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