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Abstract

In our investigation of the general relationship between
electromagnetic pulse (EMP) testings and predictions, we first
show that such a relationship must be statistical in nature due
to the many uncontrollable and uncertain elements and the shear
complexity of the problem. Then, we devise a theoretical
framework that decomposes the overall problem into different
stages., For each stage, we i1dentify the input information
required, delineate the output information produced, and out-
line the nature of the effort needed. In particular the
methodology used is explicitly spécified and the difficulties
encountered, of both physical and mathematical origins, are
pointed out. While we have suggested ideas and commented on
the extent of efforts needed to resolve some of these diffi-
culties, in this report we can merely indicate others as being

open questions. In short, for the general EMP testing- =

prediction problem we have spelled out the ingredientg

to arrive at a final assessment and have outlined ti




and procedures for making use of these ingredients.

To the part of the statistical relationship between EMP
coupling test data and prediction results, we have devoted a
detailed effort. Based on a linear model that links the sub-
system level black box points to their dominant points of
entries (POE), we have developed a statistical formalism that
enables one to calibrate the uncertainties in the theoretical
(analytical or computational) prediction capability by the
uncertainties in the test data under simulated EMP environments.
The thus calibrated prediction capability thenm will be used to
predict, with quantified estimates of confidence levels and
intervals, the statistical behavior of the system responses
at that subsystem level to a threat EMP stress. TFollowing this
formalism, we use a simplified example to illustrate how the
procedures are applied and implemented. In the example, test
data and prediction results are statistically compared and
aggregated to yield an EMP coupling assessment that has quanti-
fied confidence measures. Such a coupling assessment, combined
with the other subsequent ingredients outlined in the general
theoretical framework, could be used either forwardly to
facilitate the overall assessment or backwardly to specify the
amount of hardening required for improving the unsatisfactory

coupling parts.
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SECTION I. INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

In this report, we investigate the relationship between,
and the strategy for making improved use of, experimental
test data and theoretical prediction results for nuclear
electromagnetic pulse (EMP} interaction with a complicated

system, e.g., an E-4A Air Borne National Command Post.

The urgency and importance of such an investigation are
obvious. On the one hand, we have a number of methods,
including simplified analytical formulas and big computer
codes, to compute and predict EMP interaction results. On
the other hand, we have collected much EMP test data from
experimental simulations, and are likely to collect more.
Considerable efforts have been devoted to both areas
separately. Not nearly enough has been done to bring
these separate results together toward realizing the
desired final technology for predicting EMP interaction, a
technology that is validated and gquantified in terms of
system performances and can thus provide overall assessment
and fix requirements. To attain such a prediction tech-
nology, it appears that at present we have more need to
examine the relationship between tests and predictions
than to generate further results in either category
separately. In examining this relationship, we f£ind many
outstanding problems addressing such guestions as what
are the tests for; what are the implications and utility
of test data in regard to the capability of a prediction
technology; what is an appropriate formalism to quantify
these answers; and how can the quantification formalism

lead to strategic allocation of limited resources?




As an exploratory investigation toward closing the gap between
EMP test data and prediction results, we must first recognize
that the former is collected primarily for the purpose of
calibrating and improving the latter. Based on this premise,

we shall focus our theme in the subsequent text.

Furthermore, in view of the complexity and uncertainties in
the EMP system interaction, we recognize that both the
calibration mechanism of the prediction capability itself
and the eventual prediction results made by that capability
are statistical in nature. Therefore, we shall examine the
relationship between EMP tests and predictionsg from a
statistical perspective. Finally, it should also be stated
that with this brief investigation what we are trying to
achieve is very limited. We are not at all so ambitious

as to preempt the field by answering all relevant questions;
rather, we shall identify clearly the major areas of concern,
suggest a theoretical framework to guantify this complicated

problem, and illustrate the methodology with a simplified
example. '

In the following text, Section 1.2 briefly summarizes the
findings of this report; Section 2 presents the general
scheme of the statistical relationship between EMP tests

and predictions; and Section 3 illustrates those ideas with

an example.
1.2 SUMMARY.

The contents of this report are briefly summarized as follows.
Regarding the general relationship between EMP testings and
predictions, we first-show that such a relationship must be

statistical in nature due to the many uncontrollable and




uncertain elements and the shear complexity of the problem.
Second, we devise a theoretical framework that decomposes the
overall problem into a number of different stages. For each
of such stages, we identify the input information required,
spell out the output information produced, and outline the
nature of effort to achieve each. In particular, the
methodoclogy of the mathematical manipulation used at each
stage 1is explicitly specified, and the difficulties stemminé
from both physical and mathematical origins are pointed out.
For some, but not all, of these difficulties, ideas to
resolive them are suggested and the extent of effort needed
is commented on. Other difficulties are indicated to be
open questions. In general, the framework not only provides
a clear picture of the problem of the assessment/hardening
of EMP-gsystem interaction as to what efforts are

needed in which areas, but also provides a systematic basis
for making decisions as to why and to what extent each of
those areas needs attention to achieve a balanced effort in
an overall program. In short, for the general EMP testing
prediction problem we have spelled out the ingredients
needed for arriving at a final assessment, and have outlined

the ideas and procedures to make use of these ingredients.

To the statistical relationship between test data and prediction
results of EMP couplings, we have devoted a detailed effort.
Based on a linear model that links the subsystem level black-

box points to their dominant points of entries (POE) (see Section
II-2.1 and eq. (1) for detailed description), we have developed

a statistical theory that enables one to calibrate the uncertain-
ties in the theoretical (analytical or computational)} prediction
capability by the uncertainties in the test data under simulated
EMP énvironments. With those test-data calibrated uncertainties,

the prediction capability can be used to predict, with guantified




estimates of confidence levels and intervals, the statistical
behavior of the system responses at that subsystem level to a
threat EMP stress. Following the general formalism, we illus-
trate the procedures for its application and implementation by
using a simplified example., 1In the example, test data and
prediction results are statistically compared and aggregated
to yield an EMP coupling assessment with guantified confidence
measures. Such a coupling assessment, combined with those
other subsequent ingredients needed for the overall assessment
of the system performance as outlined in the general relation-
ship, could be used either forwardly to facilitate that overall
assessment or backwardly to specify the amount of hardening
required for the unsatisfactory coupling parts. Finally, we
emphasize that although the example represents merely a gross
simplification of reality, a closer look at the statistical
methodology used does show that it has a wide applicability
and serves at least as a prototype of a practically feasible
method.




SECTION II. STATISTICAL RELATIONSHIP BETWEEN TESTING

DATA AND PREDICTION RESULTS OF THE EMP
INTERACTION

2.1 GENERAL REMARKS

In both the historical past and conceivable future, the

purposes and uses of experimental testings are

a) to obtain the phenomenological facts for the

cases tested;

b) to calibrate and to revise/establish a theoretical
capability such as to enable one to predict phenomeno-
logical results of "similar" but untested cases and

to "understand" the outcomes of all interesting cases;
and

c) to iterate the state of the art in the above two cate-
gories toward their mutual enhancement and convergence.

Here, of the theoretical capability in b), the prediction aspect
is to satisfy real operational needs and the understanding aspect
is to satisfy merely our subjective mental imagination. But
these two aspecﬁs are so interwoven in our mode of thinking

that in reality they cannot be dlearly separated from each

other. Therefore, it is such a combined theoretical capa-

bility the experimental testings are to calibrate and/or revise

gquantitatively [1].

Furthermore, ﬁhe above process from a) to b) is never deter-
ministic nor even unique =~-- be it at a basic level of revising/
establishing a theoretical capability or at an applied level

of calibrating that capability using a "well-established"
physical theory. Such features of non-determinancy and

non-uniqueness -are caused by at least four factors:




a) the inherent uncertainties in the test data;

b) the difficulties in separating and isolating

causes and their consequent effects;

c) the inferences from the tested cases to the
untested "similar" ones (including, of course,
the ones in reality for which the test cases

were intended in the first place);:

d) the subjectivity, resulting unavoidably from
our imaginary thinking process, in the choices
of a theoretical framework mentally created and

used to interpolate and extrapolate the test data.

Consequently, as in many other areas, the problem of relating
tests and predictioné in EMP interactions with a complicated
electronic system contains uncertainties which are statistical
in nature [2]. Such a statistical nature exists in both the
very inherent mechanism of calibrating/revising the prediction
capability, via comparisons of test data and prediction results,

and the eventual hardness assessments using the prediction cap-

ability.

To be specific,~even assuming a full and accurate knowledge of
the EMP environment, probability and statistics still enter the

EMP interaction through the following mechanisms:

1) the random deviations of the system character-
istics within the macroscopic design and specif-
ication tolerances--these deviations may be
tolerable under normal system-operating constraints
because of design safety factors, but could yield
relatively disparate responses when pushed near or

beyond such safety limits by EMP;
2) our lack of complete knowledge of these deviations;

3) our making guesses about the effects of the above via

imperfect and partiai test data and prediction results.



Therefore, our basic task is to statistically gquantify the impli-
cations of these factors in an gverall EMP technology. Here, the .
deviations in 1) are measures of how widely spread the reality is,
and will be referred to as variations. These could stand for
variations from each other among similar but distinct systems

or among similar electric subcomponents used in one system.

On the contrary, the lack of knowledge in 2) is a measure of

the accuracy and limitations in our capability to describe the
reality, and will be referred to as uncertainties. We emphasize
the distinction between variations in the reality and uncer-
tainties in knowing the reality by noticing that uncertainties
could very well exist even if there were only one component

that exhibited no variation.

2.2 STATISTICAL RELATIONSHIP BETWEEN TEST AND PREDICTIONS

2.2.1 From Testings and Predictions to Calibrated Prediction

Capability of EMP Coupling

For clarity, we present our ideas concerning the statistical

relationship between EMP-coupling testings and predictions by
using a block diagram, as shown in Figure 1, and examine these
ideas accordingly as follows.

Suppose, for the present, we are interested in the electric
responses of the electronic system at some subsystem level,
say the responses at a large number of pins or at some
critical black box circuit points. We label these subsystem

points by X i=1, 2. . . .I, and label the collection of these
. I %
points by {xi}i=l'

To obtain the electric response to an EMP at a point X r We can
make use of some theoretical model and predict the response by
solving the model either analytically and/or numerically.
Typically, we predict the response by identifying and modeling

the dominant coupling paths to the reponse point X from its

* R
For the notations used, see Glossary at the end of the
report.

10



PREDICTION
CAPABILITY

\ \

EXACT ENVIRONMENT
DRIVING FORCE Ei
AT P.O.E.s

TESTING SET-UP
AND KNOWN
CAPABILITY

IDENTIFY AND MODEL
COUPLING PATHS, AND
COMPUTE Ci(jC)

MAKE PREDICTIONS TO ith
CRITICAL COMPONENT AT
PIN LEVEL,i=1,2...15

A

R -2l ol
| J 1] }

1
UKNOWN UNCERTAINTY

ol =1 2.0

WITH

i

TEST DRIVE E'j
AT P.O.E.Ss

MEASURE RESPONSES OF
ith CRITICAL COMPONENTS
AT PIN LEVEL,i=1,2...14

Y

il C(:r) E. WITH
=1 U

KNOWN UNCERTAINTY
olMi=12.. 14

R(T) =3
}

Figure 1.

compare R ano r(T), use
known 0T To EsTIMATE
UNKNOWN oéC);

INCLUDING BOTH THE Of({)

FOR DIFFERENT PINS IN SAME
AND IN DEFFERENT GROUPS
OF PREDICTED RESPONSES

\

CALIBRATED PREDICTION
CAPABILITY WITH ESTIMATED

UNCERTAINTY o(g)

Block Diagram of EMP Interaction Testing and

Prediction Relationship

11




points of entry (PCE's) Yj,,j=1,2,...J(i), computing the

coupling matrix Cii)Lfaggfobtaining (3]
J (1)
(¢) _ (c) .
Ri ] E: Cij Ej . (L)
j=1

llere, the superscript (c)} stands for computed results. Also,
we have assumed that the EMP environment E. at the jEE POE is

known accurately. We will come back to this assumption later

and remark on how to relax it. At this stage, we do not know how

ic) is, and we represent conceptually

its uncertain error, which is to be found, simply by Oéc)'

accurate the prediction R

To quantify the Géc) for the predicted Ric), an@ to further im-
prove that prediction, we need to resort to experimental tests.
First, to be able to make use of the testing results at all, we
must have a knowledge (most likely itself statistical in nature)
of the accuracies of the testing set-up. Second, the testing

is usually conducted in a less~than—-full-threat environment .
which actually simulates those Ej‘s at POEs, a numnber bkut not ali
at each time, according to the dominant coupling paths identified
in the prediction process. Thus, assuming again an accurate
control of the simulated driven environment E. at the POEs,

from the tests we can measure the responses at x5 (see

Figure 1):

Here the superscript (T) stands for test results. Now the
known degree of accuracy of the test set~up must be translated
into the degree of accuracy of the test-responses RiT), when
the latter is subjected to the simulated driving environment E.
at the predicted dominant POEs. The RiT) then, with its known
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degree of accuracy, oOr uncertainty, which is symbolically

represented by OéT), contains all the information we have
gained through the experiment and can be exploited to

calibrate our prediction capability.

The actual quantification of the unknown oéc) against the
known OE({T)obviously should consist of comparing the Ric)and
RiT) at those subsystem points (such as pins) selected for
predictions and testings. Then statistical inferences could
be made regarding the prediction capability as a whole in its
uncertainty limits. A thus guantified prediction capability
will then be used to make further predictions for responses
at untested subsystem points and for responses subject to
different environments. In doing so, there are two diffi-
culties that we shall point out and indicate how, at least

conceptually and partially, to resolve.

First, out of the large number of all subsystem points, usually
we can only select a certain fraction of them to make
predictions for and to run tests against. In executing that
selection we perhaps have grouped similar subsystem points

according to their EMP responses, and have selected randomly

some members from within each such group in the hope that

those selected ones could somewhat represent their respec-

tive groups.: A grouping and selection of this type has already
employed part of the prediction capability. To learn and
calibrate this part of the prediction capability optimally,

via comparisons with testing data, it is not clear whether

the subsystem points selected for testing within each such

group should be identical to those selected for predictions,

or should be according to some other algorithm, e.g. independent
of those selected for predictions. At present, it seems likely
to the author that an optimal choice may substantially depend
upon the nature of the true variation of those similar responses

within the group -~ i.e., depend upon the level of detail we are

13




willing to expend and the nature of uncertainties in the very

prediction capability itself used to make such groupings in the .
first place. This area does present a realistic problem, and ’
we do not pretend to know the answer. However, one statistical

principle is lucidly clear: it is always more advantageous to

employ known information in selecting response points for test-

ings and predictions than not to, even if that information is

of an uncertain nature. In other words, unless we can afford

testing fully all response points (and, incidentally, thereby

do away with the need for prediction}, it is always more opti-

mal, in terms of obtaining most information with the least number

of tests, therefore leas£ cost, to group similar response points

as much as we can and to distribute our resources accordingly by

randomly selecting points from within such groups than to ran-

domly and indiscriminately select among all the response points

without grouping them all.

Second, to measure the response RéT) excited by driving the
environments only at those POEs predicted to have major

coupling links to a response point and to make inferences

based on a comparison of such a measured RiT) to the predicted
Ric) could lead to erroneous but self-deceiving conclusions
about the prediction capability. Such erroneous conclusions
will lead to an erroneous vulnerability assessment of the system
to real EMP threat. This is because that in the above proce-
dure we may have inadvertently ignored significant coupling
paths to the response point from unrecognized POEs that
contribute substantially to the response at the response point.
It is also because the same procedure can never by itself reveal
such a defect so long as the Cii)and the C£§)in (1) and (2)

are linking the response point only to the same set of recognized
POEs. It seems very difficult to get out of this loop of
fallacy if we do not have tests at full threat conditions--

both in EMP amplitude level, time shape, and spatial extent.

In fact, the problem of unraveling the inadvertent effects

14




of partial-threat simulation to recover and calibrate the
prediction capability in predicting responses to a full-EMP-
threat is among the most outstanding EMP problems [41}.

Short of full-threat testings, nevertheless, there is one
potentially fruitful idea -that could shine light onto this
dilemma and break the loop of self-deception. That idea

is to drive the environment at POEs selected randomly out of

those predicted not to give rise to any significant responses
at a given subsystem response point, and to measure andrcheckr
the response at that given point. A comparison and inference
based on testings and predictions of such a complementary
nature to a number of randomly selected response points could
guantify and calibrate the uncertainty errors in the predictions

due to ignorant exclusions of significant coupling paths.

2.2.2 From Calibrated Prediction Capability of EMP Coupling

to System Performance Assessment

The flow of ideas for using the test-calibrated prediction
capability in EMP coupling and other inputs to arrive at an
overall assessment to system performance under EMP stress

is depicted by Figure 2.

The prediction capability is first used to predict subsystem
responses to an EMP threat at a number of sampled response points,
often larger in number than those selected for testing. From
these sampled prediction responses (see remarks in Section 3.4

for some associated difficulties), we can employ the calibrated
uncertainties in the prediction mechanism and make statistical
inferences about the distributions of the responses at all the
critical subsystem points, with estimated confidence intervals

and levels, for each of the various similar groups of points.
Combining these distributions and those of the subsystem component
malfunction thresholds T,, as further known inputs, we could obtain

prediction-inferred distributions for the safety margins [5]
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Figure 2. Block Diagram of EMP Interaction Testing and Prediction
Relationship (Continuation of Figure 1)
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Si = i . _ o o (3)

for the subsystem components due to the EMP threat. Here,
the distributions. are to be inferred according to the groupings

of similar subsystem response points.

Up to this stage, we have been concerned only with the electric
coupling from the EMP threat environments to the system at

some subsystem black-box component level. The effects of

these electric responses at the component level on the functional

performances of the system are, of course, the ones of eventual

concern. The information needed to link the electric
malfunction safety margins of the subsystem components to

their impact on system functional performance is the
conditional functional impairment probabilities. These are

the probabilities of impairments to a certain type of

system functional performances (e.g., the dial tone of a
telephone, the routing of a switch center, the correct

process of a coded signal at a terminal) caused by a specified
and given failure status of the electric subcomponents. Often,
such conditional probabilities of functional performance
impairments are not easy to obtain, even for the system designers,
because an electronic system is usually designed and implémented
on a sufficient basis, i.e., it works satisfactorily as long
as the electric signals, their amplitudes and bandwidths, are
within the designed norm. What exactly the functional impair-
ments are and how they come about, 1f the set of subsystem
components operate outside the signal norm and fail in
specified ways, are usually not well delineated and need
substantial effort to unravel. However, interested here
mainly in the EMP coupling mechanism, we assume the avail-
ability of such a linking information, and thus, in principle,

can arrive at the system's functional performance predictions
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under EMP stress, with estimated confidence measures obtained ‘

from and validated by the testing-prediction calibration procedure.

A final input to the overall assessment is a weighting function
that judges and weighs the severeness of the loss due to the
above impairments of system functional performances. Again,

the determination of this loss function (or utility .
function) is not in the hands of EMP analysts and testers. It
encompasses the nature of the mission of the particular system
as a unit and the strategic deployment of that unit in an
overall communication-command-and-control network. We would
like to point out; however, the decision concerning the adequacy
of the system performances as evaluated and the amount

of hardening needed do depend critically on that loss function.

2.2.3 Improving the System Vulnerability Assessment

If, as a result of the overall assessment effort, the system in
part or as a whole is found not to meet some required performance '
specifications under EMP stress, we must improve the system.
This could procéed in two ways, separately or combined, as
depicted by Figﬁre 3. If some performance impairments are
judged too severe, we may have to trace back according to the
conditional probabilities of functional impairments as outlined
in Section 2.2.2, find the weak subcomponents, harden them,

and then repeat the testing and prediction process again.

If the assessment confidence is too low or the accuracy is too
vague, we may have to refine the prediction by adjusting our
prediction model as indicated by the test data and/or by taking
more test data and making more predictions, so as to adeguately
narrow down the uncertainties in our prediction capability.

Of course, these two undertakings could be combined and cross-
iterated in repeating the whole test-prediction process until a

satisfactory performance assessment 1is reached.
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Figure 3. Block Diagram of EMP Interaction Testing and Prediction

Relationship (Continuation of Figure 2)
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2.2.4 Conclusion

In Sections 2,1 to 2.2.3, we have presented and analyzed the
ideas regarding the statistical relationship between calculated
prediction results and experimental test data of EMP coupling
to electronic systems., Within the framework of our methodology,
we have pointed out-some difficult areas which need substantial
attention. Furthermore, there are several necessary pieces of
information (see Figures 1,2,3) that we simply assumed as_known
quantities and used as inputs to deduce assessment conclusions,
In fact, attaining these pieces of assumed information generates
complicated problem areas which in themselves deserve substan-
tial investigation. In short, we have outlined the ideas and
the procedures to solve the testing-prediction problem for EMP
coupling, and have spelled out the ingredients needed to arrive
at a final assessment, rather than solved in detail any partic-
ular problem for an explicitly specified system. In the next
section, we shall illustrate the detailed pursuit and execution

of our ideas by presenting a relatively simple example.
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SECTION III. AN EXAMPLE

3.1 A SIMPLIFIED MODEL OF THE TESTING-PREDICTION PROBLEM IN
EMP COUPLING

To illustrate the application and the implementation of our
heretofore advocated ideas, we shall consider the following
simplified model. Suppose we have an electronic system

and wish to determine its EMP-induced responsés at a large
number n subsystem-level black-box points Xi
i=l,2..., n, say the input pins to the instrumentation panel.
Further, the largeness of n and the testing constraints in

reality forbid us from performing a full-scale EMP test of all

the pins. Therefore, we have to resort to prediction.

Without compromising any essential concepts, we can further
simplify the model by assuming that all the n pins we are

interested in can be classified as a single group in that

the variation distribution of their true responses RiE to a

-

given EMP environment—is normal with mean pgh and standard

deviation (s.d.) OSE:
OE oE OB} . _ Coe
Ry € N<ug ' g ), i=1, n (4)

Here, for the superscripts, the o denotes the true value and the

E denotes the given EMP environment: and for the subscripts, the

21



1 denotes the Zth pin and the g denotes the group. Our objective

OF via a

is to quantitatively estimate {6] the ugB and the o
statistical comparison of prediction results and test data

of EMP coupling.

Now, we choose randomly n_ of the pins (usually n  <<n); iden-

tify for each of them their dominant coupling paths leading from
that pin to its POEs and compute the coupling matrices Cij,
i=1, 2 . . . ng, 3=1, 2. . .J(i); predict at these sampled pins
;he EMP responses Ri due to a simulated environment consisting

of driving sources Ej at the jth POE according to

- J(1i)
Rl = (Z Cl:} E] ] i=1,2 ° nS i (5)
Jj=1
and measure the correSponding testing responses
- J(1)
T -_— T i == - .
Ry ;;1 Cij EJ P 1,2 ng (6)

Again, as in (1) and (2), we assumed an accurate contrcl and
knowledge of the environment By. A final simplifying assump-

tion we shall make is the unbiased normality of both Ri and

T
Ri’ i.e.,
C O C
R €N (Rl, oi), i=1,2 n_ (7
T o] T
Ri €N <Ri' 01)' 1= 1,2 Ng

(8)
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with unknown standard deviation (s.d.)

O:(E = o%, i=l,2...nS (9)
and known s.d.

T ‘

Oi = g-, 1 l,2...nS (10)

Here, the Rz is the true response at X to the simglated testing
environment. Notice that the s.d.'s assumed in (9) and (10) are
independent of the true responses rather than proportional to
them. This represents a high degree of simplification of the
reality and chosen to simplify the mathematical manipulations.

We shall come back to this later.

From the above description of the simplified model, our tasks

are to estimate the values of and to quantify the uncertainties

. C . oE
in the o , the Ri for 2=1,2 . . . ngi the Ry for i=l,2...nE;
. oE OE . :
and finally the Ug and Gg . Here, the ngp 1is the number of
n
BE

sampled points {x;} whose responses to a threat EMP environ-

i=1
ment will be predicted, via the testing-calibrated prediction

technology, and used in the system vulnerability assessment to
n

that threat EMP. Often nsén <<n and the sets of points {xi} §=

E 1

n

s
and {Xi}i=1 may overlap to a considerable extent but not neces-
sarily be the same. The following subsections carry out these

tasks one at a time.
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3.2 ESTIMATING THE oC

Following the assumed forms of Ri and RE, (7) to (10), their

differences are normal:

T {
D, = Rf - R € N{O, (ocf+(oT)2}, i=1,2- -n_ (11)

=

)24 (oh)2

Thus, we can make use of the D, to estimate the (o
and thus the (0°)?. The actual procedure of doing so is slightly
complicated by that of incorporating the known knowledge of UT

into our statistical estimate of (06%)%+ (0°)?, and thereby into

(¢©)2. In fact, the only way to do so which we have been able

to discover is via a Bayesian Fiducial estimation method, a
method not entirely rigorous and satisfactory [7]. However, for
lack of anything better we have to use it, and the result is

(see Appendix A): [ (ns—l) Si

Yia, minQDp@ﬁ§;~4§; n%

Pe {657 <0 <6} » —

| (GT) 2 ;

ns] (12)

Here, the notations are defined

1182
(ﬁf)z = max GL EEE_il~S - (0T)ﬁ (13)
(62) fE - a

Y(a, b; ns)

1l
n
1
S~~~
Q
3
—
(3%

.probability that a xz(ns)—distributed
random variable lies in the interval

(a, b), where the o<a<b and the x?(ng)

is a chi-square distribution of ng

degree of freedom (15)
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S
a < (on (le6)
ng -
X (Dl— ) 62
6é = i=1 , = . s e Xz(ns) (17)
ns~t (o712 + 65y
ng-1

The inequality (12) states that, as a result—of calibrating the
prediction uncertainty by using experimental testing data, we
have at least the confidence described by the right-hand side of
(12) that the unknown uncertainty spread, the s.d. Cc, in the

prediction technology is indeed between 6° and 0%.

3.3 ESTIMATING THE SAMPLED R}

The best estimates of the values of the true responses Ri, i=1,

2, - - ns,kat the sampled pins, while being driven by the known-
simulated environment Ej's, are to be made solely by using the

test data (6), in conjunction with the assumed known

testing accurac? described by (8) and (10). ©No extra advantage
can be gained by employing the predicted values Ri, i=1, 2, *rng,
because the very uncertainties in these predictions are them-

selves not known before being calibrated by the test data.

Thus, the estimates of R? are simply

P {R] -o" a<r]<Ri + o aj = A(-a,4), i=1,2,--ng (18

where d>0 and A (-d,d)zP{|Xx|>d | X eN(0,1)}.
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However, these estimates (18) of R? are of little direct inter-
est, because they are responses at those pins sampled for test-
ing under merely a controlled (see (5)) and simulated EMP envi-

ronment rather than under a real EMP threat environment.

E

3.4 ESTIMATING THE R?

Having estimated the uncertainty error o€ in the prediction
technology, we can use the thus-calibrated prediction tech-
nology to predict the EMP responses at the pins under a real EMP
threat environment. We must make two remarks before we pro-

ceed.

First, we have assumed that the same prediction capability pre-
vails in making coupling predictions for both the EMP simula-
tion responses gnd the EMP threat responses, whereas only the
former capability has been calibrated against by statistically
comparing its results with the test data. This assumption is
very important. However, usually it is not mentioned but is
assumed ana employed implicitly in the rationale for obtaining
and using the testing data. The assumption is approximately and
reasonably true in reality when we genuinely apply the same level
of technical effort in making the coupling prediction for both
the simulated testing and the real threat EMP environments.

In fact, this must be the case unless one makes grossly
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careless coupling predictions for the real threat case after
having carefully learned a lot from the simulated prediction-
testing efforts and then ignored that learning. Although

this circumstance is possible, we exclude it from our technical
investigation-—- a circumstance under which one can make

as much inaccuracy as he wishes, independent of any

previously accumulated knowledge, in predicting coupling

responses to real EMP threats:

Second, we have assumed that it is unfeasible to perform the
real threat EMP coupling experiments due to difficulties on

at least two counts: the creation of the various full threat
environments and measurements of the responses at as many

pins as we could theoretically predict. Otherwise, in the
theme of calibrating and establishing the prediction capability
by using known experimental capabilities, there would be no

operational need for any prediction capability at all.

Now, in accord with the above remarks, we have

OE . .
Ry” e N(R} , o), i=1,2, -+« ng (19)

for the sampled and predicted responses to an EMP threat -

. J (1) E
C - C : .
Ri = j>_:l Cij Bjr =10 200 7 " ng (20)
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Here, the Czj is the predicted coupling matrix from the jth

dominant POE to the ith pin. Again, we have assumed an accurate

cE

knowledge of the EMP environment E?. Using the R;™ as the estimator -

for the R?E and incorporating the statistical knowledge of o€ by

using its fiducial probability density, we immediately obtain

oE

estimates for Ri (see Appendix B):

oQ
CE ' LOE E c, 2 b
{ b+Ry" <Ry <b+R§ } =v£. p(c ) (n)K< 7;;9(&1 .

i1=1, 2, - - Do, b>0,

P

where p< )2( n) is the fiducial probability density of the

estimated parameter (oc)2 obtained from (12) (see Appendix B)

(ng=l)al ((ns—l)ag )
—_——— « P 2 —_—
Tix2 X { ) Ty 2

_ Int()3 Os) Ant @O/ e so

(n.-1)g2
T (22)
(c4)? if

n<o

p(O,C)Z (ﬂ)

= 0,

and the p 2 (n )(E) is the probability density of a chi-square

dlstrlbutlon of ng degrees of freedom evaluated at £. The one simple
special case of (21} is for a large sample size and small (UT)2

such that the (¢°)? is narrowly distributed around the o ; and

{21} gives approximately

! "’b b
p —b+R§E<R§E<+b+R§Li%)\<A rTR > (23)

This result for R?E is similar to the result (18) for Rz, but with
the corresponding uncertainties in (1l1), the difference between the

prediction and the testing in the prediction-testing calibration
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process, virtually all attributed to the prediction part. That
last statement is easily seen by rewriting b/8S = d in (23).
In general, the confidence estimate (21) can be obtained easily

by a numerical calculation.

O
3.5 ESTIMATING THE ugE and ogﬁ

oF "and the OOE , under the
g g
E

normality assumption (4), is similar to that for estimating R? .

‘The procedure for estimating the u

Namely, we first estimate conditionally assuming'Gcis known,
then we use the fiducial probability distribution of o° obtained
previously to unravel that condition. The results are (see

Appendix C)

Pe {~b +ﬁgE< u%E <b + ﬁgE
oo o0
=l/.dn p(gc)z(nl/ﬁ d¢ Pyz | (%) (E]n) . (24)
o] @] .
NEoa
=  F- b>o
g g
where . 2? g o —
. R,
ﬂcE = i=l "1 ] 7 o (25)
g nE
sz[(ch(€|n) = 0 , if £ < n

X {n_-
£ E ;
) n_-1) (5SE)2 g i;g)
E g
A OI n 7 nE-l
n B
I (reong®)”
(éxgE)z 1= - (27)
(nE—l)




and

a,+n

o0
P aa < (£F) <a %= dn p ¢_cyz(n) po2lisey2 (Elnyae  (28)
B oo

2
a1+n

Notice that the (28) recovers precisely the familiar expression

P max | 0, @—'—l%@ ) (5% L@__E)_Lif (o

Y<a, min t:b, iy )——(a—giz];(nE—l)>

ig—c—:l)z
(e~ (GEE) 2. no-1
<Ocl) 2 B

(29)

Y40,

2

in the special case when the (¢%)? is a known constant (or

nearly known with high confidence in a narrow range about that

constant) (UCl)z and the parameters a; and a, are
n_- )GCE)Z
! b
n —%)3QE)2
a = ( E g _ (Ucl)z (30)
2

Inequality (29} is the same as (12}, except for the obvious
replacement of the corresponding guantities in the two respec-
tive cases. This is, of course, as it should be, since tle

. . oE . T C cl .
estimation of Gg with the ¢~ as a known constant o 1s the
same as the estimation of ¢© with the oT as a known constant

(see Appendices A and C).
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3.6 FROM CALIBRATED COUPLING PREDICTION TO SYSTEM PERFORMANCE
ASSESSMENT AND SOME REMARKS

Now that we have estimated the statistical uncertainties in the
sampled and predicted coupling responses to an EMP threat envi-
ronment and estimated the variation distribution ofTall respon-
ses, we can proceed to attain the system performance assessment

as outlined in Section II by making use of those other pieces

of information as further needed inputs. We shall not elaborate
on this, because our main interest here is to obtain a
testing-prediction relationship for EMP coupling. For the above
simplified example, we have obtained that relationship in explicit
detail. However, several remarks concerning relaxing some of

the simplifications made in the example are in order.

First, in reality there may be many groups of pins and each
group has its members' response to EMP as we illustrated in the
example. Thus, we would apply our illustrated method to each
such group. This multiplies our efforts by as many times

as there is the number of distinct groups.

Second, the various probability distributidns assumed may not be
normal, or even closely so. This, in principle, pcses no diffi-
culties, because we could assume other appropriate forms of

distributions as the situation should dictate and estimate accor-

dingly, though with possibly more complicated mathematics, or we
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could directly deal with percentile points by using distribution

free-methods.

Third, even for the assumed normal distributions, the uncer-

tainties (9) and (10) assumed and used in the example are over-

simplifications in that OE and oi are independent of the true
response R?. A more realistic assumption would be errors pro-

portional to responses given by

i = K |Ry (31)
T T, 0
o, =K tRiI (32)

instead of (9) and (10). Then the first task would be to esti~
mate the KC, starting with a kncwn KT. Similarly, the ¢ in
{19) should also be replaced by KchE. Such an assumption leads
to slightly more complicated estimation calculations than those

illustrated, but causes no unusual difficulties (Appendix D).

Fourth, when the environments at the POEs are themselves not
accurately known, we need to unravel those uncertainties by
one further step of aggregating our conditiocnal probabilities,
while making use of, as an additional known input, the statis-

tically guantified uncertainties in those environments.

'Fifth, the direct use of the prediction uncertainties obtained

"from the partially simulated testing-prediction situations in
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real EMP threat predictions is not correct even if we do
apply a consistent level of prediction effort to both cases

as assumed at the beginning of Section 3.4. The probability
of the self-deceiving fallacy, to.which such a direct extrapo-
lation of prediction uncertainties 1is susceptible as pointed
out at the end of Section 2.2.1, in inadvertently ignoring
possible major coupling paths must be accounted for. This

may slightly or considerably reduce the prediction accuracy

as yielded directly by the testing-prediction caliﬁration
mechanism illustrated. Although we have suggested a plausible
way of complementary testing (see Section 2.2.1) to account

for this effect, we have not yet performed any in-depth

investigation of this.
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REFERENCES AND FOOTNOTES

This is always the situation except when one has test
data for all possible cases of interest. Under that
exceptional circumstance, those test data by themselves
alone constitute the full knowledge. As such, the
theoretical capability is not operationally needed at

all and, thus, any fantasy in our imaginary thinking
process to gain understanding is immaterial. Obviously,
however, the data from limited, incomplete, and imperfect

EMP interaction testings £fall far short of that exceptional
circumstance.

See, e.g., W. R. Graham and C. T. C. Mo, "Probability
Distribution of CW Induced Currents on Randomly Oriented
Sub-Resonant Loops and Wires," AFWL Interaction Note 321,
May 1976. :

M. A. Morgan and F. M. Tesche, "Statistical Analysis of
Critical Load Excitations Induced on A Random Cable System
by An Incident Driving Field: Basic Concepts and Method-
ology," AFWL Interaction Note 249, July 1975.

Assume the interactions are linear. If not, the subsegquent
analysis can at most gilve an indication of the extent to

which linear model starts breaking down.

See, e.g., C. E. Baum, "Extrapolation Techniques for
Interpreting the Results of Tests in EMP Simulators ip
Terms of EMP Criteria," AFWL EMP Sensor and Simulation
Note 222 (March 1977}).

Notice that we could define the safety margin by a
monotonic function of the ratio of the T, and the
Ric), instead of the Ti and the‘Ric) themselves, if it
is more convenient for computational purposes to do so.

For example we could define
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5.

REFERENCES AND FOOTNOTES (Cont.)

(cont.)

if the logarithm of the responses allows simple mathematical

manipulation statistically. The safety margins so defined

serve as normalized subsystem malfunction threshold indicators.

For the statistical methods used in this report, see
any typical text book on mathematical statistics, e.g.,
M. G. Kendall and A. Stuart, " The Advanced Théory of
Statistics, Vol. 2, Inference and Relationship,"”

(Second Edition, 1967, Hafner Publishing Co.).

We must point out-that this is a controversial area in
statistical inference. In fact, there is no way of
incorporating the a priori knowledge rigorously into

the statistical estimate theory. The Bayesian renormal-
ization procedure seems to be an intuitively plausible
method, and vields intuitively sound results, although

it rests on somewhat undefined and shaky mathematical

foundations. Furthermore, it seems to be the only
method in existence to do this incorporation. In view

of such, we have no choice but use it, keeping in mind

its being less than totally satisfactory.
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APPENDIX A

DERIVATION OF CONDITIONAL CONFIDENCE ESTIMATES
WITH PRIOR PARTIAL KNOWLEDGE

A rigorous theory of statistical estimation that incorporates
prior knowledge of the parameters being estimated is known to
not exist, and is even considered by many to be impossible to
find. The only existing formalism for incorporating such prior
knowledge in a statistical estimation is via a Bafesian formal—
ism or a fiducial estimation method---which are the same if we
use as our best guess a uniform fiducial probability density

in the region of the parameter unrestricted by the prior know-
ledge. Although yielding intuitively plausible results, that
formalism is somewhat mathematically undefined and unclarified
at its very foundation. In view of the lack of anything better,
we have to use it. However, in this appendix, we will carry the
rigorous probaﬁilistic formalism as far as possible, and only at
the final stage clearly and exactly point out the approximations
involved tb reach a practically useful statistical estimation
formula. 1In particular, we shall identify the approximation
that yields the Bayesian estimate. The following is pertinent
to estimating the standard deviation of a normal population

when its mean is known.

Suppose we draw random samples D;, i =1, 2 = * * n from a

SI
normal population N(0,0) , where the ¢ is unknown, except that
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0>0, with Go.being a known positive number, and is to be
estimated from the sampled values D, - To estimate ¢, with a
known prior knowledge o>0,, we ﬁse the Bayesian fiducial
method. First, the unbiased estimator of the population vari-

ance, using the known population mean being 0, given by

n
s

., i P
0" =i~ (A'l)
(ng-1)

is a random variable with its distribution given by

GZ

2
£ X (ns)/

o’ | (A-2)
ns—l

where Xz(ns) is a chi-square distribution of ng degree of free-

dom with a probability density Py2 (n ﬂg). Using (A-1) and
s

(A-2), we obtain (see Figure A-1)

P 3a<(ns-l). _8%* <b

02

= y(a,b; ng) (A=3)

where Y(a,b;ns) is the area between a and b, where o<a<b,
beneath a X%r%)—ly distributed probability density function.

Merely rewriting (A-3) as

(r1.~1) ~2 (n —1)82
pl's '8 <gl< S =Y(a,b;ns) (a~-4)
a

we have the probability Y(a,b;ns) that the random interval I =

Gns~l)32/b, (ns—l)Gz/a))indeed encompasses the true parameter

value o’. Using as a fiducial prokability for the distribution

of o?, a probability intuitively associated to a particular
interval obtained from a particular sample (size ns) as the

value assumed by the random interval I, we re-interpret (A-4)
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as the fiducial probability that the o¢? lies in that interval I.

Notice that this is & completely new definition and is a measure I

of the fuzziness of our knowledge about the true o? which is a
constant, although unknown, number. Customarily, we just say
that we have a confidence y(a,b; n.) that the 0?2 lies in I,
with all those fine details just mentioned as to what it

really means kept in the back of our mind. Now to incor-
porate the prior knowledge of oz04 into our estima;iqn, we

make use of the Bayesilan conditional probability expression for

the fiducial probability for o?

2
Pe (ns~l)62<02< (ng-1)6 02>0§$
b a
4
(ns D 8% (n_.-1)32
Pf o?>02 and S <ot< 5
= b = (A-5)
Pf{02>0§}
and rewrite it into
(n_~1)82 (n_-1)8?
P __i_____<gz< __E_____’ a?>0l
b a
/ (ns—l)62
Y \a, min |b, ——>—1|; n
% 3 (A=6)
= - (hs—lY8‘ .
Y 4 —-——g—-z—*—"" i ns

by using (A-4) in the fiducial sense. Here, the parameter a

must be so chosen that

(ns—l)ﬁ2
o<a < ——m— (A-T)

2

o)
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for the particular sample value 6% used, The meaning of (A-6)
is the following (see Figure A—i): given the prior. knowledge

that 6220% , then for a sampled value of 62 of size ng and

for some arbitrarily chosen constants a, b such that b»>a and

a satisfies (A-7), we have the

Y (a: b; ng)

DL

0,2

confidence = _

>y (a, bi ng) (A-8)

that the true 0°lies within I if the known o2 and the sampled

(n.-1)8*?
value of 6%happen to satisfy o3 <'—_E—B—__ ; and we have the
(n.-1)82
vy (a S : n Y (a, b; ng)
r '—T’ s ’ ’ s

confidence =

< A-9

(ns—l)az (I'l -1)62 ( )

Y 0, 5 i g Y 0, __S____; ng

o ' , o2

that the true o’ lies within I if the known o3 and the sampled

(n -1)8°%

value of 8% happen to satisfy o2 > S
: o)

Notice that (A-6) implies

(n -1)8% (n_-1)8? . s
Pe 5 < g? <« 2 _|o%>0%

b a (A-10)

y {a, bi ng)

as it should when there is no prior knowledge about o?.
Further, notice that the confidence (A-8) isenhanéed as com-

pared to the no-prior knowledge case, but the estimation interval
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Shaded Area = Y (&, b; ng)

pXZ( (E)

4

ns)
Probability density of a

x? -distributuion with Ng degree

/ of freedom

D)

/

\
-

‘ : €
+ b +
(ng-1)62
{n_-1) 62/0% <b, - > b, for
s 52
for the case the case (A-8).
(A-9).
Figure A-1. The Chi-Square Distribution and Confidence Intervals
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is the same as the original one of the no-prior knowledge case

if the estimation interval does not conflict with the prior

knowledge, i.e., the lower boundary (nS—l)62/b of the estima-
tion interval is greater than the c. However, if the

estimation interval does conflict with the prior knowledge,

. ~2 . .
i.e., oF > (ns—l)O /b, we can only infer a confidence reduced

from its fully enhanced value, but for a shortened (tighter) esti-
mation interval with the portion of the original interval éonflict-
ing the priocr knowledge cut-off. In the particulaf case when the
original estimation interval for the sample taken and for the
constants a, b chosen lies completely outside the region per-
mitted by the prior knowledge, i.e., o3%> (ns—l)62/a, we have, in
view of the prior knowledge about o?, gained no further knowledge
about o¢? from that original estimation interval and can conclude

nothing in the prior-knowledge permitted region at that original

confidence level corresponding to those originally chosen a and b.

Finally, putting (A-6) and (A-7) together, we have the short-

hand expression for the o%>02 incorporated estimate for o?:

| (n_-1)52 (n_-1)8%
Ps {max [0§,~—E—————] < g2 <5 | o >Of}

b a
(ns—l)82
y(a, max [a, min (b, —=— )}; n_)
2 '
of s
(O (I‘ls—l)éz. ) (A-ll)
Y r ————‘—0—2———', ns
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Now we would like to carry a formally clearer estimation

theory and see the link that it§ final result has to the one

just obtained above from using the mathematically unclarified

and not-rigorously defined Bayesian fiducial procedures. With
the value of the ¢? being some constant, although unknown, number,
rigorously we have the same probability statements (A—3)'for the
true random variable 6% normalized by a constant factor oy(ns—l).

Again, (A-4) remains a valid statement for the random interval I

regardless of the prior knowledge about o, 02303, with o2

another constant but of known value. However, in making & prob-
abilistic statement of which random interval encompasses the
constant number o?, we can use the prior knowledge 02302 and

pose the probabilistic statement in a better way than without
using that knowledge. We ask for the probability that the higher
one of the two true random intervals, (05, (ng-1) Sz/a) and
((ns—l) 6%b, (ng-1) 87a), indeed encompasses ¢? given that g?20?,
by excluding thése impossible cases that have the upper bound

of the interval beneath the ¢2:

2
: (ng-1)62 2 (ng-1)5* a0o
P lmax(gf,—51—~—) <co?<« 2171 525 gZand 8%> = ?

b a e
(nS 1)

(A=12)

Now we shall clearly deviate from the rigorous definition of

the conditional probability, which dictates away the condition

%2> ¢¢ since it is a given known truth, by formally writing
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(ng-1)52 (ng-1)52 aod
P {max <o§{-31———~) <ol =% ! 62> oZand §%> —

a (ng-1)

B O LT KOS

o ol o? ol ol

{A-13)
and then manipulating with the property of a conditional prob-

ability of the right-hand side of (A-13) to get

~ : 2
(Ng-1)62 2 (ng-1)62 . Q0o
P {max(gf, —EL————> <o < -§g-— o> ocland 62> —

b -
(ng-1)
(n_-1)8%2
, S

Y { a, min (b, —w——————>; n

9 s

OO
v aOg ,(ns—-l)ﬁz n
g2 o2 s (A-14)

I1f we substitute for the unknown 02 at the right-hand side of

(A-14) by its maximum possible value, oo, we get a smaller and more
conservative measure for our confidence. This more conservative
confidence is identical to the Bayesian fiducial confidence (A-6),
or (A-11) "~since the (A-14) itself implies (A-7), obtained
previously: Thus, the undefined treatment of ¢°as a fiducial
random variable is equivalent to the formal substitutions just
described in (A-13) and (A-14). This gives the inequality

relations in (12) and (29).

For the lack of anything better and because the (A-11) is intui-
tively plausible, as we have already shown in checking its various

limits, we use (A-11) in making our statistical estimate with
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the given prior knowledge 02203 . We conclude by reemphasizing

that (A-11l) or (A-14), unsatisfactory as they are, 1is the only ‘
type of formalism available at all in making such statistical
estimates with prior knowledge.

T2 T

2= (g™ )+(c%)?%, and 6,2 ¢, we

Applying (A-11), using 8% = 8;, o

obtain (12) to (17) for the estimation ofo€ in the text.

Finally, we write down the fiducial probability density for

o? corresponding to (A-6):

- 2 14 A2
(ns 1)8 < (ns 198
"2 sz(ns) n
v (0, 2 n)) if >0
! 02 I S H o] (A—lS)
=0 . 1f n<o?
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APPENDIX B

THE DERIVATION OF THE MARGINAL ESTIMATES
OF RiE USED IN (21)

From (19), we have

_€2

e2n
v2Tn

FREP-RET) | (o%)2 I T s e oy

Now, using the fiducial probability density of ¢©, we ge£

o0

1
o

e R S e A

where the p<oc)3(n) is obtained from (&A-15) or (12):

Cayes ()
o = InrED I xfng) \ n¥(o)?
(Oc)~ , (O (ns—l)ﬁs2 >

HEEES
(o7)?2
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Thus we obtain

P {—b + rRCE < ROE 4 R?E}
£ i o o

cE oE
_P{—b<Ri _Ri <b}

b
=f—b P(r{E-g) (&) 4 &

o0 b ~X2
= 4 » , b . %2 .
/c: n p(qc) (ﬂ ) /_S }/ﬁ_ . «
N

(B-4)
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APPENDIX C

DERIVATION OF THE ESTIMATES FOR u;E and

E

AND og of (24) and (25)

From (4) and (19), we have

cE _ CE _ LOE CE OE - -
Ri = Ri Ri + Ri e N <“g ' /(ch + (OSE)z) (c-1)
Thus, we have the estimates
n
ZE rRSE / c,? OE,?2 | ’
LRy (%) + ( >)
= - o
E E - /HE
n :
E
< X RCE - ACE>2
SCE)Z: i=1 "1 Ug
g/ nE—l
(GCE 2 ‘
= E e x* (ng-1) (C-3)
2
O '
(np-1)
and the independence of these estimators. We can find the esti-

mate region for U;E and GSE simultaneously as follows.

2 2 2
) o+ (OZE) > (6°) temporarily and

First, ignoring the o¢? = (o
estimating for o and ugE unconditioned by any prior knowledge of ;

o, we get the fiducial probability
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= A (~d4,d) v {a, b; ny -1) (c-4)

where o<a<b, o 4, and the A(-d, 4) and y (a, b; nE—l) are as

definded in Appendix A.

. 2 c? oE? c

Second, we incorporate the knowledge of o°z=(o”) + (og y > )
2

treating (6€) as if it were a given constant, according to

(A-11} but with the following substitutions
0 o0

ng——ng, except in the order of x* where n +ng-1

2
62~“n+,a;E (C-5)

and obtain (see Figure C-1)
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the (fiducial) probability that the

OEAgnd g2 , for a given (o7),

true Lg
in this shaded region is given by (
2 = ( OE)2+ (O )2
oFE _ ~CcEy2 |
] (ug” - fig)
R —— 4
¥ /
T cE\2 . . - .
(nE-])(Og ) »
b
{ ‘ (c€)?
oE
; Hg
cE
ﬁg

bounded by the parabola, the uppermost horizontal

Shaded Region:
tine, and the higher of the two lower horizontal lines

OF 4nd uOE | Where

Figure C-1. Estimating Conditionally the Og g
. (ng=1)(8SE)2
o<a< min (b, 2q ), for a Given Fixed ¢©
(%)
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_ cE\?
Pg {(—OC + ﬂgE < UZE < ¢gd + ﬁ§E> énd (max [(oc)2 , (nE l) (69 ) } .

b

&

L e (057 s [00]2)}

- cEY
Yy+{a, max (a, min | b, (nE l)(i? >
= X (-c, Q) _ 2(uc)
- & )
Y{O’ (“EU(Q) I
CONN

H nE—l

(C-6)

Finally, we accommodate the statistical nature in our grasp of
the true prediction uncertainty spread ¢ itself by employing

the fiducilal probability density p(cc)z (£) of (¢©)* to obtain .

an overall expected or average confidence estimate subject to
that statistical spread of ¢©, The procedure is similar to
that used in Appendix B. Namely, using the (C-6} and the
P(Ocy (£) from (B-3) with substitute (C-5), we fiﬁd after

some calculation that

Pe {ug + 6, <U2 <ug + §, and a<(gg y2 < B}
o0 B+E ﬁgE"l’(Sz
J/- g P(scy (§) j[ n o dp pUz:UgE | (oC) (n,pl&)
° o+ & ar7+6,
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where

0
N
>
°
o
I
.
|
o)
N
[¢]
3]
a
Q
N

<m, Hoo < pl(a%)? = gl (C-8)

and the last probability in {(C-8) can be obtained by trans-

forming random variables.

The above procedure may be too lengthy to carry out.

OFE OE
d
g an Ug

but less tightly. Making use of (C-3) and (22), we instantly have

A much simpler alternative is to estimate o separately

_ A~CE\ 2 , - cE,2
(ng-1) (og ) - <(ﬂE 1) (Gg ) )
- Cy2y 2 x“(no-1) Cy 2
p(ooE)zl (00)2(”!@ - tarler) ) cg i)
g ' (HE"l) (G- 7
Y 0, el H nE"'l
(o) ?
ifn >0
=0 if n <0

(C-23)
which immediately gives the unconditional fiducial probability

density for (GgE)Z:

P OE)z(ﬂ) =/ P(GgE)zhcc)z(ﬂlE) P(Oc)z(g) da g (C-10)

(0g
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where the p(cc 2 (£} is given by (22}). Equations {(C-9) and

)

{C~10) enable us to evaluate the confidence estimate for

(o;EV via

3 a,
F {a] <ngE>~ <a1} :,[a P GoEz(”)d“
{ 9 )

(C-11)

The separate estimate for ng is easy once we have estimated

o?. From (C-27) and using Appendix B, we obtain

cE oE AcE
Pf{—b +ﬁg < Mg <+b+ug}

o0

£ P(Gc)z(i)[wdn ? ey x<b(§ﬁ)b(f§)>

S

where pggwuc)ﬂn\g)is given by (A-15) with substitutions (C-5)

and £ is the dummy integration variable assumed by (c®)2.
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APPENDIX D

GENERALIZED METHOD FOR DISTRIBUTION OF (31),(32)

If we have for i=l,2...ns
RY ¢ N(R?, IRQIKT> (D-1)
1 1 1
RS ¢ N(R?, !R9|K0> (D-2)
i 1 1

. C . .
where KTzo is known and K720 is unknown, we can easily

estimate R? by using
-

Ri-R9 T '
_r r ¢ N(O, K ) (D-3)
IS

The results, for R?#O, are

. (=~ 20 o ~ o) _ _
p m1n<R. , Ri+>s;Rl < max(R. ’ Ri+) = Y(-b, b),
if Kb <1 (D-4)
~ A0 o . {r0 o _ _
P{ R, > max(R. ) Ri+> or Ri < m1n<R. ) R +> = v{(-b, b)
if Kb > 1 (D-5)
33




where

Ri_Z =5 (D-6)
K'b-1
T
A0 i
Ryl 5 °7F (D-7)
1+ KTb+l

Notice that for KTb=l, both (D-4) and (D-5) give the same

limiting results

RT
PIRD > ——| = ¥ =L, L), e ’T> 0 (D-8)
K K
T
R
o i -1 1 .
P {R, < = v —=, ==}, if R; < 0 (D-9)
i 2 \ <KT Kg i
T .
The result when Ri=0 is
o [ 1
p[—m<R.<w = v(-b, b), for b »-5 (D-10)
i KT:

and cannot give any conclusion in a tighter interval for a para-
meter b of lower confidence. All above can most easily be seen by

. . \? [0V o TV .
plotting the parabolas |K b Ri and Ri--R.l as functions

of R.
h 3
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To estimate the KC, we can form the random variable

RS RS/RC

7. = 1 = 1 1
T gT RT /RO
1 1 1

which has the probability density

- (y-1)? ~(yz-1)°

p (2) =f°?iy e Ly 2<Kc)2
2, 2

independent of i. Thus, the probability density of

is

where

. (b-12)

(D-11)

(D-13)

(D-14)

(D-15)

With this pz(z), which is parameterized by KT and KC, we

can straightforwardly estimate the distribution of K°.

we can estimate the R?E
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from the REE of an EMP by using

Then




xc) , i=1,2,...n (D~16)

first conditioned on a given K° (similar to the estimation of

R? from Rf), and then unfolding that condition by using

the fiducial probability of K® itself just estimated.

To estimate the ugE cof the

o OE OF
R, ¢ N(pg ' og ) r 1=1,2,...04 (D-17)
we can use the student-t estimator to the sample mean
n
E ckE .
> R;7/n_, since.
i=p * 0 F
2CE = (RCE _ ROE) + rE & N(UOE '_\/GOE)2+(KC gOE ) 2
i 1 i i g g 1
(D-18)

. ok
Finally, to estimate the Og r we do it first by using

OE _

the estimator I <R.
1 1

;RQE/n)2/<OOE>2 being a Xz(n—l)
J 3 g
distribution with assumed values of the REE, and then

E 4y their fiducial

E

unfolding those values of the Ri

distribution about the calculated Ri just obtained.
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Of course, if the logrithms of the responses have simple
mathematical behaviors, we can always estimate the mean,
the spread, etc. for those logrithms and thus transform

it back for the guantity itself. 1In doing so, the multi-
plicative scaling factors in (A~1l) and (A~2) become merely
additive terms corresponding to shifts of the mean value,

and subsegquent mathematics becomes much simplified.
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LIST OF KEY NOTATIONS

Notation
X,
i
()
Hi=1
Y.
3
R () or R.C, R (T)or R.T
i i i
(C)or C..C, (T)or C..
1] 1] 13 13
J(1}
E.
J
(c) (T)
or r O
T.
h e
Ty
Si = i__.
i

Meaning

The position of the iEE subsystem
points at which EMP response is of

interest.

The set of the collection of all
subsystem points where I is the

number of all such points,

The position of the jgl point of
entry (POE).

The calculated and the tested EMP

response at Xi'

The calculated and tested coupling
matrix linking the response at Xy
to the environmental driving strength

at Y..
J

The number of POE's linked to X

The environmental driving strength
at ¥Y..
J

»

The uncertainty errors, also used as

the standard deviations, in R(C) and
R(T)

The malfunction threshold response

at X, .
i

The safety margin at Xy
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LIST OF KEY WOTATIONS (Con't)

Notation

by (%)

ple(XIY)

y(a, b; n)

A(a,B)

Meaning

The probability density function
of the random variable X evaluated

at the value x assumed by X.

The conditional probability density
of the random variable X evaluated
at x given that the random variable

Y assumes value y.

The probability that the random

variable lies between a and b.

The statistical estimator of the

parameter o.

The chi-sguare distribution with

n~degree of freedom.

The probability that the random

variable x?(n) lies between a and b.

The probability that a standard
normal random variable, with zero
mean and unit standard deviation,

lies between o and B.
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