Interaction Note
Note 343

March 1978

Transient Electromagnetic Characterization
of Arbitrary Conducting Bodies
Through an Aperture-Perforated Conducting Screen

Korada R. Umashankar
Carl E. Baum
Air Force Weapons Laboratory

Abstract

-A general procedure for the systematic transient characteri-
zation of arbitrarily shaped conducting bodies placed behind an
aperture-perforated conducting screen is discussed. Coupled
integro-differential equations are derived for the complex coupled
boundary value problem. A few specific examples of aperture-wire
scatterer or antenna geometries are treated both analytically and
.numerically for transient electromagnetic characterization based
on the singularity expansion method. Both the frequency and time
domain results are given for the coupled problem.
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INTRODUCTION .

Electromagnétic transient excitation of arbitrarily shaped
objects through an aperture-perforated conducting screen is a com-
plex interaction problem. This has been given special attention
recently, particularly in the broad area of EMP interaction and
other related simulation applications. Also, a great deal of
effort is being applied to assessing the electromagnetic effects
on the protected objects behind screen in the event of external

1,2 This problem of aperture coupling

transient nuclear explosions.
and penetration of electromagnetic energy has been studied by many
investigators to characterize general complex aperture shapes in
the form of holes, slits in a ground screena_5 or in a scattering
body itself,e’7
magnetic pulse and in interference studies. But the transient

analysis and the subsequent characteristic response prediction

become a still further involved process if there are other scat-

tering objects in the vicinity of apertures, wherein one has to ‘
take into account fully the mutual interaction between them.g'9

which are of practical importance in the electro-

As such diffraction by complex aperture shapes has been
studied extensively by both analytical and numerical methods,
basically in the frequency domain, based on the formulation of
integral equations for the aperture-screen boundary value problem.

4,10 rectangular aperture,s’ll“13 narrow

A circular aperture,
finite slot and infinitely long slo‘c‘L4 in a conducting screen as
canonical problems give a basic foundation to the treatment of-

general aperture shapes in a screen.

This paper reports the preliminary investigation of tre
interaction problem in terms of a set of coupled integro-
differential equations for a general conducting scatterer placed
behind an arbitrarily shaped aperture-perforated conducting screen.
Basically this turns out to be a three-body scattering problem or
a two-body scattering problem with a leaky ground plane due to the
presence of the aperture. Further, the following specific hybrid




combinations are characterized from the integral equation

formulations:
i) narrow finite slot
ii) array of narrow finite slots
iii) single or multi-infinite slots
iv) square and circular apertures

in the presence of simple objects in the form of

i) finite straight wire

ii) array of straight wires’

iii) infinitely long single and multiple wires
iv) two-dimension plate surfaces

Both the frequency-domain and the time-domain characteriza-

tion is discussed based on the extensive application of the

2

Singularity Expansion Method. Some numerical results are reported

to explain various types of interaction.

it
b

ry.



CHAPTER I

General Formulation of the
Aperture-Scatterer Integral Equation

The problem of electromagnetic coupling to a general con-
ducting scatterer behind an aperture-perforated conducting screen
is formulated in terms of a set of integro-differential equations.
In figure 1.1 is shown the geometry of the interaction problem
discussed, wherein Sa is an arbitrary shaped aperture in an
infinite, perfectly conducting screen assumed to be in xy-plane,
separating two half-space media. The left-hand space (medium 1)
and the right-hand space (medium 2) respectively have permeability,
permittivity and conductivity of (u_, e_, o_z.ang.(u+, €, o+) as
their characteristics. The incident field (¥, #') is assumed to
exist in left-hand space medium 1 and illuminates the aperture.
The perfectly conducting general-shaped scatterer SC is in the
right-hand space (medium 2) (shadow side), which has direct elec-

tromagnetic coupling to the aperture Sa'

In the following a set of coupled integral equations are
derived by treating the tangentigl aperture electric field ﬁta or
the equivalent magnetic current jSm = :ﬁta x Iz and the equivalent
induced electric current distribution js on the conducting scat-

terer as unknowns.

In figures 1.2 and 1.3 are indicated the step-by-step reduc-
tion of the original problem to an equivalent problem by invoking
both image theory and field equivalence.principle valid for only
Z < 0 and z 2 0 respectively. Based on figuge 1.2 the total mag-
netic field ﬁ_ and the total electric field f_ valid for z < O,
can be written14’15 in terms~of the scattered field due to the
equivalent magnetic current jSm and the short-circuited fields

(Esc_, ﬁsc.)»

10
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i_(%,s) = Y% [v (v - im_c?,s))— vfim_c?,s)] + Hg, (F,9)
B z <0 (1.1)
%_(r,s) = - o i s ) V x im_(;,s) + isc_(r,s)
z <0 (1.2)

Similarly, referring to figure 1.3, the total magnetic field
> ' 14,15

-~

B, and the total electric field E, valid for z > 0, is written
in terms gf_the scattered field due to the equivalent~magnetic
current -jsm and due to the induced electric current js on the

conducting scatterer in the presence of the perfect ground screen,

3 > _ s .3'» > 25 >
H(r,s) = - =5 [V(V Al (r,S)) - YA, (r,S)]
Yy + +
+ L yxA (%, s) z >0 (1.3)
u, +

3 s 3 > 93 5
E (r,s) = 5 [V(V A+(r,S)) - Y+A+(r,S)]
+

+ S vxi (r,s) =z >0 (1.4)

In the expressions (1.1) to (1.4) the electric vector potential

is given by

~ (o, + se_) ~
-> _ + + -> ~ > > '
Km+(r,s) = 37S IJ jsm(ré,s) Gi(r,ré,s) dxédya (1.5)
Sa
_-Yi.l—{._;al'l
G, (F,7';s) = &—— (1.6)
B |r-r |
a
1
> ->f — 1] 2 1 2 2 2
|r-x!] = [(x-x)% + (y-y))° + = (1.7)

14




-

. and the magnetic vector potential K_,_ due to the conducting scat-

terer Sc and its image Si is given by

- H ~

> > + 3 e =

A, (r,s) = ZE-[II Jg(ress) g(r,r ;s) ds;
S

c
3 >, > >,
. + IJ 3Si(ri,s) g(r,ri,s) dsi (1.8)
Si

> >

~ 5> > e 4
g(r,r; ;38) = —5—7 (1.9)

’ |r-r! .|

c,i

and the propagation constant referred to each side of the medium

Y, = [sut(ci + sst)]% (1.10)
in which s is the complex frequency with eSt field variations
being assumed in the above field expressions. 1In fact s is the
. two:sided Laplace transform variable; and in‘deriving the above
field expressions the following Laplace transform is applied to
convert the field quantities from time domain to the complex fre-

.2
quency domain,

t

F(s) = J £(t) e St at (1.11)

whose inverse transform has the form

Q_+jeo
£(t) = s2= | © " F(s) 5 as (1.12)
213 Q —jo
o
with Qq < Re[s] < Qz defining the strip of convergence and with

the inversion contour in this strip (91 < Qo < 92).

A coupled set of integro-differential equations can now be
formed using expressions (1.1) to (1.4) by enforcing the appropriate

15 i



boundary condition across the aperture and on the scatterer, that ‘
the transverse-to-z component of the magnetic field should be con-

tinudﬁs across the aperture Sa and the tangential electric field

should be zer»o on the conducting surface Sc of the scatterer,

1im B_(¥,s) = 1im B, (F,s) (1.13)
z -~ (0-) z > (0+)
and .
Isc&) x E,(¥,s) =0 - res, (1.14)

where 130 is the outward-pointing unit vector on Sc' Hence, sub-
stituting the expressions (1.1) and (1.3) into the aperture

boundary condition (1.13), we have,

=B [v(v - K (?,s)) - v (I-‘,s)] x 1

2 z
Y_
s 3 - 23 -
+ Y_‘f [V (V . Km+(r,s)) — Y+;,{m+-_:(_.__r-’-8):| x Iz ‘,_
1 5 > _ 3 > »
- E:[V x K+(r,s)] X Iz = - Hsc_(r,s) Iz
T e s, (1.15)

Similarly, substituting the expression (1.4) into the conducting-

scatterer boundary condition (1.14), we have
s 3 > 23 >
5 [V(V . K+(r,s)) - Y+K+(r,s)]
Yy

.S (1.16)

=¥

s 3 > >
+ v x A (r,s) =0
+) m,

In principle, the expressions (1.15) and (1.16) are the
exact set of coupled integral equations for the complex case of

a scattering conducting body behind an aperture-perforated conducting

16



screen in terms of the unknown magnetic current distribution

3Sm(?,s) in Sa and the induced electric current 38(?,3) on Sc'

One may also note that the short-circuit magnetic field on
the right-hand side of (1.15) is related to the incident magnetic
field,

(F,8) = 205(F,s) (1.17)

In many instances the left-hand side medium and the right-hand
side medium will have same medium characteristies (u, &, ¢); in
such case the + and - subscripts in the expression (1.15) and
(1.16) can be dropped and further the following coupled integral
equations result:

rTes- . .. - (1.18)

and

T e S (1.19)

The electric vector potential X  and the magnetic vector potential

m
2 introduced in the above expressions (1.18) and (1.19) are still
given by the expressions (1.5) and (1.8) respectively after drop-

ping the medium subscripts + and - in those definitions.

For analyzing the antenna problem, figure 1.4, one has to
introduce slight modifications in the expressions (1.15) and (1.16).
Since there is no incident field in the left-side medium 1, the
right-hand side term in the expression (1.15) is equated to zero.
Further, the boundary condition on the conducting surface Sc is
that the tangential electric field is =zero except at the antenna
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gaps across which excitation source generator is connected. Hence,

Ehe right-hand side~of the expression (1.16) is replaced by
ﬁs(?)(;ezsi) where fs(;) is given appropriate source distribution
on Sc' If both the incident field in the ieft-hand side medium
and source generator at the structure are present simultansously,
one can invoke the superposition principle and.analyze the prob-
lem in steps. The case when there exists incident excitation
fields in both media 1 and 2, can be handled appropriately by
1ntroduc1ng the difference of the two short-circuit fields

(ﬁsc (r s) - Hsc+(r s)) into the right-hand side of the expression
(1.15) instead of the term ﬁsc_(r,s).

As stated earlier, the expressions (1.15) and (1.16) are
the general set of coupled integro-differential equations derived
in the complex frequency domain. For a specified geometry Sa of
the aperture and Sc,of the conducting scatterer, to obtain the
current density responses the coupled integral equations are to
be solved. If one is interested only with the time-harmonic solu-

‘ tion, it is obtained by making the substitu___t_:ion s = jw, and

similarly the time-domain responses can be obtained by taking the
inverse transform, as defined by the expression (1.12), of the
frequency domain solution. The expressions (1.15) and (1.16) can

be written in a compact operator notation
<[Faz.z:9] ; [ .o]>-[1¢.s] (1.20)

where the symmetric product (similar to the inner product) between

two vectors K(?,?') and ﬁ(?) is defined by

A(GF, 7)) 5 B(F)> = ” A(F,7') - B(¥') ds (1.21)
o

In the expression (1.20), the system Green's function F(?,?’;s) is

given by



< > > = > >
' (r,r';s r '
o s 2 (T,T 58) ac(T,Ty;:s)
I'(r,r';s)| = -
> > & > >
T? r,r';s T? '
L Tea(T:rsis) (T,T.5s)
where
<> > >, ) . .
Fa(r,ra;s): aperture Green's function
%» > >, . .
ac(r,ra;s): aperture-scatterer interaction Green's
function
Py > >, . .
Fca(r,rc;s): scatterer-aperture interaction Green's
function
< > >, .
Fc(r,rc;s): scatterer Green's function

and the system current density response j(?',s) has two parts
corresponding to the response of the aperture jSm(§é,s) and that
of the conducting scatterer js(?é,s),

I, (F1.8)

S
m

,s) = N . (1.23) ‘

I 3s)

S

e
~
=Y

1)
c’

and the right-hand side term T(;,s) in the expression (1.20)
represents the forcing function related to the appropriate

excitation.

Basically, there is no simple analytical approach to solve
the operator integral equation (1.20). One of the most familiar
techniques consists in reducing the integral-operator form of the
equation to the corresponding matrix-operator form of the equation

based on the method of moments.16 According to this method the
unknown response 3(;',s) is expanded in terms of N basis or expan-
sion functions,16

3 > N . >

J(xr,s) = ] J_(s) F(T") (1.24)

20



giving rise to a numerical response vector, and the equality of
the equation on the objects is established by testing the operator

integral equation (1.20) by certain weight function316 Wm(?,s),
m=1,2,...,N and forming the inner product (1.21) within the
domain of validity of the integral equation. In terms of the

method of moments notation, the expression (1.20) reduces to the

matrix equation

[Pm,n(s)][Jn(S)] = [Im(s)] (1.25)
where
[fm n(s)]: generalized system matrix
[En(s)]: generalized response vector
[im(s)]: generalized excitation vector

The solution for the current response is obtained by numeri-
cally taking the inverse of the system matrix and post-multiplying

by the excitation vector,

EXSHIE [fm,n(s)]‘l[i:m(s)] (1.26)

Hence given a complex frequency of interest s = Q@ + jw, for given
type of excitation, the current response of the aperture and the

scatterer is obtained from the expression (1.20).

One of the direct and commonly adopted procedures to obtain
the time-domain (transient) response of the scattering objects
for a given type of excitation, is to solve the equation (1.286),
with s = jw, for various values of the real-frequency w corres-

ponding to the specified frequency band of interest, and numeri-

cally obtain the inverse transform of the frequency domain data.2’17
Hence for the time-harmonic case,
[3,G0)] = [ nta)] 7 [Eaca0)] (1.27)
n m,n m )

21



and the transient or the time-domain solution is given by ’
1 [*” = -1 p ] jwut
[7. ] = & f_w [F, nGw] - [Im(gw)]J It au (1.28)

and the integration along the w-axis is appropriately modified if
one encounters any singularities either in the matrix inverse

operator or in the excitation wave function.

An alternative approach recently developed for transient
characterization and time-domain studies is the well-known singu-
larity expansion method.z’17 This is based on the question of
parameterization of the total transient response of an object.

In the direct approcach, expressions (1.27) and (1.28), the tran-
sient study is unavoidably laborious and costly from the amount of
data to be processed if the response is to be studied at every
point on the structure along with different types of excitation
waveforms and polarizations. According to the SEM, it is possible

to express the object response in terms of few number of parameters, ’

and once this is done, one can freely study-the responses both in

the frequency domain and in the time doma.in.ls_20

The general formalism of the SEM began with the observations
of the responses in the passive lumped circuit theory, and other
experimental observations concerning the transient electromagnetic
response cf complex structures such as aircraft and missiles. It
was observed, basically the time-domain response consists of damped
sinusoids which correspond to the complex conjugate poles or the
singularities in the Laplace complex frequency domain. In general
one may encounter other forms of the singularities, such as
multiple poles, branch points and branch cuts, essential singular-
ities and even entire functions depending upon specific geometries
under consideration. For most of the specific problems discussed
in the context of this paper, only the first order pole singulari-
ties are important for the finite size conducting objects with the
addition of branch cut type of singularities for the infinitely

long scattering objects.

22



Rewriting the matrix operator equation (1.25) for the delta-
function response, we have

[fm,n(si}[ﬁnfs)1 = [i

[
J

| SU—
~
S
o)
©
h g

(s)

m

Using the singularity expansion,2 the current response of the
object to a delta-function excitation is given by (in the class 2
form),

[5.¢)] = I {8q091, - [ﬁ]a}g“‘_(—zi]) (1.30)

whefe the complex natural frequencies S, are obtained as the solu-

tion to the determinant equation,
det [rm,n(s)] =0 (1.31)

the natural mode vector [G]G and the coupling vector [ﬁ]a are

obtained as the solution to the homogeneousﬁmatrix equations,

[Em,n(sa)][g]a
ARERIR

and the normalization constant Ba is given by

4} (1.32)

4} (1.33)

= 1 1.34
fo T T e [fn nts]} - 81, 50
Such a representation results in a compact form of the object
response. For calculating the transient response, the Laplace
inverse transform definition (1.12) is used by appropriately clos-
ing the Bromowich contour, figure 1.5, either to the right half
or to the left half of the complex s plane. In the expression



Figure 1.5

_ A\\\\

X

X \\

X Cs \

X \

X |\ |

0 - /I 7
X C+CO/

X /

X |A v d
X /

P

" g - PLANE

Illustration of the Closure of the Bromwich
Contour in s-Plane

24




(1.30), the term [im(s)] contains the incident excitation and it
is to be modified if one wishes to incorporate other types of
transient waveforms or convolute with the delta function respbnse.
Hence, we have the time domain solution,

Sat

[ﬁn(t)] = g iy [91, e u(t) ©(1.35)

where ﬁa is the coupling coefficient defining the magnitude of the
excitation coupling to a particular mode and u(t) being a unit

step function.
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CHAPTER 11

Integral Equations for the Various
Aperture and Slot Geometries

The aperture-scatterer integral equations (1.15) and.(1.16)
reduce to a comparatively simple form for the case of diffraction
by 6n1y an aperture in the planer conducting screen with no bodies
placed behind it. 1In figure 2.1, if the conducting scatterer is-

removed, then the expression (1.15) becomes,

j% [v(v . ﬁm_(?,s))- Y%Em—(?,s{] x 1

= H_ (F,s) x1 (2.1)

-
r e aperture S ‘

and if both medium 1 and 2 separated by the screen have the same
medium characteristics (py, €, o), then the expression (2.1) further

simplifies to

>
r € aperture Sa

A. Rectangular Aperture

For the case of rectangular apertures, the electric vector

potential Km can be resolved into its rectangular components,

Km(r,s) = IXAmX(r,s) + iyAmy(r,s) (2.3)
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and substituting (2.3) into the expression (2.2) yields the follow- .
ing coupled integro-differential equations,

2 2 2
/3 2\\~ > 9 ~ -> Y ~i,>
- A (r,s) + === A (r,s) = - ‘= H (r,s) {(2.4)
\axz m 9x9y my s X
2 2 2 .
9 2)‘.“ -> P} ~ > Y ~i -
— - Y JA (r,s) + 5= A (r,s) = - ‘-~ H_ (r,s) (2.5)
(ayz my 9X3y m s Ty
>
re S
a
and from the expressions (1.5), (1.86), and (1.7),
A > =(U+S€) < , Gex . '
Amx(r,s) TS JJ Jsm (ra,s) G(r,ra,s) dxadyé (2.6)
y Sa X
y
-> >
-y|r - 1|
-~ —)-—)'. _ e
G(r,ra,s) = e e (2.7)
|r - ]|
- - 2 - 2 2
|xr -~ 1] = [(x - x)D)° (v -y ] (2.8)
B. Narrow Slot

The geometry of the narrow slot is shown in figure 2.1,
where the ratio of width to length w/l << 1. For the analysis of
diffraction by narrow rectangular siots the component of the
electric vector potential me(;,s) in the slot axial direction is
predominant and the cross component Kmy(;,s) for all practical
purposes can be neglected, so that the general integral equation

for the narrow slot has the form,

s (52 2\~ s s [ 92 2\~ > ~§ >
Sl—= - Y_]4, (r,s) + 5l——75 - Y ]4, (r,s) = - 2H (Tr,s) (2.9)
vyT\ox X_ Y, 90X >3

—> -
r in slot
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and further specializing the expression (2.9), for the case of
same medium characteristics (U, €, o) on both sides, the integral
equation (2.9) becomes,

2 \ 2
0 2)"‘ > Yo oxi, >
< _ . A (r,s) = - 1— (r,s)
(axz mx S X
> (2.10)
r e« in slot
where
A (T - (o + se) 3 % PP '
Amx(r,s) 7S J[ Jsm (ré,s) G(r,ra,s) dxa'ldya (2.11)
Sa X

The magnetic current distribution JSmx(?é,s) for a narrow slot
can be written in terms of the axial distribution m(x) and the

transverse distribution Z(y) which has the right type of singular

distribution at the edges,21
JSm (x,y) = m(x) ¢(y) (2.12)
X B
where
2 ’ -2
wy) = = [(%) - yz] (2.13)

Substituting the narrow slot distribution (2.12) into the expres-
sion (2.11), we have for a narrow rectangular slot, the integro-

differential equation,

X (2.14)

I
N
A
o
A
P

where
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~ L/2 AN -
Am (x,s) = (07:8_3_‘5) J va m(xé) GNS_(x,xa’;s) dxé (2.15)‘
X -—

~-Y Ra
~NS . _ e
G (x,xé,s) = i (2.16)
a
2 2 3
A
Ra = [(x - xé) + (Z) ] (2.17)
. . . .,..15,22
A point to note at this stage, is the duality of the

problem. 1In fact the expressions (2.4) and (2.5) are the dual
equations of a rectangular plate,13’23 while the expression (2.10)

is the dual equation of a narrow strip scattering problem.

C. Narrow Multiple Slots

The case of diffraction by narrow finite multiple slots,
figure 2.2, in a conducting screen can still be analyzed based on
the integral equation (2.10) since all the slots considered form
an array and are oriented parallel. :But .the:electric vector ‘
potential me in the expression (2.10) should be redefined to take
into account the mutual interaction between the adjacent slots.
Hence, the integral equation for narrow finite multiple slots is

given by the integral equation (2.10) with Amx replaced by the
total electric vector potential Agx due to N slots,

N
~N > _ (O' + SE) Tn ) ~r . v 1
n (T,8) = 5 ——= Z IJ Jg (r) ,s) G(r,r! ;s) dx] dy,
X n=1 m n n n n
gh X
a (2.18)
where 3gmx is the magnetic current distribution in the nth slot
and the Green's function
-v|r -7 |
Y a
> > . _ e
G(r,ry, ;8) = —( % (2.19)
n |r - r) |
n
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> >, _ ;22 , 2% .
I R R ] (2.20) @)

D. Infinitely Long Slots: TE and TM

In figure 2.3 is shown an infinitely long slot in a conduct-
ing screen for two different polarizations of the incident mag-
hetic field. In the TE case, the incident magnetic field has only
a y-component having the electric field transverse to the axis of
the slot and both the fields being independent of the y-coordinate
variable; while in the TM case, the incident electric field has
only a y-component (negative) having the magnetic field transverse
to the axis of the slot, again both the fields being independent
of y-variable. The analysis of the infinitely long slot in a
conducting screen for these two specialized, TE and TM, polariza-
tions of the incident field is very important since the integral
equations encountered, are in simple one-dimensional form; also
the field distributions obtained in the two cases explain and

give more insight into the more general case of diffraction by ‘

rectangular apertures in a conducting screen:--

(i) TE case:

In case of TE analysisl4'of an infinitely long slot in a
conducting screen, the electric field is x-directed, and trans-
verse to the slot axis, and is independent of y-cocordinate vari-

able. Thus, we have only a y-component of the magnetic current

distribution,

35 (r,s) = 1

m

; Is (x,9) (2.21)
My

According to the expression (2.1), figure 2.4,

S[Am (x,s) + Am (x,s)] = Zﬁ;(x,s) (2.22)
y v,
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and since Emy_ and Amy+ are independent of y, selecting y = 0 in

the expression (1.5), we have

i (o, + se,) - - ~ o
= = = 1 1 | r
m (x,s) TS JJ I (ra,s) Gi(r,ra,s) dx_ dy,
Vi sror Ty
w
(o, + se.) (2
= x 3 J ' (2)_s —x! '
jos J o Jsm (xa,s) H0 [ JYilx xal]dxa
"=
Xa~ "3 y
: (2.23)

where Héz) is the Hankel function of the second kind and zero

order. If both sides of the media are having the same medium
characteristics (u, €, o), the expressions (2.22) and (2.23) yield
E
2 3 ' (2)_; ! - Jj2 =i
J J (Xa,S)HO [—JYIX Xal]dxa - (O- + SE) Hy(X,S)

=W

a 2 y (2.24)
w

<x <3

!
0l

(ii) T™ case:

14

A similar analysis is followed for TM excitation of the

infinitely long slot in a conducting screen, the electric field
in the slot is y-directed and independent of y-coordinate variable.

We have only an x-component of the magnetic current distribution,

I o3.sy=1.3 (x,s) . (2.25)

m m
X

According to the expression (2.1), figure 2.5,

2 2 .
s 3 21z s 3 2|3 = s
2 [_—f - :]Am (x,s) + _ﬁ'[__ﬁ - Y+] An  (x,8) = -2H,(x,s)
- X Y, La3x X

(2.26)
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and further Amx_ and Amx.,. are independent of the y-coordinate .
variable, selecting y = 0, we have from the expression (1.5),

~

’O' 4 sE \
A (x S) = ' bcil J ( t (2) . r r
m ’ j2s w  Sm xa’S)HO [—JYtlx_xaI] dxg

X, 1=_W .
= Xa="2 X (2.27)

+

Again, for the special case of same medium characteristics

(u, €, o), we have the integral equation,
v
2 2
_8_ -— 2 R \ (2) - r | - - ~i
[ ] J . J (xa,s)Ho [ JY|X~Xa|] dxa = -j2su Hx(x,s)
Ve
X272 X (2.28)

|
g
A
W
A
S B

It is quite academic at this point to look at the duality
of the equations (2.24) and (2.28). 1In fact, one obtains similar
equations for an infinitely long strip scatterer, the equation ‘
(2.24) for a TM strip and the equatién (2.2@3 for a TE excited .

strip in a homogeneous medium.
E. Numerical Results

A few of the canonical types of aperture shapes were dis-
cussed in the previcus sections and the pertinent integral equa-
tions were derived in terms of the unknown aperture magnetic
current distribution. Once these distributions are determined
for a given type of incident excitation, the complete fields both
in the illuminated and the shadow region can be determined using
the field expressions (i.1) to (1.4). One of the powerful tech-
niques available to obtain the solution of the integral equations
is based on the method of moments.16 This involves the process
of converting the operator type equations to the corresponding

matrix type equations, which can further be analyzed numerically.23
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In figures 2.6 to 2.9, numerical results14 are presented

for the case of an infinitely long slot, based on the integral
expressions (2.22) and (2.26), in which the slot is in a conduct-
ing screen, figures 2.4 and 2.5, separating two half-spaces of
different electrical properties. Figures 2.6 and 2.7 give the
slot distribution for the TE excitation and figures 2.8 and 2.9
for the TM excitation. The left side (-) medium is assumed to

be free space in which a plane wave propagates and illuminates
the infinite slot. The figures depict both the real and imagin-
ary parts of the slot magnetic current distribution as a function

of the permittivity €, figures 2.6 and 2.8, and as a function of

+
4+ figures 2.7 and 2.9. The TE slot distribution

has the right type of singular behavior at the edges, while in

the conductivity o

the TM distribution it goes to zero at the edges. These results
are quite valuable to understand what happens for the distribu-
tion in the case of a finite rectangular slot or aperture. Based

on these solutions, the fields scattered can be calculated. In
figure 2.10 is shown the far-field magnetic-field variation due
. to the TE excited slot and in figure 2.11 i%" shown the far-field

electric-field distribution due to the T™ excitation of the slot
as a function of right half-space permittivities. The results of
the far-field do exhibit wavelength contraction as the permittivity

is increased.

The solution of the coupled integral equations (2.4) and
(2.5) for a rectangular aperture is more involved from the numeri-

9,10,13 For electrically very small apertures,

cal point of view,.
the solution procedure9 based on Rayleigh series can be conve-
niently employed so that the zero-order and first-order solutions
represent to a fair degree of accuracy the distribution in small
apertures. In figure 2.12 is shown the JSmx(x,y) component of
the magnetic current distribution in a small square aperture for
a normal plane wave excitation. Similarly in figure 2.13 is
shown the distribution of the Jsmx(x,y) component in a narrow

rectangular aperture in the presence of a conducting ground plane
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for normal plane wave excitation. These distributions are com- ‘

pletely altered if a scatterer is coupled to the aperture depend-

ing on its location and orientation.
F. Aperture Dipole Moments and Penetrated Fields

In the previous sections some examples of different aperture
shapes are discussed based on the integral equation formulations.
The results presented are numerically oriented. If one is inter-
ested with electrically very small apertures, as is the case with
many of the EMP type interaction problems, the effect of the
aperture and its corresponding magnetic current distributions can
be approximated in the quasi-static frequency spectrum in terms

of equivalent magnetic and electric dipole moments.ll—13

For a magnetic current distribution ism(?') over an aperture
;egion Sa in the xy-plane, the equivalent maggetic dipole moment
m, and the equivalent electric dipg%e moment p, are defined in
terms of the following expressions (which gives the correct

scattered fields as in expressions (1.1) to (1.4)),

> -1 3 (2 rqu !
m, = & IJ 235m(r') dx!dy, (2.29)
a
and

;—e ~+l +l T Jxr !

p, = E-II 235 (r') X r dxadya (2.30)
S m
a

Such a characterization,12 even though approximate, gives
"a good representation in the far-field regions. In figures 2.14
and 2.15 are shown the penetrated Ee electric field component in
the region z > 0, calculated for the square aperture £ = w = 0.15
wavelength with the incident field oriented normally (fig. 2.14)

and edge on incidence (fig. 2.15).
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CHAPTER III

Analysis of the Conducting Bodies
in the Presence of Ground Screen

Conducting bodies in free space and also above a ground
screen are widely treated in the literature for analyzing their

scattering characteristics.24’25

To understand the response of
the objects and their coupling to the aperture geometries, it is
essential to know the scattering behavior in the presence of the
conducting screen. If the aperture S; is absent in figure 1.1,
the complete scattered fields ﬁi and %i in the right half (+)
space can be determined by expressions (1.3) and (1.4). Hence

for z > 0, in the right half space medium,

BC(%,s) = i v x A,(F,s) (3.1)
BC(%,s) = Yiz [V(V - K, (F,8)) - YEK+(1~*,s)] (3.2)
+

expression (1.8) which has both the scatterer and its image terms
included. For a given scatterer geometry, the induced current can
be determined subject to the boundary condition (1.14) for per-
fectly conducting bodies. 1In fact many of the integral equations
obtained in the previous sections for apertures and slots separat-
ing two half spaces having the same medium characteristics are the
dual equations21 for the two-dimensional conducting plate and
strip problems in a free-space medium. With the ground screen

present appropriate image contributions should be included.
A, Arbitrarily Oriented Thin-Wire Configurations

Arbitraril§orientedgenerdi-thin—wire configurations both
in free space and above a conducting ground plane are extensively
studied in the literature based on integral equation techniques
and the method of moments. As such, the analysis of the wires
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above a ground plane is similar to the wires in free space, since ‘
the concept of images and properties of matrix symmetrization can

be invoked23 and the ground plane replaced by wire images.

n figure 3.1 are shown several wires, one designated the
th

4

pth wire and another designated the g

We focus major attention
upon the pth wire and investigate how one may calculate the elec-
tric field on this wire due to the current Tp on itself plus that

th wire. The contribution on the

due to I , the current on the ¢
pth wire due to the presence of wires other than the qth may be
calculated in an identical way, and then the total contribution
from wires other than the pth is simply a summation over all wires
q=1,2,...,N(g # p). VWritten symbolically, the electric field
directed along the axis of the pth wire and evaluated on its sur-

face is
~ . N 3
E (2,8) = Ep (z,s) + 1« ) E(z,s) (3.3)

z q=1
(a#p)

where E_ is the total axially directed field on the surface of the
pth wirg produced by all charges and cgrrents on the structure,
ﬁpt is that due to the current Tp, and Eq is that due to the qth
wire. In equation (3.3) Ip is the unit vector along the pth
(and has the sense of the current ip), and Z is an independent
variable denoting axial displacement along Ip of the pth

a local coordinate system with origin at the center of the p

wire

wire in
th
wire. Figure 3.2 depicts the two wires and serves to define geo-
metric quantities of interest.
At a general point in space (X,y,z) one may write ﬁpc in the
following form:

o > ~ > 9 = >
= - — — 3.4
EPC(r,s) sAp(r,s) 3% @p(r,s) ( )

where A_ and & are the vector and scalar potentials, respectively,

calculated from the sources on the pth wire. Subject to the
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thin-wire approximations, these potentials may be written as

-y |T-7)]
A(E,s) = = ijlz I(z',s) e+—+—p dz ' (3.5)
Tlpt=a1_/2 r-r']!
- p/ [? rpl
and
—YI? ;'I
L /2 p
~ > 1 o] -~ . e
e,(r.s) = z7¢ J -1 /2 Py, (z',8) N dzg'
D p D
~ e ~ .
+ ag (7,s) + ¢; (r,s) (3.6)
where the general point (x,y,z) is located by
T = xIX + yiy + ziz (3.7)

and a source point on the pth wire by

=10 + ¢'1
Y

b4
p 1Y

) (3.8) "’
>C . . th _ .
In (3.5), rp is a vector which locates the center of the p wire
so (3.8) itself is simply the equation of a straight line in space
along the axis of the pth wire. The linear charge density on the

pth wire is denoted pzp and is, of course, related to the pth wire

current by the continuity equation,

d 3 = =
ac 1p(e»s) + spzp(c,S) =0 (3.9)

In (3.6) the two terms, 5g+

the scalar potential from the rings of discrete charge located,

respectively, at the upper and lower ends of the pth wire. These

and 55—, represent contributions to

charges are present whenever the current is not zero at the ends
as is necessary, if the analysis is to be extended to structures

involving wires which join at their end-points.
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Similarly, the electric field Eq(;) due to sources on the

qth wire may be written

-> ~ > o ->
q(r,s) = —SAq(r,S)lq ~ grad @q(r,s)

L

~
[&5]
-
()}
N

where Zqiq and 5q are the vector and scalar ggtentials: fespes—
tively, calculated from the sources on the q wire. Aq and @q
can be expressed in terms of potential integrals like those of
(3.5) and (3.6) with p replaced by q. The unit vector 1 is
directed along the qth wire and has the sense of the def?ned cur-

rent on this wire.

Since the contributions on the pth wire due to the currents
on the other wires are all of the form of (3.10), only two wires
are tested in general below (fig. 3.3) so that the discussion is
not rendered overly complex. The extension to more than two wires
is quite direct and can be done readily after the present two-wire
case foundation has been established.

The axially directed electric field ori‘the surface of the

th th

jo) wire shown in figure 3.2, due to sources on both the p and
qth wires, is
E = -sh -2 3 -si@d -1Ty-23 (3.11)
4 p 3z P a'’q q 9z 'q

Retaining Eq but employing the Lorentz gauge explicitly to elimin-

ate @p one may convert (3.11) to an alternate form:

2 2
Y_ o = —8— —_ 2 A —_— 2~ .
s B (z,9) (3;2 Y ) Ay(z,s) - v7A (z,s) T - 1)
2 o
- {% 3,(2.9) (3.12)

Actually, the Lorentz gauge is invoked implicitly relative to 5q’
for otherwise the potential integral representation of the scalar
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potential, would be inappropriate; however, in (3.12) the relation-
ship be?ween 5q and Aq is not invoked directly. In view of the
heterogeneous application above of the relationship between vector
znd scalar potential under the Lorentz gauge, one must exercise
care tc aveid violation of the continuity equation, when he calcu-
lates Qq from the charge on the qth wire. When this wire joins
others, as is anticipated by the expression (3.6), special heed

must be given to this caution.

B. Numerical Examples of Wire Structures

As an example of the a.pplica.tionz3 of the integral equation

(3.12) to general wire structures above a ground plane, numerical
results are presented for biconical wire structures. The expres-
sion (3.12) is converted into a matrix equation, similar to the
equation (1.25) based on the method of moments.16 The effect of
the ground plane is taken into account by introducing the wire
images and invoking the symmetry of the geometry. In figure 3.4
is shown the geometry of a wire biconical antenna23 in free space,
and in figures 3.5 and 3.6 are shown the distribution of the cur-
rent on the structure and the far-field radiation pattern for some
specific geometries. Further the geometry of a wire biconical
antenna above and perpendicular to the ground plane is shown in
figure 3.7 and the corresponding current induced in figure 3.8.
Similarly, figure 3.10 gives the current induced on a wire biconi-
cal antenna above and parallel to a ground plane geometry shown
'in figure 3.9. For these geometries, symmetry allows one to reduce
the partitioned matrix size to a smaller number of unknowns in the

matrix evaluation.
C. Two~Dimensional Conducting Scatterer Above a Ground Plane

In the formulation of the problem of determining the current
distribution on finite cylindircal structures, it is usually
necessary to assume that the cylinder is thin so that the current

density around the circumference of the cylinder is uniform. When
this is not the case, one must solve a coupled set of integral
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equations as has been done by Ka.o.zl_'l‘_“26 This method is impractical ‘

for very long cylinders, however, as one is limited by the storage
capacity of the computer. Harrison27 has shown that at least the
qualitative features of the circumferential variation of the axial
component of current on a cylinder in free space may be obtained
quite simply by treéting the infinite cylinder. He points out that
for the infinite cylinder with an incident electric field polarized
parallel to the axis of the cylinder, there exists no mechanism for
the excitation of circumferentially directed currents, thus decoupl-
ing the set of integral equations. Furthermore, since the cylinder
is infinite, the current distribution is the same at any cross-
~section and the integral equation becomes cone-dimensional.
Harrison shows that for circular cylinders in free space is it not
necessary to solve an integral equation at all, but simply solve
the boundary value problem using cylindrical wavefunctions.

If the cylinder lies parallel to an infinite perfectly con-
ducting ground as in figure 3.11, one may employ image theory and
replace the ground by equivalent image currents as shown in figure ‘
3.12. Again, to attack the problem rigorougiy is a formidable

task for long cylinders. However, if the cylinder is of infinite
extent, then for the polarization shown in figure 3.11 (termed TM
polarization) a rather simple integral equation for the surface

current density 32 can be derived.

In this section, the resulting integral equation is solved
for the current distribution with a plane wave incident perpendicu-
lar to the cylinder axis. It is noted that the problem could be
treated alternatively as a boundary value problem using cylindrical
wavefunctions similar to the methods used by Row28 and 01aofe29 in
the scattering by parallel cylinders. With either approach, however,
one must solve a linear system of equations, but the integral equa-
tion approach has the advantage that it is also applicable to

cylinders of arbitrary cross-section.
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Referring to figure 3.12, a general observation point P in
space is located in cylindrical coordinates by the vector
T = (Y,¢,2z=0) with respect to the origin O located inside the
cylinder with boundary C. The cylinder lies parallel to and a
distance d above the ground plane. By image theory, the axial
current density 32 on the body at point A located by T' = (¥',¢"',
z'=0) is the negative of the current at the corresponding image
point B which is found by reflection in the ground plane. Thus,
the scattered electric field at point P may be written from the
surface current on the'cylinder and its image as

ES(¥,50) = - %} Jc EZ(W',jw)[ﬁéZ)(kRI) - Héz)(kRz)] as:
(3.13)
where A
R, = [wz +v'2 _ 2yyt cos(4 - ¢')]" (3.14)
R, = [wz + ¥'2 £ 299" cos(e + ¢') + 4d(¥ cosé + ¥' cosd') + 4d2]
(3.15)

In the expression (3.13), k is the free space wave number and ZO
the corresponding characteristic free space impedance. The first
term in the brackets is the contribution due to the current on the
cylinder whereas the second term corresponds to the fields pro-
duced by the image. Boundary conditions require, expression (1.14),
tangential electric field to be zero on the surface of the cylinder

along the boundary C. Hence, we have the integral equation,

kZ .
"o > (2) _ +(2) ]  _ oxie
2 JC Jz(r ,Jw)[HO (le) HO (kRZ) dL' = Ez(r,Jw) , [ on C
(3.16)
in which for a plane wave incident at an angle ¢i,
s s . i s i i
E;(?,jw) - E;[%JRWCOS(¢ 7)) _ e jk{2dcos¢ +¥cos(¢o+¢ )}] (3.17)
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D. Numerical Results for Circular Cylinder

The basic advantage in the formulation of the integral equa-
tion (3.16) is that one can analyze general arbitrary-cross-section,
'two—dimensionul geometries. Based on the matrix method17 discussed
in Chapter I, the numerical results are obtained for an infinitely
long circular cylinder. In the figures 3.13 and 3.14 are shown the
magnitude and phase of the surface current distribution on a cir-
cular cylinder placed above a ground screen and illuminated by a
plane wave incident at an angle of 450. Curves are also shown for
few values of d. It is noted that the variation of the incident
field normal to the conducting ground plane is that of a standing
wave, while along the ground plane it is a traveling wave. Thus
the illumination on the cylinder is stronger on the side of the
cylinder away from the ground plane causing some of the asymmetry

in the current distribution.
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CHAPTER IV

Characterization of Bodies
Behind Aperture-Perforated Screen

The general interaction problem of electromagnetic excitation
of arbitrarily shaped conducting bodies through an aperture-
perforated conducting screen is discussed in Chapter I and the
coupled set of integro-differential equations (1.15) and (1.16),
if solved for specific geometries, explain completely the inter-
action involved. As pointed out earlier, one has to resort to

numerical methods16

for solution to the integral equations. In the
previous sections, few specific cases are discussed as special geom-
etries, individually aperture alone with no scatterers nearby
(Chapter II), and also conducting wire geometries in the presence

of ground screen with apertures shorted (Chapter III). These

cases do explain the complexities involved in the numerical solu-
tion procedure, and the responses thus far obtained give some
insight into understanding the general aperture-scatterer coupling
problem. In the following sections,'some sﬁééific coupled aperture-
scatterer geometries of practical interest are discussed. The
general integral equations (1.15) and (1.16) are spécialized and

both the frequency domain and the time domain responses are obtained.
A. Finite Wire Scatterer Behind a Rectangular Aperture

The geometry of a finite length wire excited through a slotted
screen is shown in figure 4.1. The finite length wire is oriented
c’ Zc)'
L is the total length of the wire and a its radius. The origin of

arbitrarily along the unit vector 1 with its center at (xc, y

the coordinate system coincides with the center of the rectangglaf.
aperture of total length £ and width w. The incident field (ﬁl, ﬁl)
impinging on the aperture, penetrates and couples to the wire. The
treatment of this boundary value problem9 is similar to the theory
discussed in Chapter I, and the following integral equations result
from the expressions (1.15) and (1.16) for the coupled geometry
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shown in figure 4.1. It is further assumed that both sides of the

media separated by the screen have the same free-space characteristics:

2
/aaxz - .\',2\,- Amx(x’y,s) + a)a{ay Z\.my(x,y,s) -+ SZ_E [% AY(X’Y,S)
__a-A(Xys)]=_ﬁﬁi(XYS) (x,y) = 8 (4.1)
dy =z T s x 77 ' ’ a ]
2 2
(;;2 - Yz) Amy(X,y,s) * agax me(x’y’s) ¥ %§'[§% Bz(x,y,s)
-2 A (x,y s)] = - 13 il(x,y,s) (x,y) = S (4.2)
5o - , Y, S y » ’ ’ a

In the expressions, Bmx and Bmy are the x and y components
of the electric vector potentials and are defined in the expression
(2.6). Further the bracketed terms due to presence of the wire are

given by
@ e

se [ 93~ 3 =% spe=f ~
- |3z A (X,Y,S) - 5= A (X:Y:S)] = "'__J I(C')
2 iz 'y dy "=z 2=0 4T '=_L/2

'[zc cosB + (¥ - y,) cosv] gq(x,y;z') dzg’ (4.3)
and

L/2

se [3 ~ 3 3 SUE ,
-5 |5z A (X,Y,S) -5 A (X:YJS)] j I(c )
2 X Tz 9z "X Zz=0 4T Z'=-L/2

-[zc cosa + (x - xc) cosv] gl(x,y;c') dz' (4.4)
The kernel term gl in (4.3) and (4.4) is given by

g£,(x,y;2') = - (]—)Yg + Ls) e~YP (4.5)
D



D= [[x - (x, + t' cosadl® + [y - (v, + t' cos)]® + [z

and the current on the wire i(;') is assumed to be directed along

unit vector 1 along the wire axis, and
T = cosa Tx + cosB Ty + cosv iz (4.7)

Based on the expression (1.16), satisfying the boundary condition
on the wire, one obtains the following integral equation

2 L/2 - -
(iLg - y? ) j I(z') K(a,z,2') dg' - v2(2 cos®v - 1)
14 r'=-L/2 .
- Bc) gy - & | 52 T2 E(r,o) ar
'=-L/2 ¢'=-L/2
= 47ms 2 A (z) cosB - 2 A (z) cosa + 2 A (g) - 2 A ()] cosv
"Sl19z Tm 9z “m 39X “m 3y ‘m
X y vy X
on the wire (4.8) ‘
where . ) - e—yrs
t - ==
K(a:C:C ) = o J r d‘p (4-9)
- S
2 2 2 3
r_ = [(c - t)? + 42® sin® § (4.10)
and —yr,
E(z,r) = 25 (4.11)
m
2 . . 2 12,2
r, = [4z, + 4zc(c + ¢') cosv + 4zz' cosv + (¢ - £')7] (4.12)

In fact the integral expressions (4.1), (4.2), and (4.8) form-
the coupled-coupled set of equations in terms of the unknown mag-

netic current distribution in the aperture and unknown induced

T4



electric current on the finite wire. Practically, one resorts to
the numerical procedures in order to obtain solutions for the prob-
lem. Let us consider a further specialization of the problem uhder
study, and make the rectangular aperture to be a narrow slot of
finite length and orient the wire to be parallel to the screen con-
taining the narrow slot.

B. Finite Wire Parallel to the Plane and Behind the Narrow Slot

‘'This particular case introduces a'simplification of the
integral expressions (4.1) and (4.8). The integral expression
(4.2) can be ignored for narrow slot since we have only the axial
magnetic current distribution. Further the wire is parallel to
screen so that cosv = 0 and the z-component of the magnetic vector
potential Az does not exist. Substituting the distribution for the
narrow slot defined in (2.12) and (2.13), we have the following
integral equations for the coupled problem of the finite length
wire parallel and behind the narrow slot in a perforated conducting

screen:
2 /2 - - S gz T L/2
(iLg - Y2> J m(x') K(x—x‘,g) dx' + % Suz, cosB J
ax xX'=-2/2 g'=-L/2
. i(c') a(Rl) d' = - 271su Hi(x) on slot axis- (4.13)
2/2 . 52 o\ (L/2
-2s€z  cosB I m(x"') G(Dl) dx' + —5 - J
: ¢ x'=-2/2 9z z'=-L/2
- T(z')[R(z-t',a) - K(z-z',22.)] dz' = 0 on wire (4.14)
In the above equations, the kernel terms are
. 1 (T e—le
K(z,a) = o~ J dy (4.15)
: w _ r
P=-7 1
3
ry = [;2 + 422 sin? %] (4.16)
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3 2
By By
2 2 . _27%
R, = [[x - (xc + ¢' cosu)]” + [yc + ¢ cospl® + zcj (4.18)
a
D, = |[(x, + Zcosa) - x']2 + [ + tcosB]2 + zz]2 (4.19)
1 c Ye c :

In the integral expression (4.13), the component ﬁi is the incident
magnetic field in the illuminated side z < 0, with electric vector
polarized transverse to the slot axis, and if 0 is the angle which
the direction of propagation of the incident field makes with the
axis of the slot, then ﬁi(x) can be written for a plane wave as,

~1 — i . —ycosfx
Hx(x) on sinf e (4.20)
ﬁ;o is the amplitude factor of the plane wave.
C. Numerical Results ‘

The integral equations (4.13) ahd (4.i4j'can be solved based
on the method of moments16 and representative results for the
coupled geometry, figure 4.1, is shown in figures 4.2 and 4.3 for
a narrow slot of length £ = A/2, width w = A/20 in the presence of
a finite length wire of length L = X/2 and radius A/1000. The wire
is parallel to the screen containing the narrow slot with its cen-
ter at (Xc’ Yoo zc) = (0, 0, A/4). The incident field is normal
on the narrow slot. 1In figure 4.2 is indicated the wire current
for various values of cosB, where 8 = O corresponds to maximum
coupling between slot and wire and B = 90° give zero coupling in
which case axis of the wire is parallel to the axis of the narrow
slot. In figure 4.3, is indicated the slot axial magnetic current
distribution for various values of cosB. One notes the changes in
the magnitude and distribution of the slot field due to reflection
of the wire back to the slot. The results of figures 4.2 and 4.3
are extended in figures 4.4 and 4.5 respectively as a function of
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Figure 4.2

: zg}L

Electric Current Distribution on Finite Wire '
Scatterer in the Presence of Slot, L=0.5,
a=0.001, £=0.5, w=0.05, (X;,¥q,2,)=(0,0,0.5)

at Frequency 300 MHz .
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frequency. The case of B = 90° in figure 4.4 is an uncoupled case
and no currents are induced on the wire. The freduency responses
of wire and also that of narrow slot do exhibit peaks corresponding
to their natural rescnant frequencies which actually are a basis
for SEM characterization as discussed in Chapter I.

D. SEM Characterization

The general formalism of spM2- 18,19

in regard to parameteri-
zation and subsequent transient characterization is briefly dis-
cussed in Chapter I, expressions (1.30) to (1.35). Accordingly,
one can determine the complex natural frequencies, modal current
distributions, coupling vectors and coupling coefficients. Even
though this approach seems to be a direct numerically oriented
procedure, care should be exercised and the problem should be

analyzed step by step.
(i) Natural resonance of narrow slot

Suppose the finite length wire is completely removed, and
we have only an isolated narrow slotl.the'eggation to be analyzed
is comparatively simple one, expression (2.14). There exists only
axial distribution of the magnetic current, and numerically the
expression (2.14) is efficient to analyze. Based on the condition
(1.31), the natural frequencies or poles of the isolated narrow
slot can be determined. In figure 4.6 is indicated the location
of few of the poles in the complex s plane for the narrow slot
dimension 2/w = 20. In fact, they exist in complex conjugate
pairs and only the upper half ones are shown. These natural reso-
nant frequencies lie in layers parallel to the jw-axis. The layer
very close to the jw-axis is very important in the sustained tran-
sient responses. Suppose the slot dimension ratio w/% is increased;
the poles close to the jw-axis move away from the jw-axis exhibiting
the damping behavior associated with the radiation of the slot.
In figure 4.7 is shown the pole trajectory of Sq1» the first-layer
first pole close to the jw-axis as a function of w/%2. It is also
academic at this stage to look at resonances of an isolated thin
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finite wire.ls After all, the integral equation (2.14) is the

dual of the integral equation for a narrow strip of same dimensions,

and further there exists equivalence between the narrow strip and
e

. e . . ) . w
thin finite wire,. If the radius of the wire a = -, the resonances

4 H
of the narrow slot are the same as its dual narrow strip and that
of a finite thin wire of radius a. In figure 4.8 is shown the
18

various pole locations for an -isolated finite thin wire. Thus
one can also look into various trajectory plots of finite wire as
a function of radius, to estimate the actual resonances of the

narrow slot.
(ii) Natural resonance of finite wire over ground plane

We shall now consider a finite thin wire placed parallel and
above a ground screen18 with no perforated slot. This particular
problem is the special case of a more general problem of coupling
between two finite wires in free space as indicated in figure 4.9,
wherein two finite thin wires of lengths Lp and Lq, radii ap and
aq are oriented in YZ at an angle v with respect to their axis.
The mutual coupling between the two wires- cin be studied based on
the integral equation (3.12), and forming the matrix equation by
applying method of moments. This procedure yields a generalized

system partitioned matrix of two by two,

S cd
] [ p] [ p] 4.21)
[Zpq] = | . :
C
[cB1 (s,
where [Sp] and [S_ ] are the self-partitioned matrices of pth and
qth wires and, [Cg] and [Cg] are the mutual partitioned matrices

corresponding to the coupling between the pth and g

on the condition (1.31) the determinant of (4.21) gives the natural

resonances; we expect to obtain the perturbed self-natural resonances
th

th wires. Based

of the pth wire, the self-natural resonances of the ¢ wire and

also the mutual natural resonances between the pth
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Figure
g 4.9 | Geometry of Two Coupled Wires
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These muiual resonances are in fact dependent on the relative
orientation Ip . Iq of the two wires and the distance D apart.

The coupling between the two wires is maximum when they are
parallel and minimum or completely uncoupled when they are per-
pendicular. Particularly when their axes are parallel one has two
different problems, viz., introducting either a perfect electric
ground plane (anti-symmetric case) or a perfect magnetic ground
plane (symmetric case) with respect to the distribution of the

induced electric current is concerned.

In figure 4.10 is shown the trajectory of the first natural
resonance close to jw - axis as a function of the angle v between

the axes of the two wires, pth and qth.

When their axes are per-
pendicular, they are uncoupled and have their own self-resonances.
But if the wires are identical their individual self-resonances

o . .
As v is varied,

coincide as indicated in figure 4.10 for v = 90
for every v there exists two poles corresponding to the symmetric
and the anti-symmetric modes the wires can support. The extreme
case v = 180o gives poles of the wire above the electric ground
plane and also the wire above the magnetié éfound plane. It is
possible to split the determinant of the expression (4.21) so that

poles can be categorized according to their types in the complex

s-plane,
s 1 [cl]
R BRI CR N G- IR IR I 5 FY (4.22)
p - p p p p )
[c.] [s]]
q p Symmetric Case Anti-Symmetric
(PMC) Case

Based on the expression (4.22), the anti-symmetric poles
(v = 180° corresponds to the case of wire over the electric ground
plane) are traced as a function of the angle v. In figure 4.11,
the first three trajectories of the poles close to the jw-axis are
shown, for a fixed value of distance D = 2.0 between the two wires.
For v = 1800, the various natural resonances are obtained for the
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wire over a perfect electric ground plane (with no perforated .
narrow slot) and are shown in figure 4.12. The layer close to

the jw-axis represents the self-resonances and these are in a way
similar to the isclated case, figure 4.8, but are slightly per-
turbed from their position depending upon their distance above the
ground plane. The location of the poles shown in other layers
correspond to the mutual interaction with respect to the ground
plane'or with respect to the image of the wire. The trajectory

of the S11 first pole close to the jw-axis as a function of dis-
tance over the ground plane is shown in figure 4.13, where the
trajectory spirals18 around the pole of the isolated case and
takes off when a pole from the other layer enters into the path.
This repeats18 so that there exists always only one pole in the

trajectory near Sq1-

One can best explain the mutual interaction effects depend-
ing upon whether the incident field excites a particular natural
mode or not. This is depicted in coupling coefficients2 and
referring to the expression (1.30) the coupling coefficient for .

a particular mode o is given by
c, =8 [¥], - [u] (4.23)

For the two wire problem shown in figure 4.9, baéed on the expres-
sion (4.23), the coupling coefficient for the first pole S11 close
to jw-axis are calculated as a function of the angle v for a plane
wave incident normally on the pth wire. In figures 4.14 and 4.15
the coupling coefficients are plotted as a function of v for the
anti-symmetric pole and the symmetric pole, respectively. The
results shown clearly exhibit the coupling of the incident field

to the corresponding natural mode excited. With above natural
resonance and coupling coefficient results, it is possible to con-
struct the time domain response based on the expression (1.35),

for the geometry of figure 4.16, a finite wire parallel to a ground

plane. In figure 4.17 is shown the transient response of the

g0
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finite wire over the perfect electric ground plane, v = 180°. The
electric current induced is plotted as a function of time at dif-
ferent locations on the pth wire for a step function plane wave
incident at an angle of 30° to the axis of the wire. The delay in
the initial response is obvious due to the delay of the step wave
front excited by the wire. The time domain response gradually
decays for large values of the time..

(iii) 7Finite wire scatterer behind a narrow-slot-perforated

screen

Let us now return to the original problem of interaction
with the finite wire behind a narrow slot perforated conducting
screen, figure 4.1. The transient characterization and the cor-
responding natural resonance results obtained in section D-(i) for
isolated narrow slot and in section D-(ii) for wire above ground
plane are quite useful to understand and predict the results of
the scatterer and narrow-slot interaction problem. Based on the
coupled integro-differential equations (4.13) and (4.14), and
further matrix formulation using the moment.method, a matrix equa-
tion similar to the expression (1.25) is first derived. Then the
various natural resonances for the coupled geometry are obtained
by numerically solving the determinant equation (1.31). TFor this
coupled problem, the natural resonances can be separated into two
parts. One set of natural resonances belongs to the narrow slot
geometry in the presence of the wire scatterer and the other set
belongs to the finite wire scatterer over the ground plane in the
presence of the narrow slot. The first set of the natural reso-
nant frequencies belonging to the narrow slot are similar to the
ones depicted in the figure 4.6, but are perturbed from their loca-
tions depending on the orientation of the wire axis with respect to
the slot and distance of the wire over the ground plane. The
results of the pole plot shown in figure 4.6 are for the limiting
uncoupled case of cosB = 0.0. Similarly, the second set of
natural resonant frequencies belong to the finite wire scatterer
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parallel and above the ground screen in the presence of the narrow .
slot are similar to the ones depicted in the figure 4.12, but are
perturbed from their locations depending on the wire distance above

the ground plane and the orientation of the wire axis with respect

to the slot. - The results of the figure 4.12 correspond to the
uncoupled case cosB = 0.0, so that for any other 'cosB8' orientation

of the wire with respect to the slot axis, the new location of the
poles should be determined by solving the determinant of the par-
titioned matrix equation obtained from the equations (4.13) and

(4.14).

In figure 4.18 is shown the natural resonant frequencies of
the finite wire scatterer and narrow slot geometry, figure 4.1,
for the maximum coupling cosB = 1.0. Only the first four sets of
the pole locations of the first layer close to jw-axis are indi-
cated. The pole locations are indeed perturbed to the maximum
extent from their uncoupled values. The trajectory of the first
set of poles close to jw-axlis are shown in figure 4.19 as a function
of coupling factor cosB. The poies of the finite wire over the .
ground plane move away from the jw-axis while that of narrow slot

move toward the jw-axis as the coupling between the wire and the
slot is gradually increased. Figure 4.20 gives the trajectory
results for the second set of poles close to the jw-axis. Obviously
the path of the trajectory indirectly explains the coupling between
the wire and the slot, and the corresponding radiation characteris-
tics involved.

In figures 4.21 through 4.24 are shown the transient response
of the wire scatterer and the narrow slot interaction problem under
discussion. For the results of figures 4.21 and 4.22 a step plane
wave is assumed to excite the slot normally and the origin of the
coordinate system is taken as time reference t = 0. The same
results are repeated in figures 4.23 and 4.24 but with the follow-

ing EMP incident normally on the narrow slot

98



- A ° 46
u o a j 4
—~ Ag -
- 412
- o 4 i
1 ! l ] | I | | ] | P 1 1 i
M-6 -5 -4 -3 -2 - 0
2¢C
Pigure 4.18 Natural Resonances of Finite Wire Behind .';1

Narrow Slot Perforated Conducting Screen

99



00T

- ¥ | wl
_ (A 4 2¢
L. _

d |
2. 11.45
- _

L % 11.40
i 1135
I | 11.30
i S| {1

' N R | | .25

I I A I R B | | B N T
% 15 -14 -3 -12 -Il -I0 -.09 -.08-07

Figure 4,19 Trajectory of the First Set of Poles s11 as a
Function of cosB

o d




10T

e-.]oN allr &
"
d S ;
@)
@)
]

.95 - 2-95
.9 .
B8 oo - ~
.mo 1290

Spp {285

Cooyoree o e oo 1280

oY)
2¢C

-.32 -30 -.28 -26 -24 -22 -20-.18 -6 -4

Figure 4.20 Trajectory of the Second Set of Poles s as a
Function of cosB




¢0T

WIRE LENGTH :0.80 HMETER SLOT HEIGHT  :0.50 METER

RRADIVS :0.001 METER HWIDTH :0.05 METER
(O] A + X
C’XC = 0.00 HETER YC = 0.00 METER Zc = 0.25 METER B= 0.0 ,30.0,60.0.93.0
N
S
STEP

0.08 0.12 0.16 0.2q 0.24 0.28
TIMECMICROSEC) =10
Figure 4.21 Time Domain Electric Current at the Center of

Finite Wire in the Presence of Narrow Slot with
Step Plane Wave Incident on Slot

0.32




€0t

c

100.00

HIRE LENGTH
RADIUS

X. = 0.00 METER

¢0.50 METER SLOT HEIGHT  :0.50 METER
¢0.001 METER HWIDTH  :0.05 METER

() A + X

YC = 0.00 HETER ZC = 0.25 METER B = 0.0 30.0 60.0 0.0

L

ENT(MV/EQ)
45.00

URR
0.00

IC C
-1

oTEF

%&‘ﬁ?%!&ﬁi?i%?ﬂﬂ%ft?/ﬁﬂ\%'Mﬁ&mSwAﬁﬁ\%hﬁﬂ
JJ &

0.04

Figure

4.22

0.08 g.12 0.16 oﬂzq 0.24 0.28
TIME(MICROSEC) =10°

Time Domain Magnetic Current at the Center of
Narrow Slot in the Presence of Tinite Wire
with Step Plane Wave Incident on Slot

0.52




70T

WIRE LENGTH :0.50 METER SLOT HEIGHT t0.50 METER

RADIUS ¢0.001 METER HIDTH ¢t0.05 METER
: o 4 + x
Q,XC = 0.00 METER YC = 0.00 HETER ZC = 0.25 METER B = 0.0 ,30.0,80.0,93.0
o
o
/\ . EMP
e ; i
o9 ' / ..
Wwio A
2 &
= V \ \ ?b\ .
= y :‘l‘ / cr\_ R 1
o2 \ \FRY TN
e _ / N 2
= \‘
Q. d =/
o .
ot
=
= &
™~
o
Qi:‘ ' \ L \J Y —3
0.00 0.04 0.08 0.12 0.16 0.2q 0.24 0.28 0.32
TIME(MICROSEC) =10
Figure 4.23 Time Domain Electric Current at the Center of

Finite Wire in the Presence of Narrow Slot with
EMP Incident on Slot




60T

WIRE LENGTH :0.50 HMETER SLOT HEIGHT t0.50 METER
RABIUS  :0.001 METER NIDTH  :0.05 METER

® A + X

c,Xc = 0.00 METER Yc = 0.00 METER ZC = 0.25 METER B = 0.0 .30.0,60.0,90.0

5.0

_1025

7.50

SLOT NﬂﬁyggIC CURRENT(MV/EQ)

o
<
o
%L 1 L] | | T
0.00 - 0.04 0.08 0.12 0.16 q 0.24 0.28 0.32
‘ TIME(HICROSEC) xlU
Figﬁre.4.24 Time Domain Magnetic Current at the Center of

" Narrow Slot in the Presence of Finite Wire with
EMP Incident on Slot !




el(t) = Eo[-e“"t + eBY (4.24)‘

where
l/a = 4.55 ns
1/8 = 300 us
E. Finite Wire Antenna Illuminating Narrow Slot Perforated Screen

This particular interaction problem is basically the same as
the wire scatterer-slot case discussed previously except the slot
is not excited any more by the incident field in the region z < O,
but is excited by the wire itself which is in turn excited by an
ideal generator connected at z = 0 as shown in figure 4.25. The
coupled integral equations (4.13) and (4.14) still hold good for
this problem with modification in the excitation terms. The right-
hand side of the expression (4.13) is equated to zero, while the
zero in the right-hand side of (4.14) is replaced by,

V(s) = -any®V_/su (4.25)

corresponding to the excitation of the idea;_: delta-gap generator .
at the center on the finite thin wire structure.

The natural resonant frequencies discussed previously apply
for this geometry as well because the equations characterizing the

coupling are the same.

In figures 4.26 and 4.27 are shown the frequency-domain
response of the antenna current and the slot magnetic current dis-
tribution as a function of frequency. These results were obtained
by directly solving the integral equations based on the method of
moments in the real frequency domain with the substitution s = jw.
Obviously, we observe the various resonances in the frequency

response corresponding to the coupling.

In figures 4.28 and 4.29 are shown the corresponding tran-
sient response of the antenna current and the slot magnetic current
respectively for a step input turned on at t = 0 across the antenna

gap terminals.
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F. Equivalent Dipole Illuminating Narrow Slot in a Conducting .
Screen : '
This case is slightly different from the previous examples

in that the finite wire was parallel to the screen containing the

narrow slot. In the present problem the finite wire is perpendicu-

lar to the conducting screen and the excitation is by a delta gap

generator at z = 0. The geometry of the interaction picblem is

shown in figure 4.30. The integral equations (1.15) and (1.123)

can be specialized to the equivalent dipole slot geometry and the

interaction is characterized by the following integral equations:

a2 9 L/2 _ - -
—5 - Y J I(z') [K(z-2z',a) + K(z+z',a)] dz'
2z z'=0
2/2 - 1 Y
+ 2s¢ J m(z') [-y. cosa + x_ cosB] = t -5
=g /2 c c

= -4Tse VO 8(z) on wire

L/2 - ’ . — i\ _
- St J I(z’)[xc cosf - Ve cosa] (J%-+ é%—)e YR dz’'
) 2

2 '
z'= R2
82 2 /2 ~ = w ' '
25 - v j fi(z') R(z-z',7) dz' = 0 on slot (4.27)
9z g'=-%/2 .
where
2 2 ' 2.3
ry = [(z° + (xc + z' cosa)” + (yc + z' cosB)?] (4.28)
2 2 2.3
R2 = [z'7 + (xc + r coso)” + (yc + ¢ cosB)?] (4.29)

The above equations (4.26) and (4.27) are again reduced to
matrix form and solved numerically. In figures 4.31 and 4.32 are
shown the distribution of the induced electric current on the equiva-
lent dipole in the presence of the narrow slot for a delta function
excitation at z = 0. The distribution is similar to the one on an

isolated equivalent dipole except for minor variation due to the
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presence of the slot. The corresponding slot axial magnetic cur-
rent distributions are shown in figures 4.33 and 4.34 in the pre-
sence ot the equivalent dipole. There is slight asymmetry in the
slnt distribution due to its orientation with respect to the monn-
pole. In the figures 4.35 and 4.36 are shown the real and
imaginary parts of the equivalent dipole input impedance calculated
for the different locations of the narrow slot. As the slot is
moved away, the effect on the impedance of the equivalent dipole

is negligible for the resonant equivalent dipole.

The time-domain responses are shown in figures 4.37 through
4.40. Figure 4.37 gives the monopole current at the feed point as
a function of time with unit step input turned on at t = 0, and
the corresponding slot magnetic current at the center of the slot
is shown in figure 4.38. As the slot position is varied the time
response of the slot changes, but there is little effect on the

monopole time domain response.
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SUMMARY

In this note there is reported the preliminary investigation
of the interaction problem of the conducting bodies behind aper-
ture screen geometries based on the formulation of the integral
equation approach and subsequent numerical analysis. To charac-
terize the complex interaction problem step by step, apertures in
the form of a narrow slot, and rectangular and square apertures
are analyzed separately; similarly the finite and infinite wire
geometries above conducting ground plane are treated separately
and some numerical results are reported in the frequency domain.
Further simple objects in the form of finite wire antenna and
scatterer geometries are characterized in the presence of narrow
finite slot geometry. The Singularity Expansion Method is applied
for transient characterization and an attempt is made to explain
the interaction between the wire and the aperture-screen. Both
the narrow slot and finite wire responses are reported in the fre-
quency and the time domains.

The reader may refer to [30] for the analysis of the infinite
wire behind a narrow slot in a conducting screen. The general
analysis of infinitely long multiple wires behind arbitrarily
shaped apertures and the subsequent characterization of such
regions in terms of an equivalent circuit including aperture
resonance effects will be reported in an upcoming separate note.
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