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Abstract

Simple analyEical models are developed and analyzed to yield electro-
magnetic characterizations of advanced composite skin panels over the EMP
frequency range. The panels are modeled as uniaxially anisotropic slabs
whose optic axes are oriented normal to the slab boundaries. Graphite
composite panels are modeled as anisotropic conducting media and boron-
epoxy panels as anisotropic dielectric media. The relevant conductivities
énd permittivities are estimated in terms of the configuration and electrical
properties of the fibers and the epoxy matrix. An equivalent sheet impedance
is derived to characterize the wire mesh screen which is often embedded in
one surface of a boron-epoxy panel in order to improve its electromagnetic
shielding effectiveness. It is shown that the most important parameters
for characterizing composite skin panels are the transverse conductivity
of graphite composite and the screen parameters and geometric mean of the

transverse and longitudinal permittivities for screened boron-epoxy composites.



I. INTRODUCTION

Aircraft skin panels made of advanced composite materials have a
significant advantage in weight savings over metallic (e.g., aluminum or
titanium) panels, but advanced composites differ substantially from metals
in their electrical properties. The differences are generally unfavorable
from the standpoint of electromagnetic shielding effectiveness; consequently,
the study of electromagnetic field penetration through advanced composite
materials assumes a special importance.

A pahel of advanced composite material is a laminate, made up of several
individual laminae or thin sheets which have been bonded together. Each
lamina consists of a one-dimensional array of fibers embedded in an epoxy
_matrix. The fibers are graphitef (a mediocre conductor) in ''graphite” com-
posites, or boron (a poor dielectric) in "boron-epoxy" composites. A
typical lamina is depicted in Fig. (1). The laminate is made by laying up
several laminae in one of several possible configurations, perhaps the most
common of which is the 06-90° layup shown in Fig. (2), in which the fibers

in alternate laminae are oriented at right angles to each other. This

layup is then cured to bond the laminae together and thus form the final
product. '

Since the boron-epoxy composites are poor conductors, a wire mesh screen
is sometimes embedded in one surface of the laminate before it is cured, in
order to improve its shielding effectiveness. Such a "screened" boron-epoxy
composite laminate is shown in Fig. (3). 1In this Memo we shall be concerned
with unscreened graphite and screened boron-epoxy composite laminates.

The electrical properties of advanced composite materials have not yet
been well studied [1]. 1In fact, much of the data which are now available have
been inferred from shielding measurements and have not been obtained directly.
In the absence of reliable values for such parameters as the mean conductivity
and permittivityff for a panel, we shall attempt insofar as possible to

formulate approximate descriptions of advanced composite materials which do

~l'i.e., a pyrolyzed organic fiber such as polyacrylonitrile.

t . . . .
fall the constituent matetials of typical laminates are non-magnetic (relative

permeability = 1), so the laminates themselves are essentially non-magnetic. .
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Fig. 1. A lamina of advanced composite.



typically
10 layers

. Fig. 2. 0° - 90° layup for a laminate panel.
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Fig. 3. A screened laminate.



not require that the exact values of these parameters be known in order to

be useful.
In the next section, we describe a set of theoretical models and boundary-
value problems relevant to the analysis of EMP penetration of advanced com-
posite panels. These models and problems are studied in Section ITI. The
results are summarized and discussed, and illustrated with numerical examples,

in Section 1IV.




Lg

I1. THEORETICAL MODELS AND PROBLEMS

In developing analytical models for advanced composite skin panels we
shall confine our attention to planar gecometry. Consideration of planar
problems for developing electromagnetic characterizations of these materials
is justified because of the following facts:

1. advanced composite materials of the types we shall consider

are lossy, and the wavelength of a monochromatic field inside

the material is smaller than that outside; furthermore,

2. in practical configurations, the thickness of the laminate is

small in comparison to either of its local principal radii of

curvature. -
We infer from the first of these observations that the electromagnetic behavior
of the laminate is essentially a local phenomemon, in that the fields at two
points in the laminate are not closely coupled if the separation of the two
points greatly exceeds the panel thickness. Thus the development of a 'trans-
fer characteristic" for a laminate panel does not require consideration of
the panel as a whole, but only of relatively small local portions of it. By
virtue of the second observation above, these local portions can be considered

to be planar.
A. Model for a Single lLamina

A single lamina is shown in Fig. (1). Such a lamina is typically 0.25 mm
thick and the volume fraction occupied by the fibers is typically 25-50%. Over
the EMP frequency range, the lamina is electrically very thin; furthermore,
the fiber separation is a very small fraction of a wavelength. The lamina
will therefore be modeled electromagnetically by a thin layer of anisotropic
material. Let us define "lamina coordinates" (£1,52,53) such that El is
the coordinate direction parallel to the fibers, 52 is the direction normal
to the fiber axes but parallel Eo the }émina surface, and £3 is the direction
normal to the lamina. Then if o, and €, denote the conductivity and permit-

L
tivity dyadics of the lamina, we have
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where ;Ei is the unit vector in the positive Ei—direction and s denotes the
complex frequency: the electromagnetic field is assumed to vary with time
as exp(st). The parameters %04 and €,4 are the conductivity and permittivity
in the & direction. These quantities can be determined experimentally or
calculated from appropriately chosen boundary-value problems. The justifi-
cation for this characterization of the lamina, in which the details of the
interior structure are effectively ignored, lies in the fact that the relevant
dimensions are all extremely small in comparison to the wavelength. Thus the
spatial periodicity of the structure is unimportant except in the actual
calculation of 95 and €oic

A.1l. Graphite laminae

The conductivity of the epoxy matrix 1s negligible, and we shall assume
that the graphite fibers in a graphite composite Tamina are effectively
insulated from each other. Thus we may set the transverse conductivities
G99 and b£3 equal to zero. Additionally, we assume that in the frequency
range of interest, oll >> Iselll so that the lamina acts as a good conductor
along the fiber-axis direction El . Therefore, for a single }aminu of
graphite composite,

o, + se, =

3
g T8y T 0033 S iZZ ®21%£4% (2)

A.2. Boron-epoxy laminae

Neither the boron tungstate fibers nor the epoxy matrix are conductors,

so o, = 0 (i =1,2,3). Thus for a boron-epoxy composite lamina
o, = 0 (3a)
= ? — -
€, = ) € .a_.a,, (3b)
L j21 L1EiTEL
1.

i.e., in that the displacement current density is negligible in comparisoﬁ
to the conduction current density in the £l—direction.




A.3. Analytical model for the determination of 91 and €04 (1 =1,2,3)

The structure to be analyzed to yield the constitutive parameters Oo1°
€0i (1 = 1,2,3) is shown in Fig. (4). This model is a one-dimensional array
of dielectric or conducting cylinders of radius rf in an infinite medium of
permittivity em. The element spacing is a. The lamina itself is the region
|£3[ :_d2/2. We shall consider only dipole interactions in the determination
of €2 and €o3° This procedure is strictly valid only when re is small in
comparison to a; this is not necessarily the case in the present probley.
However, the results will suffice for our purposes. This model is analyzed

in Section III,A.
B. Model for a Laminate

For 0°-90° layup (or for other layup configurations in which there is no
net preferred fiber orientation), a laminate model is readily obtained from
a simple field averaging over pairs of laminae. This procedure is justified
if the laminae are electrically very thin as we have assumed, and if the
reactive field of the periodic fiber array of a single lamina does not
significantly affect adjacent laminae. This latter assumption is readily
justified: when the fiber separation is small in comparison to the wavelength,
the reactive field decays in the directions normal to the lamina as
exp(-2ﬂ|£3|/a), where a is the fiber separation. Thus if dg is the thickness
of a single lamina, we require that exp(—ang/a) be small in comparison to
unity. Typical values for dlla are in the neighborhood of unity, so that
exp(—2nd£/a) is typically of order 10—3; therefore the reactive-field
interaction between adjacent laminae may be neglected.

An electromagnetic model for a laminate is a slab of uniaxially aniso-

tropic material. Denoting its conductivity and permittivity dyadics by

UL and EL, we readily obtain by simple averaging of the fields over adjacent

laminae

=x == - l . - - - -
OL + seL 2 [(011 + 022) + b(Ell + 822)](351351 + 352352)
+ (013 + SE£3)a£3a€3 %)
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Fig. 4. Structure for the analytical determination of constitutive parameters.




For the special cases of graphite and boron-epoxy composites, we obtain from

eqs. (2)-(4)

N = = _1 =z et - = 5
graphite: o, +se =3 Ull(aglagl + agzagz) + S€,33£3%,3 (3)
boron-epoxy: :L =0 (6a)

T =1 z a z .a 2 (6b)
e, =7 (Bgp Fegp)(@pgagy + agp3p)) + €p3a,433

Thus the graphite composite laminate is modeled as a transversely conducting
slab, and the boron-epoxy composite laminate is modeled as a slab of uniaxially
anisotropic dielectric, the optic axis being normal to the slab boundaries

in each case.
C. Wire-mesh Screen Model

The wire-mesh screen configuration has been shown in Fig. (3). The wire
radii r_ are small in comparison to the square-mesh period ag, and the junc-
tions are assumed to be bonded. The assumpticon that re << ag is not always

. satisfied for real screens; however, it will produce a conservative estimate

. for the equivalent sheet admittance. The wire spacing a_ will be assumed

small in comparison to the wavelengths in free space and in the laminate; we
shall also assume that the wire spacing is less than or equal to the laminate
thickness. This latter assumption, which is satisfied in practice, allows
us to neglect the finite thickness of the laminate in determining the equiva-
lent sheet impedance of the screen, since the reactive field carried by the
screen will not penetrate through the laminate.

The wires themselves are characterized by their impedance per unit

length, given by

1/2
L engfo )t 1 e vy .
W 21Trs 11( E;;E;.rs)

in which o, denotes the wire conductivity. In(~) denotes the modified
Bessel function of the first kind of order n. The screen wires are non-

magnetic (ur = 1); the wires are typically made of aluminum.



D. Electromagnetic Boundary-Value Problems

We address several electromagnetic boundary-value problems in the next

section. These include:

g1 (O €41)s €y -and €4 for a composite lamina: the

D.1. Determination of o

geometry of this problem is shown in Fig. (4)¢ We ¢comsider the application

of a uniform electric field EOE (i =1,2;3) and using 'standdrd-techniques

€1 .

determine the resulting polarizations of curferit deagityp--These results

are used to evaluate the constitutive parameters of the lamina.

D.2. EMP penetration of a graphite composilt® panel:. the gcometry for this

problem is shown in Fig. (5). We consider-the reflection and transmission
of a plane electromagnetic wave by a planar layer of tranmsversely conducting
material. The results of this analysis yield a relatively simple matrix

description of the field transfer characteristic of the panel.

D.3. EMP penetration of a screened boron-epoxy composite panel: the geometry ‘

of this problem is shown in Fig. (6). The panel is modeled as an anisotropic
dielectric slab with a screen in one surface. The screen is modeled by an
equivalent sheet admittance. We consider the reflection 'and transmission

of a plane electromagnetic wave by the screen-slab configuration.

D.4. Evaluvation of the equivalent sheet impedance of a bonded wire screen

in a dielectric interface: the screen geometry has been shown in Fig. (3).

The screen is located in the interface between two homogeneous dielectric
half-spaces. The boron—epoxy composite laminate is modeled as a uniaxially

isotropic medium.

The results of these analyseq{will be summarized, discussed, and -

illustrated in Section IV.
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Fig. 5. Geometry for analysis of EMP penetration of graphite composite
panel. The medium outside the panel is free space.
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III. ANALYSIS OF PROBLEMS

Before proceeding to the analysis of the boundary-value problems which
have been described in the preceding, we develop a "boundary connection
operator' which relates the fields on one side of a planar layer of material
to those on the other side. This "transfer function" operator formulation
will be useful in dealing with the reflection and transmission problems to
be addressed in Sections 1II,B and C.

The relation between the fields on either side of a uniaxially aniso-
tropic shield of general type* is best developed in terms of the Fourier

spatial spectra of the electric and magnetic fields E and H. Thus we write

=

E(£),E5,63) (ks E5)

0 —Jk b o -
- f r e Y 4% (8)
-—C ... t

H(E ,6,,E5) (k.4
in which E and H denote the Fourier spectra of E and H, T is the position
vector, and Ec is the Fourier spectral variable; furthermore, Et.;€3 = 0.
It is convenient to work with the perpendicular- and parallel-polarized
‘ components of £ and B separately. The perpendicular-polarized part of the

electromagnetic field is derivable from a function @(53) as follows:

=, - ‘__ — ~
E ]kt x ag3¢ _ (9a)
= 2
- jk - k -
= t d¢ t -
H' = - da (9b)
H,S d£3 H,S E£3
in which Q(&B) satisfies
a%s 2 -
- [k® + u s(o_ + s )]e =0 (10)
dE t o t t
3

and ki = Et . Et' The parallel-polarized part of the field is derivable from

a scalar function W(£3) as

g, + se £3 (11a)

t = = _ -z 3 = a2 =
We assume that g + se = (0t + set)(aslaél + agzagz) + (61 + 522)353353.
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i = -3k, x 3 ¥ (11b)

where W(£3) satisfies

2~ o + se

dy _ 2|ttt ¢ =
) [kt [0 ragpen ) + suo(ot + set)]? 0 (12)
d£3 L 2

As is apparent, this formulation can be used for either the graphite com-

posites (where o, = 0 and se, is ignored in comparison to ot) or the

boron-epoxy composites (where 01 = ot = 0).

Let us define the following quantities:
g
*3

2
kc + uos(ot + set) (13a)

K 2 = k2

g + se
2= |

t t
o, + ssg) *+ Suo(ot ¥ Set) (13b)

Then it is easy to show that the tangential components of E and ﬁ, denoted

by subscript t, are given by

—~ — - ]

Et(£3) = ~]kt x 363(A ~cosh K3£3 + B sinh K3£3) (l4a)
™ ] jEt ] L] N L ] ’

Ht(£3) = E;E K3(A sinh K3£3 + B cosh K3C3) (14b)
-0 "j Et n " " " "

Et(£3) = E:_:‘EE: K3(A sinh K3£3 + B cosh K3£3) (l4c)
:'l — - 1" ” 111 "

Ht(£3) = —jkt X a€3(A cosh K3£3 + B sinh K3E3) (144)

1 1] 1 "
in which A’ and B’ are constants.

We wish to find the relation between the fields at 53 = d and 53 = 0. A

straightforward analysis of eq. (l4) vields

) == uos v _ - ~1
.Et(d) c'T - Eg— S a€3 x I » Et(O)
=1 ! (15a)
! 3 .= = T ~f
Ht(d) a;g S aE3 x I c'l Ht(O)
It ([ K3S _ - T
E . . =
@] I (o, +sep 23 * 17| B (O
- T -0, +se) . (15b)
=n t t s a2 x f . C i: . ="
H. (a) o £3 i_(0)
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[ ] L} L
in which C * = cosh u<3’ d, S = sinh |<3’

d, and ?=dcnotes the
idemfactor.

Now in order to account for the existence of boundaries between the
shield material and the exterior media, we introduce the connection between
fields on either side of a boundary which may contain a sheet admittance.
It is assumed that such a sheet admittance is a scalar quantity for each
polarization of the field; it relates the surface current density js at
the sheet, which is located at 53 = 535, to the tangential electric field

there, which is assumed to be continuous through the sheet:
Tt N rn 11

Ys, Et, (535) = js, (16)

It is thus immediately apparent that at such a boundary,

£ e, o (T- o -l E " (e,

t 3s - t 3s 17)
~t " von_ = = ~t N

H (535 =) Y a X I » I - H

t s £3 t’ (E3s +)
0 denotes the null dyadic.
We now construct the connection between the fields in free space on
. either side of a composite laminate of thickness d, having a sheet admittance
on the side 53 = 0; the laminate occupies the region O 5_63 < d. We rcadily

obtain the following:

"(0-) M,

~t ~
E® ’ . M2 - E ’ (d+)
t 11 2
- 1 t (18)
~tr o o Lt ~t
’ - | s TR
n, H (0-) M,y M, ne H,W (d+)
where
=1 v =
Mll = cosh K3d I (19a)
==t -s v =
MlZ = ;:T sinh K3d a53 x I (19b)
3
1 ]
=t ' ' CK3 v -
M21 = (noYS cosh K3d + e sinh K3d)a£3 x I (19¢)
—t LI . ' |
MZZ = (noYs ;:T sinh K3d + cosh K3d)I (19d)
3 )

@
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n "

M.. = cosh k.,d I (19e¢)

11 3
"
— —K3 "o = .
My = o (e ¥ sc.y Sih X3d gy x I (196
ot t
T " " ot + set " oo =
My, = (n Y, cosh k,d + n_ —_——:ﬁ‘— sinh K3d)a£3 x I (19g)
3
) " K3 " TR
M22 = (noYs ;;?g:f;—ggzy sinh K3d + cosh K3d)I (19n)

c = 1//;;;;, the speed of light in vacuum, and n, = /53722, the character-
istic impedance of vacuum. Equations (18) and (19) represent the field
connection relation which we shall use in the analysis of the two reflec-
tion and transmission problems to which we have earlier alluded. The factors

n, have been inserted to make the matrix elements all dimensionless.

A. Determination of Constitutive Parameters

We consider first the evaluation of 91 for the graphite composite lamina
(cf. Fig. (4)). We assume that the fiber radius re is not large in compari-
son with the skin depth at frequencies of interest, so that the fiber is completely
penetrated by the component of electric field parallel to the fiber axis. We
further assume that the neighboring fibers do not disturb the current
density distribution in a given fiber, which is therefore taken to be uniform.
Denoting by Elf the axial electric field component at a fiber, the fiber

current If is given by

I (20)

£ e 95E ¢

in which og denotes the graphite fiber conductivity. The "incident" field at

the fibers (the primary field) is ‘10351’

The total field E due to the fiber array is easily shown to be

1t

-S o

E), = —2"0 I ) K, (sVu e /(52 - na)® + Eg ) (21)

-0
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and the field E due .to the field E and the fields of the neighboring

1f’ 10
fibers, is thus
SH o
= -—21 Y 22
Ei¢ = By — I ) K (sna vu € ) (22)
n=1
The fiber current If expressed in terms of the field E10 is
2
nOd T o
_ 2 mg 2 fl 2 S e -1 (23)
1f = ﬂrfogEloll + 5 ZE;) - savuosm nzl Ko(san uoem)]

where Ny = VuO/E; is the characteristic impedance of.the epoxy matrix. Now

IsaVuoem l << 1 at all frequencies of interest, and

lim x ] K (ax) = 7 (24)
x+0 n=1
as is easy to show. Hence
2 n o dl nri -1
If = nrfcgElo[l + ——E&—_t;ijl (25)
Now the average (over coordinate 52) electric field El at lE3| = d£/2 is,
. if |s Jue d,/2] << 1,
- E, = B - ;—: I (26)
so defining 91 through
B
ollEla = ;E; (27)

we immediately obtain the expected result

nrf
oll = (Jg[a—d;J (28)

Let us denote the volume fraction occupied by the fibers by q = nré/adl;

then 021 = qog.

We determine the permittivity €1 by a similar procedure, except that

we begin by assuming that the fiber current is given by
= rrla
If = ﬂrfs(cf em)Elf (29)

for the boron-epoxy composite, in which €s denotes the permittivity of the

boron fibers. The result is

19



(y]
I

g1 = g4 F em(l-q)

q(ef - em) te (30)

The determination of the permittivities €92 and €y5 May be done using
an electrostatic model. 1In each case a uniform electric field angi (i=
2,3) is applied to the one-dimensional fiber array and the resulting polariza-
tion is determined.

Consider first the case where the uniform electric field is Eo;gz‘ Then
the potential outside the fibers is

b 52 - na
V(EpE3) = “ESy * e L

(31)
m n=-w (Ez-na)2 + gg

in which p denotes the line dipole moment of a single cylindrical fiber. The
field EgZO at 52 = 53 = 0 due to the applied field and the presehce of all
the fibers except that at EZ =0 is

E +—B- § L
o

E
Te_a n=1 n2
m

£20

2
P (I
., v 2] G2
me_a
m
from which it is evident that if p = aeemE£20’ where a, denotes the polariza-
bility of the fiber,
“etm
E (33)

P=——"7—5
1-a 1!/6a2 °
e

The induced dipole moment per unit volume in the lamina is simply p/adl,

so that in the lamina, on the average,

ae/adl
DEZ B EmEo[l + '5] = £25 (34)
1- aetr/6a
Now o, is given by
€. - €
~ 2 f m
a, = 21rrf {E——;—E—} . (35)
f m
for boron-epoxy composite laminae and by
_ 2 :
ae = anf (36)

20




for graphite composite laminae. Thus we obtain

1 + 2qf(1 - nd,/6a)

= 37
22 T "m T 1 - 2qf(nd,/6a) (37)
in which q is the volume fraction occupied by the fibers and
1l , for graphite composites
f = (38)
€ ¢ ~ “m
——— , for boron-epoxy composites
e. + €
f m
A similar analysis carried out for an applied field EOEEB yields the result
that
1 + 2qf(1 + wd,/6a)
e =c¢ 2 (39)
L3 m 1+ quwd£/6a

It is not our purpose here to conduct a detailed exploration of the
behavior of the constitutive parameters as functions of the variables q,
ef/sm, and dzla. Rather we shall focus attention on a typical case, in order

to obtain estimates of the parameters which will be used in our later analysis.

We shall consider as typical the values q = 1/3, dlla = /3 = 1. We thus
‘ find that for graphite laminate panels,
=1 =1
o, 250, 3 og (40a)
E, S €,, = 3 13 (40b)
L 23 2 m
and for boron-epoxy panels,
€, = 1 (e, ., +¢ ,) = 1 (e, + 5¢ ) (41a)
t 2 21 22 6 f m
3rf
€ = €237 % [e + 2e ] (41b)
m £

We shall now apply these results to the remainder of the boundary-value
problems mentioned earlier, beginning with the treatmenf of the graphite

composite skin panel.
B. Electromagnetic Plane Wave Penetration of a Graphite Composite Skin Panel

The geometry of the problem we shall consider is shown in Fig. (5). A

. graphite composite laminate of infinite transverse extent fills the region

. 21



0 <z <d. An electromagnetic plane wave impinges on the laminate from the
region z < 0. The problem is to determine the reflected and transmitted
fields. It will be recalled that the graphite composite laminate has been
modelled as an anisotropically conductive slab. Specializing the various

quantities in eqs. (13) to this case, we obtain

'2 '..2
Ky = suo. = srd/d (42a)
x; - suoot[l - SinzeJ = st /d? (42b)
Lr
where t; and t; are theé shield diffusion time constants and in which
€or = elleo and 8 denotes the angle of incidence. It is immediately apparent

that insofar as the perpendicular-polarized field is concerned, the graphite
laminate behaves as an isotropic conducting slab of conductivity o,- For

"
the parallel-polarized field, the shield diffusion time T4 depends upon

the angle of incidence and the "longitudinal" permittivity € We obtain

%
=t n
for the matrix elements M,’

ij
=t . 1] = (L
= ’
Mll 1 cosh ST, (43a)
] R ”
% I 1) sinh [sT
==t - - _Si d - =
MlZ - _-—_——T_:—— a, x I (43b)
srd’
1 1]
—tn sinh srd’ _
s = - T
M21 noctd — a, x I (43c)
srd
=t n == T
’ = ’
M22 I cosh ST, (43d)

These elements completely characterize the graphite composite panel for

frequencies at which the transverse conduction currents dominate the dis-
=1 N

placement currents. We shall now show that the elements Mlé can be
o e [

b

21 insofar as the reflected and

neglected entirely with respect to M

transmitted fields are concerned.
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Consider first the reflection and transmission of a perpendicular-

polarized plane wave by the panel. We have incident, reflected, and trans-

mitted fields given as follows:

7 - E'a e—s/c(x sin® + z cos0) (44a)
inec oy
- - - - +
g Hinc = Ec')(az sind - a_ cosf)e s/c(x sind z cosb) (44Db)
E;ef - R'E;;y e—s/c(x sin® - z cosf) (44c)
n ﬁ;ef - R'E;(Ez sin6 + ;x cose)e—s/c(x sin® - z cosé6) (44d)
g - T'E'S e—s/c[x sin® + (2-d)cosb] (44e)
trans oy
n, —Erans = T'E;(Ez sinf - ;x cose)e-slc[x sin® + (z-d)cos8] (44£)
Therefore we immediately obtain
=5 = 1 [
Et(O) (1+R )any (45a)
= = - _n! [
’ n, Ht(o) cos9 (1-R )anx (45b)
- =' = ' '-
Et(d) T any (45¢)
= = - tpt A
n, Ht(d) cos® T anx (454)

Connecting these fields across the graphite composite panel using eqs. (18)
and (21) yields a pair of equations for the reflection and transmission

coefficients R' and T':

u d sinh /g?g Ar 1 i ]
1 —cosh /sté - 39 cosp ———— ¢ R' -1
= (46)
sinh vst'
cos@ cos® cosh Vsté + 1 cft:d-—-———————'i T' coso
o y’sr(’l JL J L J
Solving for R' and T' yields
' 1 sd 9 sinh Vsr& .
R' = v (E— cos' @ - nootd) _ (47a)
o &
—
T' = %T (2cosH) (47b)

23



with

sinh vst!
D' = 2cos8 cosh /sr& + (nootd +-§Q cosze) —_d (48)
st!
d

Now neglecting sd/c cosze with respect to noctd is justified for all angles
8, in the frequency range where graphite can be considered a good conductor.

Thus

-noctd sinh Vsré
R' = > sech T' . (49a)
sr&
n otd sinh Vsré -1
T' = [cosh /sré + 02 secH ] (49b)
vYst!

d

It is immediately clear that the "effective'" values of the elements ﬁ;j are

ﬁ}l = ﬁ}z = cosh Vsré 1 (50a)
M, = 0 (50b)
- sinh VSTé _ -
M =nod————a x1I (50¢)
21 ot /gt—c.l- z

in that these values for ﬁlj yield egs. (49) directly.
It is interesting to express the relation (18) for perpendicular polariza-

tion as follows, using egqgs. (50):

-_-_' _ == . == . ='
Et(O ) I 4] Et(d+)
= COShVSTé (51)
v - [ T . T . <
n, # (0-) Mo Yo oq 3, * L+ T || n fcat)
in which
tanh Vsré
' = —_—_—_—
no Ys,eq nootd far™ (52)
d
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Comparing eq. (51) with eq. (17), we see that the graphite composite pane
can be modeled as an equivalent sheet admittance, even if l/;?gl is not
small in comparison to unity, if the "extra" factor cosh /;;z-is extracte:
as shown in eq. (51). Naturally if l/;?zl << 1, we obtain the expected
result

' "o Y5, eq = no.d (53)

sté»O
Now consider the parallel-polarized fields. The incident, reflected,

and transmitted fields are given by

-g/c(x sin® + z cos@)

E;nc = Eg(zx cosH - ;z sinf)e (54a)
n f" =g" o-S/c(x sinb + z cos8) (54b)
o inc o'y ’
E;ef = —R"E;(Excose + Ezsine)e_slc(x sin - z cosé) (54c¢)
n #" = R"E"2 e-s/c(x sin® - z cos8) (54d)
o ref oy
-:rans = T"Eg(;x cbse - Ez sine)e-s/c[x siné + (z-d)cosé] (54e)
n @" - TE"Z o—S/c {x sin® + (z-d)cosH] (54£)

o trans o'y

and the tangential field components at the boundaries z=0 and z=d are

E:(O) = cos8 (1-R")E! Sx (55a)
n, ﬁ:(O) = (+R"E] Ey (55b)
E:(d) = cos® T"E; a_ (55¢)

) — nepn 7
n Ht(d) T E° a

o (55d)

y
Now connecting these field components across the graphite composite panel
using eqs. (18) and (21) yields two relations between the reflection and

transmission coefficients R" and T" as follows:

i ST A U T

cosé cos® cosh vst'l + — ——— R" cosH
) d ¢ Jat
d

= (56)
sinh VSTH
-1 cosh /srg + nootd cos§ ——— || T" 1
L 'ST'C; di L J
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from which we obtain

w1 2 sd 51nh¢srd

R" = LUl (nodcos’® - —) ———— (57a)

ot [od ,S_T 12

d

" 1
T = v (2cos8) (57b)
where
2 sd sinh Vsrg

D" = 2cos6® cosh Vsr; + (nootd cos 6 + E") —_— (58)

It is apparent that for frequencies at which the graphite composite
can be considered a good conductor and for angles of incidence not too close

to 90°, sd/c can be neglected in comparison to nootd cosze, so that

sinh /srg

R" = % nootd cos® i (5%9a)

no
0t L osb —_—] (59b)

T" = [cosh Vst"l +
d" T2 i

The "effective'" values of the elements Ezj under these conditions are

therefore
Eyl = ﬁgz = cosh Vstg T (60a)
'ﬁ;z =0 (60b)
_ sinh ST;
M!. =nod———a x1I (60¢)
21 ot /g;g z

Furthermore, a "'semi-equivalent" sheet admittance Y; eq can be defined
b

exactly as in eqs. (51) and (52); we merely replace the single primes (')

with double primes (") in those expressions.
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C. Electromagnetic Plane Wave Penetration of a Screened Boron-Epoxy Skin
Panel

The geometry of the problem we shall consider is shown in Fig. (6). A
boron-epoxy composite laminate of infinite transverse extent fills the
region 0 < z < d. A wire-mesh screen is in the surface z=0. The screen
is described by a sheet admittance ?; which diagonalizes for perpendicular
or parallel-polarized fields; the eigenvalues for these cases are Y; and Y;
respectively. A plane electromagnetic wave impinges on the laminate from
the region z<0. The object of the analysis is to determine the reflecte? .

and the transmitted fields and to determine the equivalent admittances Ys; .

For the boron-epoxy composite, k! and k! are given by
g

3 3
2.2 2
Ky = kt + s HE, (61la)
"2 2 %t 2
Ky~ = kt E; + s HoEe (61b)
When the incident wave is perpendicular-polarized, we obtain the following
‘ expressions for the reflection and transmission coefficients R' and T',
' using a procedure similar to that carried out in the previous section:
inh k!d
e ol oy g 4 84 D
R o [noYs(cosh K3d + = cos®@ Kéd
. ]
sd 2., c _'2p Sinhkad
+ (- . cose + — k,d ) Kéd ] (62a)
2 ]
T = =557 (62b)
in which
1 ]
sd 2 CK32d2 sinh Kéd
D' = 2cos8 cosh KSd + (E— cos 6 + < ) T3
3
od sinh Kéd
1 4 =4
+ noYs(cosh K3d + N cosf Kéd ) (63)

These results may be greatly simplified by noting that over the frequency
range of interest the boron-epoxy laminate is electrically thin, so that

IK%dI << 1. We thus obtain
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-n Y'

_— o se
RT = 2cos® + n_ Y' (64a)
o “se

v . 2cos -sd/c cos®H .

T 2cos8 + n_ Y' °© (64b)
0 "se

in which the factor exp(~sd/c¢ cos®) is included in T' to refer the phase

of the transmitted field to z=0, and

v - '
nO ¥ r"0 YS

' + 84 (e, -~ 1) (65)

c T
is the normalized equivalent admittance of the wire screen and the boron-
epoxy composite panel, for perpendicular polarization. €or = et/eo. In
a practical configuration, the normalized screen admittance no Y; will
greatly exceed that of the laminate panel sd/c (etr - 1), which may therefore
be neglected.

When the incident wave is polarized parallel to the plane of incidence,

the reflection and transmission coefficients R" and T" are given by

2
w_ 1 " sd |, _sin’® sd)
R" = 7w {noYs [1 + secBd P {1 E;;T-J] +te. E_f (66a)
v = 2secd (66b)

where

. 2
p" = noY;[l + secH sd [1 -8in®

. Egr )] + %i [etr + sec26 [1 - 55559]] + 2secH
(67)

in which we have assumed that lKgdl << 1. It is not possible to construct

an equivalent sheet admittance Y;e for this polarization except under special

circumstances. However, if 8 is not too near 90°, we may write

n Yll
" oo 0 se
R 2sec6 + n Y" (68a)
0 se
"o 2secH
T 2secH + n Y" (68b)
0 se
in which
(1} ~ " ﬂ
noYse - noYs + c Eer (69)
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) 2 . 2
It is assumed that lsece sd/c (l_Sinze/ELr)l << 1 and sec 8(l-sin e/gzr) <<

The first assumption will be valid in the frequency range of interest

€, _.
i;re is not too near 90°; the second assumption is questionable. However,
it will happen that |n°Y;| will be large in comparison to Isdetr/cl, so

a good approximation to Y;e is simply Y;. This must not be construed,
however, as implying that the boron-epoxy laminate has no influence; as
we shall see in the next section, Y; depends on the dielectric properties
of the composite slab on which the wire mesh screen is placed.

We conclude this section by noting that the screened boron-epoxy
composite panei can be modeled (at least under most conditions) by an
equivalent sheet admittance Y;e or Y;e; also, Y;é" = Y;’". Thus the
connection relation for the electromagnetic field across the panel is
roughly that given in eq. (18), with

_ = =
Mg =1=My

=0 (70)

The sheet admittances Y; and Y; are determined in the next sectiomn.

D. Effective Sheet Admittance of a Wire Mesh Screen in a Dielectric
Interface :

We consider the fine wire mesh screen shown in Fig. (3) and dis-
cussed in Section II,C. We neglect the finite thickness of the laminate
for reasons already discussed and consider it to be infinitely thick.
The screen resides, therefore, in the interface between two dielectric
half-spaces. The half-space z<0 is free space and the half-space 2>0
is uniaxially anisotropic, representing the composite laminate.

We express the x-directed currents in the wires at y=qa (q =
0, +1, +2, ...) and ﬁhe y-directed currents in the wires at x = pag

(p = 0, +1, +2,...) as follows:
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—Kxox - K oqas )
e y [Ixo + Af(x) + sxg(x)] (71a)

Ix(x,y=qas)

“xoP?s T Kyoy
I - Af - 71b
e [ yo (v) syg(y)] (71b)

Iy(x=pas,y)

in which I , I _, A, s_, and s_ are to be determined,
X0 yo x

y
k =2 sine cos¢ (72a)
X0 ¢
k. =2 sind sin¢ (72b)
yo ¢
and f(x) and g(x) are given by+
© -2jmnx/a
=1 5 1 s
f(x) = 73 E S e (73a)
n——m
-a © -2njnx/a
g(x) = 52 X' lf e s (73b)
(21)” n=-> n

f(x) is a sawtooth function of period a, with unit jump discontinuities at
x =0, i?s""’ and g(x) is a function with unit slope discontinuities at
these points. Both functions have zero average value. It will be noted
that the expressions given in eq. (71) guarantee that Kirchhoff's current
law is satisfied at the junctioms.

We now impose further conditions on the currents. First, the linear
charge densities on the "x-wires" and the "y-wires" are made to be con-
tinuous through the junctions. This condition readily yields the relations

s, = Kon (74a)

s_=x_ A 74b
y o (74b)

Next, the charge densities on the x-wires and the y-wires are forced to

be equal at the junctions (i.e., there is no potential difference

across any junction -- the wires are bonded there). This condition
yields
a2
A= as(Konyo - Konxo)[Z + I% (rio + K;o)]—l {(75)

so that, if quantities of order (saS/c)2 and higher are neglected,

fThe primes on the summation signs in eq. (73) indicate that the n=0

term is omitted.
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-K_X - K a a
X0 yoq s

s

Ix(x) = e [Ixo +-E— f(x)(Konyo - Konxo)] (76a)
“KxoP? ~ Kyoas ag

Iy(y) = e [Iyo -5 f(x)(xonyo - Konxo)] (76b)

The surface current density js agsociated with these currents in

the 2=0 plane is
® @ —jkxmx - jkyny

Js = z Z € (astxm + astyn) (77)
m=—m n=—w
in which
- 2mm
kxm = =ik, + P (78a)
s
3 2nw
k = -jk + — (78b)
yn yo a_
g =11 -l o I -k I)Q@-6) (78¢)
sxm  a_ "x0 mo 47jm ““yo'yo X0 X0 mo
L1 6+ kI -k I )-8 (78d)
syn a yo no 4mjn yo yo X0 X0 no

S

and 6no denotes the Kronecker delta-function. The electromagnetic field

whose source is Js is given by

E o © E -jk__x - jk_y
= 1 ¥ mie @ e (79)
ﬁ M=—® [N=—=® =
mn
with
- - 2
- _ = jk dy k ~ ¥
£ =-jk xa$ - _——tmo_mn tmn_ ¢ 3 (80a)
mn tmn z mn SE € dz SE € mn 2z
o tr o 2r
= - - - Jktmn dq’mn kimn P
Hmn = _Jktmn x az‘ymn + suo dz SH ¢mnaz (80b)
in which k =k a +k a -and kz = k2 + kz . ; and ¥ satisfy
tmn Xm X yny tmn Xm yn mn mn
the equations
d2¢mn 2 -
" (81a)
dz

1.
<
For z<0, replace ¢ and € by 1.



d7y 5 -
an =0 (81b)
2 mn mn
dz
where
2
A2 =12 =12 - sk 45 (z < 0) (82a)
mn mn mno xm yn c2
2 .
r2 =12 -1® v v 5 ¢ (z > 0) (82b)
mn mnd Xm yn c2 tr
. € 2
A2 =A% - k) RS (2> 0) (82¢)
mn mnd xm yn' €, c2 tr

Solutions of eq. (8l) for which the tangential electric field is con-

tinuous at 2=0 and for which the proper behavior as z+ z= is obtained

are
- anoz
¢mn = Amn e (z < 0) (83a)
—Pmndz
= Amn e (z > 0) (83b)
- an anoz
‘i’m = —-——e T e (z < 0) (83c)
tr mno
-an - mndz
=3 e (z > 0) (83d)
mnd

Forcing the tangential magnetic field to be appropriately discontinuous at
z=0 yields a pair of equations which may be solved for Amn and an. We

readily obtain

_ (kaszyn B Jkyanxm)uos
Ahn = 3 2, (84a)
(rmno + rmnd)(kxm + kYﬂ
5 - _(kaszxm + Jkyanyg) 86y
mn 1 1 2 2
( + e T )(kxm +k n)
mnd tr mno y

This completes the formal solution for the electromagnetic field created

by the wire currents.
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We now assume that in addition to the field due to the currents,

there exists a "primary"” field Eo’ given by

-jk - jk
Jk x h| on ) (85)

Eo(x.y.O) = e (Emax + Eyoay +E a

in the plane of the interface. Furthermore, we enforce the condition
that at the wire surfaces the component of electric field parallel to
the wires is equal to the wire current multiplied by the wire impedance
per unit length Zw (cf. eq. (6)). Since the wire radii have been
assumed small, it suffices to apply this condition at z = -rs; thus

we require that

Ex(xaqasa-rs) Zwa(x9qas) (q. = O)_"_'l: aee) (863)

Ey(pas,y,-rs) Zwa(pas,y) (p = 0,+1,...) (86b)

Application of these conditions leads, after some manipulation, to the

. t
equations
-] - r
E_+ ) @ T +J_U )e @3 a2za3 (87a)
X0 SX0 on syn on W S 8XO0
n<=-—tw
pes “mooT
E. + ) @V _ +J_W )e ®=zayJ (87b)
yo  e_o SXm MO Syo mo W 8 syo
in which
2 2
-1 Suokzgf kxo
Ton -2 2 T + T * € (88a)
kI + k ono ond [ tr 1 )
X0 yn sSE +
oA
ond ono

There are actually an infinite number of equations generated by the
application of the wire boundary conditions, reflecting the fact that
a more rigorous solution of this problem requires complete Floquet-
series expansions for the wire currents [2]. However, the results
thus obtained in the low-frequency limit are identical to those

obtained here. One may interpret the wire boundary conditions used
in this Memo, eq. (87), as

as/2 jkxox as/2 jkxox
I_a /2 Ex(x,qas,—rs)e dx = Zw f_a /2 Ix(x,Qas)e dx
s s

and similarly for the y-directed field and current.

33



r -
U = _ZEEEL,_ ”_.SUQ_-.._ ——
on k2 + k2 I‘ono + I‘cmd Etr 1
x0 yn SE |- + —
L olA i
_ ond ono 2
v _ kxmkyo suo 1
mo k2 + k2 I‘moo + r|mc,\d Etr 1l
Xm yo L seo A +
mod moo’ =
sy k2 kz W
W - -1 O Xm + yo
mo kz + kz I|moo + I‘mod' etr 1
Xxm yo SE +
L olA J
mod moo
Equations (87) can be manipulated into the form
E VA - T Z -~ U J
X0 SXX oo sxy 00 SX0
yo SyX " “oo syy - woo syo
where
P xo2s -Poﬁo s
= - |
stx Zwas nz_w [Ton 41n on]e
k a - T
7 - _ z, ¥o S 4 ono s
SXy 4nmT  on
n=-¢n
T kxo s —rmoo s
= 1
Zsyx _Z 4mm mo
m..-m
v kzoa - moors
= -— ' -—
Zsyy Zwas mZ-w [wmo 4mm vmo]e

(88b)

(88c)

(88d)

(89)

(90a)

(90b)

(90¢)

(%04)

Now the total space-averaged tangential electric field at the plane

of the grid is

= + a_ + a
Et,avg (Exo Exoo)ax (Eyo + Eyoo)ay
with
E T U J
X00 00 00 SXO
E v W J
yoo 00 oo syo
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so that combining eqs. (89) and (91) yields the result that

E = « J (93)
t,avg s S00

N

where the elements of 3; are given in eq. (90). Eq. (93) represents the
relation which has been sought; it is the defining relation for the equivalent
sheet impedance of the screen in the interface.

In the low-frequency limit where
2 2
s”| oo [2_"]
a
s

2
e 1 [zr_r]
E a

2
tr V' s

c
2
5_
1%
1 [Zﬂ)z
<€ —— |
Elr as

c

2
5_
%

Cc

we may readily evaluate E;, retaining only terms of the first order in s,

to obtain

- sua_ . aL ‘—‘ckc
2 = (za_+—5— LI+ -—— (94)
s ws 2nse (1 + Ye_ e )
o Lr tr
in which kt = ktoo and
-2nr _/a
L=gn(l-e ° 57t (95)

The eigenvalues of ?; are easily found. For perpendicular polarization,

su_a

1 o's
' = - =
Zs = Y; Zwas + o L (96)
and for parallel polarization,
1 SHo8s 51n29 '
Z; =37 = Zwas + NI L [1 - ‘—-————————J 97)
s 1 + ve, €

It will be noted that these results reduce to those obtained by Kontorovich

(3] for the wire mesh in free space when le = Etr = 1. We also point

out that if the dielectric medium on one side of the screen is isotropic,

T 2

sin26 may be replaced by ki/ko

when fields other than plane waves are
considered.
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" with relative permittivity E» then ve = €. This completes the

€
Lr tr
development of an equivalent sheet immittance to represent the wire mesh
screen in the surface of a composite laminate panel. The results may be
incorporated with those obtained in the previous section, C, to obtain
a complete description of the screened boron-epoxy composite panel. We

discuss this point and others in the concluding section.
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IV. RESULTS
A. Summary and Discussion

A.l1 Graphite composite panels

A graphite composite laminate is modeled as an anistropic conductor.

The anisotropy is uniaxial, the optic axis being oriented normal to the
panel; the preferred directions for the conductivity are parallel to the
panel surfaces. 1In our study of this type of composite we have assumed
that the epoxy matrix esseﬁtially insulates the graphite fibers from each
other, so that the conductivity in the direction normal to the panel sur-
faces is nil. The conductivity in the transverse direction, ot, is given
approximately by one half the fiber conductivity multiplied by the fraction
of the volume of the composite which is occupied by fibers. The permittivity
in the direction normal to the laminate has been estimated in terms of the
matrix permittivity, the volume fraction occupied by the fibers, and the
ratio of the lamina thickness to the fiber spacing (cf. eq. (39)).

If the fibers are not insulated from each other by the epoxy matrix,
then there will exist some conductivity in the direction normal to the panel,
and the transverse conductivity will increase. However, it is reasonable to
assume that the normal conductivity will be small in comparison to the trans-
verse conductivity.

The connection of the fangential components of the electromagnetic field
across a graphite composite panel is given by eqs. (18), (50), and (60). The
connections for the two orthogonal field polarizations differ only in the
shield diffusion times T} and 1". These are related by

d d

3 = Té(l - sinze/elr) (98)

T

2 .
and Té = uootd . It is important to note that the precise value of €or is
not of great importance (at least for real incidence angles 0), since it
will typically be in the range €r ZEmr and €n for a typical epoxy is
3.550. Thus 13 is not a strong function of 8. Furthermore, if there
exists any appreciable conductivity in the direction normal to the panel,

even though it is small in comparison to Op» then €or becomes effectively

very large and tg = T&.
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It is apparent that the critically important parameter for characterizing
the graphite composite panel is the transverse conductivity O, - The con-
ductivity of pure graphite is 7.14 x 104 mho m—l. Assuming that the fibers
have essentially this conductivity and that the volume fraction occupied by
the fibers is 30%, we find that o, = 104 mho m_l, which is of the order of
magnitude reported in the literature [1]. An adequate model for engineering
purposes of a graphite composite panel would thus appear to be a homogeneous,

isotropic slab, typically 2-3 mm thick, of conductivity 104 mho m-l.

A.2 Screened boron-epoxy composite panels

A screened boron-epoxy composite panel is modeled as an anisotropic
dielectric slab with a sheet admittance in one of its surfaces. Formulas
for the dyadic components of the permittivity have been derived, and an
expression for the equivalent sheet impedance has been obtained. As a
"worst-case" example, consider a 40-mesh screen (as = 0.635 mm) of stainless-
steel wire (ow = 1.1 x 106 mho m—l) whose radius is 0.05 mm, and let
f = 108 Hz, at the upper limit of the EMP spectrum. Then we find that the

normalized screen admittance noY; is 1018 - j3016. Now at f = 108 Hz,

[sd/ci = 0.0063 for d = 3 mm. Clearly, for any reasonable value of Etr
the effective sheet admittance of the composite panel and the screen is
simply that of the screen alone; thus the electromagnetic field connection
across the panel is that given by egs. (18) and (70).

It is now evident that for electromagnetic shielding calculations the
only important parameter of the composite material itself is /E;;E;:, the
geometric mean of the transverse and longitudinal relative permittivities

(cf. eq. (97)). We may estimate this parameter using eqs. (41) for q = 1/3,

d /a = 1, assuming that ¢ = 3.5¢ and €_ = IOET. We find for this case
L m o f o
“ezretr = 4,52 (99)
1-

The value of the permittivity of boron fibers is not known. This value was
obtained by W. Gajda of Notre Dame [4], who is not yet convinced of its
accuracy. Interestingly, however, it happens that for this choice of
parameters, € _ = 4.58 and €r = 4.47, so the medium is nearly isotropic.
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Now the factor by which the "grid-induced" inductive terms in Z; and Z; differ
is [1 - sinzel(l + /E;;E:;)]. In our example, variation of 6 from 0° to 90°
causes this factor to decrease from unity to 0.82, so the differences between
Z; and Z; are not large. We conclude that the critical parameters for the
electromagnetic characterization of screened boron-epoxy composite skin

panels are those of the screen itself: the wire radius and conductivity,

and the mesh size.

Typical wire mesh screen parameters are as follows:

1. wire material: aluminum (ow = 3.7 x 107 mho m.l).
1.1 x 10 mho mw 1)
1.1 x 106 mho m-l)

phosphor bronze (cw

stainless steel (ow

2. mesh sizes: a_ = 0.635 mm (40 mesh)
= 0.212 mm (120 mesh)
= 0.127 (200 mesh)

3. wire radii: r_ =

mm
s 0.127 mm (diameter = 0.010")
mm

0.051 (diameter = 0.004")

It is a simple matter to compute Z; and Z; for various combinations of these

parameters as functions of the frequency. Some representative curves for Z;

for 105 Hz < £ < 108 Hz are shown in Fig. (7).

B. Concluding Remarks

We have found in this study that of the many geometrical and electrical
parameters necessary completely to characterize advanced composite materials
from the electromagnetic point of view, only a few turn out to be of critical
importance for the analysis of electromagnetic penetration of composite
panels, at least in the EMP frequency range (f < 108 Hz). These critical

parameters are

for graphite composites: the transverse conductivity o, and to a
lesser extent the longitudinal permittivity €y3 if the conductivity
normal to the laminae is appreciable, then the only parameter of

importance is o3
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for screened boron-epoxy composites: the screen parameters as, rs,

and Oy and to a lesser extent the geometric mean of the transverse

and longitudinal relative permittivities /E;;E:;:
It is fortunate from the standpoint of EMP protection engineering that so
few of the composite parameters are necessary to treat the relevant electro-
magnetic field problems. This is so since, as we have previously pointed
out, the study of the basic electrical properties of advanced composites
is still in its infancy; consequently, available data are very sparse. How-
ever, the critical parameters o, and /E;;E:: can be estimated on the basis
of what limited data are now available, using analyses of the type which

have been discussed in this Memo.
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