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ABSTRACT

The coupling among multiconductor transmission
lines which are immersed in a homogeneous medium are
investigated. The method of reflection matrices is
used to show how the line voltages and currents are
related to the driving source voltages or currents.
It is also shown that for weak coupling , the expres-
sions for the induced voltages and currents on a
conductor due to energy on another conductor are
greatly simplified. In fact, the effect of the cross-
coupling can be represented by voltage and/or current
generators on the induced conductor.
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SECTION I

INTRODUCTION

In many practical configurations of multiconductor
transmission lines, as encountered in the study of electro-
magnetic pulse (EMP) internal interaction problems, the
conductors are covered by thin dielectric jackets. The
associated propagation modes (ref. 1) are thus approximately
degenerate and can be understood by studying the propagation
problems of multiconductor transmission lines in homogeneous
media.

Of particular interest are the studies of electromagnetic
coupling among the conductors (or lines), which would
reveal how the energy on one line affects another. In this
report, we study the coupling problem of an (n+l)-conductor
uniform transmission line imbedded in a homogeneous medium.
The (n+1)St conductor is referred to as the reference con-
ductor (usually a ground plane or the overall shield). The

special case n = 2 will be studied in detail.

The voltages and currents along the lines for a
given set of termination conditions are expressed in terms
of reflection matrices. This formulation, as reported
in Section II, enables one to observe the effects of
terminations on the coupling among the lines. The special
cases of three conductor lines are presented in Section III.
Finally, we show that in the case of weak coupling among
two parallel lines, the effect of one line can be represented

by equivalent generators on the other line.



SECTION II
GENERAL FORMULATION

In this section, expressions for line voltages
and currents onan (n+l)-conductor transmission line
immersed in a homogeneous medium are derived. Two
specific sets of termination conditions are used; one
involves driving the conductors at one end by voltage
sources through an impedance network, whereas the other
involves driving by current sources through an admittance
network. Specialization of the results to the three-
conductor transmission line case is presented in

Section III.

The starting point of the derivation is the familiar
set of 2n transmission line equations in matrix form for
the voltage vector V(z) and current vector TI(z) at

a position =z, viz.:

|

V(z) o T ][V
d -
dz | = T TS = = _ (1)
21 T(2) C 0 I(z)
where s 1is the complex frequency, 0 is the nxn zero

matrix, L and C are respectively the per-unit-length



inductance matrix and the per-unit-length capacitance

matrix. Both L and C are nxn square matrices.

It is to be noted that the matrix C = [Cij] is defined

so that

n
= . . i=1,2,...,n
Q. = z Ci] Vj r
j:

where Qi is the charge on line i and Vj is the potential

of line 3 with respect to the reference conductor. Often
{ref. 2) Cii is called the coefficient of self-capacitance
and Cij , 1 # 3, 1s called the coefficient of inductance.

For a homogeneous medium, it can be shown (refs. 3,

4) that
Lc=ciL=L17 (2)
2 n
v
where v 1is the speed of light in the medium and ﬁn is
the nxn unity matrix, i.e., a diagonal matrix with all
diagonal elements being 1. Equation (2) indicates that

the eigenvalues of the sguare matrix in (1) are degenerate.

Differentiating (1) with respect to 2z vyields

2 [¥2) 7 (2)
< = 2 (3)

dz? I(z) I(z)

where the propagation constant is given by
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Y = s/v

The solution of the second equation in (3) can be expressed

in terms of two travelling waves, viz.,

I(z) = I + e I (4)
where the amplitude vectors I* and TI—- are determined
from termination conditions. Substituting (4) in (1),
we obtain

V(z) = E; (e_Yz T+ - Y7 f’) (5)

fl

where ZO is the characteristic impedance matrix (ref. 1)

and is given by
7 =£E—'l=vf (6)
v

1. Voltage-Driven Lines

Let us assume that the lines are driven by a

voltage source array VS at z = 0 through an impedance
network ?S , and are terminated at 2z = £ Dby another
impedance network E& . These termination conditions are

depicted in Figure 1 and are described by



o LINE |
_ —O+ o LINE 2 ~
Zs : . Z,
| —O.+ L * LINE n
z=0 REF. CONDUCTOR z=U
Figure 1. Voltage-driven (n+1l)-conductor

transmission lines.



V(o) = vS - 72 TI(0)

(7)

I
(]

V(1)
Solution of (4) and (5) together with (7) vields
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where the reflection matrices at the source end IS

and at the load end Fz are given by

(9)

For multiconductor transmission lines, Zo is

usually a full, symmetric matrix. Hence, in general,

[?q +zZ.1, Fg and 'y are not diagonal matrices. This
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fact implies that V(z) 1is related to V; by a full
matrix and hence cross-coupling occurs, i.e., the voltage
source on one line causes induction of voltages on all
other lines. Similarly, the current T(z) is also

coupled to VS. One exception is the condition that the

lines are perfectly terminated, i.e., FS = FQ = 0, or

Z, = ZQ = ?o (this demands all interconductor elements

of the source and load impedance networks match the

corresponding ones of the characteristic impedance), then

(z) = % e Y2 v

<

s
(10)

e 2771 Y

I(2) o' 7

N

Eguation (10) states that under the matched condition,
the line voltages are not cross-coupled to the driving
voltage sources, whereas the currents are. This situation
can be explained from a circuit-theory point-of-view.
Such an explanation for a three-wire line is presented
in Section III.

Equation (10) points to the conditions that the
voltage on each conductor depends only on the  excitation
voltage source on that conductor. When the lines are

perfectly matched at both ends, no cross coupling of

11



voltages occur. However, cross coupling occurs if dis-
continuities exist along the line or at the two terminating
ends. We observe also that currents are cross coupled to

the voltage sources under this type of source arrangement.

2. Current—DrivenwLineg

Here we assume that the lines are driven by a

current source array fs through an admittance network

at z = 0 and are terminated by an admittance ZQ

=<l

S
at z = %&. This arrangement is depicted in Figure 2.

In this case, we have

V(0) = Y
(11)

T(2) = 2. T(%)

Solution of (4) and (5) together with termination conditions

of equation (1l1) yields

-1
= = =Yz = vy(z-22) ?=] [:r __m2Yh o= = ]
V(z) =2 [e U + e 12 U e I‘SF2
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LINE |
} LINE 2
Y, : Z,
.
L . * LINE
— 1) (3)eoee
=77
z=0 REF. CONDUCTOR z= 4
Figure 2. Current-driven (n+1l)-~conductor

transmission lines.
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-1
= -Yz = Y(z-22) = ][= -2y = —]
I(z) = [e Un e 12 Un e IS]V
-1
=-1 = ] =-1 -
[YS + ZO YS IS (12)
Here f; is the same as in (9) should one take fs = ?;J‘

We observe again that both the line voltages and currents

are cross-coupled to the source I_.

s

Again, for the matched case, i.e., ?s = ?ﬁ = 0,
we have

_— _ _:—l_— -Yz = .

Viz) = 5 © ZO IS

(13)
— _ 1 ~Yz —
I(z) = 5 e IS

The arrangement in Figure 2, for the matched case,
excites the transmission line so that the line currents
are not cross—-coupled to the driving current sources on
other lines. This is in exact duality to the matched

case discussed for the voltage-driven lines.
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SECTION III
THHREE-CONDUCTOR TRANSMISSION LINES--SPECIAL CASES

The study of a three-conductor transmission line
(including the reference conductor) is very important in
understanding the coupling mechanisms of multiconductor
transmission 1lines, particularly if the coupling between
conductors is weak. For weak coupling , the effect of
coupling from other lines can be obtained by using super-
positions of coupling from individuwal lines--i.e., super-—
imposing the results of three-conductor transmission lines.

For a three-conductor transmission line, the per-

unit-length inductance matrix L and per-unit-length

capacitance matrix C can be written as

_ L L
L= m (14)
Lm L22
and
B C -C
c-| ¥ m (15)
~Cn Coo

where the subscripts 11, 22 and m denote self-quantities
for lines 1 and 2, and the mutual quantities between
lines 1 and 2, respectively. Condition (2) for homogeneous

media results in the following relations:

1

2
L — L ) = — (16)
m 2 2
viCyy Cyp T Cp)
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To get anuidea of the relative magnitudes of the mutual

and self-quantities, the coupling coefficient k of two
identical circular cylinders of radius r, center-to-center
separation 2a, and parallel to a ground planc (which
serves as the reference conductor) at a height b (center-
to-ground plane) is evaluated. The coupling coefficient

is defined to be

Kk = — 2 (17)

and is given by (ref. 5)

n [1 + (b/a)2]
2 n (2b/r)

k =

In Figure 3, the coupling coefficient is plotted versus
a/b for various b/r. For this configuration, it is
observed that the maximum value of k is 0.5 and occurs
when the two conductors are about touching each other and
also about touching the ground plane. When the conductors
are of different sizes, higher values of k are possible.
From (6), the elements of the characteristic im-
pedance matrix are readily expressible in terms of the

6 and f elements. For

16
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Figure 3. Coupling coefficient of two identical



the individual impedance elements are

_ 2 _
Zo1 T Cpp/[v(Cyy Cyy =~ C )1 = v Ly
72 . =C../Iv(C.. C.. ~C2)] = v L (18)
02 11 11 22 - 22
2 = C /[v(C., Cow —C2)] = v L,
om m 11 —22 m m

We will first study two special cases analytically

and then present some numerical results.

1. Analytical Results

(a) Matched Line

The expressions for line voltages and currents for

a voltage-source driven case are the same as (8), with

ﬁn replaced by the 2x2 unity matrix 62. Again, for
matched conditions at both ends, we obtain (10), which

are re-written here

Vl(z) _ -Yz Vsl

VZ(Z) Vs2

(19)

/
N
0

and

18



-1
1l -yz 01 om Vsl
2

a4
I~

)
—~~
N
S
N
N

om Z02 s2

where subscripts 1 and 2 denote lines 1 and 2, respectively.

Equations (19) state that if V52 = 0, then
1 -vz
Vl(z) =3 e VSl
V2(z) = 0
(20)
1 -vz _ 52
Il(z) =7 € Vsl Z02/(Zol ZoZ Zom)
_ _ 1 -vz _ 52
I,(z) = 7 € Va1 Zom/(zol ZoZ Zom)

7, It is also possible to obtain (20) using circuit-analysis
techniques.

The voltage-~driven matched three-conductor transmission
line is shown in Figure 4a, and the circuit respresentation

(ref. 6) of the characteristic impedance matrix 2

o
is shown in Figure 4b. The complete respresentation in
circuit form of the matched transmission line at =z = 0

is shown in Figure 4c.
By circuit analysis, it is not difficult to show

that the loop currents of Figure 4c are as follows:
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(c)

Figure 4. (a) Voltage-driven matched three-conductor
transmission line, (b) Circuit represen-_
tation of characteristic impedance matrix ZO , ‘

(c) Circuit representation of matched

three-conductor transmission line.
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- Z2 )

1
I, =3 Vsl Z02/(Zol ZoZ om

VSl (2

Nof

02 Zom)/(zol Zoz - Zom)

The voltage of line 1 at =z = 0, i.e., the voltage at

point A is given by

<
=
o
it
|
—
[aN]
+
<
|
—
SN
|
N
Il
N =
<

sl

Similarly, the voltage of line 2 at 2z = 0, i.e., at

B, is
V2(0) = —Ib ZOm - (Ib - Ia) (Z02 - Zom) = 0
The line currents are given by
I.(0) = 1I ——l—v 7z ./(z Zo —22)
1 T a2 sl 2 ol 2 om
T.(0) =1, -1I_=-%Xv 2 sz .2 . -2%)
2 T b a 2 “s1 “om ol “o2 om

These results are identical to those of (20).

(b) Short-Circuit Loads

An interesting coupling property is observed for

the voltage-driven transmission line when all the source

21



and load impedances are just short-circuits to the
reference conductor. Under these conditions, from (9),

it can readily be shown that

=l
I

l
all

|
il

|
<

and (8) becomes

Viz) = {[e Y% - &Y (Z2720) /(1 - &72Y%y, v

The last equation indicates that the line voltages are

not cross-coupled to the drivina voltage sources.

2. Numerical Results

Numerical results are obtained for the voltage-
driven transmission lines by evaluating (8). Two sets
of results are presented here: One shows the terminal
voltages and currents as a function of the coupling co-
efficient at a fixed frequency; the other shows the same
quantities as a function of frequency for a fixed coupling
coefficient.

For all the cases studied here, the transmission

lines are 1 meter long. The elements of the characteristic

22



impedance matrix z, are Zol = Z02 = 50 . The source
and load impedances contain simple resistances RS and
R2 , respectively, connecting the conductors to the
reference conductor, i.e., the off-diagonal elements of

?s and 72 are zero. In the first set of results, the
frequency is chosen to be 100 MHz; in the second set, the
coupling coefficient k is chosen to be 0.1. We further
assume that there is only one voltage source with strength

1l volt driving line 1. The configuration is illustrated

in Figure 5.

In Figure 6, we have the case RS = R2 = 500 at
f = 100 MHz. The voltages and currents at =z = 0 are
presented in Figure 6a. We observe the approximately

linear increase in the induced VvV, I on line 2 at low k.
In Figure 6b, the voltages at 2z = £ (= 1m) are presented.
The vanishing’y small induced voltage on line 2 at low k
makes this configuration to be used as directional couplers
(ref. 7). The currents at =z = £ are simply related

to the respective voltages by the resistances and are

not presented.

In Figure 7, we present the case that R, = 50 Q
and R, = 100 ©. The induced voltage on line 2 at
z = % 1is considerably higher than the previous case.

23
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Figure 5. Three-conductor transmission line

configurations for numerical studies.
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Figure 6. The Case Rg =Ry =500 at 100 MHz.
(a) Voltages and Currents at 2z=0.
(b) Voltages at z=%.
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Figure 7. The case Rg =500, Ry = 10002 at 100 MHz.
(a) Voltages at z=0.
(b) Voltages at z=2%.
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In Figure 8, the voltages and currents are presented

as a function of frequency for %k = 0.1. Again, we

L

that the relative induced voltages vary with frequency.

have RS =508 and R, = 100 2. It is clearly shown

27
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Figure 8. The Case R_ =500, Ry =1000 for k=0.1.
(a) Voltages and Currents at z=0.
(b) Voltages at z={L.
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SECTION IV

EQUIVALENT GENERATORS REPRESENTATION OF CROSS-COUPLING

In this section we discuss the representation of
the effect of voltages and currents of one line on
another line by discrete egquivalent voltage and current
generators on the second line.

The rigorous approach is to solve the set of
differential equations (1) and cast the solutions of
the voltages and currents on one line in the same form
as those of a single line containing discrete generators.
However, the solutions of (1) are much too complicated
for this purpose and simplifying assumptions must be
made.

To simplify the problem, we assume that the induced
line voltages and currents are small so that their effects
on the exciting line are negligible. This assumption
demands that the coupling between the two lines is
weak. Later in this section, the accuracy of this
assumption will be examined.

Under the assumption of weak coupling, it is
sufficient to investigate only three-conductor trans-
mission lines. For more than three conductors, the

principle of superposition applies.

29



1. Formulation

For a loosely coupled three-~conductor transmission
line with both ends terminated in simple impedances, as
in Figure 9, under the assumption made above, (1) can

be re~written as

d Vl(z)
——EE—~g—+ sLllll(z)-— 0
(21)
d Il(z)
a2 + sCllVl(z)-— 0
d V2(z)
az + SL2212(Z) = - s Lm Il(z) (22a)
d Iz(z)
—gz + s C22V2(z) = s Cm Vl(z) (22b)

Equations (21) indicate that l1ine 1 is not influenced by
line 2, as assumed. However, (22) state that line 2

is influenced by two sources due to voltages and currents
on line 1. When compared with the equations of a transmis-
sion line excited by external fields (ref. 3), the right-
hand-side of (22a) can be represented by an electric

field Ee(z) and that of (22b) by a macnetic field

H (z), i.e.,

30



N
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h-d LINE 2 z=h+d z={
LINE |

Zs.[f] | z, e

Figure 9. Three-conductor transmission line
terminated in simpnle impedances.
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d Vz(z)

—az + stzIz(z) = Ee(z) = —sLm Il(z)

(23)
d Iz(z)
—gr + sC22V2(z) = He(z) = sCm Vl(z) .

Equations (23) state that line 2 is excited by electric
and magnetic fields maintained along the conductors. These
fields are equivalent to a continuous distribution of voltage
and current generators (ref. 8). Eguations (23) can
be solved by first obtaining the Green's function (i.e.,
due to point generators) and then integrating the fields
to obtain their total contributions.
For a pair of point voltage generators V€/2 and
a point current generator Ig at =z = & , as depicted in

Figure 10, the line voltage and current are given by:

for z =Z ¢

-Yz Y (z-249)
e + p
1 22 -
V(z) = 5 ) [Vg (ng = Pgy e YQ)
1 p o e
s2 VL2
Y& -YE ]
+ Z02 IE (e + Pg2 e )
-YZz Y (z-22)
e - D e _
Ly = o 12 [v, @ -5, &V
2 7 21 - e—2y£ (3 s2
© Pgo Py
YE -Y&
+Zz_, IE (e tpg, € )]

(24)
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V./2
L2
3
z=0 z=¢ z=4

Figure 10.

A vair of voltage generators V
and a current generator IF at

'7=€ i
Z .
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e + p
- vy (2-£) -y (2-&)
V(z) = 3 — ~2¢ 8 {'Vg [e 02 e ]
1 - 0gp gy @
vy (2-¢8) -y (2-£)
T2, I [e t pgy € ]}
Y (z-2) -y (z+2)
e -p e -
1 2 g - - -
NS T T ey {_Vé [T 78—, eV D]
© psZ p22 €
y{(2-¢) -y (2-2)

Here, 202 is the characteristic impedance of line 2 in
the presence of the loosely coupled line. The reflection

coefficients are given by

0 _ 82 02
s2 -
ZsZ + Z02

o)
22 222 + 7

For line 1 coupled to line 2 from =z = h-d to

z = h+d , as illustrated in Figure 9, we obtain

34



-Yz Y(z-22)  h+d
vz =15 T2 [e_6) " - e
Pga Pga © h-d
+ z_, H_(E) (e¥é &+ 0.0 e_YE)] ac
-YZ Y (z—-22) h+d
e - P e
_ 1 L2 YE =Yg
T2f2) =97 > =T Jf [Ee) ("% -0, &™)
° Pga Pop © h-d
YE =Yg
+ Z, He(E) (e +p., e )] dg (26)

Making use of definitions (23) for E_ and H_ , and alsa

+ + .
(16) so that Lm Il /Cm 202 Vl = 1 for forward travelling
waves on line 1, and L I—-/C Z V., = -1 for back-

m 1 m o2 1

ward travelling waves, then (26) become

o + 045 ey(z—22)

C

m .
— —— sinh (2yd)
2y C22

B psZ 022

-YZz - e eY(Z_ZQI)C
22 m .
= 5 e~ Al ey sinh (2yd)
s2 "2

e_2Yh + Vi’ eth]

z = htd (27)
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Similar expressions are derived for =z = h-d:

e\((z—Jl) + o, e—Y(zHl) Cm
v,(z) = — sinh(2yd)
2 1 -5 o e—2yl C22
s2 42
+ vy (2-2h) -~ —Y(Z—Zh)]
[Vl e + 09,2 Vl e
eY(Z—JL) 0 e—Y(zHl) c
_ 1 s2 m _. o
12(2) = 202 ] ) 5 e'—2Y»Q C—2~251nh(2d)
s2 "2
+ vy (2-2h) - —y(!@—Zh)]
[Vl e + p22 Vl e
z = h-d (28)

Equations (27) and (28) can also be obtained by
placing appropriate discrete generators on line 2 to
represent the effect of coupling. A few possible represen-
tations are shown in Figure 11. 1In Figure lla, two pairs
of generators of opposite signs are placed at z = h-d and

z = h+d with total magnitude

+ _—vh - h
v, = (C /C,,)cosh(yd) (V| e Yoo, vy e’™ (29)
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Figure 11. Three possible equivalent generator
representations of cross-coupling:
(a) three voltage generators,
(b) one voltage and one current
generators, and
(c) +two voltage and two current
generators.
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and another pair of voltage generators is located at

z = h with magnitude

- . + ~vh - Yh
Vb (Cm/C22)s1nh(2Yd) (—Vl e + Vl e') (30)
An alternate representation is to replace the two pairs of

generators at 2z = h-d and z = h+d by a current generator

at z = h, as shown in Figure 11lb. The magnitude of the

current generator is given by

~ . +  -vyh - h
I, = € /(Cyy% ,) sinh(2yd) (V] e e V] e’ (31)

Another possible representation is to replace the center
voltage generator at z = h of Figure lla by two current
generators of equal magnitude and opposite phase at z = h-d
and z = h+d, as shown in Figure llc. The magnitude of the
current sources is

-vh - _¥h

+ VvV, e') (32)

+
Id = Cm/(C22202) cosh (YdM—Vl e 1

In (27) to (32), the voltages and currents, or
equivalently, the strength of the equivalent generators on
line 2, depend on the magnitude of the forward and backward
travelling waves on line 1, VI and V; . These two

quantities are easily calculated for the unperturbed line 1

for a given excitation.

38



A comment on the causality of the equivalent generator
representations should be made here. As line 1 directly
excites line 2 at 2z = h-d and z = h+d, for a transient
excitation, energy should start propagating on line 2
from these two points. Thus, the representation of Figure
1lc, with all generators at these two points, illustrates
this effect and is a causal representation. The represen-
tations of Figures lla and 1llb requiring some time advance
for time domain representation are thus not causal.

Another equivalent generator representation of the
effect of line 1 on line 2 has been suggested by Boeing
recently (ref. 9). Equivalent voltage generators are placed
on line 2 at positions where line 1 has discontinuities
with strength being proportional to the line voltage at
that point on line 1. This is illustrated in Figure 12.

For the two discontinuities of Figure 1l2a, the voltage

generators have strength

Vo = K Vl(EA)
(33)
VB = K Vl(EB)
and have opposite polarities. Here, K is an empirical

constant measured in experiments, Vl(gA) is the 1line

voltage on line 1 at position A.
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Figure 12. Two voltage generator representation

of effect of voltage and current of

line 1 on line 2.
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The line voltages and currents for line 2 due
to the two voltage generators (see Figure 12b) can be

readily evaluated; the voltage is given by

-Yz Y (z-2%)
e + p e
_ 1 22 Yh -yd yd
V2(z) = 3 N ) [e ( VA e + VB e' )
Pgo Pyo ©
_ -Yyh vd vd ]
Pgpy © ( VA e + VB e')
z = h+d (34)

Decomposing V into forward and backward travelling

1

. . + - . .
waves with magnitude Vl and Vl , respectively, substi-

tution of (33) into (34) yields,

o Y2 0 ex(z—29)
Vy(2z) = 12 v K sinh(2vd) [052 V;_ e_zyh—FVi- eth]
. p52 p92 ©
z Z h+d . (35)

Comparison with (27) shows that

K = Cm/c22 -
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The two-voltage generator representation with VA
and VB at 2z = h-d and 2z = h+d, respectively, is a
causal representation.

In Table I, all the four representations (Figures 11

and 12) are summarized.

2. Comparison with Exact Theory

By comparing the results obtained by evaluating the
appropriate solution (27) with that by evaluating (8), it
is possible to see how good the assumptions are in deriving
(27). Ideally one expands (8) in terms of a series in the
coupling coefficient k and observes the errors when
higher order k terms are dropped. However, such an
analytical task is far too involved even for a three-
conductor transmission line. Numerical comparisons are
used.

We use the same line parameters as those used in
Section III.2. Here we compare the induced voltages on
line 2 as a function of the coupling coefficient k at
100 MHz. In Figure 13a, the case RS = RQ = 50 & 1s
presented and in Figure 13b, the case RS = 50  and
R, = 100 Q . We observe that the approximate theory 1is

2
good up to k = 0.5.
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LINE 2

A 8
7 LINE | ' b
s2 z, Z, 42 Coupled Transmission Lines
72:0  z3n-d zzhed 234
Equivalent Generator Representation

Equivalent Generators

Causality
on line 2
vyi2 2 v,z + -yh - ¥h
o~ LA A o
'S 'Q; O Va (Cm/C22) cosh(yd) (Vl e +V1 e )
No
7] ] + -~ Yh
SV o= (C /Chn) sinh(2Yd) (-V. e +V, e
vy /2 Vo2 A\ b m ~22 1 1 )
O——CF O
10 ton-¢ 1*h 1°hed 1
vy2 H
O ' Vb as above
[:l No
Iy iN0)] L - + ~Yh - Yh
o . . I - cm/(c22 Z.,) sinh{2Yvd) (Ve +V e )
i
NS
10 2*h 1354
V72 12 .
C- O "V as above ‘
Yes
2, [] L Yo Z, + -Yh, .- Yh
we e | Idﬂ Cm/(C22 202) cosh (Yd) (-Vl [ +V1 e')
S 20 |
30 12 |
YA Vp 7
Y ~ -~
~ d Vo © (Cm/czz) Vl(EA)
zum [jzn Yes
Vg = (Cp/Cy) Vi (EY
10 ton-qd 124 sined 1

Table I. Summary of equivalent generator representations.
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SECTION V
CONCLUSIONS

The coupling between conductors for a mulﬁi—
conductor transmission line immersed in a homogeneous
medium have been studied. The special case of a three-
conductor transmission line has been investigated in detail.
It has been shown that for small coupling the effect of
energy of one line on another can be represented by some
discrete equivalent generators on the induced line: three
voltage generators; one voltage generator and one current
generator; two voltage generators and two current generators,
or two voltage generators.

For a multiconductor +transmission line in an in-
homogeneous medium, the responses will be different to
those described in this report. It is expected that the
small coupling theory will not be adequate if the dif-
ferences in the mode velocities are large. This may

indeed be a worthwhile problem to investigate.
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