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SECTION I

INTRODUCTION AND SUMMARY

This report accompanies a complete computer code to directly calculate
the current density and charge density induced on the model of an aircraft
depicted in figure 1. A description of the field incident on the model
is presented in figure 2. The intent is to calculate these induced den-
sities for a continuous spectrum that includes the low and resonant range
of frequencies. The background establishing the need for the direct cal-
culation of these quantities for EMP external coupling purposes is presented
in reference 1. In that report, it was demonstrated that serious flaws
existed in the prevalent stick model approach used to perform EMP external
interaction calculations for aircraft. The essence of the error in that
approach was the assumption that the current density distribution on the
aircraft could be simply obtained from a knowledge of the bulk current.

For this reason, the stick model approach was intended only to calculate

the total current. In reference 1, it was demonstrated that methods

employed to obtain the current density distribution from the bulk current
made their largest error at low frequencies for which the density calculation
was generally assumed to be the most accurate. The fact that an error becomes
larger when it was expected to become smaller is an indication that the
physics of the problem was not totally understood. Specifically, it was

shown that the stick model approach could not yield a low frequency cur-

rent density that was compatible with a magnetostatic solution.

The significance of the fact that current densities were incorrectly
calculated will now be explained. It is the current density rather than

the bulk current that is required by commonly employed deliberate antenna

1. Sancer, M. I., R. W. Latham and A. D. Varvatsis, Relationship Between
Total Currents and Surface Current Densities Induced on Aircraft and
Cylinders, Interaction Note 194, Air Force Weapons Laboratory, August
1974.
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Aircraft model and input parameters.
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Figure 2: Description of the incident plane electromagnetic wave.
Axis x" is the intersection of the z,k plane and a
plane perpendicular to k at the origin.



and aperture analyses for the subsequent calculation of voltages and
currents driving mission critical subsystems contained within the air-
craft. We note that charge density, another important external coupling
quantity, was calculated by employing the continuity equation without

considering the derivative of the azimuthal component of current density.

Before dismissing the concept of obtaining useful external interaction
results from approaches based on inferring information from a calculated
bulk current, it is necessary to consider a new approach to the problem
(ref. 2). 1In reference 2, the current density and charge density are
calculated in the old manner based on the bulk current; however, a
"correction solution” is added to the old current density. The additi-a
of this correction solution was demonstrated to improve the agreement
between the calculated current density and that measured on a laboratory
model. It is not clear from reference 2 what the correction solution means.
It is essential that the meaning be totally understood in order that the
potential and the limitations of the approach be understood. The correction
solution employed in reference 2 1is an approximation to the magnetostatic
current density solution for the aircraft model. This approximation
corresponds to the magnetostatic solution for an infinite circular cylinder.
Consequently, it can only be expected to be a good approximation on circular
cylinder portions of the aircraft model that are not in the proximity of
any otﬁer aircraft feature. One can obtain an appreciation for the limita-
tion of this approximation by noting that it is not capable of calculating
the azimuthal component of the current density. Depending on such
quantities as the incident field, frequency, and location of the body,
the azimuthal component of the current density can be larger than the

longitudinal component.

By understanding that the correction solution is an approximation to
the magnetostatic solution, one can immediately appreciate one of the

hidden difficulties of the approach. It is as difficult to obtain a

2. Taylor, C. D., K. T. Chen and T. T. Crow, Electromagnetic Pulse
Interaction with the EC-135 Aircraft, Interaction Application Memo
10, Air Force Weapons Laboratory, July 1975,
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magnetostatic solution for an aircraft model that includes important
features,as it is to use our approach to calculate the current density
directly. In fact, we obtain the magnetostatic current density for our
aircraft model simply by setting the frequency equal to zero in our code.
We see a possible benefit of adding our magnetostatic current density as
the correction solution in order to obtain a better approximation to the
current density using the modified bulk.current approach of reference 2.
The benefit of using our result in this manner would only be to save
computer running time since we have to do as much analysis and programming
to obtain the magnetostatic solution as to obtain the dynamic solution.
The errors obtained would only be quantifiable by running our dynamic

code at selected frequencies and comparing these results to those obtained
by the improved approximate method. Finally, we note that the addition

of the magnetostatic solution cannot improve the calculation of the charge
density. This is the case because the divergence of the magnetostatic

solution is zero.

The magnetostatic solution has considerably more significance than
has already been discussed and this is a topic dealt with in a recent
report (ref. 3). 1In that report it was demonstrated that the current
density induced on a metallic body by an incident monochromatic plane wave
behaved predominantly like a magnetostatic solution. It was shown that
this was the case for an extended band of low frequencies and this
frequency band can in turn be shown to correspond to a significant portion
of the energy contained in a typical EMP spectrum. It 1is concluded that

the magnetostatic response of a metallic system (aircraft, missile, etec.)

3. Sancer, M. I., Fundamental Errors Associated with the Gross Modeling

of the Physical Features of Metallic Enclosures, Interaction Note 298,
Air Force Weapons Laboratory, December 1976,
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should be considered in determining low frequency modeling requirements

for EMP external coupling purposes. The primary significance of magneto-
static related modeling requirements is that they are much more severe
than what has previously been thought justifiable as a result of con-
sidering long wavelength far zone scattering results. An appreciation
concerning the impact of magnetostatics on determining modeling require-
ments can be obtained by noting the exact aﬂalogy between magnetostatics
and irrotational and incompressible fluid flow around a rigid body. For

a riglid perfectly conducting body, the velocity flow lipnes and the magnetic
field lines in the vicinity of the body are identical. If certain features
of aircraft or missiles would have a significant effect on fluid flow,

then they would have a significant effect on the current density induced

by an EMP. One should become concerned with modeling such features as
missile tips and fins as well as aircraft features such as engines, wing
cross sections, and extended junctions, particularly when the point cf

entry is in the proximity of these features.

In the process of developing the computer code described in this report,

we became aware of the magnetostatic modeling consequences just discussed.

This fact had an effect on our philosophy and approach in developing the

computer code.

First, wherever possible we developed general results before restricting
attention to our particular model. Second, we realized that our approach
was dependent upon making zone sizes small enough to approximate the surface
current density components as constants over the zone. In order to accom-
modate the possibility of rapidly changing current densities in the vicinity
of edges, junctions, and high curvature we built a great deal of input
controllable zoning into the code. This allows numerical experimentation
to determine the effect of varying the zone size in the proximity of the
above features and is potentially useful for obtaining zoning information
for more complex models. An additional benefit of the zoning flexibility
is that it permits one to increase the density of zones over the entire
model, at the cost of increasing computer time, to either improve the

accuracy of the solution or to obtain solutions for higher frequencies.

12



A description of the contents of the remaining part of this report
will now be presented. 1In Section II we present the magnetic field
integral equation (MFIE) for the current density and utilize the
symmetry plane of the aircraft to transform this equation into a pair
of more useful (for numerical purposes) integral equations for suitably
defined fictitious current densities. The numerical solution for these
integral equations only requires zoning of half of the aircraft. In
Section III we trace the path that led us to the final zoning scheme
on the surface of the aircraft. Section IV compares numerical solutions,
obtained by using our MFIE patch zoning approach, with experimental
data. These data were presented in two recent reports (refs. 4,5) and
even though they refer to measurements of the current density on a
finite metallic circular cylinder, rather than an aircraft model, they

demonstrate the capability of our approach.

In Appendix A we demonstrate certain properties of the surface
current density induced on a perfectly conducting Body possessing one
or more symmetry planes. These properties are useful in that they
reduce computation time and also give insight as to the distribution
of the induced current density on a perfectly cBnducting symmetric
body. Part one of Appendix A considers a body with three planes of
symmetry and places no restriction on the frequency of the incident
wave. It assumes a wave vector perpendicular to a plane of symmetry
and the electric field parallel to an axis of symmetry. The resulting
relationships involve current densities at points symmetric to planes
of symmetry other than the plane perpendicular to the wave vector. Part

two considers the magnetostatic limit for a body with only one symmetry

4. Burton, R. W., R. W. P. King and D. Blejer, Surface Currents and
Charges on a Thick Conducting Tube in an E-Polarized Plane-Wave Field,
II. Measurements, progress report on contract F29601-75-C-0019,
AFWL/ELPE, Kirtland Air Force Base, New Mexico, 1976.

5. King, R. W. P., Surface Currents and Charges on a Thick Conducting
Tube in an E-Polarized Plane-Wave Field, IV. Generalization to
Cylinders of Various Lengths, progress report on contract F29601-75-
C-0019, AFWL/ELPE, Kirtland Air Force Base, New Mexico, 1976.
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Plane and an incident plane wave with a wave vector perpendicular to

the symmetry plane. We show that the surface current density at points

symmetric to the plane of gymmetry are simply related. Since magneto-

statlics 1s a good approximation for an appreciable band of low frequencies,
it follows that these relationships provide insight into the distribution
of the current density on the surface of structures with a plane of

symmetry including aircraft.

Appendix B presents the calculation of the surface current density
induced on a perfectly conducting ellipsoid immersed in a magnetostatic
field. This calculation was very helpful in predicting the magnetostatic
current distribution on a finite elliptical cylinder which in turn was
used to test the numerical results of the various zoning schemes as we

explain in Section III.

Appendix C presents the method for numerical solution‘in detail.
Specific topics treated are the model, zoning scheme, matrix equations
for the current density, coordinates of centers and boundaries of zones,
calculation of matrix elements, self-zone interaction considerations,

interpolation scheme, calculation of charge density as well as edge

and junction behavior. Finally, Appendix D supplements Appendix C

by giving the coordinates and matrix elements for zones adjacent to

junctions.

14



SECTION II

FORMULATION OF THE PROBLEM

The model of the aircraft we employ is depicted in figure 1. All
components shown (fuselage, wings, horizontgl stabilizers, vertical stabil-
izer) are perfectly conducting elliptical cylinders making perfect electric
contact at the intersections. The aircraft is illuminated by a monochromatic
plane electromagnetic wave of arbitrary direction and polarization. We
are interested in calculating the surface current and charge densities
everywhere on the surface of the aircraft. To do so we employ the magnetic
field integral equation for the current density and utilize the symmetry
of the aircraft about the xz-plane to transform this equation into a pair
of more useful (for numerical purposes) integral equations for suitably
defined fictitious current densities. Each of these equations lends itself
to a numerical solution with a matrix (N/2) x (N/2) where (N x N) is the

matrix of the original equation.

. The magnetic field integral equation for a perfectly conducting body
is
1
5 J(x) = 3, (@ + /g(g,;p I(x,) ds, (1)
S

where gi(g) is the incident current density, which serves as the source

for the integral equation, given by

3,(@ =) x K () (2)

fi(r) is the unit normal to the surface at r, Ei(s) is the incident magnetic

field given by

L e (3)
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Eb is the wave vector, K is the kernel given by

K(z;r)) = 8(0) = [V6_(z5r ) x Il = fi(x) x [R x 1] Q(R) (4)

r
-0

-Go = exp[ikoR]/4ﬂR is the free space Green's function, I is the identity

operator and

ik R
QR) = = ik R ~ 1)
4nR3 °
R=r-r
- = o
R = [R] (5)

The surface S extends over all components of the model shown in figure 1

including the flat caps.

It has been shown in reference 6 that for bodies possessing a symmetry
plane say the xz-plane, equation (1) can be transformed into the following ‘

palr of equations

255ahH = lh + f Kt - 5w as,
S+ 1
(6)
257¢) = 3 E@H +f K - 3 @) ds,
Sy

6. Sancer, M. I. and A. D. Varvatsis, Analytical and Numerical EMP
Coupling Solutions for A Class of Structures Attached to the Wing
of an Aircraft, Interaction Note 197, October 1974, Air Force
Weapons Laboratary,
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o+ 1 + +
wh J (r == [J(r + R »JR -
ere J7°(r') =3 [J(x) R, —-(=y )l 9D
+ + 1
JEH =F L@+ R LR - D] : (8)
. + 4+ + + + _+
K (r;r) =A( r) + B(x ;x)) 9
+ + + _+
A(x'sr)) = K(r';r)
+ _+ + +
B(r';r) = K(x ;=I§y cxr)- =Ry (10)
gy is a reflection operator such that
R =1- 288
= = yvy
+
__5_7 *tr = (X,-Y,Z), £_+(x,}’10,z)
‘ R - a=(a,-a,a), a=(a,a.a) (11)

and S+ is the surface of the body that corresponds to y > 0. Thus

equations (6) are defined over the y Z.O half of the aircraft. Once we
t +

solve for J at r (x,y>0,z) we can use equation (7) to calculate J at

5% and éy . Ef, i.e., everywhere on the surface of the body:

3 = 5N @D
I() = R, [J.+(£+) - f(f)] (12)
where Ef =R - Ef a (x,-y,2).

=y
~ +, +
We solve equation (6) for two orthogonal surface components § * J (r )
~ i + ~ A
and t * g_(;_) where 5 and t are unit surface vectors forming an orthonormal
triad with the unit normal fi: fi = § x t. For each component of the aircraft

the 8 vector is defined as the tangent unit vector at the intersection of

17



a cylinder with a plane perpendicular to its axis, i.e.,

3r/9¢

This definition is true for the fuselage, vertical stabilizer and the y > 0
wing and horizontal stabilizer. For the y <0 wing and horizontal stabilizer
§ is given by equation (13) with a minus sign. The g-vector is obtained

through the relationship t =48 x 8. Referring to figures 1 and 3 we can show that

Fuselage
X = X y = blr sing z = —alr cos¢ £ =1 on walls
0<r <1 on caps

b, cos¢ a, sing \
s = Q0 g8 = -—1'———— s = 1——_ on walls and
X y Nl(¢) z Nl(¢) caps
t. =1 t =0 t =0 on walls
X y z

> (14)

a1 sin¢ —bl cos¢
tx=0 ty=—ﬁ;m—' tz'—‘——"Nl(‘p) on x = 0 cap
t. =0 t = 21 S{Ef- t_ = El*igii on Xx = . cap )
x y Nl(rb) z Nl(¢) 1
Wing for y > 0

r =1 on walls
= -+ = = -
x = a,r cosdtxy, y =y z b,r sing 0<r<1l on cap
a, sing b2 cos¢
Sx = - W Sy =0 SZ = - W on walls and cap
t =0 t =1 t =0 on walls
X y z
b2 cosd a2 sing¢

tx = - Tz‘(—(b)— ty =0 tZ = —N2(¢) on cap (15)

18
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Figure 3:
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Ne——_

Definition of the elliptical angle ¢ such that x = a cos¢,
y = b sin¢. Notice that equal increments in ¢ over a
quadrant do not correspond to equal arc lengths.
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Wing for y < 0

a, sing b2 cosé
s, = _ﬁ;?$7" sy = ( s, N2(¢) on walls and cap
t =0 t = -1 t. =0 on walls
X y z
b2 cosé a, sin¢
t = ——— t = ——— : 15
. N, (®) v 0 t, NS () on cap (15)
Horizontal Stabilizer
Same as for the wing 1f we change a5, b2, X5 to aj, b3, X3+
Vertical Stabilizer
=1 11
X = ar cosd>+x04 y = b4r sing z =2 t on wails
0<r <1 oncaps
a4 sing b4 cosd
S, =~ "ﬁzzaj—- sy = —§2?$7— s, = 0 on walls and cap
t. =0 t =0 t =1 on walls
X y z
b4 cosd a, sin¢
== = = 16
ty N4(¢) ty N4(¢) t, 0 on cap (16)
where N, (¢) = (b2 c052¢ + a? sinzda)l/2
1 1 1
N,(9) = (a2 sin2¢ + b2 coszd>)1/2
2 2 2
N4(¢) = (az sin2¢ + bz cosz¢)1/2 (17)
Equations (12) can be rewritten in component form
+ +, - -+
Jt(g) —Jt(£)+Jt(£)
- A - +, + -+
J (&) = tx) R, [J @) -3 ()] (18)
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3. = @) + eEh

3@ =3@) - g - EH - Ta@h

From relationships (14) through (16) we see that

Fuselage

+ - + -
sy(g ) Sy(g )y 8,(x) = -5,(x)

£, () = £ )

£, = -t (), £, = £, @)

Wings and Horizontal Stabilizer

Sx(£+) —sx(x ), sz(f) =-s ()

+ -
ty(g) = ty(g)

£ (£ = e D), £ D = £ )

Vertical Stabilizer

s, = -5, (), s, (@) = 5 @)
£, =t ()

+, _ - +, _ -
t @) =t (), ty(_r_ ) = ty(g)

From the above relationships we see that

sx(f) = -s ()
sy(f) = s, ()

+ -
s,(x’) = -s,(x)

21

on walls and caps
on walls

on caps

on walls and caps

on walls

on walls and caps
on walls
on cap

in general

£ ) =t @)
+ -
£, ) = —c (@)

£, = £ @)

(19)

(20)

(21)

(22)

(23)



and consequently

B s B = L, () + £ () +£,GD] SR £, G - £ (D)

d
ok

Similarly

Thus equations (18) and (19) can be rewritten as

3.H = 5teh + 3lh
J () = J:(f') - J;(£+)
3,6H = @hH + eh
3, = -0 - DN (24)

In order to solve numerical equations (6) we first write them in
component form and then transform them into a system of simultaneous
algebraic equations for the components of the fictitious current densities
evaluated at the centers of zones into which we have divided the entire
aircraft. That is, we assume that the current components J:, J: are
constant over a zone and equal to their wvalues at the center of the zone.

Appendix C presents the numerical solution in detail.

22



SECTION III

HIGHLIGHTS OF THE NUMERICAL SOLUTION

In this section we present some of the highlights of the path that
led us to our final computer code. In particular, we discuss how we
decided on the number and size of zones, and the accuracy we employ for

the calculation of matrix elements.

Our first task was to decide on the number of zones on the surface of
our model: how many we needed, what their optimum size was as a function
of location and whether the resulting matrix to be inverted would be too

large to assure confidence that the round off error would be negligible.

To assess this error we conéidered the problem of calculating the
current densities on a circular cylinder, illuminated by a plane wave
with broadside incidence and the electric field polarized along the axis
of the cylinder, by employing two debugged computer codes. One took
advantage of one symmetry plane and solved for g% defined in Sectiom I.
The other utilized three symmetry planes. The details of the latter
approach are given in Appendix A where it is shown that one need only
calculate two fictitious quantities gf+' and £f++ over 1/8 of the surface
of the cylinder whereas the first approach requires calculation of gf
and J over half the surface. The three-symmetry-plane code involved
the inversion of a matrix 108 x 108 whereas the one-symmetry-plane code
required the inversion of a (4 x 108) x (4 x 108) = 432 x 432 matrix,

We displayed our results with eight significant figures and did not

observe any roundoff error.

‘Once we gained confidence that large matrices of the type generated
by our approach could be inverted accurately we proceeded to determine
the minimum number of zones on the aircraft. To that end we had to
decide how many zones we should use on the elliptical cylinders modeling
the aircraft components. The choice of the size of a zone is based on the
requirement that the current density components should not vary appreciably

over a zone. The variation of the current density depends on geometrical

23



and wavelength considerations. Geometrical considerations determine

the minimum number of zones and wavelength considerations can increase
this number. The geometric requirements are exactly the ones required
in order to obtain a magnetostatic solution. As an example, in the
past, it has been common practice to require that the size of a zone,
both longitudinal and azimuthal, on the surface of a circular cylinder
should not be larger than the diameter of the cross section, independently
of the wavelength. The wavelength requirement was.that we should have
at least ten zones per wavelength. Thus the wavelength requirement was
automatically satisfied via the geometry requirement for wavelengths
larger than ten times the diameter of the cylinder. For smaller wave-
lengths the wavelength requirement determined the totai number of zones.
It should be noted that the factor of ten associlated with the wavelength
requirement is somewhat arbitrary. There is no restriction built into
the code based on the factor being equal to ten. To the contrary, the
zoning flexibility built into the code allows one to assess whether a
smaller factor (corresponding to higher frequencies for fewer zones)

yields sufficient accuracy.

For an elliptical cylinder a geometrical condition that has been
imposed in the past requires that the linear size of a zone should not
exceed the minor axis of the ellipse. 1In order to test this condition
we decided to compare our computer code (with a variable number of zones)
to the exact magnetostatic solution for an ellipsoid immersed in a
uniform magnetic field (see Appendix B). The basis for the comparison
was that for ellipsoids with large c/a (¢ > a > b) the variation of the
current density around the central cross section was insensitive to c/a.
Thus we had reason to believe that the variation of the current density
at the central cross section of the ellipsoid approximated, to a high
degree of accuracy, the variation of the current density at the central
cross section of a finite elliptical cylinder with h/a = c/a (h is the
cylinder half length). The computer code we used employed all three
planes of symmetry for broadside incidence with an electric field parallel

to the axis of the cylinder. This was done to minimize the cost for each
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run as we varied the number of zones and naturally we ran the code for
w= 0. By examining the exact solution we noticed that the current
density varied most rapidly near points of high curvature. This meant
that our zoning should be nonuniform with zone size diminishing as we
approached the point of highest curvature. This was an important
observation but it led to the following problem. In the past we had
subzoned each zone in order to accurately calculate the neighboring
zone interaction. As for the self-zone calculation we had realized
the need to analytically treat the integrable singularity of the
integrand in order to secure a high degree of accuracy. We had accomplished
that by dividing the two-dimensional integral into two integrals:
one with a two-dimensional nonsingular integrand that was calculated
by subzoning and one with a singular but integrable integrand that
could be reduced to a one-dimensional integral with a nonsingular
integrand. No such precaution had been taken for neighboring zone
interaction because the integrands involved did not vary appreciably
and allowed accurate calqulation through subzoning. For an elliptical
‘ cylinder with a large a/b (say larger than 4) the required zone size
in regions of high curvature may be so small that neighboring zone
interaction could require a large number of subzones to evaluate the
integrals whose integrands now can vary appreciably. The code automatic-
ally prescribes the same number of subzones for all zones and this is
clearly unnecessary for neighboring zone interaction (in regions of small
curvature) where the zone size is not small. This would cause the code
to be unnecessarily costly. We decided to examine whether we could
calculate the matrix element without subzoning the zones. We found
that the two-dimensional integrals over a zome on the walls or the caps
of the cylinder could be reduced to one-dimensional integrals with
nonsingular integrands without dividing the original integrals into
two integrals as we did in the past. (See Appendix C, Section 5 for
details.) Thus we were in a position to calculate the matrix elements
for self-zone and zone-to-zone interactions by evaluating well-behaved
one~dimensional integrals with a high degree of accuracy. An additional

benefit of making the matrix elements to this degree of accuracy was
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also achieved. We found that the Improved accuracy of the evaluation ‘
of the matrix elements improved the accuracy of the phase of the solu-

tion. We observed situations where it could have been erroneously

concluded that the matrix elements were calculated with sufficient

accuracy based on comparing the magnitude of the resulting solution

with known results. We calculated the same quantities with a code that

utilized more accurate matrix elements and noticed a significant effect

on the phase of the solution while the magnitude was minimally affected.

Now we will describe the flexibility built into our code and present
guidelines for utilizing this flexibility. A general description of the
flexibility is that the zoning of the aircraft model can be specified
with input data cards to cause more dense zoning in regions near junctions
and edges as well as the regions of rapidly varying curvature near the
leading and trailing edges of the elliptic cylinder components. The
zoning density over the entire aircraft model can also be increased
through input data cards to accommodate frequencies higher than those
determined by the geometry limited zoning. The primary reason that
we have this flexibility is that our method of accurately calculating

the matrix elements is insensitive to the size of our zones. A penalty
that is paid for having this flexibility of nonuniform zoning is that
the benefit of using symmetries to reduce the matrix generation time is

reduced.

We conclude this section by presenting guidelines for the geometry
limited zoning. The presentation of these guidelines is facilitated by
considering the following categories of surfaces that require zoning:

cylinder walls, junctions, edges and end caps.

The zoning of the cylinder walls 1s first determined without regard
to junctions and edges. A description of the initial zoning of the walls
is assisted by considering figure 3. We will describe the zoning of the
elliptic cylinder walls with the zoning of the circular cylinder walls
being a special case. OQur code allows that the full range for ¢ can be

subdivided as finely as desired. This has _uyfility for zoning in the
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vicinity of junctions; however, for determining the number and size of
the zones independently of the junctions,we can consider that each wall
is divided into either two or four subdivisions corresponding to a ¢
range of 90° (quadrants). On the fuselage and on the vertical stabilizer
we have two quadrants; on the wings as well as on the horizontal stabilizers
we have four quadrants. For each of the quadrants we choose the number of
¢ zone divisions according to the ratio of the major to minor axis of the
ellipse. Specifically the number of zone divisions is the nearest integer
to half of the sum of one plus this ratio. Once this number is specified
as an input parameter, the code chooses the size of these zones so that

" they are smallest in the region of the most rapidly varying curvature.
Specifically, it chooses them to be equal increments in the elliptic
angle ¢. The longitudinal length of a zone is taken to be no larger than
the major axis of the ellipse. These guidelines are meant to represent
an initial estimate of the geometry limited zoning. The adequacy of the
zoning can be determined by rumning the code at zero frequency with the

initial geometry limited zoning estimate and then running the code with

. a more dense zoning.

The zoning of junctions, edges and end caps is determined by utilizing
the zoning flexibility of the code and performing numerical experiments.
We single out the zoning of the end caps for special consideration only
because they are necessarily in the vicinity of an edge. Now we make
a further distinction between the numerical experiments in the vicinity
of junctions and edges. As explained in Appendix C, Section 9, neither
component of current density becomes unbounded in the vicinity of a
junction; however, the component parallel to an edge does become unbounded.
We believe that this singular behavior should be given special analytic
and numerical treatment. We attempted a numerical subtractive procedure
to treat this edge difficulty and obtained unsatisfactory results. Due
to time limitations, we have not yet numerically determined whether
a multiplicative procedure would allow us to trust our solution for
points arbitrarily close to the edge. Despite the fact we have misgivings
about our solution arbitrarily close to an edge, the comparison between

our calculations and measured data (presented in the next section) is
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quite good at a distance corresponding to half of an ordinary zone

length.
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SECTION IV

COMPARISON WITH EXPERIMENTAL DATA

In this section we compare numerical solutions, obtained by using
our MFIE patch zoning approach, with experimental data. Even though
these measurements and calculations were not for the complete geometry
of the aircraft model they demonstrate the capability of the approach.
It should be noted that the quantities that will be compared correspond
to measurements and calculations on the surface of an object. It is more
difficult to calculate surface distributions than far zone scattering
results, thus the excellent degree of agreement to be demonstrated is
very encouraging. To further relate the calculations used in the comparison
to our final code, we note that through the use of input data cards our
complete aircraft code can be reduced to yield results for the geometry
used in the comparison. At this time an experimental program is underway
to measure the current density induced on the complete aircraft model for

which we developed our code.

The comparison of the calculated and measured data is facilitated by
considering figures 4 through 8. All of these figures contain material
that was presented in references 4 and 5. The curves in figures 5, 6a,
7a, and 8a were traced from Xerox copies of curves presented in those
reports. The figure containing the description of the experiment
pertaining to the data presented in these figures is also redrawn based
on a figure presented in reference 4. All of these figures were originally

redrawn for presentation in reference 3.

The intent of the experiment is to simulate a monochromatic plane
wave incident on a tube having a total length of 2h. By referring to
figure 4, we can see that the angle 0 is defined so that 0° corresponds
to the deep shadow region and 180° corresponds to direct illumination.
The 6 1in figures 6a, 7a, and 8a correspond to this definition and z
is the axial distance ranging from 0 at the ground plane to h at the top
of the cylinder. The quantities |Kz|’ |Ke|, and ez plotted in these

figures are the magnitude of the axial component of the current density,
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Figure 4: Schematic diagram of scattering cylinder on ground plane.
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Figure 6a: Measured amplitude of axial surface density of outside
current on tubular cylinder, E-polarization (large
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the magnitude of the transverse component of the current density, and the
" phase of the axial component of the current density. The same quantities
calculated by our MFIE computer code for the current density induced by
the same source on a flatly capped cylinder having the same length and
diameter as the tube of the experiment are presented in figures 6b, 7b,
and 8b. In these figures we employ the symbol K rather than J to denote
the current density in order to conform to the notation of the measured
data. The scales of our calculations were adjﬁsted to the scales of the
experimental data by using three numbers, a multiplicative factor for
each set of the magnitude comparisons and an additive factor for the set
of phase comparisons. These three numbers were determined by forcing
one point of the experimental data to match one point of our calculated
data on only one curve of each of the three sets of curves. The reason
we include figure 5 in this paper is to show that there is only a minimal
measured effect of capping the tube, thus justifying our comparing our
capped tube calculations to the uncapped measurements. It should be noted
that our comparisons with the data were for h = 36 cm while data in figure 5
‘ corresponds to h = 84 cm. It is possible that capping the shorter tube
could have a greater effect on the measured surface distributions. This
could account for some of the differences between the experimental data
and the calculations; however, as can be seen the difference is already

quite small.

Now it is necessary for us to discuss the frequency at which we made
the comparison between our calculations and the experimental data. The
normalized value kh = 1.5 T determines the frequency. First we note,
without scaling h to missile or ailrcraft size dimension, that the comparison
was made well beyond the primary resonance of the cylinder. Next we
mention that if h is taken to be in the 10 to 20 meter range, the frequency
scales to the 20 to 10 MHz range. In this regard, we clﬁim that our MFIE
approach can only perform better as the frequency is decreased according

to the explanation contained in the previous section.

35/36



APPENDIX A

SYMMETRY RELATIONSHIPS

In this appendix we derive certain properties of the surface -current
density induced on a perfectly conducting body possessing one or more sym-
metry planes. The symmetry properties are true when the body is illuminated
by a plane electromagnetic wave of a pafticular direction of propagation and
polarization as we will explain shortly. These properties are useful in that
they reduce computation time and also give insight as to the distribution of
the induced current density on the perfectly conducting body, (See reference 7

for a one symmetry plane analysis used in a different context.)

We divide this appendix into two parts. 1In the first part we consider
a body with three planes of symmetry with an incident wave vector k perpen-
dicular to a plane of symmetry and the electric field parallel to an axis
of symmetry. We derive the symmetry relationships for a circular cylinder,
because a circular cylinder is relevant to this report, but analogous
properties can similarly be derived for any body with three planes of symmetry.
These relationships involve the surface current densities at points symmetric
to planes of symmetry other than the plane perpendicular to the k vector.
In the second part we consider a body with only one plane of symmetry with
an incident wave vector perpendicular to the plane of symmetry and the
electric field parallel to a suitably defined axis. We show that the sur-
face current densities at points symmetric to the plane of symmetry are

simply related to each other as the'frequency w * 0 (magnetostatic limit).

Before we tackle each part in detail we present certain important

.results whose derivation can be found in reference 3. Starting with the

magnetic field integral equation for the surface current density

tim =3, @+ fg(;;;@ - J(x_) ds (a-1)

N ) o
S

7. Baum, C. E., Interaction of Electromagnetic Fields with an Object Which
has an Electromagnetic Symmetry Plane, Interaction Note 63, Air Force
Weapons Laboratory, March 1971.
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and assuming that the xy-plane is a plane of symmetry for the body,

tains the following set of integral equations

where
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I is the identity operator, S+ is half the surface

are defined through the incident current density linc by expressions

to equations (A-4),

(A-5) and

+ +
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(A-2)

(A-3)

(A-4)

(A-5)

is a reflection operator

defined by z =2 0, J

(A-6)
+
~inc
analogous
(A-7)
(A-8)
(A-9)




R
Notice that r = x,y,z(20), R, £+ = X,y¥,~Z.

The above relationships show that instead of solving equation (A-1)
for points over the entire cylindrical surface, we can solve equations
(A-2) and (A-3) at points over half the surface and calculate the current

density at any point by inverting equations (A-6). and (A-5), i.e.

14

1)

With the above as background information we now consider part one in detail.

1. THREE PLANES OF SYMMETRY

The geometry is depicted in figure Al where

A
e
y

-ikz
= - e

H

ﬂinc [$)

AA
We define the unit surface vectors t, s such that

A A A
n s X t

where ﬁ is the unit outward normal. Thus

A
t =&
A Ax
s = e¢ on the walls
A A )
n=e
p
A
AR
JA) /\p
s = e¢ on x > 0 cap
A A
n==e
x
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Ill"’

24
A /\p
s = e¢ on x < 0 cap (A-14)
a= -4
x
We will show that
Jt(x,y,z) = Jt(x,-y;z) = Jt(—x,y,z) = Jt(—x,~y,z) (A-15)
Js(x,y,z) = —Js(x,—y,z) = —JS(—x,y,z) = Js(-x,—y,z) (A-16)

everywhere on the cylinder (walls and caps).

These relationships give us a lot of information concerning the distribu-
tion of the surface current density. For example, along the intersection of
the y = 0 plane with the cylinder, Js(x,o,z) = 0. Similarly, along the inter-
section with the x = 0 plane the azimuthal component Js(o,y,z) is zero. Notice,

however, that equations (A-15) and (A—16) involve points symmetric to either

the x = 0 or the y 0 planes not the z = 0 plane. Part two deals with symme-

tries across the z 0 plane in the limit ¢ = 0.

First we consider points symmetric to the y = 0 plane. The following

preliminary calculations are necessary.
a. Walls

Let us calculate the incident current density ginc and the auxiliary currents
+

=inc’

N
Jinc(x,y,Z) = n(x,y,z) X H o (%y,2) (A-17)

i

_ A
y " ~—rinc(gy - )= §y ) [n(gy © D)X Ejinc(gy : E)] (A-18)
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where gy e = X,~Y,2.

With the aid of figure A2 we see that

A / A A
n(R « r) xXe =n(r) xe
=y - y (» y

and

R [{-}(R -r)xé\] =’:§(R .r)x/é
=y =y y y y

since ﬁ(gy © ) X Qy is in the x-direction.

Thus

§Y ‘ Jinc(gy ) E) =.; [Q(E) g Qy ] Ho e—ikz = —inc(g)
1f we recall definitions (A-4) and (A-5) we see that
i (x,y,2) = J,._  (x,y,2) (A—19)
—inc inc
J;nc(x,y,z) =0 (A-20)
b. x > 0 Cap
With the aid of figure 10 we see that
By - [9(§y R Qy]; - 4 By - éy
A (@, - g)xé\y - ﬁ(g)xéy
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Figure A2: Orientation of the unit normal n at symmetric positions
with respect to the xz-plane.
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and

gy : Jinc(gy - D= Jinc(g)
Therefore,
J+ (x z) = J (A-21)
inc ‘2> ~inc

(A-22)

[
[

Jinc(x’y’z)
We can show that equations (A-21) and (A-22) are also true for the x < 0 rap.
Thus, we have shown that at every point where equation (A-3) is defined

the source term ginc is zero. (Notice that we apply equation (A-3) for the

y = 0 plane of symmetry rather than the z = 0 plane for which it was originally

presented.)

Equation (A-2) is an integral equation that has a unique solution and

consequently
J (x,y,2) =0 (A-23)
everywhere on s+,
From equation (A~5) we gsee that
J(r) =R+ J(R + ) (A-24.)
By considering the s and t components of equation (A~24) we will show that
Jt(x,y,z) = Jt(x,—y,z) (A-25)

JS(X,y,Z) = ‘JS(X,‘y,Z) (A—26)
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everywhere on the cylinder (walls and caps).
c. Walls
(1) t-Components
If we take the inner product of equation (A;24) with @(E) we obtain
3 () = 2@ -« B Ix,my,2) (a-27)
Recalling that £ = éx on the walls we see that

A A
t t

() + B, =8 = TR, - D
and from equation (A-27)
‘ Jt(x,y,z) = Jt(x,—y,z) (A-25)
(2) s-Components
From equation (A-24) we obtain
I @)= B - R+ I(x,-y,2) (4-29)
With the aid of figure A3 we see that
Sx) - & = [s(r)+_8(§)] . R
Iy z =y

-_sy(x,-y,Z) - _Sz(&—y.z)

N
- —E_(x:—)'9z)
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and equation (A-29) gives

Js(x,y,z) = -Js(x,-y,z) (A-26)

c. Caps
(1) x > 0, t-Components

Writing equation (A-27) for this case and with the aid of figure A3

we obtain

N
to -y s [, o] gy

E,L 2 £
=t ® D +EE D
= g(gy . )
and equation (A-27) gives
Jt(x,y,z) = Jt(x,—y,z) (A-25)

(2) x > 0, s-Components

Again we use equation (A-29) and figure A3

Q(g) .

e
[]

y [ay(;) + %z(z)] . gy

= -gy(z) + §z(z)

_Q(R . E)
=y
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and
J (%,y,2) = -J_(x,-y,2) (A-26)

We can show that equations (A-25) and (A-26) are also true for the bottom

cap x < 0.

The proof for
Jt(x,y,z) = Jt(—x,y,z) (A-30)
Js(x,y,z) = —JS(—x,y,z) (A-31)

that relate the current densitycomponents at points symmetric to the x = 0

plane is similar to the proof we gave for the y = 0 plane. In the x = (Q case
+ -

we can show that J, = 0 everywhere instead of J, = 0 as in the case of
inc “inc

y = 0 but otherwise the proof follows the same lines. Equations (A-25),

(A-26), (A-30), and (A-31) are the same as equations (A-25) and (A-16).

5. INTEGRAL EQUATIONS WITH FULL REDUCTION

We will now employ equations(A-15) and (A-16) along with the reduction
scheme given by equations (A-2) through (A-9) to derive a pair of integral
equations for two fictitious current densities, defined only over the part
of the surface of the cylinder that corresponds to the first octant, i.e.

x 20,y 20, z 2 0 and show that from a knowledge of the current density
over the surface of the cylinder that corresponds to only two octants (x = 0,
y 20, z2 0and x = 0, y2 0, z £ 0) we can calculate the current density

at any point on the remaining six octants. As we mentioned earlier, the sur-
face integrals in equations (A-2) and (A-3) are evaluated 0verS+. which is
defined for z 2 0. By applying the same reduction scheme we can substitute
equation (A-2) by two integral equations for {T+, {T_ and equation (A-3) by

-+ -- . .
two integral equations for J , J by considering the symmetries about the
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X = 0 plane and evaluating the resulting surface integrals overs++ defined

by X z 0, z 2 0. We can go one step further and consider symmetries about

the y 0 plane. Then the original equation (A-1) for J is transformed into

eight integral equations for J ', J ET—+, J+—_, J o, J_+—, J—_+, J
+H+ —- - T e
with kernels K ', K , K+—+, K , K ++, K +-, K +, K respectively. The

o
By repeated application of defining equations like equations (A-4) and (A-5)

surface integrals will be evaluated over § defined by xo'Z o, Yo 2 0, z_ 2> 0.

we can derive the following relatiomship

JaBY

1
-~8-[;](_r)+a§x._(§x.£)+85y._
+YRZ'£_QZ-E_)+0‘B_R'_§';TR'_R-Y)

+Q.Y§x-3 . J(R .i{z .1_-_)+ByRy._R - JR . R . 1)

+ O-BY=Rx . E . _—13 . J(R . _—R_y . __Ez . E)] (A—32)

where on the left hand side a,B,Y are + or - and on the right hand side they
are equal to +1 or -1. Also notice that in deriving equation (A-32) the x = 0
plane symmetry was considered first followed by the y = 0 plane symmetry and

finally the z = 0 plane symmetry but the order is not important.

We want to show that of the eight currents defined by equation (A-32)
six are identically equal to zero. We will do so by considering the t and s
components of equation (A-32). By following a procedure similar to the one

that led to symmetry relationships (A-15) and (A-16) one can show that

t@ - R =-t@® - D 3

N A

t@ - R = tR - D k (A-33)
T - R, =R, - D )
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and consequently

A _ _/\ _ _/\
t(r) R, g—t(ix-z)-iy-t(i-g-i)
- -t@®_-R -~ 1) 4
- == =y r (A-34)
since R , R , R commute, and
. = —/\ 3 . \
t(x) - R - R, = -tRe R, - D)
() - R - R =t(® - R ) |
_r. : = ‘ =2 -_—_y' =Z ‘ _I: r (A—BS)
AN AN
CEREVEE W U N SN
Similarly
A} N
= . N
s(r) - R =s®, )
$(xr) - R, = -8R, - 1) (A-36)
T =y =Yy - r
A o4
“(E) =z S(;Ez E) J
and consequently
8(r) - R - R =-5(R - R - 1)
— =X :y =X ;.y —- N
A -
s(r) By R " SR, - &, r)
q (A=37)
A _ A
s(r) & __l_lz = s(_E 52 . 1) J
A A
s(r) - R - By R, = —s@®.- =y R,
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Before we consider the t and s components of equation (A-32) we also recall

equations(A-~15) and (A-16) which we can rewrite as

3 = 3B D =3 @ D I ® R D

N
Jt(Rz'£)=Jt(§x'§z'£)=Jt(§y'iz'-£)=Jt(§x'§y'-§z'£)
>(A-38)
Js({) -7 JS(EX - D= -Js(gy - D) = gs(gx' gy' L)
/
Js(.-Ez - I = _Js(gx 'gz - 1) = —Js(gy' éz - I) = is(gx : gy ) Ez - I
In view of equations (A-33) through (A-38), equation (A-32) gives
B Sl 4o - aB) T (x) + (Y + By - ay = aBy) J_(R ) A-39)
C =3 a a e\ & Y By ay aBy (R, =L (A-
1
J(;LBY =3 [(1+B-a—aB) I (x) - (v + By - oy - aBy) J (R, - i)] (A-40)

From equations (A-39) and (A-40) we can see that only 7 and J—+— are

non-zero and that

J;H - —; [Jc(E) + I (R, E):I
AR ERCEERCY 'E)ZJ
- ‘; [Jt(z) -3 B, '1)] o

Thus we can evaluate Jt(f) at any r on the entire cylindrical surface if we
know J _+% Symmetry relationships (A-38) show that this is possible if we
know J(E) and J(Ez . E) where r = (x 20, y=20, z 20). Thus from a knowl-
edge of the current density over the surface of the cylinder corresponding

to only two octants (x2 0, y¥ 0, z2= 0 and x> 0, y> 0, 2z < 0) we can cal-

culate the current density at any point on the remaining six octants. From
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equation (A-41) we obtain

-+,
Jt(E) =3, ¢ Je
-
Je R + D) =T -,
(A-42)
-+
Js(_.v_') J-s + Jg
e =
IR, -0 = -G = J )

Equations (A-42) give J(r) and J(R, - 1) (_r = (x> 0, y=2 0, z20)) in
terms of_£’+i. In order to writé_down the equations satisfied by J-++
and_£—+_ we must calculate the corresponding source terms and kernels.
One can show that the incident current density also satisfies relationships

(A-15) and (A-16) or their equivalent ones given by equations (A-38). Thus

-++
inc, t

N|.--

[?inc,t(E) + Jinc,t(.-l;z ._fﬂ

]
e

Hs (r) sin kz
oy —

-++ 1
Jinc,s T2 [Jinc,s(s) + Jinc,sﬁgz _fﬂ

= H t (r) cos kz
o y-—

-+~  _1
J1'.nc,t T2 [Jinc,t(—g)' Jinc,t.(—_liz r_]

=-H s (r) cos kz
o Ty=

o =%[J €) - J (R'r)]

inc,s inc,s — inc.s == ~

= —-i Hoty(-r__) sin kz
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By repeated application of equations (A-7) through (A-9) one obtains

=
[]
~
~
[a}
~
~r
[
~
~
La ]
)

* £o) ) Ex + ﬁ(ﬁiiy ‘ E0) - R

e
=

(53R, + £g) + B, - KGR, - By ) - R, - R

F é(r;R «. R «xr ) . Rx . gz + §(£5§y . 52 «.r ) R+ R

+
~
~~
,1
o
=

= — =X =y -R—__Z : EO) . .E_x ) iy ' iz (A_43)

+1
In order to exhibit the integral equation for J in component form we must

calculate the inner products

S K. 8(r), s - KT LRy
try - KT L A, R s kT L e
— = -0 — _ (e)
Recalling that
é(g, _r_o) = /r\t(g) x [Vc(g;go) x _1_ ]

where
VG(r,ro) = Q(R)R
eikR
Q(R) = — 3 (-1 + ikR)
4TR
R=r-r, R=|R|
— - -0
we have
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(5., "t\(p] . R(rsry) - [8G), f)]

"
n>
"
Ses?
>
9
—
3>
~
N
~—m
I
X
0>
f~
o
A4
>
®
N
| I |
H_J
o]
~~
)
N’

[[/s\(z), t(o] x ’r}(g)]- [gx [Se), 9(50)]] Q(R)
=[—/t\:(£), ’g(z)] . [_R x [/s\(zo), /E(EO)]] Q(R)
=[-/€(£), /S\(E)] x [é(_go), /E(_l_'o)] - R Q(R)

In view of the above relationships we finally obtain

- .
Js (E) Hotycoskz +[ [Mgt,_sol JS(EO) + M(t,to) JL(EO)_J ds,

S
(A-44)
J;-H-(I) = 1H05ysinkz +j[M(s,—so)JS(£o) + M(s,—to)Jt(Eo)] dsg
S
J:_(f) = —1Hocysinkz +I[N(t,so) Js(_r_o) + N(t,to) Jt(_go)] ds,
X (A-45)
J—q—(r) = -H s coskz +J[N(s -s )J (r ) + N(s,-t ) J (r )‘I ds
t = oy : > o' s —o * o t —o’ | o
S
where
ASIA A A A A N\
Mps0,) = QOP) - Ry = Qy(#% )+ Ry + Q3005 P) - By
- (B,xB) - B, -Q(Bx B) - By - Qu(Bgx By Ro L (A46)
A N A AY
+ Q;(9; x P)-R; -Qgldg x p) - Rg )
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N(p,o) = Q (8, xB) R - Qu(B, x ) R, - Qu(4; X ) + R

-3
A A A A
Q4(¢4 x P)-EA + Q5(¢5 x p) - Ry - Q6(¢6 x p) - Re (A-47)
A A N A
Q7\¢7 x P) * B_] + Q8 (¢8 x P) . 58
and
B=r-x By=r-R R .1
R, =r-R_ .r R, =r-R R .r
2 i =x o =6 L =X =z _o (A-48)
R, =r~R_.r R,=r-R .R .
=3 - =y ~o0 —7 B —" =2 —0
By =r-R, -1, Bg =r - By Xy R 1
AN AL A
f1‘¢’1(£of\ i’s ix'iy‘i’l
‘ ¢2=§x'¢1 q>6=§x'52'¢1
6. =R . § e (A-49)
A= /3 ¢ = By R, 9
o, =R -0 . N A
b =z 1 % = By 'gy "R 9 ¢
The explicit forms (A-46) and (A-47) define our notation for M(p,¢o) and
N(p,¢o) which admittedly is not impeccably clear. To obtain M(s,-so), for
example, we substitute 3 by Q{E) and $i(i =1, 2, ..., 8) by —Qi where Ql is
the unit vector & evaluated at r, = (xOZ 0, yOZ 0, z, 2 0)! The integrals

are evaluated over the part of the cylindrical surface defined by xOZ 0,
>
Yo © 0, zOZ 0.

Thus the existence of three symmetry planes and broadside incidence (see
figure Al) allows one to reduce the problem of calculating the current density
on the cylindrical surface to equations (A-44) and (A-45) which involve inte-
grating over one eighth of the cylindrical surface whereas the original equa-

-+ -
tion (A-1) is defined over the entire surface. Once we know J and J

we can employ equation (A-42) to evaluate_g(r) and J(Rz * r) wherer = (x> 0,
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y2 0, z2 0). The current density at any point is then obtained by using
symmetry relationships (A-38). If the k vector is still perpendicular to
the xy-plane but the electric field has x and y-components we can consider
the two components separately and employ the relevant symmetries for each
case. The final current density is then given_by superposition of the
current densities corresponding to the two electric field components. If
the incident wave has arbitrary direction and polarization symmetry rela-
tionships (A-38) are no longer valid. One can still reduce equation (A-1)
to integral equations over the x 2 0, y 2 0, z 2 0 part of the surface and
solve for the eight current densities gﬁi* . From equations (A-32) one can
solve for the real current density J evaluated at points over all eight o.-
tants in terms of the gtii current densities. For a specific plane wave
some of the symmetry relationships given by equation (A-38) may hold and this

T+t -
would reduce the number of non-zero J -~ current densities.

2. ONE PLANE OF SYMMETRY. MAGNETOSTATIC LIMIT

Consider a perfectly conducting body, possessing a plane of symmetry
xy, illuminated by a plane wave with the wave vector k perpendicular to
the plane of symmetry and the H vector parallel to the y-axis as depicted in
figure A4. The x-axis is chosen conveniently, for example for aircraft

it is the axis of the fuselage.

We will show that in the limit w = 0, where w is the radian frequency,
the surface current density at points symmetric to the xy plane, are simply
related to each other. The specific relationship will be presented shortly.
The surface components at the surface current density J will be denoted Js

and Jt, that is at each point on the surface we have

J=J 8+71 % (A-50)
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CROSS SECTION BB

CROSS SECTION AA

Figure A4: A body possessing a plane of symmetry (xy-plane)
and orientation of unit vectors fi, 8 and t.
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where g, @ are orthonormal surface vectors. In order to construct an ortho-
normal triad Q,Q,Q where 9 is the outward unit normal to the surface, we
slice the body with a plane perpendicular to the x-axis and define 4 as the
unit vector tangent to the intersection curve with the body. At any point

P on the surface the unit normal ﬁ is perpendicular to A because Q is a sur-
face vector. The © vector is then defined as the cross product of n and Q,

that is
=n X s (A-51)

The unit vector @ is a surface vector at P because it lies in a plane perp:n-
dicular to ﬁ, that is it lies in the tangent plane at P. (Figure A4 shows the
components of the triad ﬁ,g,é at several points symmetric to the xy-plane).
Now that we have defined £ and Q we can present the relationships between

the current density components. These are:

3D = 3,60

(9,

2

(A~

~

+ -—
Jt(f ) 'Jt(f )

+ - . :
where r and r are points symmetric with respect to the xy-plane, that is

+
!_. = (x’y,z)

220 (A-53)
r = (X,Ya_z)

The proof of relationships (A-52) involves three steps:
(a) Use of certain symmetry arguments through which the usual magnetic field

integral equation for J(r) is substituted by two integral equations for

+ -
J and J on the positive (z = 0) half of the surface S where
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gt -2 [g(r*) t R -_J_(E‘)] | (A-54)

and Rz is a reflection operator about the symmetry plane

Rz =:; -2 e, e, (A-55)
(I is the identify operators.)
- + +
(b) Proof that at w = 0 the source term iinc’ for the J integral equa-
tion, is zero everywhere on the (z 2 0) surface of the body and con-
+
sequently J = 0.
. + . N N
(c) Inner multiplication of equation(A-54)for J with s and t and use
of geometrical properties of these unit vectors to finally show the
validity of equation (A-52).
We now present the above three steps in detail. The magnetic field
integral equation for J is
1
5 J(r) = J (1) +f K(r,r )+ J(r )ds, (a-1)
S
where
A
J, (r) =n(r) xH,  (r) (A-56)
—dnc  ~ —~ —inc "~

and S is the surface of the perfectly conducting body.

Fquation (A-1) as we mentioned earlier can be transformed into the following

pair of equations:

N[

=5t «h +f Kt e L aTal as, (A-2)
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1reh =9 oh +] K@ e, 37 @ as, (a-3)

+
where K (r+, r:) are defined by equations (A-7) through (A-9).

+  +
Next we calculate Jinc(r ) from

+ 4+ 1 + + .
Jinc(z ) = 2 [iinc(£ ) +R, iianEz - I J (A-37)
+ N, + +
Jinc(_T: ) = n(E ) x Einc(f )
= - Q(r+) x B H e ikz (A-58)
_ Ty o

and ‘II'

R_.J, (r) =R —[/ﬁ(r-) x @ :l H o elk?
~z inc '_ -z _ y o
- - i -5Q9
= -l n(r) xe +n (r) x Q ] H e1kz (A-59)
-2 X z o
where
G =n +n +n
X -y -z
From figure A4 we see that
n (r) xe =n(r) xe
n (r) xe€ =-n(r) x A
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and from the definition of__l_zz glven by equation (A-55)

+ A + A
L -[2x<£ ) x ey] T (r) x gy

R .[ n (r+) x & ] +
iy —z = y [t il

n (r) x 2

Using these relationships, equation (A-59) can be written as

‘ -y A+ A ikz
B Jine® ) = [n(_r_ ) X ey] Hye

and from equation (A-57)

[

+

~~
Lo ]
S’
]
!
N
for o]
=
~~
o]
+
A
X
>
| E—
~~
[

i
=
~
N

]
=
=
N
N’

As kK - 0, equation (A-60) gives

R T
lim ginc(E ) 0 everywhere on s+

k=0
and from equation (A-2)

+
, J+(r ) = 0 everywhere on S+
1im = *° yv

k=0

From equations (A-54) and (A-62) we then see that

BRI R

which is the vector relationship between the current densities at r+ and r
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In order to show the first of equation (A-52) we form the inner product of

equation (A-63) with Q(r+):

-5¢

(A-64)

The right-hand side of equation (A-64) can be simplified by expanding s(r+). R

I T P RN RN
=0+ gy(r+) -5,
From figure A4 we see that
fyg+)=-? g_)
5, = 5,00
and equation (A~65) gives
Sy LR = -s)

)

(A-65)

(A-66)

Thus the right hand side of equation (A~-64) gives, by virtue of equation

(A—bé) >

NCH IR N

Q.E.D.

The second of equations (A-52) can be shown similarly by inner multiplica-

tion of equation (A-63) with @(r+) and noticing that (see figure A4)

t

L

£




that is

(]
()
o~
2]
~

[}

)
ey
N

.« o~
irg

}

S
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APPENDIX B
A PERFECTLY CONDUCTING ELLIPSOID IN A MAGNETOSTATIC FIELD

In this appendix we calculate the surface current density induced on a
perfectly conducting ellipsoid immersed in a magnetostatic-like field, i.e.
we assume that the frequency of the incident electromagnetic plane wave is
high enough to cause negligible penetration but low enough to decouple the
magnetostatic and electrostatic interactions (see reference 2 page 5 for a dis-
cussion). The current density induced due to the electrostatic interaction
will not be considered. Thus we will solve the magnetostatic problem depici-

ed in figure Bl where the incident magnetic field is
= Hy & (B-1)

and the normal component of the total magnetic field on the surface of

the ellipsoid (b< a< ¢) vanishes.

First we briefly explain the meaning of the ellipsoidal coordinates

£,n,z, defined by the following relationships.

Zx +-—%—— + ; = 1 o> g > —b2 (B-2)
a +§ b +§ c +g
2 2 2
; + g + ; =1 -bz >n > <a? (B~-3)
a +n b~ +n c +n
2 2 2
X + + —= =1 —az >z > -c2 (B~4)
2 2
a +g b +g c +C

The first family of surfaces represents confocal ellipsoids defined by

€ = const. (£ = 0 corresponds to our perfectly conducting ellipsoid.)
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Figure Bl: A perfectly conducting ellipsoid (c>a>b)

in a magnetostatic field Einc = Hoéy.
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The second (n = const.) corresponds to hyperboloids of one sheet (b2 +n <0)
and the third (7 = const.) to hyperboloids of two sheets (b-2 + 7 <0, a2 +
T < 0) (fig. B2) all confocal to the ellipsoids. Solving equations (B-2),

(B-3), and (B~4) simultaneously for x, y, z we obtain

- . . 9 1
< = & (g+a2) (n+ a2) (z+ a2) * (B-5)
L w?-ah ?-ahH
7L
y =t [(£ + b (n+1D (z+Db7) |~ (B-6)
- 2 2 2 2
L (¢” ~b7) (a” - b)) -
- 1
2 = + (€+c2) (n+c2) (C+c2)] : (B-7)
L (c2 - a2) (c2 - bz)

In order to understand the geometrical significance of the ellpisoidal
coordinates we trace how the above conicoids come into being. From equa-
tion (B-2) we see that for & > -b2 all three forms are positive and the
resulting surfaces are confocal ellipsoids ranging from a sphere at infinity
for § > = (x2 + y2 + 22 - Ez) to an elliptical disk with semi-axes a2 - b2,
c2 - b2 lying in the xz-plane for § = —b2 + 52(6 + 0). As & (which we call

z _ 62 the sign of the

n for the range —az, —b2) passes from —b2 + 62 to -b
‘second term in equation (B-3) becomes negative and the resulting surfaces

are hyperboloids of one sheet. For n = —b2 - 62 (8§ > 0) the hyperboloid
degenerates into the region in the xz-plane that lies outside the elliptical
disk. For n = -a2 + 62 (6 = 0) the hyperboloid is flattened into the

region in the yz-plane "inside'" the hyperbola —y/(a2 - b2) + zz/(c2 - a2) = 1.
As n (which we call g for the range —c2, —a2) passes from —a2 + 62 to —a2
the first two terms in equation (B-4) become negative and the resulting
hyperboloids now have two sheets. For n = —a? - 62 (8§ -+ 0) the correspond-~
ing hyperboloid is the region in the yz-plane outside the hyperbola

-y2/(a2 - b2) + 22/(c2 - az) =1, i.e., it has two separate sheets.
Finally, as T = -c2 + 62 (§ - 0) the two sheets are flattened into

the entire xy-plane, i.e., the two sheets coalesce. The above
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Figure B2: Hyperboloids of one and two sheets.



discussion shows that the correspondence between the ellipsoidal coordinates

and spherical coordinates (see figure B3) is

E 1
n +> ¢p (B-8)

g« 6

In this appendix we are primarily interested in determining the current

density at the z = 0 intersection, i.e. at points along the arc of the ellipse

2,2 2,2
x fJa_ +y /b =1, If we set z =0 in (B-3) and combine it with xz/a2 + y2/b2 =
1 we obtain
2 2 2 2 2
(x +y)n = n(a +b’) + n
. . 2 2
The solution n = 0 does not lie in the range -a ,-b and comsequently
2 2 2
n=x + y2 - (a + b)) (B-9)
If we define ¢ such that (see figure 3)
X = a cos ¢
(3-10)
y = b sin ¢
we can derive the following useful relationship
2 2 2
n-= —(a2 sin ¢ + b cos ¢) (B-11)
which we will use later. (We can also obtain equation (B~11) by setting
2
¢ = -¢ to either equation (B-5) or equation (B-6).) Now we turn to the

formulation and solution of the problem. The incident magnetic field can

o~

be derived from a scalar potential
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Figure B3: The spherical coordinate system.
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& . = H oy (B-12)

The induced or scattered magnetic field can also be derived from a scalar

potential satisfying Laplace's equation

H = -Vo . (B-13)
—8C sC

Thus the total magnetic field is given by

H= —V(<bi +¢ ) =-V¢ (B-14)

—_ nc SC
and is such that

- - AL 9% _
Hn = -V . n = h 3E =0
£
1.e.
(B-15)
¢ _ _
——a—g—— 0 at E_, 0

(ﬁ is the unit vector normal to the surface of the ellipsoid.)

If we recall equation (B-6), equation (B-12) can be rewritten as

1
cu [(€+b2)(n+b2) (c +b2)]‘i
Q

(c2 _ b2) (aZ _ bZ)

o
)

inc

(B-16)

Af(E )E(n )E(T )

where
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f(p) =p +0

H
- — L8] -
* ¥Eaz—b2) (c2—b2ﬂ!?

In view of equation (B-16) and the boundary condition (B-15) the scattered

potential ¢sc should have the form

® = Bg(EE(NE(L)

sSC

where the functlonal form of g(&) will be determined by requiring that ¢sc

satisfy Laplace's equation.

From equations (B-15), (B-16) and (B-18) we find

B = -A df /d¢
dg/dE £=0

and

= Af(n)f(C)-f(E)—s(a)[

The two surface components of the surface current density J are

- =L 23
Jc Hn hn an

‘_'['.—_H=——1—.3_¢

n z hC 14

where
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df /dg
dg/d¢g

(B-17)

(B-18)

(B-19)

(B-20)

(B-21)

(B-22)



1 [or o] ® .
fin T2 R(T) > £=0
w1 Leo @) * £ - o

4 2 R(D) ?

and
L
2 2 2. ] *
R(p) = [(p +a’) (p+b7) (p+ec )]
Thus
3= -A e [wf,g)/ [dg/dg]]
g h re
n £=0
A '
Iy T fm £1(D) [W(f,g)/ [dg/dﬁ]]
z £=20
where
1
f'(P)='§"‘_l”—2;§,P= Ty
(p +b7)
and W(f,g) is the Wronskian of f and g:
-¢gd98 _ , df
W(f,g) = ¢ dE g dE
Next we determine g(£). Laplace's equation in ellipsoidal coordinates has

the form (ref. 8, page 59)

o0 ad
] sc 2 sc
(-0 Re 5 (RE 5E ) +(emER 5 (Rn Bn-)

(B-23)

(B~24)

(B~25)

{B-26)

(B-27)

(B-28)

(B-28)




Substituting ¢sc in equation (B-28) by its form given by equation (B-18)
we obtain the following equation

2 2 '

Noticing that £(£) also satifies equatiom (B-29) we invoke a well-known
result for a second-order linear equation that allows one to obtain a

solution if an independent solution of the same equation is known, i.e.

g(6) = f(a)j—zd—g—
2 ®

(B-30)

2. dg
=(£+b)J—_ —
(g + bz)‘VQE + 32) (g +b7) (& + c2)

£
‘ The scattered field is due to localized currents, i.e., ®(&) must vanish at
£ = ®, This is secured by making the upper integration limit in equation

(B-30) infinite. Now we are in a position to evaluate [dg/dg]g = 0 and

the Wronskian at £ = 0. From equation (B-30)

oo

[i&] _ 1 I dg 1
Ele-o P ) @) Vgrad @+b) g+ av’e

1 (B-31)

Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, Inc.
New York and London, 1941.

73



where

oo

ao = abce j de (B-32)
0

€+ b2 VE +a%) (£+b) (£ + ¢y

The Wronskian can be evaluated by recalling that g and f satisfy equation

(B-29), which is of the Sturm-Liouville type, i.e.

W(E,g) = c/R, (B-33)

where C is a constant to be determined. If we evaluate f and g for £ -» «

we have
1 1
F(E) = (£ + b2)% & g3
g(&) = £(&) f__é____(g) RE £ f 573 3 T
3 g
and
~1/2
_ oJe 2 1 0 21 1 _ -3/2 _ -3/2
Thus
C=-~1
and
1
w(fag) = = 5
Re
(B-34)
- . 1
[w(f.g)]g =0 abe
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We can now rewrite equations (B-26) as

-
P L 1 [(n+a2) (nte?) (c+b2)J )
z 37 2D o] -2 n
>(B-35)
. !
s
;oL P o . -[(c+a2) (z+e?) (\)+b2)]
n a - 2 [(cz_bz) (az—bz)]!’ (-n) ¢ J

where the + sign corresponds to y< 0 and the - sign to y> O.

let's now evaluate the current component at points z 0, x = a cos¢ ,

1}

2
y = b sin ¢. 1In this case 7 = —cz and from (B-11) n = - (azsin2¢ + b“cosz¢ ).

Thus,

2H b
J (z2=0) = + -9 e | cos ¢ |

* ) =
‘ 2 a, (azsin2¢ + b2c032¢ )i

(B-36)

Jn (z = 0)

Il
o

Equation (B-36) shows that the surface current density at the z = 0 inter-
section is perpendicular to the z=0 plane. To translate JC into J, we
recall equation (B-11) and that JC = - (l/hn ) 3¢/on , J6 = —(1/h¢p)8¢/3¢p
=ﬁIz, at z = 0). (As one can see from figure 3 the angle ¢ is not the
usual polar angle ¢p such that x = p(¢p) cos ¢p and y = p(¢p) sin ¢p. How-

ever, tan ¢ = % tan ¢P and 3/3¢,3/3¢p have the same sign.) Thus equation
(B-36) gives
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Ts ¢ < 3m/2 JC-—J9=JZ<O

an/2= ¢ < 2w J_=J

z g = —Jz <0

Thus the sign of J, is the same as the sign of cos¢ .

Parameter a, given by equation (B-32) can be expressed in terms of an
elliptic integral of the second kind. This can be accomplished by making
the substitution

2
COS¢ = _Lt.k—._

x +c

which transforms equation (B-32) into

¢ 2
2abc tan 6 d©
a = 1 (B-37)
° (2 - 332 j(;(l-kzsinze)1
where

cos¢ = b/c
k2 _ c2 - a2

T2 2

Using reference 9 No. 782.03 we obtain

a = 2acos¢ [ tang Jl - k251n2d) - _M_] (B~-38)
o 3 2 2
¢ sin”¢ 1 -k

1 -k

where

¢
E(9,k) = f (1 - k2sin®6"3 % d (B~39)
0

9. Dwight, ll.B., Tables of Integrals and Other Mathematical Data, The Mac-

millan Company, New York, Fourth Edition, 1964.
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is the elliptic integral of the second kind. Certain limiting cases are of

interest.

1. INFINITE CYLINDER OF ELLIPTICAL CROSS SECTION

By letting ¢ + « in equation (B-38) one can easily obtain

The same expression can be derived by using equation (B-32), i.e.

oo

ag

ao = ab 2372

e Jy &+ 1% Vegra®) e/cP4n)

M ©
de
= ab + -
IO &2/ Vera® L (E+b

oo

)

2,3/2

(B-40)
(B-41)
dé
Ve+a?) (£/c+1)

The second integral which we call I is positive and smaller than I1 where

I =
1 .[M (53?7 Vera®

As M » = I1 + O0and I =0

The first integral in equation (B-41) can be rewritten as Jﬁ

and it is elementary (ref. 9, No. 383.1)

77

a0

b

2

X

dx

Vx(x+a -b)



a = ab

[+ <]
2 2 2 2. 950 2a
0 -3 2 ["+(a'b)"]}'a+b
(a™-b)x b2

Thus for an infinite elliptical cylinder

- cosp . _

Jz H,(a+b) 2 ) S
(a sin"¢ +b"cos”¢)
(B-42)

=0

Yo
with
A

Hine = Ho @y

and ¢ defined in figure 3.

Notice that J, (¢ =0) = Hy(l + a/b). When a = b, J, = 2H, cos$p a well-known

result. It is interesting to note that

Jz($=0, a#b)/J,(¢=0,a=b) = (l+a/b)/2 > 1

In order to see how much the infinite cylinder solution differs from the

ellipsoid solution (which can be made to look like a finite cylinder of
elliptic cross section for c much larger than a), we cast equation (B-38)

into the following form

_ 2a 2ab
= - 1
o a+b (l-bzlcz)i(a

a
72

[E«p,k) - (1-b2/c2)“] (B=43)
> B¢

2. PROLATE SPHERQID

If we recall definition (B-~32) for a, and set a=b the resulting integral

is identical to the one obtained by Sancer et al (ref. 1) for a prolate spheroid
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immersed in a magnetic field. To verify that expression (B-38) is also
correct we must consider the limit carefully because if we set a=b, i.e. k2=1,

we obtain the indeterminate expression 0/0. Thus we set
a2eb?(146%) , a=b(1+46%+0(s%))

and noting that

Y
- = cos¢p , (1 - _f) = sing
c
2 .
1 - k2 = 62-
tan ¢

2
1 1
(1 - kzsinze)’i = (cosze + *—§5- sinze )’§

tan ¢

62

2tan ¢

cosf (1 + sinze + 0(64))

we obtain

1

a = 15 6% + 0(8%))

2
2 cos ¢ (1 +
o

sin™d

3
{% cosd (1 +1% &2 + 0¢s*))
8

2 2 :
- EEEEQ— [sin¢ + -—§~—m (- sin¢ +-% In %—;—E%%%—
) 2tan” ¢ ‘ S

+ 0(64%
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2
« 2 cos 2 1 sin¢tan2¢ +-% sin¢ - 1 ln 1+ sin 0(62)
1% 2 | 4 "1 - sing

and as § »~ 0

(B-44)

1 €2 . 1l - Vl - ez >

1
a = — l +5 -——— 1n
2z
° 1-52 ( 2 (1—52)% 1 + 1 -¢

where € = b/c. Equation (B-44) is identical to equation (4) in reference 1.
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APPENDIX C

NUMERICAL SOLUTION FOR THE MAGNETIC
FIELD INTEGRAL EQUATION FOR AIRCRAFT

1. MODEL

Our model for an aircraft is depicted in figure 1. The fuselage as well
as the rest of the aircraft components are modeled as elliptical cylinders of
major axis 2a, and minor axis 2b, where i denotes the component or body under

i i
consideration.

2. ZONING

Our aircraft is symmetric about the xz-plane and as we explained in Sec-
tion I we can utilize this symmetry to transform the integral equation for
the current density J into two integral equations for gi defined over half of

the aircraft (y=0). Thus we will only zone the aircraft for y= 0.

The half airplane for y=0 consists of four sections or bodies. Body 1
is the fuselage, body 2 is the wing corresponding to y2 0, body 3 is the hori-
zontal stabilizer (y20) and the vertical stabilizer is body 4. Each body
is treated independently in this appendix. The intersections are treated in

Appendix D.

Because we treat the bodies independently, we define the orthonormal
triad G, Q, 3 accordingly, i.e. § corresponds to the azimuthal direction de-
fined by the angle ¢ (fig. 3), fi is the normal to the surface and t =

A
n
3r
s = 3$

x 8. Analytically,

or

% (c~-1)

where ¥ is the radius vector.

Thus at each point on the surface of a body we have a pair of orthonormal

surface vectors & and % which define two orthogonal directions and for this
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reason we introduce a convenient surface coordinate system (¢,%) where ¢ ' .
corresponds to the s—-direction and £ to the t-direction on the walls but

the radial direction on the caps. Each body will be divided into ¢-strips
and 2-strips. The ¢-strips are bounded by 2 = constant lines and the
f-strips by ¢ = constant lines. For each zone a reference point is taken
and it represents the central point of a zone. The coordinates of this
central point are given in Section 4 of thié appendix. The meaning of

¢ and £ can be clarified by considering a specific body, say the fuse-

lage. Any point on the surface of the fuselage can be described in

terms of three parameters: ¢, x and r where x = x, y = a; r sing,

z = —bl r cosp. On the caps (x = 0, x = 21) r ranges between 0 and

1 and on the walls r = 1. Now £ can be defined as follows. On the

walls, that is for 0 < x < 21, let £ =x. Forx=0,0<7r1<11let?l = 11
1+ r. For the rest of the bodies, which only have one endcap at x = length

of body, £ = length + r for the endcap.

We are now in a position to exhibit our zone numbering scheme. As we
mentioned earlier we have four bodies which we have numbered from 1 to 4.
Zone no. 1 is assigned to body no. 1 (the fuselage) and corresponds to ‘
the t-strip defined by ¢ = 0, ¢ = ¢1 >0and £ =0, £ =24'>0. The
subsequent zones are numbered in the direction of increasing £ until
we reach £ = 21 + 2. Then we go back to the t-strip defined by ¢ = ¢l’
¢ = ¢2 > ¢1 and £ =0, 2 = L' > 0 and the subsequent zones are numbered
in the direction of increasing £ until we reach 2 = 21 + 2 and so forth.
When we have covered the fuselage we continue with the wing (body no. 2)
following the same procedure, i.e., using the same numbering scheme in
the local ¢, space. Figure Cl illustrates the numbering scheme we just
outlined. (Figure Cl should not be interpreted as providing any informa-
tion with respect to the relative sizes of bodies 1 and 2 or the size,

number and uniformity of zones).
3. MATRIX EQUATIONS FOR CURRENT DENSITY

Throughout the following discussion o denotes a zone number, i denotes

a body number, j denotes a strip index defined by two ¢ = constant boundaries,

. @




€8

6= 180° T T Tﬁ"_{“"”'f'"'T“"““" | 1 -

35

18 | 19|20 |21 |22 {23 |} 24 25;26 27 128 129 |30 |31 |32 33|34

12 3lalsle| 718 _l 9110 |11 | 12|13 |14 |15 |16 |27
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2=0 L= 22 L= 2,2 +1

Figure Cl: Numbering scheme for zones on the aircraft component.
Two components are shown: the fuselage and the wing.
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and k denotes a strip index defined by two 1 = constant boundaries. For
example, zone 28 in figure 16 corresponds to a = 28, i = 1, j = 2, k = 11].
The relationship between o and i, j, k will be exhibited separately for each
body in section 4 of this appendix. We wish to evaluate the s and t-com- -
ponents of the current density J at the center of each zone. Thus the de-
sired quantities are: Js(a), Jt(a). The system of equations for finding

these quantities is:

- 47 Jis(a) = :E: [A(a,ao) Js(ao) + B(a,ao) Jt(ao)J

a
(o)
(C-2)
~ 47 Jit(a) = :;: [?(a,ao) Js(ao) + D(a,ao) Jt(ao)]
o
where the source terms are
= 4 4 y = % .
Jis(a) = s(w) [n(a) X Ei(au t(a) .Ei(a)
N A A (C_3)
Jit(a) = t(a) .[;(a) X Ei(aﬂ = s(a) . Ei(a)
and ﬂi is the incident magnetic field givem by .
H; = H exp (ik - 1) (C-4)
and
k = ~k sinf cos¢ 3
ox o o o
koy = -k031n6051n¢0 } (C-5)
k = ~k cosb
oz o o J

are the wave vector cartesian components (fig. 2).
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To find the cartesian components of Eo we have to define the polarization
direction of the electric field gi: If we consider the axis perpendicular
to k and lying in the k, z=axis plane, say x", then E, forms an angle ﬂ—¢p
with x" (fig. 2). (E ,,gi and x" lie in a plane perpendicular to k. We
can now calculate the cartesian components of Bo by making three successive

rotations as follows. We assume that the k, system initially

E B,
coincides with the -z, -x, y system and we bring it to its final position

by first rotating about z by ¢ (rotation matrix A) then about y' by 0
(rotation matrix B) and finally about z" by -¢ (rotation matrix C) (fig. C2).

Thus

Hox 0
-1 -1 -1
il =
oy A B C H
i 0
oz
cosP, -sin®, - 0 cos@, O sinf, cos¢p sin¢p 0 0]
sing, cosdp, O 0 1 0 —sind)p cosd 0 HO
0 0 1 -sinf, O cosfq 0 0 1 0
or
Hox = Ho(cosq)OCOSGOSLnd)p - 31n¢ocos¢p)
Hoy = H0(31n¢0c056051n¢p + cos¢0cos¢p) (C-6)
H = -H sinf sing
oz o o p

The matrix terms in equation (C-2) are given by the following expressions.

= - . A A At
A(a,ao) = 'Séaad + J[ _K(a,ao) (EGXSaO)Q(a,aO)ds
S

(ao)
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Figure C2: Three successive rotations used in the definition
and derivation of the incident magnetic field
components.
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A A
B(a,ao) = f B_(a,ao) -(cax tao)Q(a,cxo)dS
S(ao)
= - . /\.' A -
Cla,a ) j B(a,ao) (s xaao)Q(a,ao)dS (c-7)
s(ao)
= - - YY) N
D(a,0 ) -SSMO R(a,a ) 8% tao)Q(a,ao)dS
S(ao)
Q(a’ao) = [—1 + ikoR(a,ao):l exp[ikoR(a,ao)] /R3(OL,G.O)
g(a,ao) =r, -r o (C-8)
R(a,a ) = Ir -r |
o o oy

As we mentioned earlier our aircraft is symmetric about the xz-plane,
and we can utilize this symmetry to transform (C-2) into a pair of equations
for two fictitious current densities defined over only half the surface of the

aircraft, i.e. y2 0. These equations are

—amal (@) = ) [A*(a,ao) 35a) + B (ana) IF (cxo)]
(10
(C-9)
+ N + + + *
43t (o) = Ea: [ch@ay) s5@) + e )vi)]
o]

where



- +
Js(a) = Js(a) + Js(a)
I (o) = I (o) - J:(a)
(C~10)

+ -
Jt(a) = Jt(a) + Jt(a)

+ -
Jt(-a) = Jt(a) - Jt(cy.)

+
Equations (C~10) show that from a knowledge of J  over zones corresponding to
y 2 0 one can calculate the real current density J over the entire surface,

i.e. over zones corresponding to ¢ and -a.

The source terms are given by

+ A e ~1(6+Y)

Jis(a) = ~t(a) Ei(a) e
(C-11

+ + —i(6+
3 (@ = 8 - Bl e HEW)

it -1

where

+ o lias A A ’ A
ﬂi(cD = -ising (Hoxex+Hozez) + cos ¢ Hoyey

_ _ R R . (C-12)
Ei((ﬁ = -isin¢ Hoyey + cos ¢ (Hoxex+Hozez)
=k z(a) cosg )

o o
N , |
kox(om)smeocosq)0 (C-13)
¢ - 9
koy(a)sin osind)o J
The above equations are derived by first recalling that

X =5 |4J + R - J ] ‘
I =5 [1,(0) * Rpr 1 (-0 o (c-14)
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where -k

A + r(+a)
Jy(#a) = n(za) x H (to)e

If we define
k, * r(a) = =(6+yp)
and use the following relationships

tx(a) - tx(-a)

ty(a) = -ty(—a)

tz(a) = tz(—a)

s (o) = -s _(~a) °
. 5 (o) = 5 (-

sz(a) = -sz(-a)

which can easily be demonstrated, one can show that

* -1 - A
Hi(a) =3 [Hix(a) ¥ Hix(—a)] e

= T A
+ [Hiz(a) ¥ Hiz(-a)_] e,

A
+ [Hiy(a) + Hiy(-a)] ey

and equations (C-11), (C-12) can then easily be verified.
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Finally, we give

Ai(a,ao)

Bt(a,ao)

+
C (a,ao)

+
D (a,ao)

QO
~
w
~
[}

el
~
Q
R
~
[]

the expressions for the matrix terms on equation (C-9)

=-0.56 .+ f [E*(a,ao) . (Ea x 8 ) Q@®™)

S
oo
S(ao)

R(@a) * (£, xR+ 8,) Q& )] ds

- [R(a,0) * (b, x t,)) QR * K (2,0a.)
S(ay)

. (ta xgy- tao) QR )] ds

x 8,) QR" = R (2,2 )

* (8, xR -8 ) Q®R)] ds

= -0.5<SOLOLO - f [3+(a,ao) . (§a x an) Q(R+)
S(ao)

I+

R (o,0) * (8 * ty,) QR ds (c-15)

x R
a =y

[-1+ikoRi(a,ao)] exp[ikoRi(a,ao)]/[Rt(a,ao)]3

= R(o,0 ) = r(a) - x(a)

r(o) - §y . g(ao) (c-16)
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In Section 5 of this appendix we present a detailed calculation for Ai,

t *
B, C and D.
4. DEFINITION OF COORDINATES OF CENTERS AND BOUNDARIES OF ZONES

In this section we give the coordinates of the centers of zomes that
are not adjacent to the intersections. Assuming that we have Nl trans-
verse strips (defined by £ = constant boundaries) on the walls of the
ith body, Ny, transverse strips (defined by 2 = constant boundaries) in
the end cap of the ith body, Ngi longitudinal strips (defined by ¢ =
constant boundaries) on the ith body and Ni zones on the ith body we can
now present the defining relationships for the coordinates of the centers

of zones that are not adjacent to intersections (Appendix D).

a. Fuselage (Body No. 1)

One can easily show that

a = a(i=1,j,k) = (j—l)(N2 + 2Nri) + k (C-17)
i

where o, i, j and k were defined in Section 3 of this appendix. The index
j varies from 1 to NSl and k from 1 to Nll + 2er depending on whether
we are on the walls (k = 1,...,N; ),on the front cap (k = Nzl + 1,...,N21

+ er) or the back end cap (k = Nzl + er,...,Nzl + 2Nr1)'

jell,Ng;), ke[1,Np,]

L
180 (. _ 1 1 1)-
q)j:N——(J_E) xk=N_'(k'§)

31 21
x(@) = x s (@ =0 t (@) =1
by cos¢
y(a) = b1 sind)j s_(a) N1(¢j) t (a) =0
a; sing
z(a) = -alcoscbj sz(a) N1(¢j) tz(a) =0 (C-18a)
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where Ny8y) = (bF cos?e, + a? stn’p )1/2

3
je[lstl]! k - N'q'l € [I:er]
1/2
1 1 180 (, 1
rk’[f(k'Nll'Z)] % =¥ (3'2)
1 51
Nl(¢j) = (af sin2¢j + bi coszqgj)l/2
x(@) =0 sx(a) =0 tx(a) =0
b1 cosd. ay sing .,
y(a) = b1 T sinq)j sy(oz) = lej) ty(O!.) = _—ﬁ——ll((?j)
al sing, -b. cos9,
z(a) = —a; T cos¢j sz(a) = —EI—EESJ- t (a) = N1(¢')
(C~19a)
jG[l,N ], k- N - N € [1)N ]
8 S| T
[ 1}]1/2 _ 180 1
o SRS | IS
1 1
Nl(¢j) = (bi coszcbj + ai sin2¢j)1/2
x(a) = Rl sx(a) =0 tx(a) =0
by cos¢ -4, sing,
y(o) = bl r, sin¢j sy(a) = N1(¢j) ty(a) = N1(¢j)
ay sing by cosd,
z(a) = —al . cos¢j sz(a) = N1(¢j) tz(a) = —§I?$;71
(C~20)
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b. Wing (Body No. 2)

o = a(i=2,3,k) = (j-1) (Ng + N ) +k + N,
2 2

where N1 is the total number of zones on the fuselage (body no. 1),
(N + 2Nr ) Ns .

! 1 5

jel1,8_ 1, lkf (1,5, ]

2 2
1/2
¢j = %&g (j --%) N2(¢j) = (ag sin2¢j + bg cosz¢j)
2
L
yk=-t%(k-%)+b1
2
-a, sin¢
x(a) = X9 + a, coscbj sx(a) = N2(¢j) t (@) =0
y(@) =y, sy(a) =0 t (@) =1
b2 cos¢
z(a) = —b2 sin¢j sz(a) = - N2(¢j) tz(a) =0
je[lsN ]’ k - N € [l)N ]
Sy Ly Ty
. 360 (. 1 - 2 2 2 2 1/2
¢j = NS (J 2) N2(¢j) = (a2 sin ¢j + b2 cos ¢j)
2
1/2
i - -1
Ty —[ (k NZ 2)]
r, 2
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(C~-22)
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a, sin¢ b2 coso,
x(@) = X350 + a,r, coeut):l sx(a) = - N2(¢j) tx(a) = ~ —ﬁ;?Egjl
y(a) = 22 + a, sy(a) =0 ty(a) =0
b2 cosd, a, sing.
z(a) = -b2rk Sin¢J sz(a) = - —-—-lN R ,tz(a) =N,
23 273
(C~23)
c. Horizontal Stabilizer (Body No. 3)
@ =a@i=3,5,k) = (G-LD®, +N_)+k+N +N, (C-24)

3 2

where Nl, N2 are the total number of zones on bodies 1 and 2, respectively.

jell,N_ ], k€e[1,N, ]
S3 2q

_360 (. _ 1 o2 2 2 .2, \1/2
¢j =N (3 2) N3(¢j) (b3 cos ¢j + ay sin ¢j)

3
-aq sind,
x(a) = X33 + ay cos¢>j sx(a) = N3(¢j) tx(a) =0
y(@) =y, sy(a) =0 ty(a) =1
b2 cosd,
z(a) = --b3 51n¢j sz(a) = —§§?$;71 tz(a) =0 (C-25)
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je[l,NsL], k - N23€ [l,Nr ]

3
=360 (., 1 - (12 2 2 2, \1/2
¢j Ns ( 2) N3(¢j) (b3 cos ¢j + ay sin ¢j)
3
1\|1/2
rk :[N (k_NR, - 2)]
r 3
3
a, sin¢ b, coso,
= =_ -3 3 -3 ]
x(a) X43 + azr, cosd)j sx(a) N. G tx(a) )
373 3'73
Y(a)=2'3+al sy(a)=0 ty(a)=0
b3 cosd a, sing,
z(a) = —b3rk sin¢j sz(a) = - N3(¢ ) tz(a) = _ﬁ—TETTl
] 373
(C-26)
d. Vertical Stabilizer (Body No. 4)
o = a(i=4,j,k) = (j--l)(N’z‘4 + Nr4) + k + Nl + N2 + N3 (c-27)
where Nl’ N2, N3 are the total number of zones on bodies 1, 2, and 3,
respectively.

jE[1,N_ 1, KE[1,N, ]
Sy 24

180 (., _ 1 _ 2 2 2 2 .1/2
¢J N (j 2) N4(¢j) (a4 sin ¢j + b, cos ¢j)
4
2
z, = ﬁiL (k --%) +a, (c-28)
4
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x(a) = xo, + 8, cost, 5, (o) = - _1%:@3) t () =0
b4 cos¢
y(@) = b4 Sin¢j s (o) = N4(¢j) ty(oz) =0
z(a) = z, s (@) =0 tz(a) =1 (C-28)
je[l’N ]: k- N € [laN ]
s4 24 r4
_380 (. 1 _ 2 2 2 2 .1/2
¢j = Ns (3 2) N4(¢j) = (a4 sin ¢j + b4 cos ¢j)
4
1/2
|1 {y _ 1
Tk ’[N (k Ny 2)]
r, 4
a, sind, b4 cosd,
x(a) = X04 + a,r, cos¢j sx(a) = —EZ?Egjl— tx(a) = —EZ?EETl
' b4 cos¢, a, sing,
y(a) = b4rk 51n¢j sy(a) = —ﬁzzajyl ty(a) = - —Ezagfyl
J J
z(a) = 24 + al sz(a) =0 tz(a) =0 (C-29)

Equations (C-17) through (C-29) give the coordinates at the centers
of zones that will be used in our numerical solution. For the calculation
of matrix elements given in the next section we need to know the boundaries

of the zones over which we integrate.

For zones on the walls we can, in a straightforward manner, use the
corresponding coordinates for the centers to calculate the limits of
integration for the matrix elements. Thus for the fuselage we refer to

X, and ¢j in equation (C-18)a and for the (i=l,j,k) zone

k
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1 1
xl-T(k-l) xz-ﬁ-k xk-E(xl+x2)
1 1
=22 (-1 b, = R 5 by = (0 + 6 (c-18),
%1 1

and similarly for the other components of ouf model.

For zones on the caps the ¢ = constant boundaries are easily obtained.

Thus for the front end cap on the fuselage we refer to ¢j in equation (C—19)a
and we can readily obtain ¢1 = (180/Nsl)(j-1), ¢2 = (180/Nsl)j. For the
r = constant boundariles, rk at the center of a zone is not the average

of the r's of the boundaries. Instead:

1 ( ]1/2
ro= <L (k- w -1)
b

- - - 180 =1 -

and similarly on the back end cap of the fuselage or the caps of the

other components of the aircraft.

Before we go on with the calculation of matrix elements in the next

section of this appendix, we would like to state an important feature

built into our computer code. Equations (C-17) through (C-29) dictate

the rule that a given zone obeys in relationship with a neighboring zone
on the same surface (wall or cap). To allow for sufficient nonuniformity

for experimenting with the zoning the code provides that equations
(C-17) through (C-29) can be applied sectionally; that is we first divide
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the walls or caps in sections by drawing selected ¢, t, r-boundaries
and then within the sections we apply the rules that govern equations
(C-17) through (C-29). TFor example we can divide the wall of the
fuselage in three sections in the x-direction and two sections in ‘the
¢-direction and choose any number of zones within each section to allow

for the desired nonuniformity of our zoning scheme.

5. CALCULATION OF MATRIX ELEMENTS

In this section we calculate the matrix elements Ai, Bt, Ci and Di
in equation (C-15). First we will outline the method of derivation and
then perform a sufficient number of calculations that will allow the
reader to understand how equations (C-62) through (C-92), which give the
matrix elements, were obtained. These equations are still valid for the
self-terms, i.e., when o is the central point of the zone over whiczh we

integrate (see Appendix D for zones adjacent to instersections).

As we can see from equation (C-15) the calculation of matrix elements
+ + + +
A7, B7, C” and D™ involves integrands of the form B& « (P x QO)Q(R+) and
3_ (P x ﬁy . QO)Q(R_) where p and é[‘o are unit surface vectors. The ‘

integrated variable has the subscript zero and runs over a particular zone

whereas the free variable corresponds to the center of a zone anywhere

on the four bodies. All four bodies are elliptical cylinders and as we
explained earlier the surface unit vectors § and £ are chosen to conform
to the geometry of the body, i.e., § is defined in the azimuthal direction
defined by the angle ¢ (fig. 3) and E is equal to A x § where @ is the
outward unit normal to the surface. To facilitate our subsequent calcula-
tions, to each body we attach a cartesian coordinate system X15 Xps Xg
such that Xy = Xy, Xy = ar cosg¢, x3 = br sin¢ where r = 1 on the walls

of the body and 0 < r < 1 on the endcaps. The correspondence to the

global coordinate systems xyz is




Horizontal Vertical

Fuselage Wing Stabilizer Stabilizer

X =X x, =y X =y X, =z

X, = ~2 X, = X = X, Xy = X = X, Xy = X = Xg, (C-3Ca)
Xy =y Xy = -2z Xy = -2z Xy =y

The endcaps of the fuselage are then determined by x = 0 and x, = 21, of
the wing by Xy = a; + 22, of the horizontal stabilizer by X = a; + 23
and of the vertical stabilizer by X = b1 + 24. The relationship between

the angle ¢ depicted in figure 1 and ¢ just defined is

Horizontal Vertical
Fuselage Wing Stabilizer Stabilizer
$ ¢ = ¢ ¢« ¢ ¢ — ¢ (C-30b)

As we mentioned earlier the free variable in the integrands corresponds
to the center of a zone anywhere on the surface of a body with local unit
vectors §a and Ea . For a number of subsequent calculations we do not

n a
have to specify the form for Sy OT ta and we will denote them by the
symbol ¥. 1In order to calculate the matrix elements we must calculate

integrals of the form

f 5"' s (¥ x ao) Q(R+) dso,
S
[o]

(Cc-31)
" = T . e & (R )
' I {_R (VXRy qo) Q(R )} dSo
o
where q, is either Syo = 8y OT tao =t
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We start with I+. For a zone on a body

oo oA _
R (¥ x 8) = 8x;(vy8,57 = Vv38,0)

On walls and caps (C-32a)
- vl(szs30 - Ax3szo)
+l\ ~
R(vxt)= szv3 - Ax3v2 } On walls
RN (% x £) = bx, (vt - )
B x )= 28xVytyy = Y3ty
On caps (C-32b)

- vl(szt30 - Ax3t20)

and

by = %147 %
sz = Xy, T Xy = X, - ar cos¢, 0 <r <1 for caps
Ax3 = X3, T Xy T X5 - br sing, r = 1 for walls
Syp = ~2 sing/N(¢)
. On walls and caps
S35 = b cos¢/N(4)
N(¢) = (a2 sin2¢ + b2 coszq>)l/2
tho = b cosd/N(¢)
On X =x= 0 endcap of fuselage
t.. = a sin¢/N(¢)
30
tho = P cos¢/N(9)
All other endcaps (C-33)
tyg = -8 sind¢/N($)

Notice that we have simplified the notation and r, = (xl,xz,x3) instead

of (xlo’XZO’XBO) to which we return later.

Next we need the differential surface element dSo for a zone on the
walls or the caps of a body. On the walls dS0 = dxlds where ds is the

arc length in the ¢-~direction
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ds = [(dx2)2 + (dx3)2]1/2 = (a2 sin2p + b2 coslp)}/? a4

Thus

dSo = N(¢)dxld¢ on the walls (C-34)

To calculate the area dSo on the caps we recall that X, = ar coso,

Xq = br sin¢ and I, = r(a cos¢ e, + b sing e3)-where I, is the radius

vector., The area dS° is thus given by

-9

ds 3¢

(o]

d¢dr

X
ds x dr,| = |52

on the caps (C-35)

dSo abrdrd¢

Let us now evaluate integral I+(§) given by equation (C-31) for a
zone on the walls «uad the caps but not adjacent to an intersection (see

Appendix D).

a. Zone on Walls

‘ We rewrite equation (C-32a) as
R+ (% x 8)= - %) M, (8) + 36
R (¥ x 8)= (x4 ®)) M) M, (¢) (C-36)
Thus
+ Ay _ + . a ~ + _ L+ + -
IW (s8) = f R (v x 8) Q(R) dSo = le + 1w2 (C-37)
S
o
where w = wall and
¢ b4
2 12 x - x
I - M, (6) N(o) d¢ Ao 1ok r - netfoR ax,  (c-38)
wl 4 3 o 1
® % TR
1 11
$ X
2 12 ik R - 1
- M, (4) N($) dé —o  tkoR 44 (C-39)
2 2 4 3 1
$ TR

1 *11
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If we notice that

and
ik R ik R
o o

dfe _ 1 o o o _e _
dR( R ) Rze +—x e = 2 (ikoR 1)

R

we can rewrite equation (C-39) as

¢ ik R ik R
L ’ M. ($) N(o) |2 °? - £ ° ! do (C-40)
1 4 1 R2 Rl
¢1
1/2
2 2 2
where R(xl) = [(xla - xl) + (XZa - XZ) + (x3a - x3) ]
Ry = R(xy = x59)
R2 = R(xl = x12) (C-41)

Integral I:z does not lend itself to such a simple treatment as I:l' As a

first step we observe that

dx ) X] T X
R3 azR
2 2 2
where R™ = a~ + (x1 xla) and (C-42)
ik R ik R
ikoR (x -x )é ° ik R(x - X )2 e ©
N dx. = — 1 la + o \'1 la dx
3 1 2 2.2 1
R a“R a"R
. 2 2 2 . .
Noting that (xl - xla) = R® - a” we can rearrange this equation to obtain
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+ 1 "2 eik°R *12 1k *12 kR
I, - 4—1"[ M, ($) N($) d¢ \= (xla -x)| - v o 1
¢ aR ! a X1q
1 x

11
(C-43)

The integral in the angular bracket is not elementary. One can expand
exp(ikoR) in a Taylor series and evaluate the resulting elementary integrals
but too many terms will be needed for a zone remote from the zone over
which we integrate. This can be remedied by multiplying and dividing the
integral by exp(ikoRo) where

R(x = x,.) + R(x = x_..)
_ 11 12 _
Ro = 5 (C-44)
Thus
+ 1 f¢2
Iw2 = HJ M2(¢) N(¢) K(¢) d¢
¢1
. .-elkoRz ‘ ) eikoRl )]
K@) = 5| —— (x,. - x - {x, -x
az L R, ( lo 12 Ry ( la 11
ik ik R_(*12 ik (R-R))
+—2, ©° e © ° dx (C-45)
2 1
a
*11
Now we can expand exp[iko(R—Ro)]:
x12 ™ b 4 n
iko(R—Ro) 12 [iko(R - RO)]
e dxl = E j- o dxl (C-46)
X1 n=0 "xp
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- A -
To determine n_ we observe that male Rol n lel x12|/2 and recall
that we require on the order of ten zones per wavelength. This translates
into k male - Rol being of the order of unity and consequently we only

need few terms to secure sufficient accuracy.

If we use the binomial expansion for (R - Ro)n we obtain integrals of
the form JR® dx1 which are elementary. They can be evaluated with the

aid of the recursion formula

n+1l

n n-2
X - X R+ n‘/; dx
fRn ax, = (410 = %) 1 (et

b. Zone on Caps

We rewrite equation (C-32a) as

ET- (¥ x 8) = Axl(v2530 - v3520) - Vl[(XZa - ar cos¢) (b cusd)
- (x3a -~ br sing)(-a sin¢)]/N(¢) = Axl(vzs30.— v3s20)
- Vl(x20530 - x3a820) + vlrab/N(¢)
R« (8 x 8) = K (0) + 1K, (9) (C-48)
and
+oay +aA + _ .t + _
I.(8) = / R(Ex8 QR ds =1, +1, (C-49)
S
o
+ ab f¢2 r2 reikoR .
Icl = o ] K1(¢) d? T (1k.oR - 1) dr (C-50)
% 3]
+ ab P¢2 "2 r2eikoR
ICZ = 4 ] K2(¢) d(PI T (ikoR - 1) dr (C-51)
21 T
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and
R" = (x, -x )2 + (x, - ra cos¢)2 + (x, -rb sin¢)2 = f + gr + hr2
1a 1 20 3a
2
20 + %30

2 2
f= (xla - xl) + x

g = -2(x2a a cosdp + x o b sin¢)

3

h = a2 c052¢ + b2 sin2¢ ‘ (C-52)

In order to simplify equation (C-50) we observe that

ri; = -4 2gr + ﬁf = —dP (1)
R (4fh - g")R
reikoR ik R ik R 1
=—=——dr = -P(R)e °© + JP®R)ik e ° —(g + 2hr)dr
R3 o 2R

(€~53)

Performing the algebra in the integrand on the right-hand side of equation
(C-53) we obtain

fo) ik R 2 r ikoR
e 4r=-P(r)e ° +f (B + =) ik e dr (C-54)
23 AT R2 o

where

A = 4fh - g2, (C-55)
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If we rearrange equation (C-54) we obtain

ik R
2 r(lkR-1) e ° ik R |T2 21k g (*2 ik R
[¢] (o] (o] [o]
f 3 dr = P(r) e -—0 e dr
R )
51 1 1
and
+ ab ¢l 2gr + 4f | ikoR K Zikog "2 ikoR
Icl = 4—_".[ Kl(¢) d¢ ) e e ] e dr
o1 1 51
(C-56)

The last integral in the angular bracket can be evaluated by the procedure

outlined in connection with equations (C-43) through (C-46). IZ’ can also

<

be simplified by noting that

where P(r) is given by equation (C-53) and A by equation (C-55). Thus
ik R
2 o ik R ik R
re __ 4ar= -rp(r) + 2gR e ° 4+ Ir gg-+-—£— ik e % dr
R3 hA A R2 o

ik R
o

ik R
- .g.ggl_r_*'_g_)_ik e o dr+l e dr
hA o

h R

This relationship allows us to write:
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¢, ik R |r =1,
+ _ ab 2r(gr + 2f) _2gRle
L2 lm] K, (9) d¢ [ R h A
¢1 r=r,
r ik R 2 r
1 fte e R (2 TRy (c-57)
h R hA .
5 1 1 '

The integrals in the angular brackets can be evaluated as in equation (C-56).

To calculate I+(E) given by equation (C-31) we follow the procedure

employed for I+(§) and arrive at equations (C-40), (C-45), (C-56) and (C-57)
wvhere

i
(=}

M, (6) =

M2(¢) szv - Ax_.v

|

Ky (#) = Axj (vytag = Vatag) = Vi (Xpatag = X34t50)
2 2
K,(¢) = £v,(a” - b") sin¢ cos¢ (C-58)
and the + sign refers to the X =x= 0 endcap of the fuselage and the -

sign to all other endcaps.

To calculate I (t) and I (8) given by equation (C-31) we observe that
§y refers to the global coordinate system and its relationship to the

local coordinate systems is

Horizontal Vertical
Fuselage Wing Stabilizer Stabilizer
R =R = R =R R =R
=y = =x3 gy =R, =y =x1 =y =x3
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=R q ° qO - (qolsqoz’ -_(103)

R =y - Ry "X, = (g ~3g) & + (x5, = %5,) &

= -0 =x2
+ (%3, ¥ X3q) 33 (c-59)
Wing and Horizontal Stabilizer
Byt 8, =Ry "3 (‘qgl'qoz'qo3)
Ro=x, - Ry ox, = (xyy +x0) &) + (xy = x50) &
+ (x3a - x3o) €3 {C~560)
Vertical Stabilizer
é? ) ao B l"{-:(3 : ao = (qol’qOZ’—qo3)
Ro=r,-Ry I, = '(xla - xpg) &+ (xyy - %50) &
+ (x3a + x3o) 83 (Cc-61)

We can use the previous relationships to calculate I-(E) and I (8) on the
walls and endcaps of the various bodies by following the procedure employed
for the calculation of I+(€) and I+(§). Instead of exhibiting these results
we present the final expressions for the matrix terms At, Bt, Ci and Di

defined by equation (C-15)
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A*(a,a) = - 3 o * [ILj(t s,) + 1L 13(E0s )]
* [ lij(t 5) + I, 13(Ess, )]
B (@,a,) = [113“ £) + IZij(t t )] + [113“ £ + Iy, (Eot )]

Ci(a,ao) = - {[I';ij(s,so) + I;ij(s,so)] % [ (s,s ) + 1, j(s,s )]}

Di(a,ao)—-%dm —{[lij(s,t)+1 j(st)]

(o]

[ (s,£) + 1] (st)]} (C-62)

Before we present the defining equations for Iiij and Izij an explanation
of the notation is in order. 1Index i runs from 1 to 4 and refers to the
four bodies. 1Index j refers to either the wall (w) or the endcap (c) of
a body. In the fuselage, ] refers to both endcaps (and also the wall).
The Ii in equation (C-62) are simplified expressions of the integrals in
equation (C-15) which are evaluated over a zone on the surface of a body
characterized by (¢1,¢2), (x101,x102) Sn the Yalls or (¢l,¢2), (rl,rz) on
a cap and by the surface unit vectors t and s, given by equation (C-33).
The free variable a corresponds to the center of a zone characterized by

its coordinates X0 %20’ ¥30 and unit vectors ta(tl’tz’tB)’ sa(sl’SZ’SB)'

20,

The transformations from the local coordinate systems X5 Xy Xgq to the

global coordinate system x,y,z are given by equation (C-30).
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+
A~ Matrix Term. Fuselage (i=1,j=w)

+ +
ik R, ik RS
Ii(t L1 ¢2+ eoZeoRId
11w S,) = 47 M () i - T ¢
9, 2 R
¢y
5 (t,s) == ) kK5(e) a (C-63)
21wt S T a4 Y, ¢ .
%
+
=+
M1(¢) Tt, b, cos¢ +t3 2 sin¢
) = t. |t ab, F b ino ] C-64
MZ( = tl[. aby ¥ xo0 1cosq‘a— X4 alan)‘l (C-64)
+ ik RS
+ 1 eikoRZ e °R1
K = 5155 Gug = %0 =7 7 i M0
1l ® 1
Kk p %50 . t *
. ik ik R 102 elko(R —Ro) 4
— *10
al X
101
) ) ;112
R'(xlo) = [xla - xlo) + (x2a_ a; cosd)  + (x3a s bl sing) ]
+ +
Ry = R(xpq = x)0p)
* +
R, = R (x5 = x;0))
+ _1 % % _
R, = 5(R] +Ry) (C-65)
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At Matrix Term. Fuselage (i=1,j=c)

a,by

2
I} (ts) = = I Ry (9) B (4) d¢
¢
1

11 (ths)) = == J' x§(¢> Hy($) do (c-66)
¢y

K']t_(‘b) = [(xla. -x) (:tt:2 b, cosy + tg a; sinp)

3

..tl(i'XZabl cosp + Xy 3y sin¢)]/N(¢)

Ky(8) =+t a b /N(S) (C-67)

Hi(¢) Z&_}Lﬁ e

b4 + * (o]
* 2r(g’r + 2f) 2¢ R e
H,y(0) = : i x
R S
1
ik & +.2 +
et e © ik (g7) T2 ik R-
- % — dr + —2—— f e ° ar (c-68)
R hA™
1 1

x, = 0 for x = 0 endcap

x, = 2.1 for x = 21 endcap (C-69)
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2
N(4)

1/
(ai sin2¢ + bi cosztb)

* 2
f+gr+hr

W“_
]

2 2

2
£=(x, - x )" + x5, + x5,

I+

bl sing - 2x2a a, ‘cosd

g =:l'-2x3a
2 2 2 2
h = a; cos¢+bl sin™¢
AT = 4 -(g5)2 (C-70)

+
A” Matrix Term. Wing (i=2, j=w)

+ +
. L ¢, . eilcoR2 eikoRl
IlZw(t’so) =4 Mi((b) + + d¢
6 Ry R
%
+ 1 + + )
L, (ts8) = 30 j M,(9) K (¢) do (C-71)
21
+ + -
M1(¢) = tyb, cosd + ty a, sing, (M1 = Ml)

M3(6) = [agh, = (x, b, cosd + xz a, sin®)le,, O = My)  (C-72)
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1k R§ ik R
K#( l J]e
¢) == (x

o
=

e
10 ¥ *102) (x15 = *101)

-

+ X - 4
1k ik R 102 ik (RT-rD)
0o 0 e o [o) dx
10
2 %101

RY (x [(x,, * xlo)2 + (xyy - 3, cosd)? + (x5, - b, sin¢) 2]

i o
R} = R (xy5 = X309)
+ ot _
R2 = R (x10 = xlOZ)
+ 1% %
R, = (K] + &) (c-73)

+
A~ Matrix Term. Wing (i=2,j=c)

+ 2 b + +
IlZC(t’SO) = 4T Kl((b) Hl(¢) d¢
$

+ :bz + +
Izzc(t’so) = LT I K2(¢) H2(¢) d¢ (C-74)
)
1

Ki(¢) [(xla ¥ xc)(t2 b2 cos¢ + ty a3, sind)

- t(x,, b, cosd + x4, a, sing)1/N(¢)

K (9) = + t; ab,/N(®), « = k) (c-75)

2 2
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r=rv

+ r +
+ 41k R 2 2ik g 2 ik R
+ +
Hl(q)) o 2gr ff e © - +o f e © dr
A" R r=r & r
1l 1
*
+ + ikoR r = r2
Hi( _ 2r(gr + 2f7) 2gR e
2(9) = + T h +
R A r =
1
ik R 2 *
1 ) e © ik g T2 ik R
-Ef I dr + °+ e © dr
r R™ hA™ ry
1
x, =a + 22 (endcap of wing)
1/2
_ 2 2 2 2
N($) = (az sin¢ + b2 cos ¢)
* + 2
R"=f" + gr + hr
£ - 2 2 2
£~ = (xla F xc) + Xy + X34,
g = —2x3a b2 sin¢g - 2x20 a, cos¢
h = ag cosz¢ + bg sin2¢
2t = 4tth - g°

+
A" Matrix Term.

Horizontal Stabilizer (i=3)

+
Integrals Iy (t, so) s

*

It
13c

(C-76)

(Cc-77)

+
(t,so), Iz3w(t,so) and 123c(t,so) are given

by formulas identical to those for the wing provided that a, is changed

b, to b

to a3, 2 3

and X =Y, Xy = X -

Xg3> X3 = ~Z-
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Ai Matrix Term. Vertical Stabilizer (i=4, j=2)

I+

L $

*

Il4w(t’so) e f
¢1
¢2 _

+ 1 * *

Izaw(t’so) = ar M§(¢) K (¢) do
¢1

ik R ik R

N+
[

e

2, o
¥ (9) d

R

Ni+| o
- 4| o

(Cc-78)

a, sing

u’i'(qs) = +t, b, cosd +t; a,

4

+
ME(¢) (ia4b4 F X b4 cosp - X3, 3 sing) t; (C-79)

ik RS ik &
2 o1l

K* (4)

dx10

+ X + _+

‘ ik ik R j 102 ik (R -R>)
o oo o o

- e e

2

2 x

101

Rt(x ) = [(x - x )2 + (x - a cos¢)2 + (x Fb sind))]ll2
10 la 10 20, 4 3a 4
 _ + _
Ry = R(xyg = x09)
i- — - —
Ry = K(x)g = %90,)
£ 1, % % -
R, =5 (R] + R)) (C-80)
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+
A~ Matrix Terms. Vertical Stabilizer (i=4,j=c)

%

+ B ab, + +
¢l
+ a,b, ¢2 + +
124c(t,so) = Tan K2(¢) H2(¢) do (c-81)
[0
1

K;(4) = [(xyq - %) (%L, b, cosd + t; a, sind)
- tl(ix2a b4 cosd + X3y 34 sin¢) 1/N(9)

K;(0) = *t; a,b,/N($) (c-82)

+
H1(¢)

+ + o+ 1koR_ 2
+ 2r(g'r + 2f) 2g’ R e
I. R A r =7
1
a7t + 9 +
L (2 elko ik (gD (T2 ik R
== dr + —2——— e dr (C-83)
h + T
R hA A
T 1
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)1/2

-
~
©-
~

]

( Z sin ¢ + b4 -cos ¢

R; = f + gtr + hr2

+x2

2 2
f (xla - xc) + x 3

2a

g = —2x2a a, cosd F 2x sind

3a %4
h = aZ cos2¢ + bZ sin2¢

A* = 4fn - (gH)2

+
B~ Matrix Term. Fuselage (i=1, j=w)

llw(t t,) =0

¢,
+ _ 1 + *
121w(t,t°) = M§(¢) K (¢) d¢
2

M§(¢) [t3(x20'- cos¢) 30 Fb sin¢)IN(9)

Kt(¢) are given by equations (C-65).

Bi Matrix Terms. Fuselage (i=1, j=c)

é
+ ab1 (2 . +
I1yc(tsty) = 0 f K; (¢) H;(¢) d¢

+ b2 + +
I21c(t,to) = K, (9) Hz(da) dé
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X = b1 + 24 (endcap of vertical stabilizer)

(C-84)

(C-85)

(Cc-86)

(C-87)



Ki(¢) = (-1)° [(xla -lchitz a, sin¢ - ty b, cos¢)
-tlcthG a;, sing - Xa0 b1 cos$) 1/N(9)
K5(#) =% D ¢, (a2 - b2) stnp coso/N(4) (c-88)

+ + ’
HI(¢) and H£(¢) are given by equation (C-68) through (C-70), n =0
for the x, = 0 endcap and n = 1 for the x, = 21 endcap.

B® Matrix Term. Wing (i=2, j=w)

l
o

+
112w<t’to)

t 1 4)2 + * '
I,u(tt) = 72|  My6) K'(9) d¢ (c~59)

¢1
My(9) =[t5(x, - a, cosd) = t,(x; - b, sIn®)IN(S), (M} = 13) (C-90)

Ki(¢) is given by equation (C-73).

+
B~ Matrix Term. Wing (i=2, f=c)

$
+ a,b, 2 +
112c(t,t°) = 4T f K, () Hl(cb) d¢
¢
¢
+ _ 35b, 2 4 +
I3 (tst) = —= f K, (0) Hy(9) do (c-91)
¢
1l

118




Ki(¢) = [(xla ¥ xc)(t3 b, cos¢ - t, a, sing)
- tl(x3a b2 cos¢p - X5y 39 sing) 1/N(¢)

K§(¢) - —tl(a2 - b%) cosé sing, (K} = K) (C-92)

Hi(¢), H§(¢), x, are given by equations (C-76) and (C-77).

Bt Matrix Term. Horizontal Stabilizer (i=3)

+ + + *
Integrals Ile(t,to), 123w(t’to)’ Il3c(t,t°) and 123c(t’t°) are

given by formulas identical to those for the wing provided that a, is
changed to ag, b2 to b3 and Xy =Y, X5 T X = Xya, X3 ¥ -Z.
Bt Matrix Terms. Vertical Stabilizer (i=4,i=w)
: =0
Il4w(t’to) -
2
: -L . *(¢) @ c-93)
. L (6t =7 M) K@) (
¢l
+
M§(¢) = [(XZa -3, cos9) ty - (x3a F b4 singd) tz] N($) (C-94)
Ki(¢) is given by equation (C-80).
B® Matrix Terms. Vertical Stabilizer (i=4,j=c)
¢
t AT o) d
%
P
+ a,b, 2 . + g
L, () = K, (®) Hy () db (c-95)
¢1
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Ki(¢) = [(xla - xc)(it2 a, sind + ty b4 cos¢)
+ tl(tx2a a, sin¢ - X34 by cos¢) 1/N(¢)
K ve (2 _ 2
2 $) = -tl(b ~ a”) cos¢ sind/N($) (C-96)

+ +
Hi(¢), H§(¢), x, are given by equations (C-83) and (C-84).

+
C Matrix Terms

+ +
Integrals Ilij(s’so)’ IZij are identical to those calculated for

+
the A” terms provided that tm(m = 1,2,3) are substituted by sm(m =1,2,3).

+
D~ Matrix Terms

t 4 . . ,
Integrals Ilij(s’to)’ IZij(s,to) are identical to those calculated

+
for the B® forms provided tm(m = 1,2,3) are substituted by sm(m =1,2,3).
6. SELF-ZONE INTERACTION

When the observation point_za is the central point of a zone over
which we integrate we talk about self-zone interaction or self-zone
terms. The integration variable Eo ranges over the entire zone and
consequently I, = I, at the central point. What abo:t tEe rfsultin%
singularities in the integrand? If we examine the A, B, C and D~

matrix terms we see that the only terms of concern are those of the form

/

(The A+, B-, C and D matrix element cannot involve self-terms because

4, r. ik RT

+ 2 e ©
K2(¢) d¢ ——;1—— dr
1 1

R I, # Ea.) The integration is over a zone on the cap K;(¢) has the
form t1 ab/N(¢) or tl(a2 - b2) sind cos¢/N(¢). But when I, is on the
cap, t, = 0 and the potentially troublesome integral is identically

+ +
equal to zero. In conclusion, all equations giving the A™, B, C

+
D™ terms are valid for both zone to zone or self-zone interactions.
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7. INTERPOLATION

In this section we explain the interpolation scheme that allows us to
evaluate the current density at points other than the centers of the zones

on the surface of the aircraft.

As we discussed in Section 3 of this appendix one uses equations (C-9)
to evaluate the fictitious current components Jz,t at the centers of the
zones. Notice, however that the variable a in equations (C-9) is not
restricted to represent the center of a zone. Such restriction is true
only for a,- Thus we can use equations (C-9) to evaluate Ji,t at any
point (see section 9 for points near edges and junctions) on the surface
of the aircraft in terms of Ji,t at the centers of the zones. The real
current density components J can then be calculated with the aid of

s,t
equation (C-10).
8. CHARGE DENSITY

The charge density 0 can be calculated with the aid of the continuity

equation

iwo = VS +J (C-99)
where VS *+ J is the surface divergence of J. We approximate directional
derivatives by central difference quotients. We can therefore write the

divergence of J as

M (0 W (@
vV «J=z—32 +
= 9s ot

S

J _(p+Ad,t) = T (d-Ad,t) T _(¢,t+At) - T _(¢,t-At)
=3 s + t t
i @0, (acy,

where (AC)S and (AC)t are the chords between points (¢+Ad,t), (¢-Ad,t) and
points (¢,t+At), (¢,t-At) respectively. In the above equation the values

of JS and Jt are calculated through the interpolation scheme as we explained

121



in the previous section{ If Jt and JS could be calculated with unlimited
accuracy and it were possible to calculate the desired differences with
similar accuracy, then as At and A¢ approach zero the error of the approxi-
mation to Vs * J would approach zero. However, since the interpolation
formula is an approximation to equations (6) based on a finite number of
current density values we understand that AJs/(AC)s and AJt/(AC)t depend on the
accuracy of JS(¢+A¢,t), JS(¢-A¢,t), Jt(¢,t+At) and Jt(¢,t-At). If we

introduce the relative errors

where the superscript e stands for exact, then:

A3e AIS M@ IS A TP)
merical divergence = "V_ + J" = S+ £ - 58 _ =
nu s = T (@0 (AC) (AC) 40
S t s t
In the limit (AC)S + 0, (AC)t + 0 we have
e e e e
AJS . AJt ) BJS . aJt - it
(AC) (AC) os 9s
s t
and
. 3J: o o aJ: o 9,
T « M = - —_— - -
lwo = vs 3 iwo %s s Js s % Bt Je ot
= iwo® - 100% +-E£: (a -a)+ 3 =24+ 335
= s at s t s 0s t ot
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s oat 3ot

29 -0 _ __1 - t e s e t
@ @ [(as at) 3t T s 9s T at]

(C-100)

For regions where the error varies slowly with position, J:(Bas/Bs) +
Jt(aatlat) can be smaller than the first term in the square brackets.
Equation (C-100) then shows that in the low frequency limit the numerical
calculation of the charge density can be very inaccurate. When (AC)S and
(AC)t are finite the error oy will be given by equation (C-100) plus
correction terms, but the low-frequency problem will persist even though

it may be lessened.

The above treatment is by no means complete but it provides insight
into the difficulties that beset the numerical calculation of the charge
density with the aid of the continuity equation as required in the work

statement for this proposal.

Due to time constraints we did not explore a different method that
‘ is based on solving an integral equation for o whose source term involves

the normal component of the incident electric field and an integral over

J. The equation is

iw

5 o(r) = iwe fi(x) ° gi(_x_'_) - f[kgG(R) n(r) - I(x)
S

+ iwo(z ) fi(x) - VSG(R)] ds
where

GR) =

kR
4TR R= |z -z,

Using the same zoning scheme as for the solution for J we can calculate ¢
at the centers of the zones and subsequently at any point through our

interpolation scheme.
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9. EDGE AND JUNCTION BEHAVIOR

In this section we will discuss the behavior of the surface currents
paying particular attention to the effects of discontinuities in surface .
‘normals. We define an edge (junction) to have more (less) air than

metal in the vicinity of the discontinuity. We begin our dis;:ussion by

rewriting equation (1) in component form

%Js(-!:-) B Jis(-E) + [KA(E;io) Js(zo) dso
S
+ fKB(E;_EO) Jt(Eo) dSo (C-101a)
S :
S
+ fKD(E;_x;O) J (x,) ds (C-101%)
S

where the kernels Ky o KB’ KC’ KD are defined as

Ky = (@-1)* (t£x3) Fl,R)/R

Ky = (@-r) e+ (txt) Fl,R)/R

B
K.=-(c-r) - (sx8s) F(k.R/R
C - o o o
Ky=-(z-1) * (x i) F(kRI/R (c-102)
KGR
F(koR) = (-1 + 1kgR) —,—

R=|r-r| (C-103)
- -0
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We proceed by examining the behavior of the kernels and their
integrals IKQE) = fK(E;EO) dSo' We notice that each of the kernels are
unbounded as R approaches zero, and, since |F|_§ 2 the kernels are well
behaved everywhere else. 1In addition IK(E) wi}l be bounded whenever the
triple product involved decreases as fast as Rl+€, € > 0, as I, approaches
r. If the surface has continuous curvature in the vicinity of the reference
point, r, the three vectors smoothly approach being coplanar making € > 1.
Thus our kernels vary no faster than 1/R and consequently the kernels have
an integrable singularity (see reference 10 fora rigorous treatment of the
case that results in € = 1). However, if r is near a discontinuity in
curvature the above reasoning may fail and IK(E) may be unbounded. We will
now specifically treat the behavior of the kernels in the vicinity of a
discontinuity in the direction of the normal (i.e., for edges and junctions)

and then discuss the theoretical and numerical consequences.

We present our arguments by considering two plates intersecting at
right angles. More complicated geometries as they appear in our model
would not change our results but they would make our arguments harder to
follow. If we expand F(kolz_— £0|) in a Maclaurin series we see that only
the zeroth order term will contribute to the singularity of our integrands.

We therefore confine our attention to k0 = Q.

Our model is depicted in figure C3, We choose on both plates to be

s
parallel to the intersection of the plates and let t = i x §. If we

treat our intersection as a junction our surface vectors become
8. =8 =2 .f. =86 ,A7A. =-8.7¢. =-8 t o= -8 -
1 9 g’ 0, 2> Oy <’ t1 e, and t2 e, (C-104)
We place the reference point on plate 1 and limit our attention to a

rectangular patch (denoted by Sz) on plate 2 which includes the point on

10. Marin, L. and R. W. Latham, Analytical Properties of the Field
Scattered by a Perfectly Conducting, Finite Body, Interaction
Note 92, Air Force Weapons Laboratory, January 1972.
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Figure C3:

Two metallic plates intersecting
at right angles and description
of n, s, t.
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plate 2 closest to the reference point since only that patch can cause

a singular integral. The integrals over that patch are then

s b ~ a
r (¢, x8) *¢
.. | 1 2 =12
f KA dSo = A ye I R3 clz2 dy2
S ‘-s o -
2 .
s b ~ ~
8 (¢, xt,) °r
. | 1 2 =12
f Ky dS =B == I 3 dz, dy,
S J_ R
2 8 "o
8 b A~ A
; (8, x8,) * ¢
R | 1 2 =12
f Kg 48, = C = 73 f f 3 dz, dy,
52 -s "o
S (8, xt) - x
! 1 2 =12 (C-105)
_[KD 48, =D = 7 J f 3 dz, dy,
82 -8 o0
where Iyp =I; - Xy and we have chosen vy = 0.

s
1
KB antisymmetric in Yo3 thus both B and C are well behaved. For the geom-

equals §2 making C identically zero and El X EZ equals - 8y making

etries of our model it can be shown that both KB and KC vary no faster than
1/R as r > r,, even in the presence of a discontinuity and consequently

are well behaved.

The integral D is also well behaved but for a much more subtle reason.

Carrying out the integrations, we have
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-1 x dz2 dy, z, dy2
D=z 7 2372 - 7% 2 2 2.1/2

2 2. 2
-s (xy +y, + 23) b (X Ty +y) 4 z) zy = 0
z. =b = s
1 -1 Yo %y 2 72
= E tan .
73 2 . .
lx1|‘/"1 tyy+z; lzp=0jy,; =0 (G-106)

This expression is bounded for all values of the parameters. The saving
feature of this integral is that the proportionality factor X is not an
integration variable. This feature will also be present for more compli-

cated geometries.

3
Unlike the situation for D, the proportionality factor of 1/R” in A
is the integration variable whose limits are both on the same side of zero.

The result is

s b s 22 =b

Ao '—lf f z, dz, dy2 ~ —-l—f dy, 7
T 4w 2 2 2,3/2 " 2m 2 2 2,1/2
o (x1 + Yo + 2z o (x; +y, + z

- 2) 1 2 2) z, =0

z,=b 1y, =s
2 2
2 2)1/2 +

_ 2
= 2 log [(z2 + Y, + %y (C-107)

ol
z, = 0 Yy = 0

which is unbounded as X approaches zero, that is, A + 2log lel > —mo,
The theoretical consequences of the above discussion are very interesting.

Under the assumption that both JS and Jt are everywhere integrable in either

the "t" or "s" direction, equation (C-10la) shows that Jg may not be infinite

except at a discontinuity and may be infinite or zero but not finite near

a discontinuity. The latter point is true since if Js is assumed to be
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bounded away from zero but not infinite the left-hand side is finite yet
the right-hand side displays a logarithmic singularity as r approaches

the border. The former point follows from the boundedness of the integrals.

To continue our discussion we must now distinguish between junctions
and edges. Our discussion of the behavior of a kernel assumed a junction
and shewed that A was negative. For an edge we must reverse the direction
of A causing £ to reverse direction and we therefore find that A is posi-

tive. This distinction is critical, for by rewriting equation (C-101a)

as

) i :
5 Js(r) —[ l(A Js(ro) dSo +E finite terms (C-108)

S2

we see from the requirement that the limit of Js(£) as r approaches the
border be the same if we approach from either side of the discontinuity
that when A is negative Js(ro) cannot be infinite, but, when A is positive
Js(ro) can be infinite. Thus Js at the junction must be zero. Furthermore,
the need for the singular behavior on the two sides of equation (C-108)

to exactly balance, greatly restricts the type of singularity that can
exist at the edge. This restriction enables us to determine the nature of
the singularity as will be illustrated by returning to the wedge problem

considered earlier. We assume that near the edge
J (x,) = clx Ip J (z,) = czb, -1c< p<o (C-109)
s =1 1 ’ s 72 2

(We want -1 < p so that Js is integrable and p < 0 so that Js is singular

at x; = 0.) We require

s b p+1l

_ 2 dz, dy
I,= S 2 2 2 ___CS|x|P (C-110)
A 4w 2 2 2.3/2 2 1l
(x1 + Y + zz)
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As x; > 0 then xlls + 0, x1/b + 0 and substitutions y = y2/|x1[ and

z = 27/|X1| transform the integral

p [+<] [~ <] p o0
. c|x1| f f 2 dy =c|xl| f P 4,
A 4w L Ja+ y> + 2232 o 1 + 22
(e} . o .

(C-111)

Since -1 < p < 0 we can perform contour integration for the final integral

obtaining

» .
I =c |=, | sin{m/2(p+1)]
A 2 sinfw(p + 1)]

(C-112)

The only simultaneous solution to equations (C-112) and (C-110) for which
-1 <p<04is p=-1/3. Thus near a right angled edge

-1/3 (C-113)

Js(xl) = clxll

This result may be derived by a number of different approaches (see

for example, ref. 11). Notice that when c = 0 equation (C~110) is auto-
matically satisfied. Whether Js is zero or infinite for an edge depends

on the polarization of the incident wave.

A similar discussion for equation (C-101b) shows that Jt may not
become unbounded at an edge since for an edge D is negative. To eliminate
the possibility of an unbounded Jt at a junction, we appeal to the con-

tinuity equation

11. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill Book Company,
Inc., New York, 1969, pp. 18-20.
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aJS aJt
V‘i-im, '¥+W= 1wo (C-114)

and note that Js’ BJS/BS, and 0 must be zero for a junction. This requires
that aJt/Bt = 0 which is impossible if Jt(xl) is to be finite for |xl| <0

and infinite at Xy = 0.

The numerical consequences of the above discussions are very straight-
forward. A basic premise of the patch zonieg technique 1is that Js can be
consiqered to be nearly constant over a patch. If JS varies as 2-1/3 the
patches must shrink to zero area in order to keep JS nearly constant over
a patch; this would require an infinite number of zones which would make
costs prohibitive and probably make the matrix very ill-conditioned. We
must therefore accept the fact that calculated values for Js very close
to the edge will be relatively inaccurate. Near a junction the boundary
condition that Js along the intersection be zero may make JS change
rapidly in the vicinity of the intersection, but since the change is finite
it will be sufficient to slightly increase the zone density on both sides

of the junction to obtain substantially accurate results.

The presence of junctions and edges has profound effects on our
interpolation procedure. Since an interpolation procedure cannot be more
reliable than the data it has to work with, the interpolation will fail
near an endcap. In addition, since A has a logarithmic singularity as the
observation point approaches a discontinuity, the interpolation
procedure predicts an infinity whether the discontinuity is an edge or
a junction. To avoid this troublesome fact near a junction we suggest
that no attempt be made to determine the current density at any point
closer to the junction than the reference points of the layer zones
closest to the junction. If values close to the junction are desired
the reference points on both sides of the junction should be equally
close to the junction. Also a zone should not be significantly smaller

than its nearest neighbors.

In concluding this section we would like to dispell any doubts that
the prediction of currents away from the endcaps will greatly suffer as

a result of the limited accuracy of JS at the endcap. The integral
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equation that we deal with is very stable. The kernel 1is singular at
r = r making the currents in the immediate vicinity of a point, the
dominant influence. Therefore the singular behavior will tend to damp out

as we move away from the endcap. The error committed by approximating

the singularity by a finite quantity will barely effect the results. As
evidence of what we say, we presented in Section IV, the results of an
expérimental comparison between uncapped cyiinders, flat capped cylinders
and hemispherically capped cylinders. Even though the theoretical behavior

-1/2, xhl/3 and x0 for the three respective'cases

of Js near the edge is x
the plots of Jt do not show any appreciable difference due to the varying
boundary conditions., As evidence of the accuracy of our programm a quick

. look at figures 6 through 8 will show that the effects of the external

edge did not greatly effect our ability to predict the currents on a cylinder

at distances as close to the edge as our zone size.
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APPENDIX D

INTERSECTIONS

In this appendix we consider the intersection between the elliptical
bodies—-components of the aircraft and show how their presence modifies
(a) the coordinates at the centers of zones adjacent to the intersections

and (b) the matrix element associated with these zones.

1. COORDINATES
a. Zones Adjacent to Fuselage - Wing Intersections

(1) Zones on Fuselage (figure D1)

We assume that the planes x = x and z = 0 form walls for zones on

02
the fuselage. Also only one layer of zones is intersected for both z > 0
and z < 0. (That is, zones that would exist in the absence of the inter-
section.) If the center of a zone (as defined in Appendix C, equation
(C-18), where no intersections were assumed) has an x-coordinate such that
x < Xgy ~ @, O X > Xg2 + a, then the coordinates at the center of this

zone are unaffected by the presence of the intersection.

1f X0 + a, >x > Xgo = 3, then:
x(a) = X, sx(a) =0 tx(a) =1
by cos?
y(a) = b1 sin¢ sy(a) ='§I?$$—- ty(a) =0
a; sing
z(a) = -a; cos¢ s (@) = '§1?$3—— t (@) =0 (D-1)
where
1 %
¢ = ¢j:t-§ ¢ (+ for z > 0 and - for z < 0)
* 1 * * *2 1/2
-1l z = _x
¢ = sin 3 z -—b21 3
1 a2
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Figure D1: Geometry at the fuselage-wing intersection for the calculation of modified

coordinates at the centers of zones near the junction.




. and ¢j’ X Nl(cb) are given by equations (C-18).
(2) Zones on Wing (figure D1)

The new coordinates at the center of the zones adjacent to the

intersection are

-a, sing
x(a) = X5 + a, cosd)j sx(a) - N2(¢j) s tx(a) =0
1 -
y@) =y, -5y sy(a) =0 > ty(a) =
b2 cosd
z(a) = —b2 s:Lrnq::l sz(a) = - N2(¢j) s tz(a) =0 (D-2)
where ¢j, Yy N2(¢) are given by equations (C-22) and
b2 sin2¢ 12
*
1 2
a
1
. b. Zones Adjacent to Fuselage - Horizontal Stabilizer

(1) Zones on Fuselage

The new coordinates of the zones are derived by the same assumptions
as for the wing and are identical to the ones given by equations (D-1)

provided we replace x b

by x respectively.

02° P2» 2 03* P3» 33
(2) Zones on Horizontal Stabilizer

The new coordinates are derived by the same assumptions as for the

02° 22° Py»
N2 by X432 b3, ag, N3 respectively and refer to equations (C-24) instead
of (C-22).

wing and are given by equations (D-2) provided we replace x

c. Zones Adjacent to Fuselage - Vertical Stabilizer Intersection
(1) Zones on Fuselage (figure D2)

We assume that the y = 0 and x = Xo4 planes form natural boundaries

for zones on the fuselage. As with the fuselage-wing intersection we
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Figure D2: Geometry at the fuselage-vertical stabilizer intersection for the calculation
of modified coordinates at the centers of zones near the junction.




again assume there is only one layer of zones intersected. The

coordinates are given by

x(@) = x, s (@) =0 st () =
ay coso
y(a) = a, sin$ sy(a) = W s ty(a) =
.bl sin¢
z(a) = -b; cos¢ s (a) = Tl(a—)— » £ (@) =
where
= - 1 *
¢ ¢j E-¢
. _1£ _x2 1/2
¢ = sin =b, {1 - —5
a; y 4 a2
4
*

Y A
and ¢j’ X Nl(¢) are given by equations (C-18).
(2) Zones on Vertical Stabilizer (figure D2)

The new coordinates are

a, sin¢,

= R SR |
x(a) X04 + a, cos¢j Sx(a) N4(¢j) s tx(a)
b4 cosd,
y(@) = b, sind>j sy(a) = N4(¢j) > ty(a)
z(a) = z, - %—z* sz(a) =0 . tz(a)
where
1/2
* bz sin2¢
z =a; 1-{1 - 2
b
1

and ¢j, Zys N4 are given by equation (C-28).
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2. MATRIX ELEMENTS

As we explained in Appendix C we calculated the matrix elements
(equations (C-63) through (C-96)) by employing auxiliary local coordinate
systems, attached to each cylindrical body, such that x; was along the
axis of the body. The formulas giving the matrix elements must eventually
be expressed in terms of the global coordinate system (figure 1) through
transformation (C-30a) and (C-30b). (In the computer code the matrix
elements are calculated in the global system.) In this subsection, we
present the matrix elements in terms of the local coordinate systems.

Notice that only zones on the walls are affected.
a. Zones Adjacent to Fuselage - Wing Intersection
(1) Zones on Fuselage (figure D3)

Figure 21 shows how we subdivide the zones adjacent to the intersection
into subzones (1) and (2). First we will restrict our attention to z > 0,

x < X3 (figure 21).
(a) Region z > 0, x < X9

The matrix elements AY are given by equations (C~63) through (C-65)
with the following changes. For subzones labeled (1) in figure D3 we
replace ¢1, ¢2 (as they appear in these equations) by ¢3, ¢2 respectively

where

1/2

(D-5)

and ¢2 defines a straight boundary of the zone. For subzones labeled
(2) in figure 21, ¢l’ ¢2, X101° *102 (as they appear in equations (C-63)
through (C-65)) are replaced by ¢1, ¢3, X101’ xl(¢) (figure D3) respec~-

tively, where for Xgp ~ xlOl-i a,.
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Figure D3:

Geometry at the fuselage?wing intersection for the calculation

of matrix elements involving zones near the junction. (Zones
on fuselage correspond to z > 0, x < XOZ')
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1/2

2

11 P (x.., - x )

6. = cos 1| 22 (4 02 ~ *101
1 al 2
)

1/2
al cos ¢

x1(¢) =Xy, ~ 3, 1- 2 (D-6)
b,

i - >
Notice that when x02 x101 a2, ¢1 and ¢2 define the two straight

¢-boundaries of the leftmost zone in figure D3.
{(b) Region z < 0, x < X0 (figure D4)

Keeping in mind that in q < 0 we still have ¢1 < ¢3 < ¢2, the matrix
+
element A~ are given by equations (C-63) through (C-65) with the following
changes. For subzones (1) in figure D4 we replace ¢l’ ¢2 (as they apprear

in these equations) by ¢l, ¢3 where

¢3 = —Sin- a— 1 - 2 (D-7)

and ¢1 defines a straight boundary. For subzones labeled (2) in figure D4

¢1, ¢2, X101° ¥102 (as they appear in equations {(C-63) through (C-65)

are replaced by ¢3, ¢2, X01° xl(¢) (figure D4) respectively, where for

X - X < a
02 ~ *101 = 32 12
b (%.. - x, )2
C ol 22, 02 ~ ¥101
¢y = sin 3 2
)
1/2
ai cosz¢
% 9) = x5, —a {1 -~ — (D-8)
b,y
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When X92 = %301 > a,, ¢1 and ¢2 define the two straight ¢-boundaries
of the leftmost zone in figure D4 for z < O.

(c) Region x > X500 2 >0

The matrix elements are derived by a procedure identical to that

employed in region x < x 22 2 > 0 provided we interchange the definitions

0
for ¢1 and ¢3 (that is, ¢1 is now defined by equation (D-5) and ¢3 by

(D-6)) and define :

1/2
a; cosz¢
xl(¢) = Xg5 + a, 1 - R a— (b-9)

b,

(d) Region x > x z<0

02’

The results are identical to those in region x < Xgos Z < 0 provided
we interchange the definitions of ¢2 and ¢3 (that is, ¢2 is now defined
by equation (D-7) and ¢3 by (D-8)) and define x1(¢) by (D-9).

+ + + +
Matrix elements B", C°, and D can be calculated similarly as A~

provided we use the corresponding equations given in Appendix C.
(2) Zones on Wing (figure D3)

+ ‘
Matrix elements A are given by equations (C-71) through (C-73)

provided we replace x (in these equations) by x1(¢), X102

101’ *102

(figure D3) respectively, where _
b2 sin’ | /2

xl(Cb) = al 1 - — ; (D~-10)
b
) 1
+ + +
Matrix elements B , C and D can be obtained similarly provided we

use the corresponding equations given:in Appendix C.

b. Zones Adjacent to Fuselage - Horizontal Stabilizer Interaction

Matrix elements A?, Bi, Ct and Dt:for zones on both the fuselage
and the horizontal stabilizer are caléulated in a manner identical to
the one employed for zones adjacent té_the fuselage-wing interaction.

b, by x

02° a2, 2 b, respectively.

Naturally, we must replace x 03’ a3, 3
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C.

(1) Zones on Fuselage (figure D5)

Zones Adjacent to Fuselage - Vertical Stabilizer Intersection

The matrix element Ai are given by equations (C-63) through (C-65)

with the following changes.

For subzones labeled (1) in figure D5 we

replace ¢l’ ¢2 (as they appear in the equations) by ¢3, ¢2 (figure D5)

respectively where

[ (x,, - x )21
6. = sinl |4 (1 - ~T04 ~ 7102
3 b1 a2
i 4
’b (x - X )2 \
6. = sin L] o4 (1 - Toa” 101
3 b 2
1 a4

and ¢2 defines the other boundary of the zone.
in figure D5, we replace ¢1, ¢2 (as they appear
through (C-65) by ¢1, ¢3

they appear in equations (C-63) through (C-65))

(figure D5) respectively and x

/2-

A

/2
]

> X

04 (D-11)

J

For subzones labeled (2)
in equations (C-63)

101° *102 (as

by x (figure D5),

101
xl(¢) respectively where
1/2
bi sin2¢
xl(¢) = Xg4 F A 1- b2 , (=) for x < X4 (+) for x > Xg
4
- 9 1/2
b -
¢, = sin™! |2 (1 04 ~ *100) x < x XN, - X < a
1 a; 2 ’ 04’ “04 101 4
a
L 4
Fb 9 1/2
¢, = sin~1 [ -2 (1 _(X04 *102) s x> x x X < a
1 ay 2 04’ 04 101 4
24
(D-12)
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Figure D5: Geometry at the fuselage-vertical stabilizer for the calculation of matrix
elements involving zones near the junction.




Notice that when x04 - xlOl > a, in region x < Xo4 ©F X102 T *g4 > a,

in region x > Xg4° ¢1 and ¢2 define the two straight ¢-boundaries for

the leftmost zone in region x < x., or the rightmost zone in region

04
x > X4 (figure D5).

Matrix elements Bi, Ct, and Di can be derived similarly by using
the same substitution as for Ai in the relevant equation given in

Appendix C.
(2) Zones on Vertical Stabilizer (figure D5)

Matrix elements Ai are given by equations (C-78) through (C-80)

provided we replace x (in these equations) by x1(¢), X

101’ *102
(figure D5) respectively, where

102

1/2
2 2
b4 g8in"¢
2
b1

x,(¢) =2, (1~ (D-13)

+ + +
Matrix elements B~, C and D° can be derived similarly as we remarked

right after equation (D-11).
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