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I. INTRODUCTION

This report deals with EMP penetration through metal skin panels and into
metallic cavities via the mechanism of diffusion. Generally, there are three
different modes for EMP penetration into cavities: diffusion through the wall;
inadvertent penetration through apertures such as seams, joints, and windows;
and deliberate penetration through antennas. It is generally assumed that
penetration due to diffusion will be completely dominated by inadvertent
penetration through apertures and by deliberate penetration through antennas,
but there are currently no simple, yet accurate, engineering formulas to
provide a quantitative demonstration of this physically plausible assumption
for specific aircraft cavities of interest, such as avionics bays, cockpit
cavities, and weapons bays. It is the purpose of this report to present a
set of simple working formulas for making an engineering estimate of EMP

diffusion into a large class of metallic cavities.

It is virtually impossible to obtain an exact analytical solution of the
appropriate boundary-value problem in the case of a metallic cavity of arbitrary
shape, either in the time domain or in the frequency domain. However, there
are several simplified cases which allow an exact solution. The one—-dimensional
problem of electromagnetic scattering from a zone occupied by a number of
homogeneous regions separated by sharp discontinuities in electromagnetic
parameters can be solved by matching at the boundaries solutions‘in each
region, or, equivalently, by Ambarzumian's principle of invariance [ref. 1].

A "one-dimensional" problem can be a problem in which the only variation is

along the z-axis in Cartesian coordinates (x,y,2z), the p-axis in cylindrical
coordinates (p,¢,2z), or the r-axis in spherical coordinates (r,8,¢). Accordingly,
the "canonical" geometries are single and parallel plates, cylindrical shells,

and spherical shells. The ratio of the magnetic field inside a canonical
enclosure to the uniform part of the time-harmonic external magnetic field

can be calculated using the diffusion approximation of Kaden [ref. 2]. The
solutions derived by Kaden's method agree with the exact solutions when dis-

placement currents are neglected [ref. 3]. The frequency-domain (time-harmonic)



solutions for the canonical geometries can be inverse Laplace transformed to
the time domain. - The resulting time-domain expressions are the basis for
simple engineering formulas which give the interior magnetic field produced

by an external EMP. For a typical high-altitude EMP and for typical aircraft
metal skin panels (aluminum or titanium), the EMP can be treated as an impulse,

as will be shown in this report.

There remains the problem of applying the canonical results to cases of
practical interest. When the cavity walls are thin as compared to a typical
length in the cavity, which is in turn smaller than the wavelengths of interest,
the geometry dependence of the interior magnetic field is determined completely
by the volume-to-surface ratio. By physical reasoning, the volume-to-surface
ratio can be related to an effective inductance for the currents induced on
the cavity wall. This observation leads to simple engineering estimates of
the interior magnetic field produced by an external EMP for a large class of

cavities onboard an aircraft.

In a separate report [ref. 4] numerical results will be presented for a
typical high-altitude EMP incident on five aircraft cavities: the B-1 weapons
bay, the B-1 central avionics bay, the EC-135 cockpit, the EC-135 fuselage,
and the E-4 cockpit. The ease of application of the engineering formulas used

to obtain these results invites further calculations for many other interesting

cases.



ITI. METHOD OF SOLUTION

A. Frequency-Domain Solution

The transfer function, n(s) , is defined to be the ratio of the internal
magnetic field (™t
(Hext)

) to the uniform part of the external magnetic field

int:

n(s) = B (s) /H%*t (s) (s = jw = 27jf)

Closely related to the transfer function is the shielding effectiveness, S(s) ,

where

S(s) = -20 logloln(s)l (in db)
The following results are obtained for the canonical geometries using Kaden's

diffusion approximation [ref 2]:

%

1/n(s) = cosh(st,)* + (ZO/R)(stA)-%sinh(scA)% W

for a single plate (figure 1),

%

1/n(s) = cosh(stA) + [1101:/(1113)](stA)lssinh(stA)!i (2)

for two parallel plates (figure 2),

;isinh(stA)!2 (3A)

1/n(s) = cosh(stA)% + [uor/(2uA)](stA)
for a cylindrical shell with a longitudinal H (figure 3a),

1/n(s) = cosh(stA)% + {[uor/(ZuA)](stA)% + [pA/(zuor)](gtA)‘*}sinh(stA)% (3B)

for a cylindrical shell with a transverse H (figure 3b) and, finally,



Hext

Figure 1, Shielding by a single plate with conductivity ¢ and
permeability u ,



ext int xt
H H H®
2r
Figure 2. Shielding by two parallel plates with conductivity o and

permeability u .



ext

H
Conductivity= O~
Permeability= [L
3.('a)
He’d Conductivity=O"

Permeability= LL

3(b)

Figure 3(a) ~ Shielding of a longitudinal magnetic field by an
infinite cylindrical shell.

3(b) - Shielding of a transverse magnetic field by an
infinite cylindrical shell,
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b

1/n(s) = cosh(st,)* + {[n_x/ (3] (st,) + [2ua/ Guyr)1 (st,) Fsinh(sty)? (&)

for a spherical shell (figure 4), where

N
(]

377 Q@ = impedance of free space

= 47 >t10-7 henries per meter = permeability of free space
A = cavity wall thickness

0 = cavity wall conductivity

U = cavity wall permeability

R = (GA)_l = D.C. resistance of cavity wall

t, = quz = diffusion time through the cavity wall

L}
]

half plate separation (parallel plates) or radius (cylinder, sphere).

The shielding effectiveness and the magnitude of the transfer function of a

u_ , and o =2x10° , 2.1x10°
8

(titanium), 3.8 ><107 (aluminum), and 2 x10 mhos per meter are plotted

single plate with A = 1.5 mm (0.06") , u =

versus f in figures 5a and 5b. The parallel-plate shielding effectiveness
and transfer function are plotted in figures 6a and 6b for r =1 meter and

A ,u, and o as above. When the quantity, uor/(uA) » is much greater
than unity, the terms in n(s) for the spherical and transverse cylindrical
cases, which go as uA/(uor /EEZ) , have negligible effect. This is certainly
the case for typical aircraft cavities, and so figures 6a and 6b can also be
taken to apply to a cylinder of radius r = 2 meters (either polarization)

or a sphere of radius r =3 meters .

In figure 7, S 1s plotted versus f on an adjustable frequency scale
for the enclosure cases. If £ 1is defined to be the dimensionless coefficient
1 1
of (st:A)'isinh(stA)/i in n(s) for any of the enclosure geometires, then when

s (or frequency, f) 1is small, the shielding effectiveness looks 1like

S = 20 log 4|1 + 2njEr,f|

11



Figure 4. Shielding by a spherical shell with inner-radius

r , conductivity o , and permeability u .
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Figure 6(a). Enclosure shielding effectiveness of two parallel plates

a cylindrical shell for transverse polarization (r=2m), and a

spherical shell (r=3m). The wall thickness A = 1.5 mm.




' T T T T |ﬁ—r|ul|[ T 'f"'lll T f"””] T TT71TH

dd il

o =2x10°

1 ‘l'lll""' T T

=3.8x107
(aluminum)

o
llll[ ¥ I_IIII"I T 1 ]]‘l”]

1077

1078

um, i Lllll"' | “uul 1 :“uul i1 unul | lll“lll 1 ll““l' L ll““l

102

L] ']Il"l T |1l"||I LB

T
-

.
-

lo-lo 11 ]
IkHz | MHz

frequency

Figure 6(b). Enclosure transfer function.

16




LT

Shielding Effectiveness

S(db)

W,

(V]
]

other break-points:

LR L

3 ¢ . e
} break, n ™ 2%,
i .
|
}_
l
A lLlJlll e, il Illllll I | 11:111[ L 31
Fhiz I kHz

f (frequency)

Figure 7. Low-frequency enclosure shielding effectiveness.




The first so-called frequency "break point" occurs at fb = (ZnEtA)-l . Until
this frequency, the shielding effectiveness is essentially zero. Afterward,
the shielding effectiveness increases linearly with loglof 3 the slope is

20 db per decade of frequency. Figure 7 uses the values & = 1000 and

tA = 10-6 sec , but is easily scaled for other values of £ and tA . The
position of the first break-point determines the late~time behavior of the
interior field:

=2nf. t -t/ (Et,)
Hint(t:) ~ e L e A

The other break-points occuring at higher frequencies are given by
f = — n=1,2,3...

This expression will be derived later in connection with time-domain solutions.

B. Time Domain Solution

An impulse external magnetic field,

1**t (¢) = H §(t) ,

has a constant Laplace transform given by

ext
H (s) Ho .

If one integrates both sides of the above time—domain equation, it is evident

that

Thus, if HeXt is a very short pulse compared to the response of the cavity,

Ho can be introduced for the impulse equivalent strength of H**% .  The time

18




-

dependence of the internal magnetic field is then simply the inverse Laplace
transform of the transfer function times the impulse equivalent strength:

B () = B L nee)] ,

or in explicit form,

ds

Hint(t) - 0 _ -
acosh(st:l:\);i + [El(stl_\)!5 + Ez(stA)_a]sinh(stA)%

2nj
-jo+

H Je+a eat
J : (5)

where El and EZ are dimensionless constants depending on the particular

geometry (see equations 1-4), and o 1is any positive constant.

A representation of this integral which is especially useful for late times
can be obtained by transforming s to z through s = 22/tA . The integral

then becomes

- zzt/t
int o 1 . ze dz
H (t) = — J cosh z + (glz + Ezlz)sinh z (6)

t, 2nj
T

where T 1s the hyperbolic contour i1llustrated in figure 8a.

The poles of the integrand in equation (6) are located along the iméginary
axis in the z-plane at points (zn = jqn) which satisfy the transcendental

equation
cot(qn) = &9, - Ezlqn )

Since the integrand is an odd function of 2z , the half of contour T below
the real axis can be reflected through the origin. The two new halves can be
joined along the real axis and at infinity in the upper quarter-plane without
altering the integral, which results in contour T' . Cauchy's integral theorem

yields the following infinite series results:

19
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" 8(b)

Figure 8(a) - Contour T in the z-plane.

8(b) - Contour TI'' 4in the z-plane.

20



2
-q"t/t
2H o« qne qn a

int o
H (t) = - (84)
t, L 2 2 2. -2
8 n=0 {1+&, +Ejq; +[&, +E;1q “}sin q
3 _qtzlt/tA
. 2H = e
B = - ] 24,2, z, -2 (88)
ty 2=0 {1+ +Ejq, +[£; +8))q "lsin q

Note that the sums run over all q, > 0 satisfying equation (7). The series
solutions of equation (8) are especially useful for late times because the
exponential part ensures quick convergence when ¢t ?.:tA . However, they are
the exact solutions and converge formally for all t > 0 . ﬁint(t) is
directly proportional to the open-circuit voltage induced on a pickup loop
inside the cavity.

A different approach must be used to find a good early-time representation.
To do this, the contour parameter, a , is made arbitrarily large. Then n(s)

can be expanded for large s :

S
5 -2(st,)
-(StA) o e A [—1-+£1(stA)

o 2e
1+ 51 (stA)li

% %

+E,(st)) ]

5

n(s) = -5 ;’
+52(stA) n=0 1-+El(stA) -+52(stA)

which leads to the following infinite series of inverse Laplace transformations:

-(2nt+l) (StA);i X

5 0
© e [-1 +£1(stA) +£2(stA) ]

n+l 9

n=0 [1+E, (st,) T +E,(st,) ]

This series is not convenient to use in itself, but it leads to simple approxi-
mate expressions of the early-time solutions for the cases of interest, as will

be seen below.

C. Explicit Approximate Solutions

Explicit approximate solutions for early times and late times can be

21



developed from equations (7) - (9) for the four canonical cases of interest

[equations (1) - (4)].

C.1 Single Plate Geometry

For the single plate, £y = 0 and &, = ZO/R >> 1 in equations (7) - (9).
The late-time approximate solution can be obtained from equations (7) and (8A).
The poles, q, » are solutions of

cot ¢ = - (ZO/R)q;1 (10)

Since Zo/R >> 1 , the solutions are

q, = orm - €y 0 n=1,2,3,... ,

where 0 < € << 1 . The sine of 9, is approximately

sin(qn) ~ (.—1)n+1er/Z° .

0f course, eventually the right-hand side of equation (10) will no longer be
large as qn increases, but the first several roots will be sufficient to
give a good late-time representation. Substituting the approximate expressions

for q, and sin q, in equation (8A) and taking the first three terms” , one

obtains
int 21:211011 —17?'1:/1:A -41r2t/tA —9ﬂ2t/tA
H (t)~ —— le - 4e + 9e , (t=¢,/20) . (11)
tAzo _ A

* The second and third terms are included to provide a better match with the

early-time solution and can be neglected for t tA'.

22



The early-time approximate solution for a single plate is found by evalu-
ating the first term in the infinite series of inverse Laplace transformation
as given by equation (9) for £, =0 and §, = Zo/R :
~(st )

-1 e
-
1+ (zo/R)(stA)

int
B 2C(t) =~ 28 L . (t << t,) -

This inverse Laplace transform is listed in standard mathematical tables [ref. 5].

The result is

3 %
it ) 2&{ th [l(t_A) _fg(t_) ]e-tA/(4c)
tA /e 2\t R tA
(12)
2 2 ] ]
z [z, /R+(Z_/R)"(t/t,)] 1 (€A Z, (.
+(2) . ° effC[z(?) +T(§) ]

Since t <x ty s the argument of erfc in equation (12) is large. A good

approximation of erfc(x) when x 1is large is

2
ag S
erfc(x) =
X
The early-time approximation then becomes
-t, /4t
int 2H°e 1/¢ -3/2 Zo c -1/2
@~ ——— 12\, “® g
/r t, A A
2 -1
+(_zg) [_l_(t_)-llz +(iq)(£‘)1/2] }
R 2\t, R ey

This result is in need of further simplification. Since ZOIR >> 1 for all
practical metal skin panels, [%(t/tA)_k + (Zo/l?.)(t:/tA);"']_1 can be expanded
about the second term as long as (tltA) >3 R/Zo » which holds for all but

23



the very earliest times (when the internmal field is negligible anyway). The
simplified early—-time Internal field is

-t,/(4t)
A 5/2
He t
S Y T A (zl)(t—”) , (t < t,/20) . (13)
T tA []

int
(t) versus t , taken for the cases for

Figure 9 is a plot of H
which ZO/R >> 1 . The three curves represent the early-time [equdtion (13)],
late-time [equation (11)], and exact [equation (8A)] solutions. From the
graph, one can see that the transition from the early- to late-time approxi-

mation should occur mear t = tA/20 .

C.2 Enclosure Geometries

Explicit early-time and late-time approximations can be obtained for the
enclosure geometries in a similar manner. In all enclosure cases commonly
found onboard an aircraft, El >> 1 > 52 in equations (7) -~ (9). The locations
of the poles of the transfer function will therefore depend almost entirely on

El [recall equation (7)]. The roots needed for the late-time representation

satisfy

cot q, = Elqn R 51 > 1 . (14)

The solutions are

qn = nw + En ’ n=0,1,2,... , 0 < €, << 1.

The values of e, are insignificant for all but the 0th root. For that root,

QB = €™ El_li :

*
The first three terms of the infinite series in equation (8A) give the late-time

* Again, the second and third terms are included to provide é better ﬁatch with

the early-time approximation and can be neglected when ¢t > t, -
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Figure 9, Sing]_.e—plate impulse response.




approximation:

2 2

H -t/ (E;t,) -nt/t -41°t/t

B ) m 2 e 1A - 2e A4+ 2e A), w=c100 . @s)
E L, A

The early-time approximation for the enclosure geometries can be calculated
from the first term of the infinite series of inverse Laplace transforms in

equation (9); that is to say, one must evaluate

-(stA)!i

B () ~ znoL’l[ e — k]
1+E,(st,)? +E,(st))

When the contour is "pushed" to the far right in the s-plane to obtain the

early-time representation, (st:A)--!i will be small compared with unity and
in all practical aircraft cavities,

52 is either small or zero. Thus,
the 52 term can be neglected and one is left with

-(stA)!E
Hint(t) =~ ZHOL_]' [e_——g] .
1-+£1(stA)

This inverse Laplace transform is available in mathematical tables [ref. 5] ;
the result is

-tA/(4t) 1

()

-1 2
(et +t/(e2e,)]

ZH e 1-‘:.A;5 1 t *
-—— erfc f(r) +—(t—)_ (16)

2H e
H:lnt: () =

Yr EltA
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When the same sort of expansion used for the single-plate early—time
representation 1s performed on erfe 1in equation (16), it is seen that the
contribution of the second term is negligible. The early-time approximation
is then simply

ZHOe tA
(t) =~ (t—-) » - (t < tA/IO) o (17)
RN

Hint

Figure 10 is a plot of the early-time [equation (17)], late-time [equation
(15)], and exact [equation (8A)] solutions for enclosure geometries, for the
cases in which the wall thickness 1s small compared with the cavity dimensicas
and the relative permeability is one (El is large). For t > tA/IO » the
late-time and exact solutions are indistinguishable, both exhibiting an
exponential decay time equal to EltA . The value of 51 depends on the

geometry of the enclosure, as will be discussed below.

Figures 9 and 10 can be regarded as "universal curves," because the
time axes are scaled by the diffusion time, L and the magnetic field
strength axes are scaled by the reciprocal of the appropriate constant,

51 or 52 , depending on the geometry. These curves fail to be "universal
only when El (or 52) fails to be large compared with unity, i.e., only
when the wall thickness is comparable.to the dimensions of the cavity (or
the dc resistance is high). Figures 11 and 12 illustrate this effect for

various values of El or 52 , Where Hint

is plotted versus t using the
exact Infinite series. For the enclosure geometries, there is a strong
dependence on shape (and.Polarization) which is seen when El is small

but not when El is large.

Since figures 9 and 10 are universal curves, the parameters that character-

ize the important features of the penetrant pulse can be read from them directly.

These parameters are summarized in table I, with &£ replacing El .
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Table I. Engineering Parameters of the Penetrant Pulse

Geometry £ Hint(peak) ﬁint(peak) Rise Time :| Decay Time
(10 -90%2) (1/e)
Zo 6 Ho 120 Ho t, tA
Single plate — —_— —y —
R EtA Etz 20 2
U r H 6 H t
Parallel plates 2 -2 o 4 EtA
na EtA Etz 4
A
Hr H 6 H t
. o o o _4a
Cylinder 2uh £t 5 4 EtA
A EtA
Hr H 6 H t
o o o A
Sphere 3 Et, 2 4 &ty
EtA

D. Generalization to Arbitrary Enclosure Geometry

The results of figures 9 and 10 are suggestive of the existence of a
genefal formula which 1s valid for arbitr=zry cavity geometry when the wall is
thin compared to a typical cavity dimension. It can be seen from figure 11
that detailed geometrical differences become less important as the ratio of
cavity size to wall thickness becomes large. However, there is a factor of
one, two, or three that needs to be explained in the overall results, depending

on whether the geometry is one-, two-, or three-dimensional.

The factor of one, two, or three suggests a relationship with the volume-
to-surface ratio. As evident from table I, two parameters, namely, the
diffusion time ¢t and the decay time td » completely determine the other

A
engineering parameters. The diffusion time is easily calculated for any
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cavity from a knowledge of the wall permeability, conductivity, and thickness
(recall the definition of tA) . The decay time can be computed for a cavity

by a simple circuit analogy. There is a dc skin resistance given by

R= (crA)—1 , which i1s not shape-dependent. Currents induced in the wall
will decay through resistive heating. These same currents are presented

with an effective inductance inside the cavity given by

L = uOV/S .

The analogy is a simple R~-L circuit, and the decay time is given by

t; = L/R .

The constant, § , is simply the ratio of td to tA s OT

g = u V/(uAs) (18)

This result allows calculation of the engineering parameters of an interior

pulse in arbitrarily—-shaped cavities. In terms of £ and tA ,

int Ho
B (peak) = —> (19A)
£t
+int 6 Ho
B " (peak) = > (19B)
EtA
. t,
tr = Rise Time (10 -90%) =% (19c¢)
t; = Decay Time (1/e) = EtA ’ (19p)

provided £ >> 1 .
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III. SUMMARY AND CONCLUSION

The approximate expressions derived in section II provide a convenient
method for the estimation of the EMP diffused penetrant magnetic field in
many aircraft configurations, such as cockpits, weapons bays, avionics bays,
and other metallic cavities. The approximate expressions assume an impulse
incident field, and so they are applicable as long as the diffusion time,
tA » is much longer than the pulse width of the incident EMP. The pulse width
of a typical high-altitude EMP is on the order of hundreds of nanoseconds,
while an aluminum skin panel of one millimeter in thickness has a diffusion
time of about fifty microseconds, and so the EMP is effectively an impulse
for typical aircraft cavities.

To summarize the important results, it is convenient to define the following

parameters:

A = thickness of skin panel

¢ = conductivity of skin panel
= 4n'XI0-7 henries per meter = free-space permeability
¢ = permeability of skin panel
t, = quz = diffusion time constant of skin panel
Z = 377 Q@ = free-space impedgnce
R = (crA)-1 = dc skin panel resistence
V = cavity volume
S = cavity surface area
L= ro/S = cavity inductance

ZO/R (single skin panel)
ro/(uAS) - L/(RtA) (cavities)

H = IQHeXt(t)dt = equivalent impulse strength
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The penetrant pulse is given (to 0.1% accuracy for the canonical casesj by

the formulas in table II. These approximate equations are valid as long as

£ >> 1 (high conductivity in thin walls), ew << 0 (Kaden's diffusion
approximation), and A = ¢/f >> r (wavelength of the incident field at
frequencies of interest greater than the size of the configuration). These
assumptions hold for all metallic skin panels and metallic aircraft configura-
tions for the important portion of a typical EMP spectrum. Figures 9 and 10

are graphical representations of the equations in table II.

It should be emphasized that the single-plate shielding effectiveness is
not in general a relevant parameter to use in the calculation of the magnetic
field diffused through a metal skin panel and into a typical aircraft cavity
[ref. 6]. It is seen from figures 5 and 6 that low-frequency shielding
effectiveness is much greater for a single plate than for an enclosure con-
structed of skin panels identical to the single plate. Figure 13 is a direct
comparison of the single-plate and enclosure shielding effectiveness for
aluminum and titanium skin panels with A = 1.5 mm (0.06") and V/S = 1 meter.
Because of the great difference between the single—-plate and cavity cases, it
is always necessary to know the geometry of the aircraft configuration, as

well as the skin-panel parameters, when the diffused penetrant magnetic field

is to be calculated.

In ref. 4 the engineering results presented in equations (18) - (19D) will
be applied to particular aircraft cavities of interest: the B-1 central avionics

bay, the B-1 forward weapons bay, the EC-135 cockpit, the EC-135 fuselage, and
the E-4 cockpit. ’
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Table II.

Single plate

t < tA/20

t > tA/ZO

Enclosures

t < tA/10

t > tAllo

Engineering Formulas for the Penetrant Pulse

-t A/ (4t)

e == (2)(2)

2
H (t)

Z
o

-t,/ (4t)
2H e
Hint(t) - (-] (
Z3 EtA

ﬂlﬁ
[~

H -t/(&t,)
Hint(t) - _o_[e A

35

1/2

)

- 2e

-wzt/t

A

2 2
Ing 2% Ho( R )[ -7 t/tA =47 t/tA
=2 — e - 4e
€

+ 2e

--91!2::/t:A
+ 9e

2
4 t/tA]



9¢

Shielding Effectiveness

S(100db)

24

20

1.6

1.2

T ITIerll T v lvTﬁlT T 1 vy
/
/
/
/
[ aluminum plate (A=1.5mm ,
/
/
F titanium plate (A=1.5mm) 7 /
= -
7/
- .
_ 7 7
aluminum enclosure———l -7 _-
-~ -~
- A=1.5mm _2 - B
—’——”— ‘ —"’—”
=T __—="""L_titanium enclosure 4
ull - A=1.5mm
- VS =1im
| ,"—’
e
1 a2 1 a3l " A a3 ol " a1 v vl 1 3 4 .14
IkHz IMHz

Frequency

Figure 13. Single-plate and enclosure shielding effectiveness.
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