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ABSTRACT

In designing hardened systems, one must be able to charac~—
terize as %ell as quantitatively determine the penetration of
EMP signals through apertures of general shapes in structures of
varying configurations. In this paper a tutorial review of a
number of methods for analyzing such aperture problems 1s pre-
sented with an emphasis on techniques. The discussion presented
herein is reasonably self-contained and is supplemented by

An extensive set of representative merical

oINS

references to classical as well as current approaches tof SR
\'l . N :
/{; 'Q@
aperture problem. an 7.
o
» o

results is included in the paper for completeness.
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I. INTRODUCTION

For EMP studies, it is desirable to characterize and quan-
titify electromagnetic pemnetration through apertures in con-
ducting surfaces so that deleterious effects on electronic
systems within aircraft, missiles, and communications centers,
among other units, can be assessed. The various apertures of
interest may be either electromagnetically small or large over
the spectrum of the EMP. Furthermore, their existence may be inten-
tional, e.g., windows, open access holes, and bombay doors,
or thev may be inadvertent as in the case of cracks around
doors and plates covering access ports or poor electrical seams
in outer skins. Interest in electromagnetic penetration through
apertures of importance in EMP analyses ultimately centers upon
the avoidance of destructive or other unwanted effects caused
by currents in internal components and circuitry induced there
by the EMP which enters the system in question through aper-
tures such as those mentioned above. Obviously, harmful internal
currents can be determtned and avoided only if EMP penetration
through apertures in outer skins is understood and can be
computed.

Even though the classic problem of penetration of time-
harmonic electromagnetic fields through an aperture in a

planar conducting screen of infinite extent has been the sub-



ject of intensive research [1, 2] for many years, still the
body of theory ﬁertaining to this simplest of aperture p;ob—
lems remains a rather complicated subject, and only in the
case 0f scalar diffraction—not electromagnetic diffraction—
by a circular aperture are analytical results available [3]
in the three-dimensional problem. Greater progress has , s
been achieved for small* apertures in planar screens,

where, in this context, small means that the maximum

dimension across the aperture is small relative

to the wavelength of the time-harmonic electromagnetic f£ield,

as well as in the two-dimensional problem of diffraction by

an infinite slot—of uniform width. For apertures in non-planar

%

surfaces, far less progress has been made . TFortunately, for

many problems of practical interest, the introduction of an
infinite, planar screen in place of a finite one, or one with
gradual curvature relative to aperture size and, in some cases,
wavelength, does not seriously . degrade accuracy of the svlution
of a problem. Of course, practical problems perti-
nent to EMP studies involve not only apertures im curved sur-
faces but also the determination of currents induced on objects —
in partially closed regions behind such perforated surfaces.

The purpose of the present paper is to provide a tutorial
review of aperture theory in its present state of maturity with
emphasis upon those facets of the theory which lead to a bet~-

ter understanding of EMP penetration. A brief discussion

*
See references under appropriate heading in classified
bibliography.



is given of the boundary value problem involving an aperture-
perforated screen separating two homogeneous half spaces having
the same electric properties, and integro-differential equations
for this problem are formulated. Due to the importance of

this fundamental but complex problem, these introductory de-
velopments are presented at an elementary level. Also, the
properties of the fields in the two half spaces and the effect
of the presence of the aperture are outlined. Next, these
preliminary concepts are generalized and equations are derived
for the. problem of diffraction by a closed conducting surface
in which an aperture has been cut. This general formulation

is specialized to the case of an aperture in a front plate of
a parallel-plate waveguide. Returning to the single-screen
case, the authors discuss the modifications in the theory
necessitated by the introduction of a material on one side of
the screen which is electromagnetically different from that

on the other side.

Because infinite slots of uniform width approximate rea-
sonably well certain practical situations, this two-dimensional
problem is treated briefly., Equations are formulated for TE
and TM (to the slot axis) illumination, and representative
data illustrative of slot diffraction properties are presented.
The important, finite-length, narrow slot is mentioned briefly
but no data are given for this problem due to the abundance
of available information pertaining to a thin-wire, the dual of

the narrow-slot.

Lt



In view of its importance in EMP analyses, appropriate
attention is given in the paper to the concepts of electrically
small aperture theory and to the determination of penetration
through such small holes, Bethe's equivalent dipole moment
representation of an aperture is reviewed, and integral
equations of a form highly amenable to numerical solution pro-
cedures are formulated. These new equations are based omn
the so-called Rayleigh series.

In hopes of improving the reader's understanding of aper-
ture theory and properties, the authors provide data for nu-
werous example problems of a fundamental nature. Also, where
available, sample data are given for problems of interest in

EMP studies.

Due to.space limitations, no attempt is made to include
an extensive literature search in this paper. The dinterested
reader is referred to the classic review paper of Bouwkamp [1]
ana to the reference list in a more recent paper by Egginmann [2].
As an altermnative to an exhaustive review of the aperture
literature, the authors provide a classified bibliography in
which are listed papers that are not mentioned in the above

two works.

IT. GENERAL APERTURE/SCREEN EOQUATIONS

The fundamental problem to be considered here is that of

the electromagnetic interaction of the field due to impressed

(specified) sources and a planar conducting screen having a



hole (aperture) cut in it. As shown in Fig. 1, the screen is
in. a homogeneous medium of infinite extent that is electro-
magnetically characterized by (u ,e)* and is located, for
convenience, in the xy plane of a Cartesian coordinate system.
To facilitate the analysis which follows, the planar screen is
assumed to be perfectly conducting, vanishingly‘thin, and of
infinite extent. As usual, the sources (31— ,ii—) and (ji+,
ﬁi+), located in the left and right half spaces, respectively,
as shown in Fig. 1, vary harmonically in time according to
ejwt, which factor i1s suppressed in subsequent equations.
Equations are formulated for an aperture of general shape in

a screen, and a brief discussion of the properties of aperture
fields is provided.

The electromagnetic field on both sides of the screen must,
of courée, satisfy Maxwell's equations and the radiation con-
dition. Furthermore, the tangential component of the total
electric field must be zero on the screen, and both the elec-
tric and magnetic fields must be .continuous along any path
passing through the aperture. With the tangential component
of the eléctric field zero on the screen and with the radiation
condition satisfied, we know from the well-known uniqueness
theorem that, if the transverse electric field (transverse to
the z axis or to the normal to the screen) were known in the

aperture, we could immediately calculate the total electromagnetic

field everywhere on both sides of the screen. However, the

7<If desired, the medium may be lossy which condition may be

9

accounted for by replacing € by €& - j-a .



aperture electric field is not known until the problem has been
solved; it is, in fact, the quantity which we ultimately treat

as the unknown in the integro-differential equations formulated
below.

The general procedure which leads to the desired aperture/
screen integro-differential equations is briefly outlined below.
First, we identify the transverse aperture electric field ﬁi,
the component of electric field in the aperture parallel to
the screen, as the unknown to be determined. Next, we derive
individual expressions for the magnetic field on both sides of

a

the screen in terms of,ﬁt (or, in terms of an equivalent mag-

netic current). The expressions which we derive for the magnetic

field are formulated in terms of the electric vector potential, which

ensures us that Maxwell's equations and the radiation condition are
satisfied in both half spaces, and they are based upon image theory
which ensures us that the boundary conditions on the screen

itself are satisfied. Moreover, the magnetic field in each

half space is written as a function of E:, which is common to

the two half-space problemssy thus the continuity of electric

field through A is automatically ensured. Finally, the last
remaining condition which must be met is that the magnetic

field must be continuous through the aperture. Equating, in

the aperture, the transverse component of magnetic fields, cal-
culated from considerations of each half space individually,

satisfies this last condition and leads to the desired equations.

Fig. 2 depicts a sequential procedure which one may employ

to develop the expression for H , the total magnetic field




in the left half space. The original problem is seen in

Fig. 2(a), while in 2(b) the aperture is short circuited, i.e.,
the conducting screen is made continuous, and the electric
field is restored to its original value ﬁi‘at z = 0 by the
equivalent surface magnetic current ﬁs ( =z Xﬁi) placed over
the region A on the short circuited screen. From Fig. 2(b)

one obtains 2(c) directly by use of _image theory.* Now, since
all currents in Fig. 2(c¢) reside in a homogeneous space of
infinite extent, one can write H in terms of the particular

integral solutions of the wave equation for the electric vec-

tor potential:

-SC~-

BT (5) = 8°°7(D) - jfg[kzﬂb £ TEE ], a0 @)
where r is the point of observation and where k = 27/A., ﬁsc—
is the so-called short=-circuit magnetic field [4] and is that
field due to the sources (ji— ,Mi—) which would exist in the
left half space with the aperture shorted. The remaining terms
are the contributions from the equivalent magnetic current

plus- its image, and they account for the presence of the hole

in the screen. The vector potential F is given by

R A 1 - I
F(r) = 5= [[M (D) TR das' . (2)

A

%
Fig. 2 is only schematic and so the vector directions shown
should not be interpreted as actual directions of quantities.



In an analogous manner, one can write an expression for the .

-+
right half-space magnetic field H as

(F) = 8% () + j% [sz'(E) + V(vw'?(E))] , 250 (3)
k

A

sc+ .

where., of course, H is the right half-space short-circuit

" , =i+ =i+ , ) ¢
magnetic field due to (J sy M ). The equivalent magnetic
current for the right half-space problem is —ﬁs,which accounts .
for the positive sign of the contribution from vector poten-
tial terms in (3).
H and H are calculated from the electric vector poten-
tial, so they satisfy Maxwell's equations and the radiation

condition, and the use of image theory renders the tangential B

electric field on the screen zero. Since the electric field

is automatically continuous along any path through the aper-
ture, the final electromagnetic property is achieved by enforec-

ing continuity of magnetic field:

lim (A7(F) x2) = 1im (BT(Z) x2) , TeA . (4)
z40 z+0

In view of (1) and (3), (4) can be written

(ﬁsc— _ T.—{SC+)

N >
»

Do

X

j%[k2?+vv-§]x£= or in A (5)
k -i+

@' - 57 ) x 2

where Vt is the transverse (to z) gradient operator and

where one interprets (5) in the limiting sense of (4). it ‘

10



and ﬁi+ in (5) are the incident magnetic fields in the left
and right half space, respectively, due to 'the respective
specified sources radiating in the absence of the screen. Im-
plicit in the right-hand-side terms of (5) is the fact that the
short-circuit magnetic field on a planar screen is twice the
tangential component of the incident magnetic field there,
i.e., ﬁsc><; = zﬁi:<2, Since ﬁs is in thé xy plane, it has
no z component, from which it follows that F has no z component.
Thus, (5) embodies two scalar, coupled integro-differential
equations with the two transverse (to z) components of ﬁs, or,
equivalently, of Ei, as the unknown quantities,

In view of the well-known behavior of electric fields
near edges [5], together with the relationship ﬁs = ;><Ei, the
component of,i-—{s normal to the aperture/screen edge must approach
zero at a point in A as the square root of the distance from
this point to the screen, and the tangéntial component of ﬁs
must be singular as the reciprocal of this square root of .
distance.

When ﬁs is available from the solution of (5) for a spec-
ified aperture problem, the magnetic fields on the two sides

of the screen can be determined from (1) and (3) and the elec-

tric fields can be calculated from

ET(F) = E°°7 (%) + %wﬂ;) (6)

+

=ScxT — . . . s .
where E represents the short-circuit electric fields on the

two sides of the screen.

11



Properties of the Fields

From (3) and (5), one can show that the total transverse
magnetic field in the aperture is equal to the transverse part

of the incident field there:

£

T )(; _ % =i+ =i~ ~

~gc+ —-sc-— ~
@S¢ 8Cy w2 = (& + H )%z in A . (7)

+ H

Also, the normal component of the total electric field in A

is simply the normal part of the incident field in A:

- + - - ~ —i+ - = A
s¢ s¢ (El + El Yez in A . (8)

An interpretation of (7) and (8) is that the above components
of fields are unchanged by the presence of the aperture-
perforated screen from what they would be in the homogeneous
space with no screen. In additiomn, the transverse component
of the electric field and the normal component of the magnetic
field, both due to the presence of the hole in the screen,

are gymmetric (even functions of z) with respect to the loca-
tion of the screen (z =0), while the normal component of the
electric field and the transverse component of the magnetic
field are antisymmetric with respect to the screen (odd func-

tions of z). These symmetries can be expressed as

ArE— —sc- A o=t —sc+
zx[E (x,y,2z) - E°C (x,v,2)] = zx[E (x,y,~2z) - E ¢ (x,7,-2)]

(9a)

and
g.[ﬁ—(X;y’z> - ESC_<Xsy’Z)] = 'g'[ﬁ+(X,Y,'Z) —ESCJ(-r(XaYs—z)]
(9b)

12




plus

sc

g><[ﬁ—(x,y,z) - H _(x,y,z)] = —2><[ﬁ+(x,y,—z) - ﬁsc+(x,y,—z)]

(10a)

and

g'[ﬁ—(X)Y9z) - ﬁSC—V(X’y,z)] /2\'7[1-:1+(X,Y,"Z) - ﬁsc+(X:Ys"z)]

(19b)

t =sct

_+ —sct -
B s¢c , B - H ) is that part

where we emphasize that (E

1
=

of the field which is due to the hole in the screen.

III. GENERAL APERTURE/CAVITY-WALL EQUATIONS

Because major achievements in aperture theory have been
made for holes in infinite, planar screens and, also, because
results for this model have proved useful as approximations to
data needed in numerous applications, the previous section is
devoted to a tutorial introduction to the theory of this im-
portant problem. However, all surfaces of interest in practice
are not planar and the regions separated by such surfaces are
not always empty half spaces. Therefore, at this point it is
deemed appropriate to outline a theory which is generally ap-
plicable to a class of problems involving an aperture in a curved
surface. Since a vector source radiates a vector field whose bound-
ary conditions are vectér in ﬁature too, dyadic formalism is employed

as a mathematical tool [6] for convenience. Below, equations are

13



developed for the unknown electric field (transverse to the
surface) in an aperture which exists in a general conducting
shell. Also, as an example of this vector problem, the derived
equations are specialized to the case of an aperture in an
infinite, planar screen behind which is located another infi-

nite screen parallel to the former.

General Formulation

The geometry of the structure under consideration ip this
section is a cavity with an aperture A in its shell S as shown
in Fig. 3 where V_ and V+ are used to indicate the exterior
and interior regions of the cavity, respectively. It is as-
sumed that V_ and V+ are filled with homogeneous and isotropic

materials (p_ ,E_) and (u+ , € respeétively, and that S is

By

a perfectly conducting and vanishingly thin shell. The start-

ing point is Maxwell's equations,

VX jwu E -M
= (11)
, - =1
~jwe Vx H J
which apply to V_ and V+ individually. From (11) one arrives

at the inhomogeneous vector wave equation for the electric
field E in each region
(VxUx - k2)F = -yxitt - qupIt . (12)

Next we define the dyadic Green's function é(E[E') in the usual

way as the solution of

14




(VxVx - K2)G(F|EF') = T8(F-F") (13)

subject to boundary conditions discussed subsequently, and where
? is the unit dyadic and § is the Dirac delta distribution.

It is noted from (13) that V'E(;lz') %O. In order to establish
a relationship between E and E, Green's Theorem in dyadic form

[6] is used

ﬂ['E'-VxVxE - UXVXE+Gldv = -ﬂﬁ-[ﬁxvxé + (VXE)xG]dS (14)

v ov

where V denotes the domain of the volume integration, OV des-
ignates the closed surface surrounding the volume V and D is
the outward unit normal to the boundary 23V.

Since the shell S is assumed to be a perfectly conducting
material, the electric field satisfies the following boundary

condition

nzxEF = 0. Tes (15)
where "-" and "+" are used to denote the quantities in V_ and
V+, regspectively. The proper boundary condition to be imposed

on the interior and exterior dyadic Green's functions is

AN Ee e e = -

nexG¥(rfr') = 0 reSUA . ' (16)
Furthermore, for the exterior region, one requires the satis-~
faction of the radiation condition, viz.,

5™

lim r| Vx + 3k rx )= rev . (17)
>0 - - -

=1
(@]

ol
[l
(@]

15



Employing (12) -~ (14) ip regions V_ and V+ and using (15) - (17),
we obtain the following representation for the interior and

exterior fields

EF(7) =fm-v'xﬁi‘* - o T )ERGE [ Dav!
V_

+
-ffﬁ_XEa-V'xai(E'[E)ds' Tev_, (18)
+ -
A
~ ~ _—— == -t - - -
where, clearly, n =-n_ and E (r) =E (r) = E® for reA. It should

+

be mentioned that the exterior and interior Greemn's functions,
respectively, E—'and E+, generally speaking are different in
form. Equatiomn (18) also reveals the fact that, from knowledge
of the tangential electric field in the aperture and the Green's
functions, one can construct the field everywhere else. Our
goal is therefore to construct an integral equation for tﬁe
unknown tangential electric field in the aperture, i.e., Sxﬁa.
This is done by first deriving the proper Greén's functions

for the geometry of interest and then enforcing the condition,
~ —— ~ - . -
n XH = n XH for reA (19)

where H is determined by substituting (18) into (l1). This

procedure is demonstrated by an example in the following section.

Aperture in Front Screen of Two-Parallel Screens

In this section, we focus our attention on the problem of
penetration into a parallel-plate region and we construct the

appropriate integral equation for this structure. The geometry

16




of the two-parallel-plate structure is shown in Fig. 4 where
one sees two perfectly conducting, parallel plates separated by
a distance w. A Cartesian coordinate system with its z axis
normal to, and its xy plane parallel to, theplates is erected

as shown in the figure. The plate at z =0 is perforated by an
arbitrarily shaped aperture and it is further assumed that a
monochromatic wave Ei_ and ﬁi— originating from a source sit-
uated in the half space V_ is dincident on the structure.

The total electromagnetic field (ﬁ;, ﬁ¥) at any point in
either space is partitioned into an incident field (Ei_ ,ﬁi_),
a reflected field (E™ H° ) associated with the reflected wave
which exists when the aperture is closed, and a diffracted field

-d¥ =d

5 , : . .
(E , H ) due to the aperture. Tn V , the total electric £field

can be written

E = E + E + E (20a)
and in V+
=+  =d+
£ - 8¢ (20Db)
with similar expressions for the magnetic fields. The reflected

field can, in general, be constructed from knowledge of the
incident field and the reflecting surface. It should be rec-

ognized that E'T4+E of (20a) is the same as £°¢7 defined

above. For an incident plane wave
=i- ~ 1 A1 A i -ik(oax + By +v2)
E = + + h B 2
<XEOX yEOy zEOZ>e (21a)

and the field reflected from the plate at z=0 1is



=T~ A A i A i -jk(ax + By - yz)
E = - - +
( XEOX YEOy ZEOz) © _(Zlb)
where
o = sinf’ coS(b1 , B = sin@i sincbi and Y = cosg’

are the direction cosines of the incident wave vector, and ot
i . . X
and ¢ are the corresponding elevation and azimuthal angles.

The diffracted fields Ed_ and Ed+ are obtained from (18): .
o =;fJ§an-v'xE¥(E'|E)ds' . (22)
A

Iin (22), E+ is the dyadic Green's function of the parallel-

plate region and G~ is the dyadic Green's function of the half

space z<0. These dyadic Green's functions take the following
form [7]
- + +
= - = l g —g AN G
GT(x'[T) = (I - ——zv'v) + _{*2zzq (23)
k G -G G
where

e—jk J(x-x')2 + (y-y')z + (ziz'+2nw)2

[op}
-+!
1}

(24a)

éﬂJ(x—x')z + (y—y')24.(ziz'+2nw)2

n=-=o

and

e-jkﬁx-x')z 4 (y-y")’ + (z2z')?
¥ = . (24D)

s Jeemx 2w ey 4 (222’

+1
|

18



Substituting (23) into (22) and using the fact that

+ -— posy
=% - - G -G = g AN

VixG (r'|x) = v _ XTI 4+ 2v' ). x22 (25)

g -g G

and that
¢~ = ¢F S __¢F =z ¢ (26)
> 3z! T35z ’
z'=0 z'=0 z'=0 z'=0

one finally obtains the simplified form of (22), viz.,

-d—' a a ~ A 8 — -
E ' = iZEJ‘J[EXX + E;y]g (r'lr)ds'
A

~f 3 a 8 -, = 3 a 8 -, =
F2 z(E;.f[?xg (r'|x)ds’ +-§;J]%y g (r']r)dS') (27)

A A

z'=0 z'=0 z'=0 z'=0

(28)

Defining the equivalent surfane magnetic current in the

aperture as

M = zxE 7 (29)

and introducing the wvector potential

Fo= 2e§l® (") 8("'!" ! 30
= 2¢ < g (r'lr)d s (30)

A

19



we can readily express the total field (20) in the following .

form with the help .of (27)

EF = §5°F +é VxE* | G
where ESC+==ﬁl -kﬁr+. From Méxwell's equafion (1) and (31)
the magnetic field is determined as
- —scT 2_ =z -7
iF = Hsc+$j%l>k F++V(V-F+)] (32)
k _

To establish an integral equation for the unknown aperture
field, or equivalently for ﬂs’ we enforce the continuity of
the tangential magnetic field in A (4). Tt is noticed that
the continuit§ of the tangential electric field is guaranteed

by (27). Substituting (32) into (4) and simplifvying the re-

sult, one finally arrives at the following conventional integro-

differential equation for ﬁs,

. W

3
k2

[k2i+vtvt~§]x§ = (8°° -# Xz o (33)

where ¥, which is entirely transverse, is defined as

F = (F +F) : (34)
z=0

An Alternate Integral Equation

For the case of plane wave excitation described in (21a),
one can construct an alternate integral equation which has
many desirable features when numerical techniques are considered.
To this end, the continuity condition (4) is enforced in an

indirect fashion. We employ the fact that the continuity of

20



the normal component of the electric field together with the
continuity of the normal derivative of the tangential electric
field in the aperture do ensure the continuity of the tangential
magnetic field in A. 1In other words we require that the fol-

lowing conditions be satisfied:

"%y = 1im > (Ftx3)

—— A ._+ A —
lim (E »2z) = 1lim (E °*z) and lim 9 (E
dz 9z

z40 z+0 z4+0 z40

rEA . , (35)

The continuity of the normal component of electric field

can be expressed as

P 3 _ .~ ,=sc- =sc+ =

where F is defined in (34). The continuity of the normal
derivative leads to

2 2

3 2 |= ~ —see~ - _
[E—— + —= + k }F = e[zx§—-(EsC - Esq+ﬂ , reA (37)
2 2 " 3z
9x dy z=0

where (31) and (35) are employed for the derivation of (37).

For the case of a plane wave incident from the sources in

+ -—

E°C” . defined in (21), and ESC =0, a solu-

Vv, i.e., E BT+ E

tion of (37) subject to (36) may be written as follows [7]

Il

- - - - 1 o —jk(OLX+By) -
1 A} t -
j]gs(r deg (r [r)dsr Ty szO e + h , peA (38)

A

where v # 0, E==hxfz+1%7§ is the homogeneous solution of the
2

I

2
operator < 5 — + k ), and
9x dy

21



g(r'[r) = [g°<r'|r) + g (r'lr)}
z=0
—jklr—r' + (an)ZI
=§ = ~ — . (39)
Zﬂlf—r' + (2nw)z]
n=0

The components of h can be expressed as

o]

j . -1 .
= I} .n+1l i (n+1)¢ .n-1 (n-1)¢ .
By ” k% 1%2 :Cn[J € Ty (KO)+ 31 éj e " Jn-l(kp)] ’

where J is the Bessel function and C 's are newly introduced
n n

unknown constants yet to be determined. ©Equation (38) is an

integral equation for the unknown ﬁs(;') or, equivalently, the

tangential component of the electric field in A. This equation is

solved in conjunction with the following condition for the de-

termination of the Cn's,

co M (r) = 0 or T

< (r) = 0  recC (41)

where € is the rim of the aperture, and ¢ and T are the unit

vectors normal and tangent, respectively, to the rim. Comparing .
(33) and (38) with equations appearing in linear antenna theory,

one finds that (33) and (38) are the counterparts of Pocklington's

and Hallen's equations, respectively. Although (33) and (38)

apply to the probiem represented by Fig. 4, they can be used

for that represented by Fig. 1 simply by replacing g by go.

Beginning with (36) and (37), Dunaway and Wilton [8] have

developed the homogeneous solution h in another form also use-

ful in obtaining numerical solutions for the aperture problem.

22



IV. SMALL APERTURES

In many applications, apertures of interest are electro-
magnetically small, a property which leads to very useful
simplifications in computations. Diffraction by small circu-
lar and elliptic apertures has been investigated by numerous
workers employing a wide wvariety of different approaches.

Lord Rayleigh [ 9 ] proposed a solution in the form of a series
in ascending powers of the wavenumber k (=27/X) where A is
the wavelength. Bethe [ 10.] obtained results for the leading
terms in the Rayleigh series expansion bv means of a scalar
potential approach. Later, Bouwkamp [1,3] investigated the
same problem using a more complete set of coupled integro-
differential equations and pointed out some errors in Bethe's
solution. A comprehensive review of articles pertaining to
aperture diffraction in general is given in [ 3 ], and an ex-
tensive bibliography is accumulated in [ 2 ]. The low fre-
quency scalar diffraction problem also has been analyzed by
Van Bladel [ 11]. Recently, attempts have been made to use an
integral equation approach for aperture diffraction problems
with the goal of attacking non-séparable geometries, e.g.,
rectangular apertures [12 - 157.

One can utilize (37) plus the auxiliary condition (35)
and the boundary condition (41), or employ (38) subject to (36)
and (41), to analyze the problem of electromagnetic diffraction
by small apertures. Unlike some of the earlier work referred

to above, the formulation discussed below is not restricted in
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its appnlication to separable geometries only, and its use is
particularly suitable when numerical techniques are considered.
Here we mention two closely related procedures, both based
upon Stevenson's method [16 , 17] and both involving an expan-

sion of the unknown magnetic current MS in a so-called Rayleigh

series

i (F) = E Ty (42)
S S
m=0

One procedure, advanced by Rahmat-Samii and Mittra [18],
is based upon an expansion of both sides of (38) in Rayleigh
series and an incorporation of (36) through constraints on
constants in the homogeneous solution h (in expanded form). An.
individual integral equation for each ﬁ;m) is obtained by
equating coefficients of like powers of k on the two sides of
the expanded version of (38). Of course, (41) must be applied to each
ﬁ;m). The details of this procedure aregiven in [18].
In a related procedure [12,131, (42) is substituted into
(36) and (37), which are expanded in Rayleigh series. Equating
like powers of k leads directly to a set of integro~-differential
equations for the coefficients ﬁém), and, again, (41) mustrbe
enforced for each m. By making use of the concepts of poten-
tial theory, one can obtain homogeneous and particular solutions
to the differential operator equations and subsequently convert
the integro-differential equations to integral equations in a
manner reminiscent of the way one can convert Pocklington®s

thin-wire equation to Hallen's equation. A discussion of the

lattet procedure can be found in [12,13].
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Both procedures [12,13,18] alluded to above lead to integral
equations which are well-suited for numerical methods and from

for all m can be

. P . s & \m
which, in principle, the coefficients M; )

determined for any aperture whose maximum dimension is less
than A/2. To solve the integral equation for ﬁ(m>
s

know ﬁ(m_l); ﬁ(o)
S s

, one must
can be determined directly. The integral

equation for each M is somewhat simpler than (37) since the

= (m)
s
kernel of the former equation is of the electrostatic type and
since no differential operators are involved. Another inter-

esting feature of the equations of both procedures is that

=(m) . .
coupling between the two vector components of M; ) is realized
through relationships among constants in the homogeneous solu-
tions of the differential operator equations and not through

the operators themselves.

For a circular aperture of radius a, leading coefficients

={m
M: ) can be determined exactly from solutions of the equations

discussed above; these are found to be [18 ]

(0 _ g (43a)
s

P
v (0) 2p gl : (43D)

where ﬁ;o)==M(O) 5+-M<O>$.

°p 5o

Similarly, the next higher order

terms are
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(1)_ _ 83 (i S R W A 2)
MSp 30 Y Eoycos¢ E X51n¢)<a -p

>

- %%(@ sin¢ - B cos¢)(a2-p2> gt (44a)

o
[g]

(1) _ 23 i i 2 _ 2) 20
MS¢ kT Y(oncos¢4-Eoysln¢> 4<a ) + »

43 2, 1
- E%(cxcos¢+—88in¢> ——E———E—; E . (441)

For normally incident illumination, one can show that

(2) _ . (2) _ ..
N M 0;

S 2 .
sion (42), correct up to the k” term, may be written as

M thus, for these cases, the low frequency expan-

L

=_8j<i I S ><2_ 2)2 + 3
Msp Rl EOy cosd EOX sing )(a 0 k+ 0(k™) (45a)
2 2 & 2p°
- 21 (1 i, _ 2) o
Ms 3W<E0Xcos¢-FEOysln¢) 4<a 0 + » k
o) <2 2)
a -p
3
+ 0(k™) . (45b)

Equivalent Dipole Moments and Polarizabilities of Small Apertures

Even for the fundamental problem of an aperture in a single,
planar screen, the aperture equations must be solved numeri-
cally, which, in general, is very demanding upon computer time
and storage. Electrically small apertures are of practical
importance and have been studied extensively, and one can obtain
useful information from the literature about fields diffracted

by such holes without having to solve the aperture equations.
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Hence, in this subsection, we summarize the main features of
the equivalent dipole representation of a small aperture, which
embodies this information.

Preliminary to the introduction of an aperture-perforated
screen, we consider a magnetic surface current density ﬁs’ in

a small planar region RS about the origin in the xy plane and

residing in a homogeneous medium with properties (u, €). 1In
RS there is ‘also a magnetic surface charge density mg

=dly . % 46

mo = Vet My (46)

For Rs sufficiently small and at a point r sufficiently remote
from this source region, the electromagnetic field due to this
magnetic source can be approximated [1,19 by the radiation from
an electric dipole of moment 5e and a magnetic dipole of mo-

ment ﬁm, both located at (0, 0, 0), where

P, = - %ffE'XﬁS(E') ds' (47a)

s
and
5m=%ffz'ms(z')ds' =-;’tffﬁs(5')ds' (47b)
Ry Rg
with r' in RS. If the dipole moments (47) are known for a

magnetic source, one can readily compute the approximate field
by means of simple formulas for dipole radiation. If the mo-
ments are known for the magnetic sources residing on a con-

ducting surface, the presence of the surface must be accounted

for in the calculation of the field from the equivalent dipoles.
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Returning now to the aperture/screen problem, we note that

the equivalent dipole moments of a given small aperture in a
screen are related to the specified excitation by the so-called
aperture polarizabilities [1,4,10, 191. Knowing the polar-
izabilities for an aperture and the illumination of the perforated
screen, one can determine dipole moments and, subsequently,

the diffraction caused by the presence of a small aperture in

the screen. For a small aperture A in a screemn, the electric

polarizability o is defined

- sc- .3 sct g\ 2
poz = tea (ESCT(H) - 53T (D)) (482)
and the magnetic polarizability Em, a dyadic,

P =7Fo0_° (ﬁSC'(’d) - ﬁsc+(6)) : (48b)

~

. s s : . +
The polarizabilities above are defined in such a way that P, Z

- + .
and p, are the moments for the equivalent dipoles in the pres-

ence of the screen for the right half space, i.e., the dipoles

are located at (0, 0 ,O+) on the short circuited screen, while

p;g and 5; are the equivalent moments for the left half space.
Polarizabilities are available in the literature for several

small apertures and values are listed in Table I for three

shapes which are of practical interest and for which values R
are expressible in closed form. -
At points 'far from A, relative to the maximum dimension

across the small aperture, the electric fields in the two half

spaces are approximately

I+

sl
-+
]

1+

-+ — -
E* = E + (49)

[}
,E!-
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=

where Ee and Em,are,due'to the equivalent electric and magnetic

14

dipoles, respectively, and are given

+

ol pe 2~ 3 -
Ee(r) = o (k z + v-a; > g(xr) (50a)
and ;
() = -1 51vg(P)xa, (500)

with
_ ikl
g(r) = —— . - (51)
|

Of course, corresponding expressions for the magnetic fields

are available from the dipole moments too.

V. SLOTTED SCREEN

Very long slots of uniform width, subject to illumination
whose electric field is transverse to the slot axis (TE), often can
be approximated in typical practical applications by infinitely
long slots. In some cases long slots subject to TE illumination
can be approximated by infinitely long slots, but in usual cases
such an approximation is poor and one must address the finite-

length slot .problem directly.

Infinite-Length Slot

If the aberture discussed in Section II is an infinite

slot of uniform width w, one may readily obtain aporopriate
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equations by specialization of Eq. (5). Let us consider the two
above-mentioned cases of excitation: {i) transverse electric
(TE) in which the incident electric field is entirely trans-
verse to the slot axis (v axis) and in which the illumination

of the slotted screen is independent of y (Fig. 6(a)) and

(ii) transverse magnetic (TM) in which the incident magnetic
field is entirely transverse to the slot axis with the illumi-

nation again independent of v (Fig. 6.(b)).

TE Case. With TE excitation of the uniform-width slot (Fig. 6(a)),

a
Et has only an x component and depends only upon x. Hence,

E%=5%(x) and so H_=M (x)§' with M_ ==Ei. Because M _ has

t x s s ]
y y
only a y component and is independent of vy, FX==O and SETFY:ZO
so that (5) reduces to
JwF = (Hl_-Hl+> in slot (52a)
y y Yy
with
w/2 3 )
ok [exn 2 e yr?)
F (x) = — (x ) € 5 dy'dx' . (52b)
2
y'=-w [(X -x") +'yv ]

In view of the integral representation of the zero-order Hankel

(2)

function of the second kind H [ 41, (52) becomes

w/2
k 1 <2) 1 [ i- -
3 e, Y Gl Dax - (a0 - eo) L 59
x'=-w/2 xe(-w/2 ,w/2)
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which is a first-kind integral equation for the TE slot problem.
Since Ei must obey the edge condition at the upper and lower

edges of the screen, it follows that**MS must exhibit singu-
y

1. L.
-2 )

larities of the form [w/2 - x] at the upper edge and [w/2 + x]

at the lower edge [5].

TM Case. With the incident electric field parallel to the

slot axis and having no y variation in the xy plane, Ei is in-
dependent of y and parallel to the slot axis. For the incident
electric field in the negative y direction as shown in Fig. 6(b),

(x) v and ﬁs==MS (x)'g with, of course, M =2 Due

X SX y
to the properties of the equivalent magnetic current,Fy and

-%;FX are zero and (5) simplifies to

2 . .
j‘i(d—+k2)FX= (Hl-—Hl+> in slot

k2 \ gx?

from which follows the final integro-differential equation for

the TM Case:

w/2
1 d 2 . .
7§ﬁ<d 5 M ( )(klx x'|)dx' = (Hi (x)-—H;+(x)> s
=—w/2

xe(-w/2 , w/2) (54)

a ., . .
Ey in the slot is parallel to the perfectly conducting screen

. L
so it, hence MS , must approach zero as [w/2 - x]°  at the upper
y

5

edge of the slot and as [w/2 4+ x]° at the lower edge.
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The present slot analysis can be extended readily to in-

clude illumination which wvaries along the slot axis. Also,
we observe that (53) is of the form of the equation for TM scat-
tering from a flat strip (duality) while (54) is of the form

of the equation for the TE strip problem.

Narrow Slot Approximation. The surface current density J .
: - s

induced on an infinite, perfectly conducting screen (no aper-
ture) by a uniform incident plane wave is in the direction of
the projection of Ei upon the plane. This induced current 1is
altered far less by a narrow slot cut parallel (TM case) to 35
than by a slot cut perpendicular (TE case) to 35' Furthermore,
the field reflected from a screen with a very narrow slot par-

allel to js is approximately equal to that reflected from the

unslotted screen, whereas, from a screen with a slot perpen-
dicular to ES, the reflected field is significantly different.
Since the equivalent magnetic current introduced in the above

formulations accounts for the difference in the total field

and the short-circuit field in a half space, it is clear for.

narrow slots that MS is very small in the case of TM illumi-
X

nation while MS is indeed significant in the TE case. In sum-
y

mary, one can conclude that the problem of the TM-illuminated
slotted screen can be approximated in some applications by a
continuous screen if kw<<l, whereas in the TE case desired
field quantities must be determined from solutions of (53).
In usual applications, a narrow slot subject to TM exci- .

tation can be ignored, whereas for one subject to TE illumination
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we must solve (53). For kw<<l, Héz>(k!x—x“) can be replaced

by its small argument approximation [21] and (53) reduces to

w/2
—j-k; M (X')Qn]x—x'!dx' = <Hl_(x)-H1+(x)> + Hf (55a)
nm Sy y v
x'=—w/2

where Yy =0.5772156649 is Euler's constant and where Hf is the
constant
w/2
£ _ .k k -E) ' '
H —JmT<y+Rn2+JZ /Ms (x'")dx . (55b)
xi=-w/2
Wilten and Govind [22] have carefully investigated numer-

ical solution techniques applicable to (53) and they give the

solution to the dual of (55) in closed form for a constant forc-

ing function. With (H;_-Hl+)==Hé,“their result adapted to
(16) yields o . o . o
n .
i k 1
M = jH . =T (56)
s, - 0 k_W) . T L
v [Y+Q,n<8 + ] 2] [(Y_)Z i ij'
2

as the solution to the narrow slot problem with constant TE

excitation.

Finite~Length, Narrow Slot

We next consider the aperture to be an electrically nar-
row, rectangular slot of width w and length L, which for con-
venience 1is centered about (0, 0, 0) with its longer axis
oriented along the y axis. Narrow-slot assumptions, similar

in principle to those invoked in thin-wire theory [23], can be
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emploved here to simplify the analysis. When the slot is very
narrow relative to the wavelength and.long compared to its
width, the electric field in the slot is primncipally transverse
to the longer slot dimension and, away from the slot ends, takes
on a variation of the form of (56) provided the slot excita-
tion does not possess an appreciable component which is an odd
function with respect to x. Ignoring the small axial (y com-
ponent) electric field, or transverse equivalent magnetic
current, in the slot, which, of course, implies FX= 0, and
evaluating quantities of interest along the slot axis {(x=0,
z=0), one reduces the surviving component of the electric

vector potential F to
y

L/2 w/2 5 ) ]
. cSIE[Grmy T+ 27
F(0,3,0) = 5 [T [EGD) ——dx'dy’
1y 2 1277
y’:—L/Z X':—.w/z [(y_y) + x ] (57)

where Im(y) is the unknown axial variation of the magnetic cur-

rent and £(x) is the known transverse variation (normalized)

Al

E(x) = - (58a)
2

(3) -

such that the approximate magnetic current is Ms==M (x,v) vy

|
b

with

Msy(x,y) = £(x) Im(y) . (58b)

Subject to (58) and the integration variable transformation,
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Eq. (57) becomes

.72

Fy(O,y,O) = —2% /Im(y') K(y-y', w/4)dy' (59

y'==L/2

where

5
_jk[Cz4—4azsin2 %]
K(Z,a) = == | & __aa . (60)
2m 2 2 .. 2 al?
P [C + 4a sin 5}

With FX==O in the narrow slot and with Fy given by (59), the

general aperture/screen equation (5) reduces to

L/2
2
———j—— _.d_. ' 2 A\ - 1 ] - i_ _ i+
o <dy2 + K ) TG RGmyt, w/dy' = (T -8 5),
y'==-1/2

on slot axis , (61)

which, in view of (60), is seen to be of the form of the thin-
wire equation for a wire of radius equal to w/4. Since (61)

is essentially the same as the thin-wire equation, one can

employ the many solution techniques available for the latter

to solve (61) for Im. If the dincident field does not wvary
greatly over the narrower dimension of the slot, then the results
based upon solutions of (61) are good approximations to quantities
of interest associated with the finite-length slot problem. Of '
course, one can extend the present analysis and draw upon the
extensive thin-wire literature to develop methods of handling
problems involving configurations of slots, i.e., crossed slots

and arrays of slots.
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VI. EXCITATION OF AN OBJECT THROUGH AN APERTURE IN A SCREEN

In this section, attention is turned to the important
problem of calculating the current induced on an object by the
field which penetrates a screen through an aperture [24]. The
structure and quantities of interest are illustrated in Fig. 7.
The object or scatterer is perfectly conducting and of general
shape and the only sources are in the lower half space, i.e.

(31+ ,ﬁl+)= (0, 0), Desired equations for this problem are

b

achieved by modifying both (5) and the equation for the scat-
terer in the presence of a continuocous-—shorted aperture—screen.
These modifications are outlined below [24].

We extend Eq. (5) to include the effect of the scatterer

by treating the field scattered back to the aperture by the

object as part of the forcing function of (5):

%[ﬁsc— _ 7ESC]X ;
(sz + vtvt'i)x z = or , in A (62)

[8'7 - 5%)xz

LW

J
k2

where (;SC ,ESC) and (;i ,Ei) are, respectively, the short-
circuit and "incident" fields in the upper half space due to
scattering by the object and where F of (62) is given in (2).
Since the current js induced on the object is due to fields
which penetrate the aperture and since Rec and El are entirely

due to,ES, we view this portion of the foreing function of (62)

as excitation from a dependent "generator':
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B (F) - %ﬂw ]38(§'> = ds' (63)
SB
where SB represents the surface of the object and s' locates
a point on SB.

In addition to (62), an equation must be available which
characterizes the scatterer in the presence of the shorted
screen subject to illumination from the aperture equivalent
magnetic current ﬁs' The electric field in the upper half
space due to ﬁs is given by (6) (with ESC+==6) so, for the per-
fectly conducting scatterer, one requires the tangential elec-

tric field on the surface SB of the object to be zero:

<j—‘“§[k22\ + UveEi] + leF)xﬁ =03 on S (64)
K ¢ ?

A -
where n is the outward unit normal at—a point r on SB and

where the magnetic vector potential due to the surface current

J on the object in the presence of the screen is

s
A (7)) = H T (SN e ot St v
A (r) 4ﬂ~[}}S(S Yeg(r,s')ds (65a)
SB
with
= - - -A e'JkIE';'I R -JkI;—g'-FZ(s"z)zl
g(r,s') =1 — + (222 - 1) S—r
|r-g'| |T-8"+2(s'v2)z|
(65b)

in which I is the unit dyadic.
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The above formulation can be specialized to the case in

which the scatterer is a wire [25], and numerical data are

available for the further specialization that the aperture be

a narrow slot of finite length [25]. Also, for small apertures

of shapes whose polarizabilities are known and with the scat-

terer not close to A relative to the maximum dimension across

A, a simple formulation for an equation characterizing 35 has N
been devised [24}. The resulting equation is of the order of

difficulty to solve as would be the equation for the same

scatterer in the presence of the screen with no aperture.

VII. APERTURE-PERFORATED SCREEN SEPARATING DIFFERENT MEDIA

The formulation of the general equation for the problen

of an aperture-perforated screen separating two half spaces
whose electromagnetic properties are different parallels that
outlined in Section ITI for the same~media case. With properties
of the left and right half-space media characterized by (u_ , €_)
and (u+ ,€+), respectively, Butler and Umashankar [26] show

that ﬁs satisfies

%[ESC_ _ ﬁSC+]X
wlz == PR
SEIFT 7 o+ v v o E s Elxs - or , in A
2 tth k2
- L -'+ ~
+ i _ Hl ]x » (662)
h k2 _ 2
where LW Uiei,and where
L e, 3 e—jkiir-rrl )
T - —— 1 t
(r) ZW.IIQS(I ) ) ds (66b)
r-t'|
A
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For (U_, €_) =(u+ ,€+), Eq. (66) is seen to be the same as (5).
For TE and TM illumination of a uniform-width slot, equations
corresponding to (53) and (54) can be obtained readily. Butler
and Umashankar [26] point out that the equation for the TM-
excited slot in a screen between different media can be solved

numerically but that special care must be exercised, while the

equation for the TE-excited slot can be solved routinely.

Narrow, TE-Excited Slot

By making use of the integral equation given in [26] for

the TE-excited slot (Fig. 6) in a screen separating different

(2)
0

show that the equivalent magnetic current ﬁs==Ms (x) v in the
y

media and the small argument approximation for H (), one can

two-media problem satisfies
w/2
Y (i E: M (x'")n|x-x"]dx' = gt? + Hi—( ) Hi+ ))
2T T]+ n sy ( v X v (X s

xe(-w/2 , w/2) (67a)

whenever the slot is very narrow relative to the wavelength in

both media, i.e., whenever k+w<<l, where

w/2 "

£9 s k+ k - k+ k+ k k
= —_— s T T+ T 0n — 1 v,
B 5T m, n >[Y+-32] + m, n— o n -5 MS (x')dx

y
x'=-w/2 (67b)

It is of interest to note that the logarithmic kernel of (67)

implies that the singularity of Ms in the two-media case is
y

the same as that of the single-medium case exhibited by Eq. (56);
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Meixner has demonstrated by his classic procedure that the

singularities in these two problems are the same [ 5]. Further-
. " ,
more, one can show [22] that for (H; (x)-—H; (x)) = Hé, a
constant, the solution to (67) is : : _
1 My
M (x) = H — , k_w<<l (68a)
s 0 5 s £ :
y _Vl) 2
(3
where
2]
M = - N
0 T 7k, K ok, k_ K K (68b)
— + — i = T+ —=f%n—+— -
, <ﬂ+ +-ﬂ_ [Y+J 24-2n4] n+9n 5 n“,Qn >

In a manner similar to that found in Section V for the
single-medium case, one can obtain an approximate integro-
differential equation for the long, narrow slot in a screen
separating different media. The equation is more complex than
is that for the single-medium problem but it can be solved
numerically [27]. TFinally, we point out that the concepts of
Section VI can be generalized [24] to handle the two-media
counterpart of the problem of excitation of an object through

an aperture in a screen.

VIII. EXAMPLE FREQUENCY-DOMAIN DATA

Ultimate ihterest in EMP investigations lies, of course,
in the time history of the electromagnetic field at critical
points in a system under evaluation. Usually such a time his-

tory is computed (via Fourier inversion) from knowledge of the
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corresponding time-harmonic field over a frequency spectrum

of practical limits. For this reason and, also, due to the
present paucity of time-domain electromagnetic field data that
are of utility in EMP studies, it is of wvalue to become famil-
iar with available information in the frequency domain. To
this end, a summary of time-harmonic results is provided in
this section.

The discussions below are based upon the fundamentals
outlined in Sections II - VII and the data presented Weré cal-
culated from numerical solutions of the equafions developed
there. Such numerical methods are important in present-day
work but space limitations do not allow for coverage of this sub-
ject here. Original sources are cited and should be consulted
by those interested in numerical techniques appropriate for a

given type of problem.

Square and Circular Apertures in Planar Screens

In Figs., 8 and 9 are displayed the magnitudes of the com-
ponents of the transverse electric field in a 1A X 1) squafe

aperture in an infinite conducting screen, excited by a normally

, e
incident plane wave in the left half space with

=Ei§. The
singularity in the field at the aperture]screen edges is clearly
exhibited, and one should note that the field components are
different in both peak magnitude and distribution across the
aperture. These data were computed by Rahmat-Samii and Mittra

[ 7] from numerical solutions of (38) - (41). We wish to point

out that Wilton and Glisson [28] have devised a clever scheme
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for solving (5) very efficiently from which these results are
obtainable too. Others [29,30] have employed moderately reli-
able solution techniques which are founded upon an approximate
wire-grid model of a conducting plate, the Babinet equivalent
of an aperture in a planar screen.

In Fig. 10 is illustrated a comparison of a component of
the electric field in square and circular apertures excited
by a normally incident plane wave. "The results for the square
aperture were obtained from integral equation solutions while
those for the circular hole were measured by Robinson [31].
The fields in the two apertures are seen to be quite comparable,
even near the edges. The close agreement of the field distri-
butions in circular and ‘square apertures is obtained only when
one compares the fields along the principal axes of the square
‘aperture, which is not altogether unexpected. Fig., 11 shows
penetrated fields obtained from integral equation solutions,
from the Kirchhoff approxXimation, and from measurements made by
Andrews [32] for a circular aperture. The three curves exhibit

essentially the same behavior for z/A > 1.5,

Small Apertures

Over the practical spectrum of the EMP, many apertures of
interest are electromagnetically small while others fall into
this category over a significant portion of the spectrum. Far
more data are available for small apertures than for those
whose maximum dimension is a sizable fraction of the wavelength.

In Fig. 12 are found plots of the dominant component of

electric field in small square and circular apertures, due to
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a normally incident plane wave (Ei—= Ei§). The square-aperture
data were obtained from numerical solutions of (38) - (41) with
g = go [18], while those for the circular case were computed
from (45) directly. We observe from this set of curves that
the electric field along the principal axes of the small square
aperture is quite close to that in the (inscribed) circular
aperture.

In Fig. 13 is displayed Ey as a function of D/A, at the
center of the square aperture, together with the field obtained
from (45) evaluated at the center of the inscribed circular
aperture. Again the excitation is a normally incident plane
wave in the left half space. We observe that for almost the
entire range 0SD/XA 5.1 the amplitude curves are linear and
the phase is constant at 90°., This is, of course, predictable
analytically for the circular apertures from the formula (45),
and it is interesting to note that the numerical results for
the rectangular aperture behave similarly., One can take ad- .
vantage of this fact and derive an empirical formula by solving
the rectangular aperture problem numerically at a single fre-
quency in the range where the linear relationship for the
amplitude and constancy of the phase pattern are valid, thus*
saving a considerable amount of computer time which would other-
wise be required to determine the center field over a range
of frequencies.

For an electrically small aperture one may approximate
the aperture-produced fields by making use of (50) and the

dipole moments calculated for the given aperture. How good the
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dipole moment approximation to the actual fields is depends
upon the electrical size of the aperture, the distance from
the aperture to the point at which the field is evaluated, and
the choice of the coordinate origin with respect to.which the
dipole moments are calculated. Therefore, since one wishes to
take advantage of "the simplicity afforded by use of dipole
moments to characterize the electromagnetic behavior of an aper-
ture, it is of interest to determine fields directly from the
numerically calculated magnetic current ﬁs as well as from the
moments and then to compare values so obtained. Such compari-
sons enable one to assess the accuracy of fields calculated
from moments. L -

Fig. 14 shows the electric field which penetrates a small
square aperture (2a=2b=0.15)A) subject to normally incident
illumination with a 1 volt/meter electric field directed along
the y axis. 1In this case the electric dipole moment is zero
so the total field is approximated by that of a magnetic dipole.
These approximate values of fields together with exact values
determined from computed ﬁs are both displayed for comparison.
One sees good agreement at a vadial distance r = 10a but sees
significant differences at 3a and 2a. 1In Fig. 15 aredisplayed
the fields which penetrate the same aperture subject to edge-on
incident illumination with Ei_(0)= 1 volt/meter and with the
direction of propagation along either the x axis or the y axis.

The primary reason for the departure of the two results
is the approximate nature of the dipole moment calculation,

3

which incorrectly predicts an infinite field for z/A -~ 0. Thus,
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one must exercise caution in using the dipole moment approach
to compute the diffracted field close to an aperture.

Now we return to observations of similarities in small
circular and square apertures. In particular we compare dif-
fracted fields computed exactly for the square aperture from
integral equation solutions and approximately for the circular
hole from dipole moments. We note from Fig. 16, which dis-
plays the behavior of the EV field as a function of z/A, that
the phases coincide and that the amplitude curves also agree
with each other for z/A > .08. However, for closer points,
i.e., 0<z/X< .08, the dipole moment calculations for the cir-
cular aperture deviate substantially from the numerically exact

solution for the square aperture.

Slots o
If an infinite slot is very mnarrow and the excitation is
a normally incident plane wave TE to the slot axis, one can
compute the slot electric field or eduivalent magnetic current
directly from (56) (or from (68) in the two-media case). For
wider slots (53) can be solved numerically for the equivalent
magnetic current, and for TM excitation (54) must be solved.
‘The computed magnetic current, due to normally incident
illumination, in a one anelength slot (relative to the wave-
length A_ of the left half space), is displayed in Fig. 17
for various values of contrast in the media on the two sides

of the screen. Fig. 18 shows the far field pattern of the

magnetic field which passes through the slot. The contrast
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in material on the two sides of the screen is seen to have a '

strong effect upon these field patterns.

If a second conducting screen is placed parallel to and
behind the slotted screen as shown in Fig. 19, one finds [ 33]
that, in a narrow slot subject to normally incident TE illumi-
nation, the field retains the essential distribution (like (17))
of that found in a slot in a single screen. However, as 1is
evident from Fig. 20, the strength of the slot field differs
from that of the isolated case and, as expected, depends upon
the separation of the two conducting planes. For comparison,
the values of-EX(O) in the same slot cut in an isolated plane
are indicated by the dashed lines in Fig. 20. For h<Ai/2,

only the TEM mode exists in the guide remote from the.slot.

The electric field of this propagating TEM mode, apart from
tikx . . . . ,
the factor e , 1s given as a function of h in Fig. 21.
Turning attention to slots subject to TM illumination, we
first mention that, for a given slot, less energy reaches the
shadow side due to this excitation than due to TE excitation.
Fig. 22 illustrates the magnetic current in slots of width A/2,

A, and 3A subject to normally incident TM illumination; these

data were obtained from numerical solutions of (54) with
i+
H =

0. In the two-media TM case, the magnetic current in a
< ,

slot can vary markedly in both distribution and strength with
varying media contrast, whereas, in the TE case, the contrast
primarily effects the strength [ 26 ]. 1In Fig. 23_is depicted

the far field pattern of the shadow-side electric_field due to

normally incident TM illumination in the left half space with '

different contrasts.
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No data are provided here for the finite-length, narrow
slot due to.its drality with the thin wire for which copious

results can be found.

Wire Scatterer behind a Slotted Screen

As a special but practically important case of the type
problem discussed in Section VI, we let the scatterer be a
finite-~length, thin wire parallel to the screen and the aper-
ture be a narrow slot of finite length as depicted in Fig. 24.
The wire center 1is designated (xC » Yo ,zc), and the slot center
is at (0, 0, 0. And, in the following discussion of current
induced on the wire, the angular rotation of the wire about its
center is in a plane parallel to the screen and is measured by
the angle B defined as the angular displacement fromthe vy axis.
Both thin wire and narrow slot simplifications are utilized
and the resulting equations, found in [25], for the unknown mag-
netic current in the slot and unknown total axial current I on
the wire can be solved by numerical methods. Current on the
wire is given in Figs. 25 - 30 for several cases of interest
which are described in Table II; in all cases, the excitation
is a plane wave normally incident upon the screen, the wire
radius a 1s 0.001X, and the slot width w is 0.05AXA.

Fig. 25 shows the current on a half-wavelength wire, as
a function of position along the wire, induced by the field
which penetrates a quarter-wavelength slot; the center of the
wire is on the z axis, A/4 behind the screen, and I is given

for selected values of the angle B. When cosf =1, the wire and
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slot are perpendicular, and the coupling is seen to be maximum ‘
as exvpected, while there is no counling when the wire and slot
are parallel (cosB=9). For resonant length (L=X/2), the
wire current distribution is essentially a cosine function as - -
one would expect. As seen in Fig. 26 the current is greater
when the wire is brought closer,(zc= A/8) to the screen. With
the wire returned to the original position (zc=_X/4) but with
the slot length increased to A/2, the wire current, as seen in
Fig. 27, is far greater than that in Fig. 26 due to the fact
that the penetration through a half-wavelength slot is
much greater than that through a quarter-wavelength slot.

In Fig. 28 and 29 are given data for the situation of a

half-wavelength slot and & one-wavelength wire. The current

displayed in Fig. 28 is on a wire whose center is on the z axis
(0,0, A/8) so, for any value of B, the slot radiation causes

an even-function excitation of the wire which, in turn, produces
even-function current. Tf the wire center is displaced from

the z axis to the point (A/8 , A/&4 , X/4), the current is quite
different (Fig. 29). With the wire center not above the slot
axis, the wire excitation is never an even function and a strong
antiresonant current is excited for all angles B. Even though
the wire is much closer to the slot in the former than in the
latter case, the peak current on the wire is larger in the lat-
ter due to the fact that the antiresonant current can be excited
only in this case,

Distribution of wire current and slot magnetic current .

are very sensitive to the location of the wire center and to R
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when the length of both the slot and the wire is one wavelength.
If the wire center is on the z axis, the one-wavelength anti-
resonant current is not excited for any value of cosB and the
wire current is again an even function with smaller magnitude
than in cases for which the slot is half-wavelength (Fig. 30).
The dominant illumination of the slot is the incident field with
a smaller excitation caused by scattering from the wire. The
normally incident illumination is an entirely even-function
excitation of the slot and, thus, causes a slot magnetic current
having only a forced response. In the absence of the strong,
odd-function antiresonant component of magnetic current, the
resulting wire excitation due to penetration through the slot

is relatively weak as can be seen from a comparison of Figs. 28
and 30.

As pointed out by Butler and Umashankar [25], the energy
scattered back into the aperture from the wire can be quite
significant and can strongly influence the aperture fields.
Calculation of aperture fields under the assumption that the
wire is not present can lead to serious errors in certain cases.

\

IX. EXAMPLE TIME-DOMAIN DATA

As an example of the response of an aperture to an EMP,
. . -+ ” . .
we compute the time history e (t,r) of the field which passes
through a 115 cmX 1.3 cm rectangular aperture in a planar screen.
The excitation of the aperture/screen is a normally incident,

double-exponential, plane-wave EMP represented by
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-1

e _(t,;) = ; Eos(e_a(t-Z/c) - e—B(t_ Z/C)) 6(t-2z/c)

(69)

_ (e—a(t -T-z/c) _ e—B(t ~-T=-2z/c) )G(t - z/c)g

where c = 3.0x10% m/sec
6 = 6.0x10° sec™t
B = 2.O><1085ec-1
T = 2.04189 x 107 ° sec
E, = 107 v/n
- unit step function

One computes. the spectrum of (69) and, subject to this exci-
tation, determines frequency-domain quantities for the aperture

problem; then the time history of each quantity is availlable

from Fourier inversion. The time domain response g+(t,;) is
computed from knowledge of E+(f,;) via standard transform

means and the integrals involved in this process may be handled
by the FFT algorithm [34] which is known to be efficient for
such purposes. Also; using the fact that E+(t,§) is real, one
can show [35] that either the real or the imaginary part of
E+(f,;) is sufficient to determine E+(t,;), an observation which
lessens computaticnal labor. For an accurate evaluation of

the intergrals, §+(f,§) must be adeguately sampled in the
frequency range of interest so that the criterion suggested by
sampling theorem [36] is not violated. One finds that, accord-
ing to this criterion, it is necessary to evaluate E+(£,E) at

no fewer than 1024 points in the interval O-109Hz beyond

which l§+(f,§)] decreases to 60 dB below its maximum value.
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However, rather than sampling §+(f,f) uniformly in the fre-
quency range 0-—109 Hz, it is more desirable to compute E+(f,f)
relatively densely in the neighborhood of the aperture's
resonant frequencies, where E+(f,§) varies rapidly, and
sparsely at the frequencies where response is smooth. Then,
one can compute E+(f,;) at the needed 1024 points by employing
an interpolation scheme and the values of E+(f,;) at the fewer
(seventy in this example), nonuniformly-spaced points in the
spectrum.

Fig. 31 shows the behavior of ei—(t,ﬁ) as a function of
time and Fig. 32 shows the magnitude of its Fourier transform
IEi_(f,G)I. In Figs. 33 and 34 are found the frequency responses
of the magnitude and realrpartjof the électric field component
E; evaluated at a point on the z axis 2 meters behind the:
aperture/screen. The time-domain electric field e;(t,f),

calculated at r =22 by the procedure outlined above, is dis-

played in Fig. 35.

X. CONCLUSIONS

In this paper is provided a tutorial description of a num-
ber of analytical methods available for solving the problem of
electromagnetic interaction and penetration through perforations
in the walls of conducting bodies. Emphasis is placed on the
development of an understanding of the various aspects of the
formulation and solution of the aperture coupling problem, rather
than on the numerical details of the procedures for extracting

the solution.
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Beginning with the simple case of an aperture in a planar .
screen that separates two homogeneous half spaces, the authors
generalize the theory to the case of an aperture in an arbitrarily-
shaped conducting surface. The pertinent equations for TE and
TM illumination of infinite slots also are discussed and repre-
sentative results for both of these problems are presented.

Due to their importance in EMP studies, special attention is
given to small apertures and to the determination of dipole
moments that quantitatively describe the coupling through such
apertures. Another important problem discussed in the paper is
that of excitétion of objects, e.g., wires and cables, located
behind an aperture-perforated surface. It is shown that the

energy scattered from the object back into the aperture can be

significant and can strongly influence the aperture fields.

Although much of this paper is devoted to analyses in the
frequency-domain, the procedure for constructing the time-
domain behavior from knowledge of the frequency-domain solution
is included for completeness. Data illustrating the transient
response of an aperture to an EMP are given.

Space limitations preclude the inclusion of discussions of
the numerical algorithms associated with the solution methods;
instead, numerous publications available on this subject are
cited for the benefit of the interested reader. A classified
bibliography listing papers not cited by Bouwkamp [1] or Eggimann
{21 is offered as a supplement to their extensive reviews of._

the aperture literature.
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The authors earmestly hope that those who are concerned
with the formidable task of designing practical, EMP-hardened
systems find this paper beneficial as an aid to a better under-
standing of aperture theory and that they are able. to utilize

the data provided to guide their design procedures.
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GEOMETRIC PARAMETERS

TABLE IT

FOR PROBLEM OF WIRE BEHIND SLOTTED SCREEN

Figure LN L/A Xc/k yc/X zc/l
25 1/4 1/2 0 0 1/4
26 1/4 1/2 0 0 1/8
27 1/2 1/2 0 0 1/4
28 1/2 1 0 0 l/8
29 1/2 1 1/8 1/4 1/4
30 1 1 0 0 1/8
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Fig. 1. Aperture in planar conducting screen of infinite extent.
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Fig.

\ (pey ,e,) /

(a) Aperture in a cavity. (b) Cross-sectional view
of (a) where V and V+ are exterior and interior

regions, respectively; A is the aperture and S is the
surface of the cavity.
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Fig. 4. Aperture in a perfectly conducting screen with a back
plate illuminated by a plane wave. .

Fig. 5. Ellipse.
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Fig. 6. Slotted screen (a) TE case and (b) TM case.
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Fig. 10. Intensity distribution of the E -field sampled along
y

the principal axes of a 1A X 1) square aperture and a
circular aperture of radius 1A. (a) Intensity dis-
tribution sampled along a line parallel to the x-axis
and passing through the center. (b) Intensity distri-

bution sampled along a line parallel to the y-axis

and passing through the center.

solution (——). Experimental resui!s

Robinson [31].
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Fig.

(5,.5)

11.

T ~N__
4 s 5 zZ/\

Intensity distribution of Ey—field sampled along a

line parallel to the z-axis and passing through the
center of square and circular apertures. Integral
equation ( ) solution for square aperture. Kirchhoff
approximation for square aperture ( -). GExperimental
result (~--) for circular aperture from Andrews [321.
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Fig. 13.

|
0.08 Q.|
D/ A

E -field at the center of square and circular aperfures
Amplitude curves (

(

) obtained from integral equation
for the circular aperture from Eq.

solution for a square aperture.

Amplitude curve (---)
(45).
-) for square and circular apertures.

Phase curve
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Fig. 14. Electric flield on shadow side of square aperture
(2a = 2b = 0.15), E;_ = 1 volt/meter, normal incidence).
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Fig. 15.

Electric field on shadow side of square aperture

(2a = 2b = 0.15A, E'T = 1 volt/meter, edge-omn incidence).
y
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Ey—field distribution sampled along the z-axis. Integral
equation solution {(——) for square aperture. Dipole
moment results (~--) for circular aperture. Phase

curve ( ~) obtained from integral equation and
dipole moment techniques.
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18.
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TE equivalent magnetic current in 1.0-wavelength slot
for different right half-space permittivities.

TeE SLOT
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Far magnetic field due to presence of TE-excited slot
in screen for different right half-space permittivities.
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Slotted parallel-plate waveguide.
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same media.
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in screen for different right half-space permittivities.
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Fig. 25.

2s/L

Current on wire illuminated through slotted scree
(w/X = 0.05, &/X = 0.25; a/X = 0.001, L/x = O.
xc/A = 0, yC/A = 0, zc/k = 0.25; normal incide

iy
53
nce).
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Fig. 26. Current on wire illuminated through slotted screen
(w/A = 0.05, /) = 0.25; a/Ax = 0.001, L/X = 0.5;
XC/K = 0, yC/A = 0, zc/l = 0.125; normal incidence).
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I(s)/xH,i( )

Current on wire illuminated through slotted screen
(w/X = 0.05, &/X = 0.5; a/X = 0.001, L/A = 0.5;

x [A =0, yC/X = 0, zé/l = 0.25; normal incidence).
c
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2s/L

Fig. 28. Current on wire illuminated through slotted screen

(w/X
xc/l

0.05, /X = 0.5; a/A = 0.001, L/X = 1.0;
0, yC/X = 0, zc/X = 0.125; normal incidence).

[
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|
2s/L
Fig. 29. Current on wire illuminated through slotted screen

(w/A = 0.05, 2/x = 0.5; a/A = 0.001, L/) = 1.0
xC/k 0.125, yc/k = 0.25, zC/K = 0.25; normal incidence).

]
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I(s)/\Hi(0)

]
2s/L
Current on wire illuminated through slotted screen

(w/X 0.05, /A =1.0; a/x = 0.001, L/X = 1.0
xc/X 0, yc/k = 0, zc/X = 0.125; normal incidence).
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Fig. 33. TFrequency domain behavior of |E (f,r)| sampled at

a point 2 meters behind t(ne aperture on the z-axis.
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Time domain behavior of the e;(t,E) field sampled at

a point 2 meters behind a single aperture.
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