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ABSTRACT

The effect of a rib lying on a ground plane on

single-wire transmission line can be represented by a
capacitance. In this paper, the capacitance is evaluated
by solving a set of coupled integral equations.
studies are carried out and the results are presented in

graphical form.
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SECTION I

INTRODUCTION .

As described in a number of recent reports (ref. 1,2,3)
the calculation of EMP energy propagation within an
electrically complex system, such as an aircraft, often
employs simple transmission line theory. Such propagation
models usually. consist of one or more uniform trans-
mission lines with discrete loads and distributed sources
arising from the incident electromagnetic fields. In
order to more accurately account for the nonuniform
surroundings of actual transmission lines on aircraft,

a number of "canonical problems" have been suggested in
ref. (4). By solving such problems, it is possible to

obtain estimates of the effects of local perturbations of

the transmission line fields, and later relate these to

l. Tesche, F.M., and T.K. Liu, "An Electric Model for a
Cable Clamp on a Single Wire Transmission Line,"
AFWL Interaction Note 307, Air Force Weapons
Laboratory, Kirtland Air Force Base, NM, December 1976.

2a. Lam, John, "Equivalent Lumped Parameters for a Bend in
a Two Wire Transmission Line: Part I. Inductance,"
AFWL Interaction Note 303, Air Force Weapons Labora-
tory, Kirtland Air Force Base, NM, December 1976.

2b. Lam, John, "Equivalent Lumped Parameters for a Bend in
a Two Wire Transmission Line: Part II. Capacitance,
AFWL Interaction Note 304, Air Force Weapons Labora-
tory, Kirtland Air Force Base, NM, January 1977.

3. Liu, T.K., "Electromagnetic Coupling between Multi-
conductor Transmission Lines in a Homogeneous Medium,
AFWL Interaction Note 309 , Air Force Weapons Labora-
tory, Kirtland Air Force Base, NM, December 1976.

4. Tesche, F.M., M.A. Morgan, and B.A. Fishbine, "Evaluation
of Present Internal EMP Interaction Technology:

Description of Needed Improvements," AFWL EMP Inter-
action Note 264, Air Force Weapons Laboratory, Kirtland ‘

Air Force Base, NM, October 1975.




‘ lumped inductances and capacitances placed appropriately
along an otherwise uniform transmission line. This concept

is discussed in more detail in ref. (1).

One particular geometry that is often observed in
the internal configurations of aircraft cables is shown
in Figure 1, where a single wire transmission line of
radius a and height b above the ground plane passes
over a thin septum of height h. The wire and the septum
are mutually perpendicular and not touching. Such a
problem will model a cable passing over a rib in an aircraft
fuselage or wing root. By considering many periodically
spaced septums, pass and stop band characteristics can
be determined for the line, as outlined in ref. (2).

‘ In the treatment of this problem, it will be
assumed that the septum thickness is very small. This
implies that the major effect on the transmission line
behavior will be due to a capacitive term in the lumped
parameter representation of the obstacle. The equivalent
circuit of the septum discontinuity can then be repre-
sented, as shown in Figure 2.

This paper describes in detail the calculation of
this equivalent capacitance of the septum and presents
the results of a parametric study of this cancnical

problem.
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SECTION IT

FORMULATION OF COUPLED INTEGRAL EQUATIONS

The equivalent capacitance of the septum discontinuity
shown in Figure 2 may be obtained by solving Laplace's
equation, subject to certain boundary conditions. If a
Green's function approach is used, the problem may be
reduced to the solution of a set of coupled integral equations
for the unknown excess charge distribution on the wire
and the charge distribtuion on the septum.

The three-dimensional free-space Green's function

is given by

~1
G, (Z/T") = {41rso |i-*—?c'|} (1)

where €6 is the permittivity of free-space, T is the

. . . >, .
radius vector to a potential point, and r the radius
vector to a charge point. Using image theory, the perfectly
conducting ground plane may be incorporated in the half-

space Green's function G, given by
> _ > >y _ > > ’
G(r/x') = Go(r/r ) Go(r/ri ) (2)

-> N . . .
where r{ is the radius vector to an image charge point.

The superposition principle now shows that




f o, (F]) G(E /7}) das) +f o, (¥3) G(¥ /2y dsy =V, T,€r,
' Ia
(3)

f ol(’r*i) G(?:‘z/‘fi) dsj +f 02(%5) G(—fz/-fé) ds) = 0, ‘fzerz

Ty Ty

where oq is the surface charge density on the wire,

Oy is the charge distribution on the septum, V 1is the poten-
tial on the wire (with respect to the ground plane), Pl and
r, correspond to the surface of the wire and diaphragm
respectively. The coupled integral Equations (3) state

that the potential on the wire or the diaphragm is pro-

duced by the charge distribtuions and

oy Og-

The charge distribution oy contains two parts:
a uniform charge distribution Oq in the absence of the
septum and an excess charge distribution 561 caused by
the septum discontinuity, i.e.,

0 =0, % éo (1)

This allows Equation (3) to be written as



>
r1€Fl (5a)

> > _ > \
f 60y (X]) Gy, 48; +f 0,(r3) Gy, dS; = ["o(ri)Gzldsl'

2 I

r2€P2 (5b)

where Gp, = G(§m/?ﬁ)' Note that the integral on the right side
of Equation (5a) defines the potential V on the uniform line,
and the right-hand side of Equation (5b) is the potential

> >, -> . ->
w(rz/rl) at r, due to the uniform line at !

1 - Equations
(5a) and (5b) can be reexpressed as:
-> ¥ +' ' _ ->
_/.601(ri) Gy 455 tf.oz(rz) Gio ds; = 0, rl€rl (6a)
Fl F2

—>' ' —>‘ v o > ->~' >
jpécl(rl) G21 dSl +jr02(r2) G22 d82 = ¢(r2/rl), r2€P2 (6b)
i T2

where ¢ 1s known exactly by suitable conformal trans-

formation (cf. ref. 5). Equations. (6a) and (6b) are the desired

coupled integral equations where 601 and o, are sought.

Note that these equations are exact.

5. Silvester, P., Modern Electromagnetic Fields, Prentice-
Hall, Inc., Englewocod Cliffs, N.J., 1968.
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SECTION III

APPROXIMATE SOLUTION OF THE COUPLED INTEGRAL EQUATION

A rigorous solution of Equations (6a) and (6b) involves

integrals of the form

oo o« 27
) fan(a)da f cos (nd ') - aet (M)
T e Jd ,\/(Z_E)z 2 2 6-8

+ 4a” sin

2
where 6 and 6' are standard polar cylindrical coordinates
on the wire. Equation (7) is obtained by assuming that
6ol(g,e')== E: an(g) cos(ng"') (8)
n=0

This is equivalent to writing the Fourier series expansion
for &8¢, with coefficients @& = that are functions of g.
Note that the integral over [0,27] has a logarithmic
singularity for 2z=f and 6=06'; it cannot be integrated
exactly for all values of n. An approximate solution,

which is equivalent to truncating the Fourier series
expansion at n=0, is used. This is often referred to in the
literature as the "thin-wire approximation", and is an
adequate approximation provided that the wire radius is small
compared to other dimensions of the problem. A second
approximation is introduced by assuming that the charge

distribution on the septum is uniform in the Yo direction.
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Note that the charge distribution on the septum has a

square root singularity at the edage of the septum; the last
approximation may be thus regarded as a first order approxi-
mation. The variational properties of the capacitance,
however, lead to a second order approximation in the capaci-
tance results. Here, (xo ' Y, ,zo) denotes the actual
dimension in cartesian coordinates.

Applying the thin-wire approximation to Equation (6)

we have
> v = 1 ' ' '
Jraol(rl) €11 951 =g _/-GTl(Xo) Kp1(xg/%g) dxg (9a)
ry e
> -~ 1 1 ' '
fdcl(rl) C21 951 = Ine féTl(xo) Ka1 g r2o/%5) d%;  (9b)
Ty ~
where GTl(Xé) is a linear charge density related to

601(%1) via the relation

§T,(x}) = 2ma aol('fi) (10)

and the kernels Kjq and K21 are given by

' 2 2)-% 1 2 2 —!‘5
Kll(xo/x(')) = {(xo—xo) + a } ‘- {(xo-xo) + 4b } (11)
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. _ 'y 2 2 _ 21 -%
K21(yo'zo/xb) - {}xo) oz, t (Yo b) }

_{(x(;)2 vzl (yo+b)2}_% (12)
Now assuming that
0,(T3) = £(y)) 1,(2)) (13)

where 12(25) is a linear charge density and f(yé) is

uniform along the yé direction and has dimensions of
Coul/m; Equation (6) now shows that

oo h
1

pag | ey * ' ' ] ’ '
f"z(rz) 612 952 = 77¢ sz(zo)dzoj Ky (%o/¥5r %5) ¥

® 2 i -~ ° (14)

) h

T "y o> 1 * ' ' ' v '
j.°2(r2) G22 dsz - dme _/-Tz(zo)dzo-]- K22(yo’zo/yo’zo)dyo
I's e ° (15)
where the kernels Kl2 and K22 are given by

2 2
- {XZ + (b+yé) + (zé) } (16)
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-3

K22(Yo'zo/y<;'z(')) = {(yonycl))2 + (zo_zc;)z}

-4

- {(YO+Y5>2 + (z—z(;)z} (17)

Note that f(yc')) has been assumed constant and has been

. . * * . .
incorporated in Tye Ty has dimensions of Coul/mz,

Equations (9) through (17) allow the coupled integfal

equations (6) to be written as

o o h
v L} [} * L}
f&rl(xo) Kyp (X /%) ax) + sz‘Zo) dzc',f Ky, (X /., 20)dy? = 0,
—c0 —o0 o
—» < Xo < » (13a)
oo © h
L} [ ] * 1 1 ?
fﬁTl(Xo) K.21(yo'zo/xo) dxc'b * fTZ (Zo)dzof K22(yo’zo/yo'2<'3)dyc'> .
Y =00 (e}

OiYOihl-m<z < e . (18b)

For computational purposes it is convenient to

introduce dimensional variables and functions given by

14



(Xo'yo'zo/xc')'yc')'z(_:)) = b(x,y,z/x',y',z’) \

8Ty (X)) =V e E(x')

* ’ -1 '
T,(2) = Vb " e n(z") > (19)

IP(YO,ZO) =V ¢(y,2)

S | . .
Kij(ro/ro) = b Lij(r/r ), 1,3

]
=
-
[\V

With this choice of variables and functions, the

coupled integral equations (18) take the form

o 0o h/b

fg(x') Lyp (x/x") dx' + jn(z') dz' f Ly, (¥/y',2z")dy" =
-0 - 00 (@)
‘ —~® < X < o (20a)

oo © h/b
fg(X') L,y (y,2/x")ax" + fn(Z')dZ'[ L,,(y,2/¥',z")dy"

-0 O

0 £y < h/b, —®»< z<w (20b)

Note that the integration of and L over

Lo 22
(0 ,h/b) may be performed exactly (cf. ref. 6); Equation (20)

is thus reduced to

6. Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals
Series and Products, Academic Press, New York, 1965.

15
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o0 (e o]

fg(x')Lll(X/X')dx' + fn(Z')Lzz(X/Z')dZ' =0

-0 —

~—® < X < o (21a)

oo

fg(x')LZl(y,z/x')dx' + In(z')Lzz(y,z/z')dz'

= —47 ¢(y,z2)

0Ly <h/b, =-9< z<=» (21Db)

* *
where le and L22 are given by

Vx? + (1-n/b)2 + (z)2 - (1 - h/b)

Vil + 1+ (292 -1

L;2(X/Z') =2n

2 2 )2
_%n ‘\Ix + (1+h/b)” + (2')” + (1 + h/b) (22)

Ve + z9)2 +1 +1

V(h/b-y)2 + (z-z")2 + (h/b - y)

'\/y2 + (z—z')2 -y

,[ 2 'y 2
on (h/b+y) < + (z-z') + (h/b + vy) (23)

Vy2 + (z-29)2 +y

*

16



The coupled integral equation (21) may be solved

by using the following Galerkin's approach. First inte-
grating Equation (21b) with respect to y gives

j’E(X')Lll(x/x')dX' + -/-n(z')LIZ(x/z')dzf =0

~0 < X < o

(24)

[}

fa(x')Lzl(z/x')dx' + f n(z")L,5(2/2')dz" = n(z)

-—00

- < Z < o

* * % .
where the kernels L21 and L22 are obtained by intearating
*
L and L with respect to y over (0,h/b). ‘Similarly, n is

21 22
obtained by integrating -4w¢ over (C,h/b). These are

given by

* *
Lzl(z/x') le(x/Z')

1y 2 2
L;;(Z/Z,) =% on \[(z-z )~ + (h/b)” + (h/b)
v 2 2

(z-z')" + (h/b)" - (h/b)

c2n , V20?2 + /b + (b

Viz-z)2 + (2n/b)2 + (2h/b)

# 3)z-z' | + V(z-z12+ (2n/b) 2 = 4 (z-2")2 + (h/b) 2

(26)
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2

2
. 27 (1+z7)
n(z) = - —o———— &n )
&n (a/2b)_ [(1—h/b)2 + z ][(1+h/b)2 + 22]

2 2 _ _ _
+ % n (l-h/b)2 + 22 - 2z [tan 1 (l—§£9)+ tan~1 (1+2/b)
(1+h/b) + z

- 2tant (1/z)] (27)

where, again, use was made of table of integrals (ref. 6).

* %
Note that L (z/2z') has a logarithmic sinoularity

22
-4n |z-z'| and L

(x/x') has a sharp peak at x=x'.

11

For computational purposes, these may be treated as follows:

First write

L;; (z/z') = - Zbﬁ n |z-z'| + F(z/z"') (28)

where F(z/z2') 1is continuous throughout the interval
(-=»). Next integrate by parts the integral in eguation (24)

which contains Lll (x/x") . Equation (24) then becomes

oo A
f X L7 x/x') ax' + fn(z') Ly, (x/z') dz' = 0
- - —_—0 < ¥ < «©
I E(x") L;l (z/x') dx' + f n(z') F(z/z') dz' y (29)
-2 f tn |z-z'| n(z') dz' = n(z)
—-® -X < 7Z < o J

18



where

(x/x') = 2&n —-\!(X"X)._z.,’t ﬂ_f}_ﬁ?)z _F (x'-=x)

x
L1

CVxe)2 F 4+ (x'-x)

Equation (29) is noted to have a smoother inteqrand than
Equation (24), which is more amenable to numerical computations;
the integrand containing the logarithm will be evaluated in
closed form in Section V. The second stage in the use of
Galerkin's approach for obtaining the solution to Equation (29)
requires knowledge of the properties of Hermite polynomials

and the Gauss-Hermite formula. These will be discussed in

the following section.
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SECTION IV
HERMITE POLYNOMIALS
The Hermite polynomials Hj(E) are defined over the
infinite interval (- ,») and satisfy the orthogonality
conditions
00
f -2 i
e H. . = Jr 1
1(5") HJ(E) dE I/TT 2 il Glj (30)
-—00
where 6ij is the Kronecker delta.

The first few Hermite polynomials are:

2

HO(E) =1, Hl(E) = 2¢, HZ(E) = 4g° - 2 (31)
and the recurrence relation is
Hn+l(£) - 2g Hn(E) + 2n Hn_l(E) =0 (32)

These arise in integration over (-=,«), and the Gauss-
Hermite formula for approximatino the integral is given by

o]

N
2
fe ©oee a - Z W £Ey) (33)
k=1

- 00

h

where Ex is the Kt zero of Hn(E) and the weights

Wi is given by

20




_ 2n—l n! V7
k2 2
n [Hn_l(«ik)]

w (34)

The weights Wy and abscissas are given, for

tx

example, by Abramowitz and Stegun (ref. 7).

7. Abramowitz, M., and J.A. Stegun, Handbook of Mathematical

Functions, New York: Dover Publications, 1964.
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SECTION V
NUMERICAL SOLUTIONS OF THE COUPLED INTEGRAL EQUATIONS
The coupled integral equation (29) is reduced to a
set of algebraic equations by using a Galerkin's approach

with Hermite polynomials as base functions. Assuming that

N
E(x') = e_(x')z E: a_ H (x")
n n
n=0
(35)

2 N
n(z') = e-(z ) E: b Hm(z')
m=0

where aj s bm are coefficients to be determined, and HR(')

is Hermite polynomial of order & . Further, note that

2h r r2 r z'2
-2 [ ot [ - - ' v [
- = fe Hn(z ) ¢n |2z-2'|dz —f e Hn+1(z ) S(z/z") dz' (36)

where S(z/z')==%§-(2'-z)[ g¢n |z'-2| - 1]. This is obtained
by integration by parts and the recurrence relation for
Hermite polynomials. The integral equation (29) now takes

the form

22



g

3
i
o

the Gauss-Hermite quadrature

y

=0

3

N
2
+ 2: b .j. e~ (2") H (x') L;Z(x/z')dz =0
m=

b

-0

[ o]

m

_(x')2 *
a, Jf e Hn(x') L21(z/x')dx'

-0 < x <

N
N Z b f e—(z')2 {S(z/z')Hm+l(Z')+F(Z/Z')Hm(z')}dz'
m=

0 00

= n(z) ~© <z <

(37)

The integrals may be evaluated approximately by using

N
(1)
n 9n (X)+Z b.g

m=0

N

(2)
m

(33):

(x)

N
Y ool v Ym0

n=0

where

m=0

£ (2)

23

the result is

-0 £ ¥ < o

-0 < Z <

(38)



-

(1) = v

9, (x) = Wy Lll(x/xk) Hn(xi) (39a)
x=0
My

gIgZ)(x) = We Ly, (x/2)) H_(2)) (39b)
k=0
Ml

g!3(z) = Z W Ly (z/x) H_(x)) (39¢)
k=0

1
gn(14)(z) = Z W [S(z/2z)) H_,. (z)) +F(z/z)) H_/2)] (39d)
k=

and M, is the order of this quadrature.

Applying Gauss-Hermite formula (33) once more to

Eguations (38) results

N
Z (1’ Z b T(2) -0, §=0,1,2,...N
n=0
(40)
N
Z (3) Z b T;i) =a,, &=0,1,2,...N
n=0

24



Equation (40) is a set of linear equations for the
determinations of the unknown coefficients a bn’
n=20,1,2,...N, which may be solved on a digital computer
by means of standard matrix inversion routine.

Once the coefficients a s bm are determined, the
capacitance of the discontinuity Cd may be obtained by
integrating the excess charge density on the wire.

The orthogonality conditions of Hermite polynomials may

be used to perform this integration exactly; the result is
Cq = /7 a (41)

. Notice, therefore, that the capacitance C depends only

d
on the first term of the Hermite polynomials expansion for
the excess charge distribution. In fact, it can be shown
that the capacitance of the discontinuity, as given by
Equation (41), is stationary with respect to arbitrary small

variations in the functional form of the excess charge

distribution and is lower bound (c.f., Section IV of ref. 8).

8. S. Coen and G.M.L. Gladwell, "A Legendre approximation
method for circular microstrip disk problem," IEEE
Transactions on Microwave Theory and Techniques, Vol MTT-25,

Nc. 1, January 1977.
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SECTION VI

NUMERICAL RESULTS

No exact or approximate results to the present
problem are known to the authors. It is intended, there-
fore, that the results for the equivalent capacitance of the
septum, obtained from the present analysis, be compared
with experimental results in the future (ref. 9).

Figures 3 through 5 present dimensionless excess charge
density on the wire, obtained from the present analysis,
each for a particular h/b and for a/b = 0.00., 0.01, 0.1.
Note that the excess charge density is an even function of

X , thus only the positive range of X 1is shown. These

results have been obtained with N = 10 in Equation (35),

and the order of the Gauss-Hermite quadrature 1is Ml = 22
in equation (39). Note that the curves displace kinks around
x =1.6. This phenomenon is more evident for larger values

of h/b and larger values of a/b. It is attributable to
the fact that only a finite order of the Gauss-Hermite quadra-
ture is taken. One would obtain smoother curves if higher
order quadratures were used.

Figure 6 presents the equivalent capacitance of the

septum Cd , normalized to the capacitance of the uniform line

9. Dr. Larry Scott, Mission Research Corporation, Albuquerque,
New Mexico, private communication, December 1976.
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(in the absence of the septum discontinuity) per unit length
times the height of the thin wire from the ground plane, as a
function of h/b for a range of a/b. The same plot is

presented in Figure 7 with h/b as a parameter and a/b as

variables in logarithmic scale.

27



.002

8§ T4 (x)
1 .001

Figure 3. Distribution of normalized excess charge
for h/b = 0.1. Note that &1y is an
even function of x.

28



.08

h/b

0.4

i

Figure 4. Distribution of normalized excess
charge for h/b = 0.4.
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0.7

h/b

Figure 5. Distribution of normalized excess
charge for h/b = 0.7.
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unit length of unperturbed wire.
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Figure 6. Capacitance due to septum as function of
septum height. C is capacitance per



Cq/ (b CL)

0.5

0.00l 0.0l
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Figure 7. Capacitance due to septum as
function of septum height.
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