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ABSTRACT

In the analysis of the nuclear electromagnetic pulse (EMP)
penetration into cavities aboard an aircraft or other aeronaut-
ical systems, the low-frequency parts of the magnetic and
electric fields are usually separated out for consideration not
only because they are more analytically tractable but also
because they are the dominant constituents of the EMP frequency
spectrum. This report is concerned only with the calculation of
the low-frequency penetrant magnetic field through apertures
into cavities. Currently, there are two distinct methods avail-
able for this kind of calculation. These two methods are
elucidated and applied to a rectangular (simply connected)
cavity and to a coaxial (multiply connected) cavity. From the
solutions of these two different types of cavities, it is con-

cluded that one method (the Eigenfunctlion Method) offers more

/

fléxibility in solution representation than the other (the
estimating the low-frequency penetrant magnetic field into a

rectangular cavity through an arbitrary hole.
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SECTION I
INTRODUCTION

Many of the aircraft—-EMP interaction problems are concerned with cavities

coupled to the aircraft exterior through apertures. Typical examples are the

‘cockpit cavity, the bomb bay, the avionics bay, and the wheel well, to mention

-just a few., These cavities are electromagnetically coupled to the exterior

through windows or door slits. Although cavity excitation by apertures is an

old topic, there seems to be certain persistent confusion among the techniques
developed in the past for treating this problem. The confusion arises mainly
from the need of a magnetic scalar potential ¢ , in addition to a electric
vector potential F , to completely describe the cavity fields. This magnetic
scalar potential ¥ is of particular importance in EMP interaction calculations
because it yields the low~frequency penetrant magnetic field. There are, however,
two distinct methods for the determination of Y each of which gives seemingly
different solutions. It is one of the purposes of this note to end all the

confusion in cavity excitation via apertures.

In section II the two methods to calculate U are described. 1In section
III a rectangular cavity (more precisely, a parallelepiped) is taken as an
example of a sim;ly connected cavity and explicit results for ¥ in terms
of its normal derivative in the aperture are derived by the two methods. The
problem of a multiply connected cavity is taken up in section 1V, where ¥

is worked out in detail for a coaxial cavity.



SECTION II
THE TWO METHODS

It is well known that the cavity fields excited via an aperture can be
described by the magnetic scalar potential ¥ and the electric vector

potential F , viz.,
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The counterparts of ¢ and F are the electric scalar potential © and the

magnetic vector potential A by means of which one can write

E'=-YVp - sA
(2)
' =L yxa
B u a8
where (E' ,H') is the fileld radiated by electric currents and electric charges '
such as those.on a conductor, whereas (E,H) is the field radiated by magnetic '

currents and magnetic charges distributed in an aperture.

One of the possible ways to proceed with equation (1) is to express F in

t f cavit rmal mod E ,H and to obtai
erms of cavity normal modes (—p __p) n n

H=- V) + s k JH
H b + se ) (a /k JB_
(3)
E = a E
- z PP
where the p-th normal modes satisfies 2
VXE =%k H |, VxXxH =k_E 4)
= P P PP !




and the boundary conditions that n Xgp and ﬁ'g? vanish on the cavity walls
with all apertures short circuited by "isotropic'" perfect conductors. 1In the
zero frequency limit (s =0) , the magnetostatic field arises solely from "y ,

while the electrostatic field is contributed by all the normal modes.

As mentioned in the Introduction, there are two distinct methods of finding
¥ . In what follows, these two methods will be designated as the Direct Method

and the Eigenfunction Method.

1. Direct Method [1,2]

Tt is customary to use the Coulomb gauge for ¢ and F in the calculation
of cavity fields, so that F can be directly expressed in terms of the solenoi-

dal normal modes. Thus, within the cavity volume V one has

vy = 0 (5)
Assuming that the geometry of the cavity permits the separation of variables
one writes the solution of (5) as

Vo= LAY (6
where wv satisfies (5) and

(7)

with the constraint that

fy Las =0

on

where S-—SA represents the surfaces of all the cavity walls except the wall

SA which contains the aperture A (figure 1). To find the expansion coeffi-

cient Av one matches the normal derivative of (6) at the surface SA s, viz.,

') s in A
an
Swv
LA T 2
0, on SA—A



Figure 1. A cavity with an aperture in one of its walls.




By virtue of the orthogonality property of (BIBn)wv over the surface SA

one has from (8)
A = (9

where (3/3n)¥ over A is either given or matched to the field exterior to

the cavity.

An alternative method to determine Av is to multiply both sides of (8)
by wv and to make use of the orthogonality property of (B/Bn)wv and wv

over the surface SA . Hence,

3y
ds
J; Vv Bn (9.2)

Sy 17, |2av

Y

where one has used the following operations

L 3y, , 2
jé t*b\) Sﬁf'ds = jé v on ﬁvv.(wvvwv)dv = J?V‘W\)l av

If one tries to solve (5) by the technique of Green's function, i.e., to
represent ¢ within V by an integral over (3/9n)y in the aperture, one
would encounter a serious difficulty, which is well known for the Neumann

problem of a closed region.

2. Eigenfunction Method [3,4]

Instead of solving the Laplace equation (5) directly for ¢ one constructs

P from a complete set of eigenfunctions wq , namely,




Y =) By

9 4 (10)

where wq satisfies

(11)

where S 1is the surface of the closed cavity with all apertures short-circuited
by isotropic perfect conductors. The determination of the expansion coefficient
Bq is not as simple as the determination of Av because the interchange of the
order of differentiation and summation is not permissible on the surface §S .

To find Bq one integrates wpﬁ-vw over S and by means of the Gauss theorem

one has
J‘S qua-vq}ds = fs fe (u;pw)ds
= Jy 7 @ ve)av
= Jo Ty e+ vPpyav
= iy vo-vy av =0, in V (12)

Using (10) to evaluate V¢ in (12) one gets

. = 3y
ZBqLR] wq v dv = J’Aq;p =, 48 | (13)

where the fact that (3/9n)p = 0 on S-A has been used. To work out pr-qu

one recalls that within V
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which gives, when integrated over V ,

1 ,.2,.2
J’pr thqu 5 (kp+kq) J;wpwqdv

(14)
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where 5pq is-the Kronecker delta and the orthogonality property of wq in V
has been used. Substitution of (14) in (13) gives

kil 3y
B_ = _l_wap o 95 _ iAwp 5n 95

) 2 2 - 2
Lo S A S A

(15)

Unlike the Direct Method which uses the fact that ¢ satisfies the Laplace
equation in V from the outset in the construction of the solution, the Eigen-

function Method makes use of that fact only in the process of determining the

expansion coefficient B

In the next two sections expressions (6) and (10) will be evaluated for
a rectangular cavity (a simply connected cavity) and for a coaxial cavity (a

multiply connected cavity).




SECTION III
SIMPLY CONNECTED CAVITY

The rectangular cavity shown in figure 2 is an example of a simply
connected cavity. The rectangular cavity is often a good approximation to
many cavities on an aircraft, for example, the avionics bay, the wheel well,
and the cargo bay. The magnetic scalar potential inside this cavity with an
aperture in one of its walls will be calculated by the two methods described

in the previous section.

1. Direct Method

Referring to figure 2 one immediately writes down

b= Tag, * Tt
wmn = cos(mwy/b)cos(nﬂz/c)cosh[ymn(a-x)]
Yin = {mﬂ/b)2 + (nﬂ/c)2

Clearly, wmn satisfies the Laplace equation (5) and the boundary condition
(7) on all the cavity walls except the wall x=0 which contains the aperture
A . With the help of (9) the coefficient Amn can be readily evaluated and

the final result for ¢ is

.- 4 Z cos(mwy/b)cos(nﬂz/c)cosh[ymn(a-x)l
be m,n EmEnYmn 81nh(ymna)
(16)
XJ;-%ET cos(mwy'/bYcos(nwz'/c)dy'dz'
where e =1+ § , € =1+ 8 . The important point about this series
m mo n no

representation is that it contains oscillatory functions in the directions

10




Figure 2. A rectangular cavity with an aperture in one of its walls.
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parallel to and an non-oscillatory function in the direction perpendicular to
the plane of the aperture. It is therefore not an efficient representation

for shallow cavities, that is, for cavities whose depth a << b or c .

2. Eigenfunction Method

According to this method the magnetic scalar potential ¢ for the geometry

shown in figure 2 is given by

v EBquq s % I% nB,anth,mn
lpSLmn = cos(41x/a)cos (mmy/b)cos (nmz/c)
kimn = (M/a)2 + (mﬂ/b)z + (mr/c)2
= (RW/a)z + Yin

n

2 2
(mw/b)" + Yon

2 2
(an/c)” + Yom

1l

where wﬁmn clearly satisfies the Helmholtz equation and the boundary condi-

tion (11). Using (15) to evaluate B and substituting the result into the

fmn
expansion for ¢ one obtains

_ 8 cos(2mx/a) cos(mny/b)cos(nrz/c)
b= abe z 2 2
L,m,n e.e e [an/a)” + v 1
£ mn mn

17)

~ Y
X‘k v cos(mny'/b)cos{nrz'/c)dy'dz"
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4 cos (m’iTy/b)cOSr(nﬂz/c)cosh[Ym(a -x)]

be m,n emsnymnsinh(ymna)
(17.a)
XJ’ E-Il—)-—-c:os(rmry'/b)cos(mrz'/c)dy'dz'
A Ox!
-4 cos(4mx/a)cos(nwz/c)
ac 2 szsnyzn51nh(yznb)
(17.1v)
ﬂ_ A\ 1 1
xJ; P cosh{yzn(b-y>)]cosh(any<)cos(nﬁz /e)dy'dz
4 Z cos(41x/a)cos (mmy/b)
ab %,m ElemY2m81nh(Y2mc)
(17.¢)

L - ' Vet
Xj; P cosh[yim(c Z;ﬂCOSh(YQmZ<)COS(mﬂy /b)dy'dz
where one has used the formula [5]

1 _cos(®mx/a) _ COSh[Ymn(a"X)]
2=0 3 (lﬂ/a)2+ Yin Ymn51nh(ymna)

o~ 8

2
a

in going from (17) to (17.a), and the formula [5]

2 < cos(prz/d)cos(prz'/d)_ COSh[Yggfd'-C>)]COSh(qu§<)
2 Z =

L5 e /) V2] YeqSinh (v d)

in going from (17) to either (17.b) or (17.c), and C>(C<) is the larger
{smaller) of (g,z').

13



By now it should become clear that the Eigenfunction Method leads to four
different representations of the solution, one of which, namely expression
(17.a), is identical to (16) obtained via the Direct Method. While (17.a) is
exponentially decaying in the x-direction, (17.b) and (17.c) decay respectively
in the y- and z-directions. The latter two expressions are good representa-
tions of the solution for a shallow cavity in which a << b ,c, whereas (17.a)

is useful for a deep cavity where a >> b ,c.

Expressions (17.a), (17.b) and (17.c) are now applied to the calculation
of the magnetic field of the dominant mode at the center of the cavity (figure
2) for the case of a deep cavity (a >> b > ¢) and for the case of a shallow

cavity (b > c >> a or ¢ >Db > a) .

(a) Deep Cavity (a >> b > ¢)

For this case expression (17.a) is most useful and it gives the dominant

mode (that is, the mode with the smallest decay constant) as

wd = i%‘[e—“x/b-+ e—ﬂcza/b_'X/b)]cos(ﬁy/b)t&_%%T—cos(wy'/b)dy'dz‘ (18.2a)

from which the magnetic field at the cavity center is

_ o~ =2 -ma/(2b) p 3y . fat
Ed =YV 5. e J; vy cos(wy'/b)dy'dz (18.b)

1f the maximum linear dimension of the aperture is much smaller than b ,
the integral in (18.a) and (18.b} can be expressed in terms of the magnetic
polarizability (3 of the aperture and the external short-circuited field

H via the relation
—sc

3 45 =

JaZs om &y

*‘H  =-m
-—Sc —

Let the center of the hole be located at (yo ,zo) in the x=0 plane. Then

14




IA EET'COS(Wy‘/b)dy'dZ'

3 1 1
- IA ggj’cos[ﬂ(yo-+y')/b]dy dz'

2

my(w/b)sin(wyo/b)

where A 1is the ares of the hole. Substitution of this expression in (18.b)

gives

~ 2m  =ma/(2b) , A :
Ed =y giz'e ma/( éln(wyo/b)y-gm~ﬁsc (18.¢c)

If the integral in (18.b) over an arbitrary-sized aperture is nonzero,

one can still obtain an useful estimate of Ed relative to Esc by taking

20 loglo of (18.b). Thus,r o
H
20 loglO T 8.686 wa/(2b) = - 13.64 a/b (dB) (18.4)
sC

(b) Shallow Cavity (b > c >> a)

For this case one uses (17.b) to obtain the dominant mode as

-2 -mb/c
p. o= —%
vy = cos(mz/c)e

(19.8)
xj’ éQ—-cosh[(b'— Yw/clcosh(ny /c)cos{(nz'/c)dy'dz’
A. ax' y> y< Y
from which one gets, at the center of the cavity,
= 5 -2 -mb/(2c) oy ' 1 1At

Ed z e i; L cosh(wy</c)cos(ﬂz /c)dy'dz (19.b)

where y! is the smaller of (v', b=-y') . TFor a small hole one has

15



—ﬂlyo‘-b/2!/c

— - _:"- o - *
Ed =z acz e [sin(ﬂzolc)z o Esc
(19.¢)
- cos(ﬂzo/c)y-gmfﬂscl
If the center (yo ,zo) of the aperture does not lie on the center line
y = b/2 in the x=0 plane (that is, if Yo # b/2), then equation (19.b)
gives the following useful formula for the field at the cavity center:
Hd
20 log10 ﬁ;;' =2 ~13.64 b/c (dB) (19.4)

Obviously, if Vg = b/2 and the observation point is at y # b/2 and z = c¢/2 ,
equation (19.d) still applies. But if y = Y, = b/2 , equation (19.d) is no

longer true.

{c) Shallow Cavity (c > b >> a)

For this case one uses (17.c) and gets

_ -2 : ~-nc/b
wd = cos(ny/ble
(20.3a)
xiA-%%T cosh[ﬂ(c-z>)/b]cosh(wz</b)cos(ﬂy'/b)dy'dz'
where, as before, z>(z<) is the larger (smaller) of z and z' . At the center
of the cavity one has
_ = ;2_ -me/ (2b) 3y 1 ' ' v
Ed Y ap © i;-ggT-cosh(wz</b)cos(ﬂy /b)dy'dz (20.b)
where z; is the smaller of (z' , c¢-2') . For a small hole one has
- —ﬂlzo-c/Zl/b .
H =y ——e [sin(my /b)y-a *H
— 2 o! Y
ab TmTse (20.¢)

- COS<7ryo/b)£'—i.‘cm.gsc]

16




For an arbitrary-sized hole one gets from (20.b)

H

20 log,, Hi = - 13.64 ¢/b  (dB) (20.4)
scC .

at the center of the cavity. The same remarks on equation (19.d) apply to

equation (20.d).

17



SECTION 1V
MULTIPLY CONNECTED CAVITY

An example of a multiply connected cavity is the coaxial cavity shown in
figure 3 which permits the method of separation of variables. The coaxial
cavity can be used to model the weapons bay and, to some extent, the closed
wheel well provided that an end capacitance is added at one end of the inner
conductor to allow for the electrostatic interaction between the end of the.
wheel strut and the well's walls. As one will see shortly, the problem of a
multiply connected cavity is much more difficult than that of a simply connected

cavity from both the mathematical and conceptual viewpoint.

l. Direct Method

An inspection of figure 3 suggests that the solution of the Laplace equa-

tion takes the form

) AT (amp/c) (22 zz) cos (nnz/e)
m,n
(21)
Fm = Im(nwp/c)Ké(nﬁb/c) - Ié(nﬂb/c)Km(nﬁp/c)

where Im and Km are the modified Bessel functions and the prime denotes
differentiation with vespect to the argument. Clearly, the representation of

W by (21) satisfies the boundary conditions

%%-= o, at p=b
%%—= G, at z=0,¢

By means of (9) the expansion coefficient Amn can be readily evaluated. The

final result is

18
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Figure 3.

A coaxial cavity with an aperture in the outer comductor.



y - 2 Z Fm(nwp/c , nmb/c)cos (nwz/ec) sin mo
TT2 o nemenF&(nﬂa/c , nrb/e) cos mé
(22)
A-%%T cos(nnz'/c) (iiz zz:)<ﬁ¢'dz' -

The natural question to ask about (22) is whether or not the mode H = $/D is
contained in (22), since it is a legitimate solution of the magnetostatic

equations

in V

<

[
]
©

Differentiating (22) and taking the limit of the resulting expression as n = O

and then m > 0 one finds

__!.__3_12 ____"l _l-_ _'a_‘f__ ' [} 1
H¢ T p 3¢ 7 Jwe wnla/b) o IA 3p"' ¢'adg’dz (23)

In terms of the magnetic polarizability e and the external short-circuited

magnetic field Esc , equation (23) gives

-1

H¢ M 2rac n(a/b)

.

o |

SN (26)

On the other hand, if one first takes the 1limit m + 0 and then n + 0 of

the o¢-derivative of (22) one will end up with an indeterminate expression.

2. Eigenfunction Method

Following the procedure described in section II one can immediately write

20




down the solution of ¥ as

w = z an,cxl‘bmn,ot

wmn,u = Gm(Xm,ap)cos(nwz/c) (

sin m¢) 25)

cos mo

= ' _ Tt
Gmo\m (xp) - Jm(lm,ap)Ym(xm,ab) Jm(Am,ocb)Ym(Am (10)

> b

where the Am “ are the roots of
b

3 -
30 Gm(Km’ap) ) =0 (26)
p=a
Clearly, wmn,a satisfies
2 2 _ .
v -Pkmn,a)wmn,a = 0 3 in V
3_ = 0, on S
on mn,o
2 B 2 2
kmn,a = (an/c) -%Xm’d
After evaluating an o by formula (15) one gets
b
2
kil 1 Am,a I 3y vt
b= — : b Y V] + ado'dz
c £0 €nfn (nﬂ/c)2-+x2 m,c m,x YA ‘mn,o 9p
m,q “m,o
+ 2 cos (nmz/c) I Gl cos(nmz'/c)ads'dz’ 27)
A ap!

wc(az‘-bz) n#0 (nﬂ/c)2

21




1 3y, At
t T tn(a/b) ¢ IA 30" ¢ adg’dz

where

. ARG 2 Y 2
5 3 a):\ l"(;\ a) +(x b) -1, Am,a;éo (28)
m,o m m, m,o m,0

The second and third terms of (27) correspond to A o = 0 and have been
3

factored out for convenience. The third term should be made single-valued by

introducing a cutting plane connecting the inner and outer conductors.

To show that equation (27) is identical to equation (22) one first makes

use of the identity {see the appendix)

3

—_— ! = — "
a7 Cplea» th) 5 e L Ly (29)

where

6! (za, tb) = J} (za)Y} (gb) - J  (zb)Y  (za)

Then, the sum over km . in the first term wl of (27) can be written as a

b
contour integral, viz.,

_ -4 1 sin m¢ 3y f sin m¢' . .
by mzn E;E; (cos mo )cos(nwz/c)ig 50" ( . m¢') cos(nnz'/c)de'dz

(30)

1 1 G, (zo , Tb)

- : a
Zni S0 Gy Oy T 372 Gl(za s gb)

where the contour C1+-CZ+C3 is shown in figure 4. Since

22




C-plane

C3
.
R S E— \sz E— * Re(C)
C3
><-in1r/c

X Am g oOn real axis

Figure 4. The contours in the complex g-plane.
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G (zo,zb) = - G (~zp , ~Lb)
Gl (ta, zb) = G’ (-ta, ~tb)

one has (see figure 4)

= +
fcl+cz+cs cl+cé Icz

From the properties of the Bessel functions it can be shown that

(a) Gm(?;) and GI;(C,) have no branch points in the entire g-plane,
(b) Go(p)/Gé(c) has a pole at [ =0,

(c) GI;(c) has only real zeros, and

Tm PP Slele-e) .
(@) GI'n(Ca Ty " on C_ where lz| -
Thus, the integral along Cl+ Cé is equal to the residue at ¢ = inw/c , n > 0,
namely,
1 I 1 Gm(c:p » Gb) e Fm(mrp/c , nwb/e)
Py Y ¥ dg = ] , n>0
2ri ©Cy+Cq (mr/c)2+f;2 Gm(ia , Ch) nm Fm(mra/c , nb/c)

(31)

(32)

The integral over the contour C, will now be evaluated. Since the integrand

2

of (32) has (a) no poles at £ =0 for m,n > 0, (b) a simple pole at =0

for m=0,n >0, (c) a simple pole at =0 for m>0,n=0, and (d) a

triple pole at =0 for m=0,n=0, one has
G (zp , gb)
1 1 m
- T dg = 0, m>0,n>0
2ni C2 (nﬂ/c)2+c2 Gm(z;a,gb)
= 2 ’ m=0, n>0 (33)

) (mr/c)2 (a2 - bz)

24




F (awp/c , ntb/e)
-C .
= — 1im

2m 150 nF (ara/c , nmb/c) °?

m>0, n=0

-# 0, m=0, n=0

For the case where m=0, n=0 the first two terms of equation (27) vanish

identically because

fy S asrdzt = 0

due to the solenoidal nature of H , and only the third term remains. Hence,
one néed not evaluate the contour integral along C2 in this case. Substi-
tuting (32), (33) and (30) in (27) and noting that the second term in (27)
cancels the contribution from the contour integral along C2 , one sees that
expression (27) is indeed identical to expression (22), if and only if one -
first takes the limit n-~+0 and then m—>+0 in (22) to obtain the third
term of (27). '

To get a representation exponentially decaying in the z-direction one
can sum over n in equation (27) and obtains, with z>(z<) denoting the

larger (smaller) of (z,z')

A

- ﬂ_\ m,0 '
v 2 \ Z 0 amsinh(Xm O‘c) bm,aGm(km,aa ’km,ab)Gm(xm,ap ’Am,ub)
b

sin m¢ _ sin m¢' et
(cos m¢) A'g*? COSh(Km’uz<)cosh[Am’a(c z.)] (cos m¢,).ad¢ dz
(34)
1

oY v
- f vz _add'dz
m(a? - b2y A BT 72

1 3 .
+ 2me Q,n(a/b)‘d)‘J:X 3" ¢'adg'dz!

25




where some constant term hés been left out, since a constant potential contri-
butes nothing to the field. It is easy to see that the second term of (34) is
sero if z > z' and reduces to a constant if z < z' . Thus, this term will
contribute to the field only if 2z and 2z' belong to the same domain. The

third term of (34) gives the field (23) which can be interpreted as the field

of a magnetic dipole, as shown by equation (24).

A representation decaying exponentially in the ¢-direction can also be

obtained by considering the following identity:

1 J Fv(nwp/c, nrb/c) sin(v¢<)sin[v(w - ¢>)] dv
2
i

o F' (nmale, nrb/e) \ cos(vé deos[v(m - )] EEE?;GS =0 (35)

where the contour C is an infinite circle in the complex v-plane and ¢>(¢<)
denotes the larger (smaller) of (¢, ¢') . The identity is established from

the fact that the integrand of the integral goes as v—l(p/a)Iv[exp[— [u](¢>-¢<)]
as lv[ -+ o , The integral is, of course, also equal to the total sum of the
residues within the infinite contour C . The residues can be separated into

two parts, namely, (i) the part associated with the zeros of sin(2nv) and

(ii) the part associated with the purely imaginary zercs of F;(nﬂa/c, atnb/ec)

[6]. Thus equation (35) gives

,; = Fm(nwp/c, awb/c) ~ sin(m¢)sin(mé')

TT2 1=0 emF;(nwa/c, nrb/c) cos(mé)cos(me')

Fivr(nﬂp/c, nwb/e)

+ 7] ra . 3¢)
r=1 [E Fv(nwa/c, mrb/c}]
v =iv
T
sinh(vr¢<)sinh[vr(w - ¢>)] 1 -0

_cosh(vr¢<)cosh[vr(ﬂ - ¢.)] sinh(wvr)

where the v, are the roots of

26




Fivr(nwa/c, nwb/c) = 0

Applying equation (36) to equation (22) one finally obtains

cos(nvz/c)Fiv (nmp/c, nwb/c)
r

vEog . -,
n,r nsns1nh (ﬂvr) = F! (awa/c, nwb/c)

t#0 dv v v=ivr

37
§ J Sy o5 (ars’ /) sinh(vr¢<)sinh[vr(w - ¢>)]
3p'! ¢ ¢ cosh(vr¢<)cosh[vr(ﬂ - ¢>)]
A

To sum up, equation (27) gives the eigenfunction solution of the present -

problem,whereas the p-form solution is given by (22), the z-form solution by

(34), and the ¢~form solution by (37).
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APPENDIX

A MATHEMATICAL IDENTITY

To prove equation (29) one makes use of the recursion formula for Bessel's

functions and obtains

é_ ' -2 1
5% G (za, ¢b) ) T Gm(Km,ua, km,ab)
-tz =A My
m,0

2
- afl - (m/lm,aa) ]Gm(lm’aa, Am,ab)

2
+ b1l - (m/lm ab) ]Gm(km ub’ Am aa) (A-1)

2 5 H

. ] — -
Since Gm(km’aa, Am,ab) =0 and Gm(E,E) = 2/(wE) , one has

J;(km ab) 2
Gm(Am,aa’ km,ab) - J'{x a) wa)
m m,0 m,c
J'(A a)
_ _m m,o 2
Gm(km,ab’ >Lm,aa) J' (X b)) 1mbA
m Mm,o m,0Q

Recalling the definition of bm o omne can easily see that equation (A~1) leads
E

to equation (29).
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