INTERACTION NOTES
Note 333
February 1978

TIME DOMAIM ANALYSTS OF MULTICOMDUCTOR TRANSMISSTON
LIMES WITH BRANCHES IN INHOMOGEMEOUS MEDIA

Ashok K. Aarawal, Howard M. Fowles,
Larry D. Scott and Larry T. Simpson

Mission Research Corporation
5601 Dominao Road, N. E.
Post Office Box 8693
Albuquercue, New Mexico 87108

ABSTRACT

An effective method for computing the time domain response of lossless
multiconductor transmission lines with branches in a cross-sectionally
inhomogeneous dielectric media is presented. Lines of this type are charac-
terized by multiole propagation modes having different velocities. The theory
of wave propacation on lossless multiconductor transmission lines with in-
homogeneous dielectrics is used to obtain the modal amplitudes on the uniform
sections of the line. The scattering matrix for the junction is used to
compute the transmitted and reflected waves in the different branches at
the junction. Each mode arrivino at the junction excites multiple modes
in ali branches. The method described in this paper identifies all propa-
gation modes in all branches of the line and leads to the direct physical
interpretation of the results. The method is general and can be applied
to either partially or completely nondeqenerate cases. Experimental results
for a six-conductor transmission line having a single branch are found to
be in good agreement with the results computed usino the described method.
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SECTION I
INTRODUCTION

Electronic subsystems on aircraft, missiles and ground electronic
systems are generally connected by closely coupled multiconductor cables.
These multiconductor cables are generally made of conductors with different
insulating materials resulting in a cross-sectionally inhomogeneous media.
Such cables often have branches where some of the conductors of the cable
branch and/or some other conductors may join the cable. Determination of
the transient response of such cables illuminated by an electromagnetic

pulse (EMP) from nuclear detonations is becoming of increasing importance
(ref. 1).

The analysis of uniform multiconductor transmission lines have been
reported by several investigators both in the frequency and the time
domain (refs. 2 through 12). The propagation modes for multiconductor
transmission lines with inhomogeneous dielectrics are discussed in ref-
erence 4. The analysis of multiconductor transmission line networks in the
frequency domain is given in reference 5. The present paper describes the
theory of wave propagation on lossless multiconductor transmission lines
with branches in cross-sectionally inhomogeneous media in the time domain.

The method of analysis described in this paper identifies separately
all the propagation modes in all the branches of the multiconductor line.
While many individual parts of this problem appear eleswhere (refsr 4 and 5),
this paper presents a complete time domain analysis of a multiconductor trans-
mission line with branches. In general, for a uniform multiconductor
transmission line (N conductors plus a ground reference) in a cross-section-
ally inhomogeneous media, there will be N propagation modes each having a
different velocity. Degeneracies may occur among the velocities because
of symmetiry. These modes are separated in time as they travel along the
line. Each mode arriving at a junction excites multiple modes in the



branches at that junction. The scattering matrix for the junction (refs. 5
6 and 16) is used to compute the transmitted and reflected waves in the
different branches at the junction. At any mismatched termination or
junction each reflected mode excites N modes in a N+1 conductor line.

Thus, the number of modes are multiplied for each reflection.

The method described in this paper can be applied to a partially
degenerate case where some modes have the same propagation velocities. In
this case, the modes having the same velocities arrive at a junction or
termination at the same time.




SECTION II
DETERMINATION OF MODAL AMPLITUDES
ON A UNIFORM SECTION OF LINE

Consider a lossless line formed by N conductors, plus a reference
conductor (ground). The line is assumed to be uniform along its length
(z coordinate), but with arbitrary cross-section. In general, the dielectric
surrounding the line is inhomogeneous (e.g., cable made of insulated con-
ductors having different geometries and dielectric materials).

In the presence of materials of different dielectric constants, the
propagation can not strictly be TEM, However, for low frequencies propagation
may be considered "quasi-TEM" (refs. 4 and 13), and the analysis can proceed
from the generalized telegrapher's equations. These equations for the loss-
less case are (refs. 3 and 14),

v (2,001 = [ 1 5 (1, (2,t)] (1)
S (z,t)] = -[ct 13 [v (2,1)] (2)
FYA n‘<’ nm- 3t m=?
with n=1,2,---N
m=1,2,--=-N

Where Vm and Im represent the voltage with respect to the reference con-
ductor and current on the m th conductor, respectively, as a function of
distance z along the line at time, t. [L;m] and [CAm] are respectively per-
unit-length coefficients of inductance and capacitance matrices of NxN size.
The diagonal elements are self and the off-diagonal elements are mutual
gquantities. Both [Lhm] and [Cam] are real, symmetric and dominant. The



elements of the capacitance matrix [C ] and inductance matrix [L ]
are further characterized by the fo]]ow1ng properties (ref. 15):

an >0 for ali n and m

C!' >0 for all n
nn

Cnm <0 foralln#m
. (3)
Cnm > 0 for all n
m=1

v

N
Zcr‘]m >0 for all m
n=1

The voltage and current vectors in Eq. (1) and (2) can be written

as (ref. 4)
[Vn(z,t)] = [Vn] f(z~-vt) (4)
[1,(z,t)] = {17 f(z-vt) (5)

where [Vn] and [In] are the constant vectors. From Egs. (1), (2), (4)
and (5) the eigenvalue equation for [Vn] can be written as

AL (N [ MR VR (T (6)
where 1/v§ is an eigenvalue of the matrix [L;m][cam], and [Vn]i the
associated voltage eigenvector. In the case of inhomogeneous dielectrics
there will in genera] be N distinct eigenvalues. Associated with the
eigenvalues 1/v » 1=1,---N, there are also current eigenvectors [I ] The
[I ] are the e1genvectors of the adjoint matrix [C;m][Lhm] and have the



same eigenvalues 1/v§ (ref. 4). The eigenvalue equation for this case can
be written as

! ! - 2
LU § 55 PRI VAV S35 T | (7)

The analysis can proceed either with the voltage or the current eigen-
vectors. The voltage or current eigenvectors are computed from Eqs. (6) or
(7). The per-unit-length inductance matrix [L;m] and capacitance matrix [Cém]
can be measured experimentally using the methods described in references
17 or 18. The determination of [Lkm] and [C;m] analytically is generally a
difficult probiem. However, numerical approximations can be employed to
determine [L;m] and [Cﬁm] (refs. 19 and 20). Thus, the eigenvalues and
the voltage or current eigenvectors of the transmission line can be obtained
by solving the eigenvalue, Eq. (6) or (7).

It can be shown that in order for the modes to represent unattenuated
traveling waves, the velocities must be real (i.e., the eigenvalues 1/v§

must be real and positive)(ref. 4). The vi's represent the velocities of
N propagating modes.

Since the modes of propagation are orthogcrnal to =zch other, the
efgenvectors form a set of linearly independent vectors, an arbitrary
vector [En] can be represented as a sum of voltage eigenvectors in the
form (ref. 4)

[£,] = [V 10A ] (8)

wrnire [Am] is a vector.

Let a wave trave]ing in the forward direction be characterized at some

point in space and time by the voltage vector [Vf (z,t)] which can be expressed
in terms of the voltage eigenyectors as n

[Ve (2,60] = TV ] T (4)] ' (9)

where the vector [Am(t)] is unknown.



Consider a line of lengthn % connected to arbitrary ierinnal networks
at each end (Fiaure 1), and excited at the end z=0. The diffcrent modes
propagate at differeant velocities, so that tne knowledge of [Vrn(z,t)] at
one time is not sufficient to obtain [an(z,t)] at other times. Also,
knowing [an(z.t)] at one point on the line (e.g., driving end) is not
sufficient to obtain the [an(z,t)] at any other point on the line be-
cause of the different propagating velocities of the modes. So, [an(z,t)l
at z=0 must be decomposed into eigenvectors

[ve, (0,81 = [V J0A (t)]

A

or v (0,t) =Z VoA (t) : (10)

The forward traveling voltage vector at any poini z=% or the iine may be
determined as readily.

Define the transit time for each mode as

Ty s l/vi, i=1, 2,---N .

50 ¢

50 20 Q

1 e
|
]
|

B <round Plane ' v

Figure 1. A Three-Wire Line Over a Ground Plane
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The desired voltage vector [Vf (z,t)] at z = 2 is obtained from [Vf (0,t)]

by adding eigenvectors at the appropr1ate transit time after 1eav1nq the
point z = 0

L\

an(z.t) = Vot Ts) (11)

=

where Vf (2,t) is the nth component of the vector [Vf (2,t)]. The voltage
Ve, (2, t)] will have N components due to N modes. Thus, Ve (2,t) can be
represented as NxN matrix whose rows are the components of the elements of

[an(l,t)]. This is illustrdted by considering an example of a four conductor
line. For this case, Eq. (11) can be written as

-~

K Y R -
Vf](z,t) Vi1 V2 Vi3 A (t r])T

V_(2,t) =V, V., V A

f, 21 V22 Va3 (t-t

2 2) (12)

LVfél'tb ¥y Yz Vazl [Ag(tor3)]

or

vf](a.t) = Vi Ay (taty) + VoprAy(t-1y) + Vo aAg(t- (13)

13°A3(t-14)

The other two components can be expressed similarly.

Note that in Eq. (13), the voltage wave incident at any point z=% on the
conductors has three components. These voltages represent the modal amplitudes
of tue different modes. The voltage wave, traveling in the forward direction at
z = U can be obtained from the following relation.

-1
ve (0,03]= [z, 1Mz, +17, 1 [V (0,t)] (14)

C
n nm nm nm

-

where [ZC ] is the characteristic impedance matrix of the line, [Zs 1 the
nm nm

11



termination impedance matrix at the driven end and [Vsn(b,t)] the source voltage
vector atz = 0. Thus, from Eq.(13) and Eqg.(14) the modal amplitudes at any

point on the Tine can be obtained. The waves on a lossless line travel
unattenuated. At any discontinuity or load the voltage or current can be
obtained using the reflection and transmission ccefficients. For a uniform
section of the line (Figure 1) the voltage vector at the load is given by

the following reiation

+2, 17 W, (2,t)] (15)
n

L C

n< nm nm nm m

where [VLn(t)]m is the load voltage vector for the mth mode, [Zan] and [chm]
are the load and characteristic impedance matrices, respectively, and [an(z,t)]m

th

is the incident voltage vector at the load for the m~' mode.

At any junction, the reflected and transmitted waves in different branches
are obtained by using the scattering matrix of the junction. 1In the next section,
the junction characteristics will be described.

12



SECTION III
SCATTERING MATRIX OF THE JUNCTION

For distributed circuits, the reflected and incident waves at a junction
can be related by a scattering matrix (reference 16). The procedures for eval-
uating the scattering matrix for transmission line junctions are discussed in
detail in reference 5. In this section these procedures will be described
briefly and the scattering matrix for a branched multiconductor line will be
evaluated. The experimental results will be given in Section IV.

For the junction shown in Figure 2, the incident and reflected voltages
for a lossless case are related by the following relation

_tvﬁre)]1j rTvgi)]{T
(re)7 | . (i)

[v,"® 1= Dol v, ], (16)
( (1)

Uvnre)]3—J _[Vn.l 33_J

where [Vgre)]i’ i=1,2,3 are the reflected voltage vectors for the various tubes

meeting at the junction and [Vﬁi)]i, i=1,2,3 are the incident voltage vectors
fog the various Fubes meeting at the junction. The size of the vectors
[Vgre)]i and [V£1)]i is equal to the number of the conductors in the tube.
The components of these vectors represent the voltages on the individual con-
ductors. [Snm], in Eq. (16), is the scattering matrix of the junction which

is considered lossless. For the junction shown in Figure 2, the scattering
matrix is 10x10 in size.

13
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Figure 2. A Multiconductor Transmissien Line With a B3ranch

At the junction where there are several tubes interconnected to one
another, the Kirchhoff's current Taw and the Kirchhoff's voltage law have to
be enforced in order to evaluate the scattering matrix of the junction.

Kirchhoff's current law states that the sum of the current flowing
into a node is zero. For the case where n]-th wire of tube 1 is connected to
the n,-th wire of tube 2 and to the N -th wire of tube k, etc., then

$aee k(1) =0 (17)

(Inl)] n2) nk)k

14



where the subscripts on the parentheses denote the tube number and the sub-
scripts on I denote the wire number in the tube.

matrix form, i.e.,

Eq. (17) can be put into

Tube 1 Tube 2 Tube k RER
[00..... 1..010 0..... 1..05...;00....1...] n"y
L] ] 1
Unl, 1= 101 (19
EI"Jkd

In Eq.(18), all elements in the left matrix are zero unless they correspond
to the conductors which are connected at the node. For Nc connections within
the junction, there are Nc equations similar to Eq.(18), and we can define

the junction connection matrix [CI ] so that
nm

[In]{w

¢, 1jlr.]
[ Inm ? 2

= [an (19)

[_[In]k_l

where [Clnr] is a chMj matrix, and Mj is the total number of conductors
il
entering the junction.

Kirchhoff's voltage law, for the case of simplie connections, requires
all voltages associated with each conductor to be the same at the same node.
Thus, for the above example, we have

15



(V) = () = 0
(v.,) - =0
n2 2
...... -{v,) =20 20
nk’, (20)

For a consistent set of connections, there are MJ.-NC equations. The
above equation can be easily written in matrix form. Let us denote the
corresponding matrix as [CV ] such that

nm
[v ]
"y
c v] = [0 ] 21
[ Vnm] Q 2 n (21)
v:]
L["kd

where [Cvnm] is a (Mj'Nc)xMj matrix.

At the junction the total current and voltage is the sum of the two
components, i.e., the incident and reflected components (ref. 16),

v ]

n

iy pvireh (22)

(i1 = ¢t - palredy (23)

n

Using-Eqs. (19), (21), (22) and (23) the relation between the reflected and
incident voltage components at the junction can be written as

16



—[Vflre)]]_\ [_Cvnm] 1! [Cvnm] 7 EVgi)]hn
v | . [Vr(xi)]z (24)
p 2 (e, J0ve 3 0o v 11
oL I
From Eq. (24) the voltage scattering matrix is
[-c, 1 e
(Spm) = ~ o Y (25)
e 10 I e, v, ]
am” rm
where [chm] is the characteristic admittance matrix of the junction. [Y nm]

can be obtained from the characteristic impedance matrix [chm]J The
matrix [chm] contains all the matrices of all branches involved at the

junction. For the junction shown in Figure 2 it can be expressed as
"[zcnm]] (0,1 [0 1]

(2e 3= {0 [Zengy [0y (26)
| ol O [chm]::

The characteristic impedance matrices [chm]b for each branch can be
obtained by methods described in reference 21.

The voltage modal amplitudes incident at the junction are computed using
the method described in Section II. From Eq. (16), the voltage amplitudes
reflected in different branches at the junction are obtained. The method
of analysis described in Section II, is used to compute the voltage waves
arriving at the loads of the different branches using the transmitted waves

in the branch at the junction as excitations.

17



As mentioned earlier, multiple modes are excited on a multiconductor
transmission line in inhomogeneous media. Each mode reflected from the
junction or the load in turn excites multiple modes in the branch. Using
the analysis described in this paper, all of the modes excited at subse-
quent times may be calculated. Thus, by followina the straightforward
sten-by-sten procedure, the response of the line in the time domain can Be
obtained. It should be noted, that when multiple reflections from the junc-
tion and the loads are considered, the number of modes travelina on the line
become large. In some nractical cases, the weaker modes having small ampli-
tudes can be nealected for multiple refliections in determininc the total

resoonse.

18



SECTION IV
EXPERIMENTAL RESULTS

To substantiate the calculational methods discussed in this paper, a
five-wire cable (over a ground plane) with a two-wire branch was constructed
and tested. Wires insulated with solid polyethylene, neoprene, rubber, foam
polyethylene and semisolid polyethylene were used for the cable construction.
The configuration is shown in Figure 2. The cable was supported with styro-
foam blocks above an aluminum ground plane. The cross-sectional configuration
of a five-wire line is shown in Figure 3. Wires 4 and 5 branch and at a 90°
angle at 8 meters distance and wires 1, 2 and 3 continue with the same rela-
tive cross-sectional configuration. The radii of the conductors, (ri), and the
distance between the centers of the wires, (dij) are as follows:

T 0.108 cm d12 = 0.70 cm | d24 = 0.68 cm
r - 0.062 cm d13 = 0.54 cm d25 = 1.02 cm
ry = 0.062 cm d14 = 0.69 cm d34 = 0.93 cm
rg = 0.1771 cm d15 = 0.60 cm d35 = 0.49 cm
re = 0.0125 cm d23 =1.16 cm d45 = (.59 cm

The ~xperimentaliy measured per-unit-length inductance and capacitance

matrices for the five-wire line, three-wire line and two-wire Tine sections
are, respectively,

19
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Figure 3. Five-Wire Cable (Over a Ground Plane) Configuration

For the junction in Figure 2, the connection matrix is

1 0o 0o 0o 0 1 0o 0o 0 O]
. 0 1 0 0 0O 0 1 0 0 0O
[c; 1=Jo 0 17 0 0 0 0 1 0 o0 (27)
nm 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 ]
E 0 0 0
- —
1 0 0 0 0 -1 0 O 0 O
o 1 0 0 0 0 -1 0 0 O
[c, =10 0 1 0 0 0 0 -1 0 0 (28)
nm 0O o o 1 0 0 0 0 -1 O
o 0 0 0 1 0 0 0 0 -1
L |

The experimentally measured characteristic impedance matrix of the junc-

tion as defined in Eq. (26) and the scattering matrix of the junction computed
from Eq. (25) are shown in Table 1.
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To obtain the time domain response of the cable of Figure 2, one wire
of a tube is driven with a fast risetime step function (ps) from a 50-ohm
source and all remaining ends of wires terminated in 50-ohm resistive loads.
The voltage responses on each wire in all tubes were recorded usino a high
impedance voltage probe and a 200 MHz oscilloscope. To demonstrate the
consistency of the analysis, one wire was driven in each of the tubes and
the voltage pulses were recorded at the ends of the other tubes.

Figure 4 shows the input step function used to drive the wires as viewed
on the 200 MHz oscilloscope. Figures 5 through 9 show the comparison of
voltage waveforms recorded at the load ends of tubes 2 and 3, when wire 4
of tube 1 is driven, with the wavrforms computed using the analysis described
in this paper. One set of computed waveforms are analytically filtered to
reflect the 200 MHz bandwidth of the oscilloscope for a more direct compari-
son between the measured response and the predicted response. The unfiltered
waveforms clearly show the times of arrival of different modes. Fiaures 10
through 16 show the comparison of voltace waveforms recorded at the load ends
of tubes 1 and 3, when wire 1 of tube 2 is driven, with the waveforms computed.
Figures 17 throuah 24 show the comparison of voltaage waveforms recorded at the

load ends of tubes 1 and 2, when wire 4 of tube 3 is driven with the waveforms
computed.

The computed waveforms in Fiaures 5 through 24 have been obtained by
assuming an ideal sten function as the input. The driving pulse has an
apnarent rise time of approximately 2 ns as seen in Fiagure 4 as recorded
with the 200 MHz bandwidth oscilloscope used for all measurements. The
corparison in Figures 5 through 24 shows that the predicted waveforms agree
very closely with the measured waveforms. Note that, in Figures 5 through
9, the predicted waveforms, after being filtered to simulate the 200 MHz
bandwidth of the oscilloscope, agree remarkably with the measured waveforms.
The predicted amplitudes of different modes, and their times of arrival,
compare closely with those of the measured data.
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Figure 4. Input Waveform Used to Drive the Wire in the Cable.
Vertical Scale is 1.0 V/div; Horizontal Scale is 2 ns/div.
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Figure 5. Voltage Waveform At the Load End of Wire-1 of Tube 2, with
Wire 4 of Tube 1 Driven. Vertical Scale is 0.2 V/div;
Horizontal Scale is 5 ns/div.
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Figure 6. Voltage Waveform At the Load End of Wire-2 of Tube 2, with
Wire 4 of Tube 1 Driven. Vertical Scale is 0.2 V/div;
Horizontal Scale is 5 ns/div.
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Figure 7. Voltage Waveform At the Load End of Wire 3 of Tube 2, with
Wire 4 of Tube 1 Driven. Vertical Scale is 0.2 V/div;
Horizontal Sclae is 5 ns/div.
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Figure 8. Voltage Waveform At the Load End of Wire 4 of Tube 3, with
Wire 4 of Tube 1 Driven. Vertical Scale is 0.5 V/div;
Horizontal Scale is 5 ns/div.
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Figure 9. Voltage Waveform At the Load End of Wire 5 of Tube 3, with
Wire 4 of Tube 1 Driven. Vertical Scale is 0.5 V/div;
Horizontal Scale is 5 ns/div.
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Figure 10. Voltage Waveform At the Load End of Wire 1 of Tube 1, with
Wire 1 of Tube 2 Driven. Vertical Scale is 0.5 V/div;
Horizontal Scale is 10 ns/div.

Figure 11. Voltage Waveform At the Load End of Wire 2 of Tube 1, with
Wire 1 of Tube 2 Driven. Vertical Scale is 0.5 V/div;
Horizontal Scaie is 10 ns/div.
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Figure 12. Voltage Waveform At the Load End of Wire 3 of Tube 1, with
Wire 1 of Tube 2 Driven. Vertical Scale is 0.5 V/div;
Horizontal Scale is 10 ns/div.
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Figure 13. Voltage Waveform At the Load End of Wire 4 of Tube 1 with
Wire 1 of Tube 2 Driven. Vertical Scale is 0.2 V/div;
Horizontal Scale is 10 ns/div.
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Figure 14. Voltage Waveform At the Load End of Wire 5 of Tube 1 with

Wire 1 of Tube 2 Driven. Vertical Scale is 0.1 V/div;
Horizontal Scale is 10 ns/div.
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Figure 15. Voltage Waveform At the Load End of Wire 4 of Tube 3 with
Wire 1 of Tube 2 Driven. Vertical Scale is 0.1 V/div;
Horizontal Scale is 5 ns/div.
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Figure 16. Voltage Waveform At the Load End of Wire 5 of Tube 3 with
Wire 1 of Tube 2 Driven. Vertical Scale is 0.05 V/div;
Horizontal Scale is 5 ns/div.
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Figure 17. Voltage Waveform At the Load End of Wire 1 of Tube 1 with
Wire 4 of Tube 3 Driven. Vertical Scale is 0.1 V/div;
Horizontal Scale is 5 ns/div.
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Figure 18. Voltage Waveform At the Load End of Wire 2 of Tube 1 with
Wire 4 of Tube 3 Driven. Vertical Scale is 0.1 V/div;
Horizontal Scale is 5 ns/div.
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Figure 19. Vo]tage Waveform At the Load End of Wire 3 of Tube 1 w1th
Wire 4 of Tube 3 Drjven. Vertical Scale is 0.1 V/div;
Horizontal Scale is 5 ns/div.
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Figure 20. Voltage Waveform At the Load End of Wire 4 of Tube 1 with

Wire 4 of Tube 3 Driven. Vertical Scale is 0.5 ¥Y/div;
Horizon.al Scale is 5 ns/div.
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Figure 21. Voltage Waveform At the Load End of Wire 5 of Tube 1 with
Wire 4 of Tube 3 Driven. Vertical Scale is 0.5 V/div;
Horizontal Scale is 5 ns/div.
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Figure 22. Voltage Waveform At the Load End of Wire 1 of Tube 2 with
Wire 4 of Tube 3 Driven. Vertical Scale is 0.1 V/div;
Horizontal Scale is 5 ns/div.
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Figure 23. Voltage Waveform At the Load End of Wire 2 of Tube 2 with
Wire 4 of Tube 3 Driven. Vertical Scale is 0.1 V/div;
Horizontal Scale is 5 ns/div.
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Figure 24. Voltage Waveform At the Load End of Wire 3 of Tube 2 with
Wire 4 of Tube 3 Driven. Vertical Scale is 0.1 V/div;
Horizontal Scale is 5 ns/div.
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SECTION V
CONCLUDING REMARKS

A matrix analysis of lossiess multiconductor branched lines with
cross-sectionally inhomogeneous dielectrics has been presented. The theory
provides a method of identifying all the modes excited in different branches
of the Tine. This analysis in the time domain appears less involved than
a similar frequency domain analysis and leads to a better conceptual under-
standing of the propagation modes.

The analysis given in this paper is applicable and can be applied to
more complicated transmission lines having multiple junctions following
the same step-by-step procedure.
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