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I. INTRODUCTION

Many of the aircraft-EMP interaction problems are concerned with cavities
coupled to the aircraft exterior through apertures. Typical examples are the
cockpit cavity, the bomb bay, the avionics bay, and the wheel well, to mention
just a few. These cavities are electromagnetically coupled to the exterior
through windows or door slits. Although cavity excitation by apertures is an
old topic, there seems to be certain persistent confusion among the techniques
developed in the past for treating this problem. The confusion arises mainly
from the need of a magnetic scalar potential ¢ , in addition to a electric
vector potential F , to completely describe the cavity fields. This magnetic
scalar potential ¥ is of particular importance in EMP interaction calculations
because it yields the low-frequency penetrant magnetic field. There are, however,
two distinct methods for the determination of Y each of which gives seemingly
different solutions. It is one of the purposes of this note to end all the

confusion in cavity excitation via apertures.

In Section II the two methods to calculate ¥ are described. In Section ‘ "
III a rectangular cavity (more precisely, a parallelepiped) is taken as an
example of a simply connected cavity and explicit results for ¢ in terms
of its normal derivative in the aperture are derived by the two methods. The
problem of a multiply connected cavity is taken up in Section IV, where V¥

is worked out in detail for a coaxial cavity.




II. THE TWO METHODS -

It is well known that the cavity fields excited via an aperture can be
described by the magnetic scalar potential ¢ and the electric vector
potential F , viz.,

. (1)

The counterparts of ¥ and F are the electric scalar potential ¢ and the

magnetic vector potential A by means of which one can write

E'=-Vp-sA -
2)
H'-leA
H " A

where (E' ,H') is the field radiated by electric currents and electric charges
such as those on a conductor, whereas (E ,H) 1is the field radiated by magnetic

currents and magnetic charges distributed in an aperture.

One of the possible ways to proceed with equation (1) is to express F in

terms of cavity normal modes (E_,H ) and to obtain
P P
H=- V) + se a /k )H
H ¥ Y ( W) R
(3)
E = a E
- Z PP
where the p-th normal modes satisfies
VxE =kH , VxH =kE (4)
-P PP -P PP



and the boundary conditions that n X_l;p and ﬁ°1~1_p vanish oﬁ tt_le cavity walls .
with all apertures short circuited by "isotropic" perfect conductors. In the

zero frequency limit (s =0) , the magnetostatic field arises solely from Wy ,

while the electrostatic field is contributed by all the normal modes.

As mentioned in the Introduction, there are two distinct methods of finding
¥ - In what follows, these two methods will be designated as the Direct Method

and the Eigenfunction Method.

A. Direct Method [1,2]

It is customary to use the Coulomb gauge for ¢y and F in the calculation
of cavity fields, so that F can be directly expressed in terms of the solenoi-

dal normal modes. Thus, within the cavity volume V one has

Vi =0 (5)

Assuming that the geometry of the cavity permits the separation of variables

one writes the solution of (5) as

v=LlAw, (6)
where wv satisfies (5) and

(7)

with the constraint that

3
J‘A%ds=o

where S-—SA represents the surfaces of all the cavity walls except the wall
S, which contains the aperture A (Figure 1). To find the expansion coeffi-

A
cient Ab one matches the normal derivative of (6) at the surface SA , Viz.,




Figure 1. A cavity with an aperture in one of its walls.



By virtue of the orthogonality property of (3/ an)wv over the surface § A .

one has from (8)

A = ; (9)

where (9/9n)¥y over A 1is either given or matched to the field exterior to

the cavity.

An alternative method to determine Av is to multiply both sides of (8)
by 4’\: and to make use of the orthogonality propertj of (a/an)wv and zpv

over the surface SA . Hence,

v W 4s
A, = A _von 3; (9.a) ‘
Jy 199, | “av ’

where one has used the following operations

EL] Y ) .
v v : 2
J'SA’*"\’ an ds = IS ll-'\, on ds = J"Vv. (W“V'bv)dv = Iv IW’\,I av .

If one tries to solve (5) by the technique of Green's function, i.e., to
represent ¢ within V by an integral over (3/9n)y in the aperture, one
would encounter a serious difficulty, which is well known for the Neumann

problem of a closed region.

B. Eigenfunction Method [3,4]

Instead of solving the Laplace equation (5) directly for ¢ one constructs

Yy from a complete set of eigenfunctions "”q » namely,



V=] By¥q - (10)

where *q satisfies

(11)

where S is the surface of the closed cavity with all apertures short-—circuited
by isotropic perfect conductors. The determination of the expansion coefficient

Bq is not as simple as the determination of Av because the interchange of the

order of differentiation and summation is not permissible on the surface § .

To find Bq one integrates wpﬁ-vw over S and by means of the Gauss theorem

one has
Js wpﬁ-vwds = [, 8 (W, 7¥)ds
=L (y,74)dv
= Jy Ty, 70 + zppvzq,)dv

= Jy Ve Ti v %% =0, in V) (12)

Using (10) to evaluate V¢ in (12) one gets

on

. - 3y
LB,y v, vy 4V Ja¥p o 98 (13)

where the fact that (8/3n)y = 0 on S-A has been used. To work out V¢p°v¢q
one recalls that within V

D]



2 2
v + k =0
wP PwP

2 2 ‘
v + k = 0
lpq qwq
from which

2 ,.2
Ve vV +y9 V =2V <V + (k” +k =0
(¢p ¢q Wq.¢p) ¢p ¢q ( P q)wpwq
which gives, when integrated over V ,

1 ,2,.2
J‘v v.pp qudV > (kp+kq) ‘j;]wpq,qdv (
' 14)

=5 12 [ y2av
Pq PN 'p

where qu is the Kronecker delta and the orthogonality property of wq in V
has been used. Substitution of (14) in (13) gives ‘

w av
Jo¥p 3n 95 - Ja¥s 5p 95

5 (15)
K, Jy vpav Jy 7oy "av

Unlike the Direct Method which uses the fact that ¢ satisfies the Laplace
equation in V from the outset in the construction of the solution, the Eigen-
function Method makes use of that fact only in the process of determining the

expansion coefficient Bq .

In the next two sections expressions (6) and (10) will be evaluated for
a rectangular cavity (a simply connected cavity) and for a coaxial caviti (a

multiply connected cavity).

10



III. SIMPLY CONNECTED CAVITY
The rectangular cavity shown in Figure 2 is an example of a simply
connected cavity. The rectangular cavity is often a good approximation to
many cavities on an aircraft, for example, the avionics bay, the wheel well,
and the cargo bay. The magnetic scalar potential inside this cavity with an
aperture in one of its walls will be calculated by the two methods described

in the previous section.

A. Direct Method

Referring to Figure 2 one immediately writes down

v=1A =1 v

m - mn

Yoo = cos(mwy/b)cos(nﬂz/c)cosh[ymn(a-x)]

Yin = (m‘n/b)2 + (nﬂ/c)2

Clearly, wmn satisfies the Laplace equation (5) and the boundary condition
(7) on all the cavity walls except the wall x=0 which contains the aperture
A . With the help of (9) the coefficient Atlm can be readily evaluated and
the final result for ¢ 1is

4 cos(mny/b)cos(nﬂz/c)cosh[Ymn(a-x)]
be m,n emenymn sinh(ymna)

(16)

XJ;-%ET cos(mny'/b)cos(nnz'/c)dy'dz"

where € =1+ § s E =14+ 8§ . The important point about this series
m mo n no

representation is that it contains oscillatory functions in the directions

11



Figure 2. A rectangular cavity with an aperture in one of its walls.
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‘ parallel to and an non-oscillatory function in the direction perpendicular to
) the plane of the aperture. It is therefore not an efficient representation

for shallow cavities, that is, for cavities whose depth a << b or c .

B. Eigenfunction Method

According to this method the magnetic scalar potential ¢ for the geometry
shown in Figure 2 is given by

v =)ByY = "B, ¥
z q'4q 2,£,n 2mn’ Lmn

cos (&mx/a)cos (mwy/b)cos (nwz/c)

<
w
]

@r/a)? + @r/b)? + (an/c)?

W
"

(hr/a)2 + Y:n

(11111r/b)2 + v

2
n

2
£m

(mr/c)2 + #

where wlmn clearly satisfies the Helmholtz equation and the boundary condi-
tion (11). Using (15) to evaluate B

omn and substituting the result into the
expansion for ¢ one obtains )
_ 8 cos (f7x/a) cos (mmy/b) cos(nrz/c)
il vl 2, 2
£,m,n ezemen[(lﬂ/a) + Ymn]

aa7)

X ‘[l‘\ %x‘L' cos (mry' /b) cos (anz' /c)dy'dz"

13



cos (mny/b)cos(nmz/c) o::osh[Yuln (a-x)]

a = —
be m,n €afn mnSinR (Y, 8)
(17.a)
".r LA cos(mmy'/b)cos(nrz'/c)dy'dz"’
A ox' y
- -2 ) cos (27x/a)cos (nmz/c)
ac 2,n e!.enanSinh(Yx,nb)
(17.b)
*J;-Sﬁr cosh[y, (b-y,)]cosh(y, y )cos(nnz'/c)dy'dz’
- 2 cos(&mx/a)cos (mmy/b)
ab L,m elemYlmSinh(Y!,mc)
(17.¢)

xJ’A glx'— cosh[yzm(c - z>)]cosh(yzmz<)cos (mmy'/b)dy'dz’

where one has used the formula [5]

COSh[Ymn (a-x)]

1 _cos(2mx/a) -
ym51nh (yma)

€ 2 2
0 "2 (an/a)"+ Yun

2
a

Il t~

L

in going from (17) to (17.a), and the formula [5]

cos (prg/d)cos (png’ /d)_ COSh[qu(d -z, Jeosh (quC<)

p=0 ep[(pﬂ/d)2+ Yqu - YeqSinh (Ygqd)

aln

in going from (17) to either (17.b) or (17.c), and C>(C<) is the larger
(smaller) of (z,z').

By now it should become clear that the Eigenfunction Method leads to four ‘

14



different representations of the solution, one of which, namely expression
(17.a), is identical to (16) obtained via the Direct Method. While (17.a) is
exponentially decaying in the x-direction, (17.b) and (17.c) decay respectively
in the y- and =z-directions. The latter two expressions are good representa-
tions of the solution for a shallow cavity in which a << b ,c¢, whereas (17.a)

is useful for a deep cavity where a >> b,c.

Expressions (17.a), (17.b) and (17.c) are now applied to the calculation
of the magnetic field of the dominant mode at the center of the cavity (Figure
2) for the case of a deep cavity (a >> b > ¢) and for the case of a shallow

cavity (b >c > a or ¢ >b > a) .

(1) Deep Cavity (a >> b > ¢)

For this case expression (17.a) is most useful and it gives the dominant

mode (that is, the mode with the smallest decay constant) as

"bd = ;—(2:- [e-'ﬂ'x,b + e-'lr(Za/b— XIb)] COS(Tfy/b) J‘A %‘XL' COS('Ny‘/b)dy‘dZ' (18.a)

from which the magnetic field at the cavity center is

" =2

Ed =y E e-1ra/ (Zb) J‘A ;:_‘!x’_'_ cos (.n.yl /b)dyldzl ' (18.b)

If the maximum linear dimension of the aperture is much smaller than b ,
the integral in (18.a) and (18.b) can be expressed in terms of the magnetic
polarizability e of the aperture and the external short-circuited field

H via the relation
—sc

9 -
AZs on 95 = &y

*H = —-m
=sc =

Let the "center" of the hole be located at (yo ,zo) in the x=0 plane. Then

15



IA %}‘k"_ cosf"y'/b)dy'dz' = J‘A -g% cos[7(y, +y")/bldy"dz"

=mn, (n/b)sin(wy /b)

where A 1is the area of the hole. Substitution of this expression in (18.b)
gives

2n e-wa/(Zb)s

bec

LA

iﬁ(nyolb)§°gm-§sc (18.c)
If the integral in (18.b) over an arbitrary-sized aperture is nonzero,

one can still obtain an useful estimate of gd relative to B—sc by taking

20 log,, of (18.b). Thus, '

H

H
sc

20 logl0 = - 8.686 ma/(2b) = - 13.64 a/b (db) (18.4)

(11) Shallow Cavity (b > c >> a)

For this case one uses (17.b) to obtain the dominant mode as

-2 -wb/c
¢d - cos(nz/c)e
(19.a)
xJ'A l—gx' cosh[ (b ~y_)n/clcosh(my_/c)cos(nz'/c)dy'dz’
from which one gets, at the center of the cavity,
~ =2 —1b/(2¢) 3
—Hd =z_Ce IA 32—, cosh('rry;/c)cos(wz'/c)dy'dz' (19.b)

where y' 1s the smaller of (y', b-y') . For a small hole one has
<

16



- “"|Yo‘b/2|/c R :
B,=z—5e [sin(ﬂzolc)z-gm~§sc
ac (19.¢)
- cos(vrzd/c)g'gm‘gsc]

If the center (yo ’ zo) of the aperture does not lie on the center line
y = b/2 in the x=0 plane (that is, if Y, * b/2), then equation (19.b)
gives the following useful formula for the field at the cavity center:

H
20 log,, Ed" ~-13.64 b/c  (db) (19.4)
gC

Obviously, if Y, = b/2 and the observation point is at y # b/2 and z = ¢/2 ,
equation (19.d) still applies. But if y = Y, = b/2 , equation (19.d) is no

longer true.

(i1i) Shallow Cavity (c > b >> a)

‘ For this case one uses (17.c) and gets

vy = ;—Z— <:m%(Wy/b)e"m”b

(20.a)

><J;k %;{:T cosh[w(c -z )/b]cosh(wz_/b)cos(ny'/b)dy'dz"

where, as before, z>(z<) is the larger (smaller) of z and z' . At the center

of the cavity one has

- =2 -'nc/(Zb)J- Y
A

gd =Y e ax’ cosh(ﬂz</b)cos(ny'/b)dy'dz' (20.b)

where z, is the smaller of (z' , c¢-2') . For a small hole one has

o - -wlzo-c/2|/b R

Bi=y—5e [sin(my_/b)y-g °H :
ab ° T Tse (20.¢)

@ - cos(my, /b)Zeg H_]

17



" For an arbitrary-sized hole one gets from (20.b)

H

.
H
sc

20 loglo = -'13.64 c/b  (db) (20.4)

at the center of the cavity. The same remarks on equation (19.d) apply to

equation (20.4d).

18



IV. MULTIPLY CONNECTED CAVITY

An example of a multiply connected cavity is the coaxial cavity shown in
Figure 3 which permits the method of separation of variables. The coaxial
cavity can be used to model the weapons bay and, to some extent, the closed
wheel well provided that an end capacitance-is added at one end of the inmer
conductor to allow for the electrostatic interaction between the end of the
wheel strut and the well's walls. As one will see shortly, the problem of a
multiply connected cavity is much more difficult than that of a simply connected

cavity from both the mathematical and conceptual viewpoint.

A. Direct Method

An inspection of Figure 3 suggests that the solution of the Laplace equa-
tion takes the form '

p = z AmnFm(n-;rp/c) (zi: :::) cos(nnz/c)
m,n
(21)
Fm = Im(nwp/c)K;(nnb/c) - I;(nnb/c)Kh(nwp/c)

where Im and Km are the modified Bessel functions and the prime denotes
differentiation with respect to the argument. Clearly, the representation of

¥ by (21) satisfies the boundary conditions

N =
3p 0, at p=b

L 0, at z=0,c¢

3z

By means of (9) the expansion coefficient Amn can be readily evaluated. The-
final result is

19
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Figure 3. A coaxial cavity with an aperture in the outer conductor.




w-—z

, F_(amp/c , nmb/c)cos(nwz/c) (sin m¢)
7 m,n

nemenFl;‘(mra/c , nwb/c) | cos mé

(22)

".rA %’—. cos(nnz'/c) (2: ::: )dd»'dz'

The natural question to ask about (22) is whether or not the mode H = $/p is
contained in (22), since it is a legitimate solution of the magnetostatic

equations
VxH=0
in V
VeH=0
n*H=0 on S

Differentiating (22) and taking the limit of the resulting expression as n + 0

. and then m + 0 one finds

=_l_3_\£ ;l—l al_v ' .
H¢ p 3¢ ~ 2mc &n(a/b) P LA T ¢'ad¢'dz (23)

In terms of the magnetic polarizability e and the external short-circuited
magnetic field gsc » equation (23) gives

_l 1.
¢ ¥ Zrac tn(a/b) p ¢.gm

H (24)

On the other hand, if one.first takes the limit m -+ 0 and then n + 0 of
the ¢-derivative of (22) one will end up with an indeterminate expression.

B. Eigenfunction Method

Following the procedure described in Section II one can immediately write

21



down the solution of ¢ as
L z l:"'u:n,mwlnn,c'.

VYon.a - Gm(lm,ap)cos (arz/c) (sin m¢) .(25)

’ cos m¢

Gm(km,ap) = Jmom,ap)Yl;;(Am,ab) - Jt;l(lm,ab)Ym(lm,ap)

where the A are the roots of
m,a

— G _(A_ p) =0 (26)

9p m m,a

C1ear1§, wmn o satisfies

2 2 _ .
4 +kmn,a)wmn,a =0, in V

k = (nﬂ'/c)2+A2
mn,® M,

After evaluating an o by formula (15) one gets
b

2
A
T 1 m,a 9 !
yp == b W Low W ad¢'dz
c 4 40 Smtn (mr/c)2+A2 . m,a mn,evA ‘'mn,a 3p
m,(! m,G
+ 2 Z cos(nwz/c) -rA g'é)’ cos(nrz'/c)ade'dz" (27)

TC (a2 -b2) n#0 (n'rr/c)2

22




1 3y '
+ 2nc 2n(a/b) ¢ IA 2p' ¢' ad¢’dz

where

2
'O b) 2 2
1 m m, m m
5 [J (A a)] [1‘(1 a) ]"'(x b) -1, A, "0 (28)
m,a m'm,a m,a m,a

The second and third terms of (27) correspond to Am a = 0 and have been
4
factored out for convenience. The third term should be made single-valued by

introducing a cutting plane connecting the inner and outer conductors.

To show that equation (27) is identical to equation (22) one first makes
use of the identity (see the Appendix)

) - b -1
5z Cm (%3 » Tb) S 7.2 6,Cp,02* 2n,a® 0l (29)
z=A ,

where

Gl (za, gb) = J'(za)Y!(gb) - J!(Zb)Y! (za)

Then, the sum over A « in the first term ¥, of (27) can be written as a
9

contour integral, viz.,

v, = ;—2 ) E_ls— (Sin n )cos(nnz/c) J'A g—}.— (Sin m¢: ) cos(nnz'/c)d¢'dz"’

cos m cos
m,n mn ¢ ¢

(30)

1 G (zp » Cb)
2 G (za, Cb)

3 (n /c) +z

21ri J‘C +C +C

where the contour clj-ci+c3 is shown in Figure 4. Since



X Am,aq on real axis

Figure 4. . The contours in the complex g-plane.
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Gm(CD » Cb) = - Gm(-CD » —Cb)
G (za, gb) = G (-za, -Lb)

one has (see Figure 4)

J =Jevcr (D)
C1+ C2+ C3 Cl+ C3 C2
From the properties of the Bessel functions it can be shown that
(a) Gm(l;) and Gl;l(c) have no branch points in the entire g-plane,
(b) Go(p)lG;(C) has a pole at [ =0,
(e) G;(i;) has only real zeros, and

G_(cp > tb) I
m ~ o CI (a - D) ©
(d) ——G;(Ca oy~ © on C_ where |z| »

Thus, the integral along C1+ C:; is equal to the residue at ¢ = inw/c , n > 0,

namely,

1 [ 1 G (zp , zb) i = =< F_(amp/c , nwb/c)
L [ [ ’
27l Cl+ C3 (n1r/c)2 +C2 Gm(;a , Cb) 2nw Fm(nwa/c , nTb/e)

n>0 (32)

The integral over the contour C2 will now be evaluated. Since the integrand
of (32) has (a) no poles at § =0 for m,n >0, (b) a simple pole at =0
for m=0,n >0, (c) a simple pole at =0 for m > 0,n=0, and (d) a
triple pole at =0 for m=0,n=0, one has

G_(zp , Tb)
1 1 n ’ ~
271 ¢C ZGI;(Ca,;b)d;—o’ m>0,n>0

2 (n1r/c)2 +z

. = a * m=0, n>0 (33)
@ | (an/c)?(a® - b%)

25



- F_(amp/c , nwb/c) ®
=% 1qm -2 m>0, n=0
2% 0 nFl:l(mra/c s nmb/e) °* ?

0, m=0, n=0

For the case wvhere m=0, n=0 the first two terms of equation (27) vanish
identically because

3y i
j‘A ap—.cwdz =0

due to the solenoidal nature of H , and only the third term remains. Hence,
one need not evaluate the contour integral along c2 in this case. Substi-
tuting (32), (33) and (30) in (27) and noting that the second term in (27)
cancels the contribution from the contour integral along C2 » one sees that
expression (27) 1s indeed identical to expression (22), if and only if one
first takes the limit n-+0 and then m—+0 in (22) to obtain the third
term of (27).

To get a representation exponentially decaying in the z-direction one
can sum over n in equation (27) and obtains, with z>(z<) denoting the

larger (smaller) of (z,z') ,

" m,a
v=3 \ L <0 emsinh(xm’cc) bm,aGm(Am,aa ? Jtm,t:tb)(;mum Py P
m,Q

i |
x (:‘: :z)fA -g%'— cosh(km,az<)cosh[lm’a(c -z,)] (ii: 2:, ) ad¢'dz'

(34)

1 j‘ oy t *
- T Z ad¢ dz
- (a2 _ bZ) A 3 >

1 W
+ 27xe 2n(a/b) ¢JA 3"’ ¢'add'dz’

28



where some constant term has been left out, since a constant potential contri-
butes nothing to the field. It is easy to see that the second term of (34) is
zero if 2z > z' and reduces to a constant if z < z' . Thus, this term will
contribute to the field only if 2z and 2z' belong to the same domain. The
third term of (34) gives the field (23) which can be interpreted as the field
of a magnetic dipole, as shown by equation (24).

A representation decaying exponentially in the ¢-direction can also be
obtained by considering the following identity:

1 I Fv(mrp/c, nnb/c) sin(v¢<)sin[v(2w;¢>)] dv
2
b

F\',(nna/c, nwb/c) \ cos(vé dcos[v(2m -¢,)] sin2mv) 0 (35)
C

where the contour C 1s an infinite circle in the complex v-plane and ¢>(¢ <)

denotes the larger (smaller) of (¢, ¢') . The identity is established from

the fact that the integrand of the integral goes as v-l(p/a)lvlexp[— |v| (¢> -¢<)]

as lv[ + = ., The integral is, of course, also equal to the total sum of the
. residues within the infinite contour C . The residues can be separated into

two parts, namely, (i) the part associated with the zeros of sin(2nv) and

(11) the part associated with the purely imaginary zeros of F")(nﬂa/c, nnb/c)

[6]. Thus equation (35) gives

s = Fm(nﬂp/c, nnb/c) - sin(m¢)sin(me')

? 0 émF;l(t;'na/c, nmb/c) cos (m$)cos (m$')

Fivr (nmp/c, nmwb/c)

T (36)
=1 [d_ F' (nmal/c, nwb/cﬂ
A v =iv
r
sinh(vr¢<)sinh[vr(21r —¢>)] 1 0

_cosh(vr¢<)cqsh[vr(2ﬂ -4.)1 Eﬁf(z’m—r)

where the v, are the roots of

i
\‘

27



' =
Fivr (nwa/c, nwb/ec) = 0

Applying equation (36) to equation (22) one finally obtains

cos(nwz/c)F v (amp/c, nub/c)

21 ] T
v=7 1 d
n,r ne sinh(21rvr [d—v F\') (nma/c, nwb/c)]
0 ©° b 4 v=iv

(37)

inh(v_¢ )sinh{v_(27 -¢_)]
oY ‘. s T'< T >
X I o' gos(nﬂz /e) cosh(vr¢<)cosh[vr(21-¢>)]
A

To sum up, equation (27) gives the eigenfunction solution of the present
problem,whereas the p-form solution is given by (22), the z-form solution by
(34), and the ¢-form solution by (37).
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APPENDIX

A MATHEMATICAL IDENTITY

To prove equation (29) one makes use of the recursion formula for Bessel's

functions and obtains

3_ I =2_
14 Gm(;a » £b) A Gm“m,aa’ 1m,ctb)
C =X m,

- all - @A aa)zlcm“m, a, A_ b

’ o m,a

2
+ b[1l - (m/lm’ab) ]Gm(lm,ab, lm’aa) (A-1)

Since G;(Am’aa, Am,ab) = 0 and Gm(E,E) = 2/(ng) , oné has

JI:x(lm ab) 2
. Gm(km,aa’ )‘m,ab) “J'(A a) mai
m m,a m

»Q

J‘l;:l(xm u.a) 2
= ) 2
Gmo‘m,ab’ lm,u.a') J'(x b) wbaA
m m,a m,

Recalling the definition of bm g One can easily see that equation (A-1) leads
>
to equation (29).
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