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Abstract

The transmission of an electromagnetic wave through a small aperture in
a perfectly conducting screen is examined from the viewpoint of symmetrization.
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I. INTRODUCTION

The question of how much of the electromagnetic energy that
exists on one side of a wall can leak to the other side through a small
opening in the wall has become, by virtue of its praética] importance,

a canonical ‘problem in the theory of EMP (electromagnetic pulse) inter-
actions [11.

As is well known, the earliest calculation of the transmission
of an electromagnetic wave through a sma}] gircular aperture in a p?ane
screen of perfect conductivity and zero thickness was performed by Lord
Rayleigh. Using potential theory, he calculated the transmitted field
of a plane harmonic wave normally incident on an electrically small
circular aperture [2]. VYears later Bethe derived expressions for the
polarizabilities and effective dipole moments of small circular apertures.
His results give the transmitted far field for any angle of incidence
but not the transmitted near field [3]. Most recently Bouwkamp [4] and
Meixner and Andrejewski [5,6] found an exact solution for both the near
and far transmitted fields of a plane wave normally incident on a
circular aperture,

Mkpértuéé brob1ems can, at 1eést %;hﬁéiﬁéip1é,wbé'sblved
numerically, but they cannot be solved analytically unless the shape

of the aperture happens to be simple enough to permit a separation of

the variables and a scalarization of the electromagnetic field. However,
from this it should not be inferred that if the aperture problem cannot
be solved analytically, a numerical method is the only way to obtain a

solution. Actually, as a preferable alternative, one can reformulate



the problem so that upper and lower bounds on the true solution and not
the true solution itself would have to be sought, Such a reformulation
can be based on Levine and Schwinger's result fthat when the aperture is
electrically small there is a variational principle for the upper bound
and another variational principle for the Tlower bound [7,8]. However,
this variational approach, which was used by Fikhmanas and Fridberg to
find bounds on the electric and magnetic polarizabilities of electrically
small apertures[9], does not lend itself to Very easy calculation. Accord-
ingly, it is of some interest to try a simpler method of sandwiching the true
solution between upper and lower bounds.

In this note we shall examine how symmetrization, which has
yielded interesting results in geometry and mathematical physics [10],
may be used to establish two-sided bounds on the electric and magnetic
polarizabilities of differently shaped convex apertures and thereby

estimate their transmission properties in a simple economical manner.




IT. SYMMETRIZATION

0f the several kinds of symmetrization that have heen invented
we shall restrict our attention to the symmetrization of a plane figure
with respect to a straight Tine. To symmetrize a plane figure with
respect to a straight line L, we suppose the figure to consist of line
segments that are parallel to each other and perpendicular to L (see
Figure 1). We then shift each line seagment along its own Tine until
the 1ine segment is bisected by L. The shifted line segments compose
the symmetrized figure. For example, a semicircle of radius R, when
symmetrized with respect to its bounding diameter, changes into an
ellipse with semiaxes R and R/2. A further symmetfization can transform
the ellipse into a circle of radius R/2. Symmetrization leaves the
figure's area A unchanged and decreases, or, more accurately, never
increases its perimeter P. For the case shown in Fioure 1, the area is
always WRZ/Z and the perimeter varies from (2+m)R for the semicircle
to mR for the circle.

As an instructive example, we apply the princinle of symmetriza-
tion to the calculation of capacitance C. It is known that the symmetri-
zation of a y\ane conducting plate decreases (i.e., never increases) the
electrostatic capacity of the plate [10]. A plane fiaure symmetrized
infinitely many times becomes a circle and, consequently, of all con-
ducting plates of a given area the circular plate has the minimum

capacity. Accordingly,



SYMMETRIZATION

L

I

e AREA UNCHANGED
e PERIMETER NEVER INCREASES

Fig. 1 Example of symmetrization of a plane figure with respect to a
line .. The semi-circle of radius R is symmetrized with respect
to its bounding diameter to produce an ellipse with semi-axes R
and R/2. The ellipse, when symmetrized, hecomes a circle or
radius R/2. The area of each figure remains constant but the
perimeter decreases with each symmetrization. ‘

Figure 1
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where C denotes the electrostatic capacitance of a plane conducting
plate and Cin denotes the electrostatic capacitance of the circular
plate of radius e that has been obtained by comnletely symmetrizing
the original plate. This places a lower bound on C. To ohtain an
upper bound, we invoke the conjecture that of all plates with a given
perimeter, the circular plate has the maximum capacitance [10]. Thus

we find

C > (2)

out =

where Cout is the electrostatic capacitance of a circular plate of
radius Fout? whose perimeter is equal to that of the'perimeter of the

original plate. From (1) and (2) it follows that

C1n stc Cout (3)
Since we have

Pip = (A/W)k (4)

Pout = P/2m (5)

and the electrostatic canacitance of a circular plate (disk) in MKS units

is given hy

C = 8€Oa (6)

where a is the radius of the disk and € is the dielectric constant of
}

free space, upon replacing a by r. and r we obtain from (3)-(6) that the

in out
capacitance C of a plate of area A and perimeter P is delimited by



(A/m)" < C/8c < P/2n (7)

Here e = (36ﬂ)_] x 1077 farads per meter.

Both Maxwell [11] and Rayleigh [12] made unproven statements
concerning bounds on the capacitance of plates,which agree with (7).
Moreover, the capacitaﬁce of an elliptic plate of eccentricity e, as

given by

Certipse’80 = (Av)%(1-e2)'*/2K<e2) ~—r (A/ﬂ)%(1+e2/64) (8)
’ e*0 '

where K(e?) is the complete elliptic integral of the first kind [12],
clearly satisfies the left side of (7). To show that it also satisfies
the right side we only need to recall that for an ellinse

Jom = 2(A/m)E(e2) (1-e2) Ti/m — (A/m)3(143e2/64)  {
er0

(X

Pe111pse )
where E(ez) is the complete elliptic integral of the second kind.

By virtue of the apparent validity of (7) for the capacitance
of plates of arbitrary size and shape we are led to believe that other
quantities of physical interest may be similarly sandwiched between

bounds involving only the purely geometric parameters A and P.




ITI. POLARIZABILITIES AND TRANSMISSINN COEFFICIENTS OF SMALL APERTURFES
Let us now consider the transmission of electromagnetic energy |
through an electrically small aperture which is located in a plane screen
of perfect conductivity and zero thickness. Since the aperture is swmall,
the fields on the shadow side of the screen appear to emanate from dipoles
located in the aperture. These electric and magnetic dipoies, havina
moments p and m, radiate in free space and are linearly related to the
incident traveling wave through the vector electric polarizability with

components o and the dyadic magnetic nolarizability with components Bij'

That is,
P = e oE (=123 (10)
m, = %g HINC (5 = 1,2) (11)

where u, = A X 10—7 henries per meter. The incident electric and
magnetic fields are plane waves of the form Ejncexn i (ker-wt) and
tfncexo i(ker-wt) where r is the position vector, k is the wave vector
and w is the frequency.

For a circular aperture of radius a the polarizabilities are

given by the simple expressions

circle _ 8 3 .o
circle _ 16 3 cos oo
gij 3 2 Sij (i, = 1,2) (13)
1 i=]
where Sij =
0 i#d



The values 1, 2 and 3 correspond respectively ton the directions éll’
éL and én. The aperture plane is defined by the unit vectors éf| and QL
and the normal {pointing toward the shadow side) is defined hy 6n =
éH X éi. (see Fiaure 2). The polarizabilities are defined here for
incident traveling waves and for dipoles radiating in free space. For
short circuit incident fields and for dipoles radiating in the presence
of a conducting wall, all values of the polarizahilities should be
divided by the numeric 4.

For elliptic apertures with semi-axes a and b along é![ and §L

respectively we have

ellipse _ 4v ab
Qs Y (S‘ (14)
7 3 F(e2) i3
e ab’e” 8 (15)
3 2vpyr. 2 2 il
(1=e")TK(e®)-E(e"}]
ellipse _
Bij = .
22
4 ab e

am S. (16)
3 F(e)-(1-e2)k(e?) 12

where e = (1-b2/a2)% is the eccentricity of the ellipse and K(ez) and
E(ez) are elliptic integrals of the first and second kind [13].

The transmission coefficient 1t is defined as the ratio of the
total far-field power transmitted through the aperture divided by the
total power incident on the aperture. For the case where the principal

axes of magnetic polarizability dyadic correspond to é‘| and él we find

10




1 Polarization

Fig. 2 Unit vectors &;, and &, 1lie in the aperture plane, and én. For

|| polarization ﬂjnc is always parallel to the aperture plane
and makes angle ¥ with respect to &,. For | polarization EINC

is always parallel to the aperture plane and makes angle x with
respect to él!

Figure 2
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4 2
k 2...2 40 2 .. 2 . ;
T = g3ox |ogsin Y(l) + (811s1n ¥ + sgzcnszx)(co? 1y (17)

for (—LJ polarization [14]. Here v is the angle of incidence, i.e. the
angle between k and én,and x 1§ the angle between H}nc and §L for parallel
polarization and is the angle between gjnc and élf for perpendicuiar

polarization (see Figure 2).
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IV. BOUNDS ON POARIZABILITIES AND TRANSMISSION COEFFICIENT

Imitating the procedure we followed to establish bounds on the
capacitance of plates, we now construct bounds on the mean magnetic
polarizability Bm of a convex aperture by replacing the radius a, which
appears in expression (13) for the polarizability of a circular aperture,

by rin(4) and r (5) of the aperture. Thus we get

out

3/2 1

&)™ g <8 6D (18)

3
where by definition g = (BH + 822)/2.
To test the plausibility of (18) we examine several special cases.

For the elliptic aperture of small eccentricity (e << 1), (18) becomes

3/2 3/2
LG < <8 @7 q+geh, (19)
(15) and (16) yield
3/2
_ 16 /A 3 4
By = _§'(F) (1 + 35 e )s (29)

and thus we clearly see that (18) is satisfied in the case of mildly

eccentric ellipses. It can also be shown that (18) holds true for elliptic

apertures of arbitrary eccentricity (0 < e < 1) and for other convex aper-

tures such as the rectangular and the rhombical aperture [14,15]. The

fact that these test cases are in complete agreement with (18) leads us

Vto believe fhat the assertion (18) fs valid for a1i convex apertures.
Accepting the general validity of (18) and recalling that symmetrie

zation reduces P without changing A we conclude that of all convex apertures

13



of fixed area A the circular aperture possesses the smallest mean magnetic .
polarizability.
The electric polarizability contributes to transmission through
small apertures only when the incident wave is obliquely incident and
polarized parallel to the plane of incidence. To construct bounds for
the electric polarizability we note that, for a circular aperture of

radius a and area A, (12) can be written as

. 2
circle . 8 A
o 30 2 a i (21)
Then by replacing the radius a of this expression by r. (4) and r_ . (5)
we arrive at
2 3/2
SRR XC (#2)

To test the plausibility of (22) we again consider the case of a mildly

eccentric ellipse (e << 1}, In this case (22) becomes

3/2

. 3/2
%_(%0 (] 3. ) < g111pse < %_(%) (23)
and from (14) we have
. 3/2
of TP = & (AT L F . (24)

Obviously, expression (24) is equal to the lower bound in (23). Further-
more, with the aid of (14) it can be verified that the lower bound in (22)

is precisely the value of the electric polarizability of ellipses of

14



arbitrary eccentricity [9,15]. Also we note that the electrical polariza-
bilities of rectangular and rhombical apertures satisfy (22) [14,15].

Assuming the validity of (22) and invoking symmetrization, we find
that of all convex apertures of fixed area the circular aperture possesses
the largest electric polarizability.

The bounds that have been proposed for the electric (22) and mean
magnetic (18) polarizabilities can be used to obtain bounds on the trans-
mission coefficient (17). In some modern applications the quantity of
interest is the upper bound for the case where the incident wave is directed
and polarized to maximize the transmission through the given aperture.
Clearly, maximum possible transmission through a giveh aperture occurs
when the incident wave is parallel polarized and is made to fall on the
aperture at grazing incidence. To find the upper bound for maximum

possible transmission we use (22) and note that Yout > Tin+ Thus

ut = " 1in
3 6

ssiny <& <K Gh (25)

O3 9 \Or

Moreover, in view of (18) we can write

6

%) sin’y + 83, cos’y < 108 () (26)

B]] sin

Substituting (25) and (26) into (17)we thus obtain the following expression
for the maximum possible transmission through a small aperture of area A

and perimeter P:

< _68(p/2)0 (27)
= 2703 (A/2%)

15



where A = 2n/k is the wavelength of the incident radiation.

Since symmetrization reduces P and keeps A unchanged we see from
(27) that the maximum possible transmission decreases as the aperture is
symmetrized., That is, the maximum possible transmission decreases as

the shape of the aperture approaches that of a circle [16].

16




V. CONCLUSIONS

By delimiting the polarizabilities of a small convex aperture of
arbitrary shape and given area we have found upper and lower bounds on its
transmission coefficient. Symmetrizing the aperture we see that the
maximum possible tranmission decreases as the shape of the aperture ap-
proaches that of a circle. For example, the maximum possible transmission
decreases as the shape of the aperture is changed from that of an equi-
Tateral triangle to that of a squaré and finally to that of a circle.

The bounds are simple to evaluate from a knowledge of the aperture's
area and.perimeter and therein lies the desirability and economy of this
method.

It appears that this method of estimation can be generalized to
handle other boundary-value problems and thus provide information as to

how their solutions are modified when there is a change of shape.
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