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Abstract

The penetration of the electromagnetic pulse through a small
aperture in the conducting plane is studied when a multiconductor
transmission line is located behind the aperture. The multiconductor
transmission line is filled with inhomogeneous dielectric material,
so that the propagating modes have different velocities. The aperture
is replaced by a pair of electric and magnetic current moments, and
the equivalent multiport for the aperture junction is developed.
The accuracy of the dipole moment approach is checked by the continuous

spectrum approach, and the limits of validity are established.
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SECTION I

INTRODUCTION

The objective of this report is to study the penetration of
an electromagnetic pulse through a small aperture in an aircraft,
and to evaluate the induced voltages on multiconductor cables
located inside the aircraft. Knowledge of these voltages caused
by the electromagnetic pulse is of interest in estimating possible
interference with or damage to the electric and electronic systems

within the aircraft.

The computational approach used in this report is based on
the assumption that the aperture in the metal shell of the air-
craft is considerably smaller than the wavelength of the highest
spectral component contained in the electromagnetic pulse. There-
fore, the small aperture approximation is used in evaluating the
electromagnetic field behind the aperture. A bundle of wires is
assumed to be located inside the aircraft, passing behind the
aperture. The magnitudes of the traveling waves on the individual
conductors may then be calculated for given wire dimensions and
given dielectric filling. The conventional representation of the

induced voltages and currents on individual conductors is in terms
of voltage sources and current sources on the individual conductors.
In the present report, an alternative representation in terms of
traveling wave sources has been utilized. This novel class of
sources is formally introduced in Appendix A. The advantage of
this representation is that individual sources are not associated
with the individual conductors, but they are directly associated

with the individual modes.

When the wires are placed in a straight line, running parallel
to the metal surface in the aircraft, the bundle can be modeled
as a multiconductor transmission line. Because of the presence
of various dielectric materials, the individual modes on the multi-
conductor: transmission line differ in their velocities, but the




propagation of each mode is essentially nondispersive. Such trans-
mission-line modes are classified as quasi-TEM waves. The wave
propagation on multiconductor transmission lines is best described
in terms of matrices. Particularly convenient for that purpose is
the Dirac notation. While the notation is widely used in physics,
it is not always familiar to engineers. Becuase of that, the basic
principles of the Dirac notation for matrices are reviewed in
Appendix B. The advantages of this notation can be clearly seen

in Appendix C, in which the wave equations are solved for multi-
conductor transmission lines filled with inhomogeneous dielectrics.
Some matrix operations, which are quite intricate in the conventional
matrix notation, become surprisingly simple and obvious in the
Dirac notation. Appendix C differs from the conventional deriva-
tion also in the fact that the solution is accomplished by
simultaneous diagonalization of two real symmetric matrices K and

g“, instead of diagonalizing a real but not symmetric matrix KL.

The validity of the quasi TEM approach is closely examined
in Section VI. This Section investigates the assumption that
coupling of a multiconductor transmission line back into a plane-
wave excited aperture can be neglected. The configuration treated
consists of a single wire conductor behind an aperture and the
relation of this problem to the multiconductor transmission line
problem is discussed. The problem is treated from the rigorous
Fourier transform approach and hence includes the complete modal
spectrum consisting of the TEM mode and continuous spectra of
evanescent and propagating modes. It is found that whenever the
representation of the aperture by dipole moments is valid, the
effects of a transmission line on the strength of those dipole
moments is negligible.



Before starting with the presentation in Section II,
the small aperture theory will be briefly reviewed. A
convenient approximation of the electromagnetic field in
the presence of a small aperture is in terms of a pair of
dipoles, as originated by Bethe [1]. Assume that the
local distribution of the total electric field Et(x,z) over
an aperture in x-z plane, such as in Fig. 1.(a), has been
determined by an analytical or a numerical solution of the
boundary-value problem. Then, the electromagnetic field
in the "internal" region y > 0 remains unchanged if the
aperture is closed by a metal 1id on top of which there is

a magnetic surface current

3sm(x,z) = Et(x,z) x a‘y 1)

where 3& is the unit vector in y direction.

The coupling to the TEM wave on the system of conductors can
then be computed by replacing the aperture with a conducting 1lid on
top of which there are two dipoles, Eé and Eﬁ as shown in Fig. 1.(b).

Electric dipole moment Ee is oriented in the y direction:

Cey =fff:x(x,z)dxdz, (2)

and the magnetic dipole moment of interest here is oriented in the x

o = jwe/fzfs"}gx,z)dxdz. (3)

direction:




(a)

(b)

Fig. 1(b) The aperture is replaced by a pair of dipoles.

(c)

Fig. 1(c) Magnetic and electric surface currents which are equivalent to the
pair of dipoles.



The magnetic dipole moment may also have the z-component, but
the present report is devoted solely to a coupling of quasi-TFM waves
guided along the z dircction by a system of conductors as indicated in
Fig. 1.(b). Thercfore, the z component of the magnetic dipole is
of no importance, because it does not interact with these quasi-TEM
waves,

In this report, the electric dipole moment Ee (in Ampere-meters)
has a meaning of the moment of an electric current element, similar
to that given in references [2]-]4). This current moment should not
be confused with the electric charge moment ﬁ (in Coulomb-meters)
such as is used in references [5]-[7]. The relationship between

these two moments, for exp(jwt) variation, is as follows:

-> . >
Co = jup - (4)

Similarly, the magnetic dipole moment Eﬁ (in Volt-meters) in
this report denotes the moment of the magnetic current element, in
the sense as used in references [8]-[10], The magnetic charge moment
i (in Ampere-square-meters), such as used for instance in references

[5]-[7] is related to qn as follows:

> . >
Cp = Jwum. (5)

Figure 1.(b) is a first-order equivalent of the original
configuration from Fig.l.(a). Sometimes it is convenient to further
change Fig. 1.(b) into an equivalent configuration in Fig. 1.(c) in
which there is a distribution of the surface magnetic current 32 and
of the surface electric current 32 over the x-y plane. Figures 1.(b)
and 1.(c) are equivalent if the surface currents become delta functions

as follows:
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J % = E8txx)o() , (6)
jsm = Ems(x-xo)S(y) . (7)

For an aperture of general shape, integrations (2) and (3) are
to be performed numerically, For several characteristic shapes (circle,
ellipse, narrow slit, square, etc.), the dipole moments have been com-
puted or determined experimentally. It is customary to express the
moments in terms of the excitation fields Es’ ﬁs and in terms of the
polarizabilities Cgs Qe Consider the aperture in Fig. 2 which is to
be replaced by the dipole moments so that the field in the '"internal
region y > 0 is maintained. The excitation fields (so-called short
circuit fields) produced by the sources located in the internal region
will be denoted ﬁsint and ﬁsint. When the excitation comes from the
side y <0, the short circuit fields will be denoted by ﬁseXt and ﬁseXt.
For the purpose of coupling to the quasi-TEM waves in the internal region,
only the components Eys and Hxs are of interest. Instead of per-

forming the numerical integrations from (2) and (3), the dipole moments

of small apertures of characteristic shapes may be computed as follows:

- ext int

Cx = “Jemey, H ST -H ), (8)
. ext . int

Coy = Jueag (Eys Eys ) . €))

The electric polarizability g and the magnetic polarizability o of a

circular aperture of diameter d are:

11
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1 _1
e 1—2 d s am—s'd . (10)

For a square aperture of side &, Cohn [11], [12Z] has measured the

following polarizabilities:

_ 3 _ 3
0g = 0,113727 , a_ = 0.25902

The last two references also contain the measured polarizabilities for
rectangular and other shapes of apertures.

In Fig. 3, a plane wave is shown incident from the y <0 region.
The two possible polarizations of the plane wave are denoted TE and

T. The corresponding dipole moments are computed fram (8) and (9) by

. substituting the following excitation fields:
2E
™: E ®*t _ 2E sin 9, HEt - . 0 gina . (11)
ys 0 Xs n
2E
TE: E St . s H®t - _0 s 6 cos a. (12)
ys XS n

For this excitation, take Ey;nt =0 and Hx;nt = 0.

When electromagnetic fields in the presence of a ground plane
are considered, sometimes it is convenient to remove the plane and
replace it by appropriate images. In the present report the ground

plane has not been removed and the images have not been invoked.

13
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When dipole moments Cnx and Cey have been determined, it
is possible to compute the amplitudes of the outgoing guided waves
created by these dipole moments. In Fig. 3, the scattering ampli-
tudes of the TEM guided waves traveling in the positive and
negative z direction are denoted by a_ and bs‘ Using the appro-
priate boundary conditions in the xy plane, the following scattering
amplitudes a_ and bs are obtained [13]:

0)-c (13)

(-Gl X eyeyTEM(XO’O)]’

0
|

(14)

Nf =

[cmxthEM(xO’O) . CeyeyTEM(XO’O)]'

The scattering amplitudes are complex numbers, normalized in such
a way that [as|2/2 and |b5[2/2 are powers of the outgoing waves
traveling in positive and in negative z directions {[14].

It should be noted that Collin [14] uses superscripts (+) or
(-) to denote the direction of the wave propagation. In the present
report, letter a denotes the complex amplitude of the wave traveling
in the positive z direction, and letter b is used for propagation
in negative z direction. These are the familiar scattering param-

eters [15].

15



SECTION I1I
TRAVELING WAVE FORMULATION

Lossless multiconductor transmission lines (MIL) with unequal
conductors and inhomogeneous dielectrics give rise to multivelocity
quasi-TEM waves. As shown in Appendix C, the voltages and currents
on a MIL are described by
N -j Biz+ jB.z

L (@ be = Dle> (15)
n=

[V(z)>

-j8;2 i8;2
- be e (16)

N
1(2)> = ] (a;e

n=1

|¢i> and |wi> are normalized voltage and current eigenvectors, and

ai's and bi's are scattering amplitudes of the waves traveling in positive ‘

and negative z direction, respectively. It is assumed that on an N
conductor MIL there are N normal modes, each of them having a.distinct
propagation constant Bi'

The notation from (15) and (16) may be made more compact by introducing

the vectors of incident and reflected normal-mode amplitudes

el b

|a> = : , |b> = : a7)

an by

and by introducing the diagonal matrix E(z) containing the exponential

functions

B,z Bz
E(z) = diag. (e, i....., e W (18)

16



In the new notation, (15) and (16) become:
[v(z)> = M, (E*(2) la> + E(2)[b>) , (19)

[1(2)> = M;(E*(z) |a> - E(2)[b>) , (20)

where * denotes a complex conjugate number, and l\_/lv and l\‘:i_I are matrices
consisting of voltage and current eigenvectors, as defined by (C-42)and (C-43).

(19) and (20)may be now solved for [a> and |b>:
E*(2)|a> = 30}V (2)> + M| 1(2)>) (21)
E A My ’

E(z)[b> = 30 |V(2)> - Myl1(2)>) . (22)

la> is a constant vector containing the amplitudes of the individual

modes as its components. For instance,ai is the complex amplitude such that the

total power of the 'ith mode transmitted in positive z direction is
+ 1 2
P = 7la
The entire power of all the modes traveling in the positive z direction is

+

P = %-<a|a> (23)

where < a| denotes a transpose conjugate of |a>, Similarly, the total
power traveling in the negative z direction is

P‘=%,<b:b>, (24)

The net power is the differsnce of the two. On a uniform MIL there is

no exchange of power between different modes. Each mode travels with

17



constant magnitude, while its phase grows linearly with distance.

The z dependence of scattering amplitudes may be expressed as

[a(z)> = E*(2)|a> (25)

and

|b(z)> = E(2)|b> (26)

where |a> and |b> are vectors consisting of complex constants, Thus,

the ith component of the vector equation (25) is

'j BiZ
ai(z) = e a;

and the corresponding ith component of (26) is

jB;z
bi(z) = e bi .

The signal flow graph [16]of the MTL section of length £ is shown in Fig. 4.
The ith mode has two variables a; (0) and bi(O) at z=0. Similarly, at
z=% the two variables of thg ith mode are ai(l) and bi(l). The coefficients
of matrix E*(%) equal to e-JBil. Thus, a; (%) is zbtained by multiplying
ai(O) by the coefficient e-JBi . The signal flow graph
in Fig. 4 is extremely simple, since along the transmission line there
is no cross coupling between different modes.
Figure 5 shows a MTL section with 3 conductors above the ground plane.

At z=0, a source is coupled to the MTL, inducing the waves traveling toward the

+z and -z directions. The amplitudes of the ith mode produced by the

source are a; and bis’ The direction of propagation of these

waves is indicated by a wavy arrow. The wave traveling in +z direction
-jB.2

arrives at z=2, shifted in phase for e 1 4. There, a three-port net-

work terminates the MIL. The impedance matrix of this network is 54.

18
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The amount of reflection on the MIL can be computed from §4 as follows.

At z=0, the total amplitude a; of the ith mode traveling in the
positive z direction consists of two parts: the source part a; ¢ and
the part which arrives reflected from the left-hand termination at

z=-% The total amplitudes of all waves at z=0 are arranged in vector

3
|a>. Then, the vector of all waves arriving at z=24 is

[a(2,)> = E*(2,)|a> (26a)

From (21), this is furthermore equal to

la(r,)> = 0 [V(2)> + My[1(2,)>). (27)

From (22), the reflected mode vector at the end of line is
Ib(e,) = ZOM71V(Ry)>- M3I1(24)) (28)
o) = FMpIV(Rg)>- My1T(%4)>)

The currents and voltages at the load network terminals are related

through g4
V(2> = Z,1T(25)> . (29)

By eliminating ]V(24)> and |I(£4)> from the last three equations one

obtains
[b(e,)> = S,la(ry)> (30)

where the reflection matrix at port 4 is

S

Sy = Mz M- D)0y Z M+ D)7 (31)

20



When the load impedance matrix is equal to the characteristic
impedance ZL= ZO’ one has a reflectionless termination, as can be verified
by (C-46) and (C-50). Otherwise,_S_4 is a matrix which has usually non-
vanishing off-diagonal elements. This means that a single incoming mode
a; produces a multitude of reflected modes bj(j=1,2,3, etc.). Thus,
energy transfers from any one mode into all other modes.

This fact is illustrated in the signal-flow diagram on Fig. 6. On
top of the figure, a,  represents the amount of energy coupled from an
external source to mode 1 traveling in +z direction. The total wave
amplitude a; at the origin, consists of ag plus the wave which was

reflected from the termination at z=-23:

-jBe4
a; = agg + al(-ls)e
This wave arrives at port 4 as
"181%
al(24) = a,e

A portion of this wave goes back as a reflected wave of the mode 1

S (2

4,111 (%)
where 84,11 is the coefficient (1,1) of the matrix §4.
Another portion of the wave al(24) goes to the enh ancement of the
reflected mode 2
54,2121 (%)
and so on, as shown in Fig. 6. For example, the total reflected wave
of the mode 2 is

b2(2 (2,4) + 8

2 = 54,2111 4,2222(4) * 54,2333(%) -

Similar situation occurs at port 3, where the load network gLsis attached.
There, the reflected wave is
|a(-£3)> = §3|b(—23)> s (32)

21



AN
a9 -8
e 1P1*q
b, ¢
Bbis
@t‘lzs
N
52 'jﬁ?
e 1P2%4
b2 .
Y
Dby

bSS

Fig. 6. Signal flow graph of the MIL from Fig. 5.
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with

oot ) + -1
S5= My Ziz M- DO 23 My + D) (33)

The above discussion was based entirely on the frequency-domain
considerations, where each mode was a steady-state sinusoidal function
of time. Assuming the quasi-TEM waves are non-dispersive, an arbitrary
waveform is transmitted by each mode without a distortion. Therefore,
for mode i, the wave ai4(t) traveling in the +z direction at the port
4 is just a delayed waveform which started at the origin as aio(t)

%4
234(8) = 250(t - 57

(34)
Since the waves are now functions of both time and position, the second
subscript is used to specify the position 0 for origin , 4 for z=24 etc.
The time-table of the outgoing and reflected waves on a 3 conductor
line is presented in Fig. 7, At z=0, the three wav>s start to travel to

the right
ajg(t) » a,(t) , ag,(t)

and similarly the three waves start to travel to the left,
bio(t) 5 byg(t) , byy(t)

Each wave travels with its mode velocity Vi At t=t, the first wave

arrives at port 4,

S

23



Fig. 7. Time-table representation of multiple reflections on the terminated MTIL.

Its shape is a shifted shape of the wave which started from the origin,
according to (34). This wave produces three reflected waves, which then
travel with their corresponding velocities back in the negative z direction.
When the load network contains inductances and capacitances, the shape

of the reflected waves will be different from the incoming waveshape.

For simplicity, consider the case when the load network is purely re-
sistive. In that case, the reflected waves will be of the same shape

as the incoming waves. The amount of reflection is specified by (30)

and (31), where Z ,is a purely resistive network, thus §4 has also

L4
purely real elements. The reflections from the left-hand termination

arehandled in an analogous manner,

24



As demonstrated above,the scattering representation
in terms of vectors |a(z)> and |b(z)> is very convenient
for the treatment of propagation and reflection of waves
on a MTL; Nevertheless, often it is necessary to compute
explicitly the voltages and currents on individual con-

ductors. They are specified by vectors |V(z)> and |I(z)>.

The traasformation from scattering variables to the currents

and voltages is obtained from (19), (20), (25), and (26)

as follows

|[V(z)> Mv(la(z)> + |b(2)>) , (35)

|1(2)> = M;(la(z)> - [b(z)>) . (36)

The inverseltransformation is obtained from (21), (22), (25), and

(26):
la(z)> = 3 O [V(2)> + MylT(2)>) , (37)
[b(2)> = 5 07IV(2)> - Myl 1(2)>) . (38)

Note that the components of scattering vectors [|a(z)> and |b(z)>

correspond to the individual normal modes, while the components of the
voltage and current vectors |V(z)> and |I(z)> correspond to the indi-
vidual conductors. As an example, a; is the complex amplitude of the
ith mode. On the other hand, Vi is the voltage of the ith. conductor

with respect to ground.

25



Fig. §.(a) shows a section of MIL of the length &, The voltages
Vi(z) are specified between each conductor and the ground, where
the conductor side is considered as positive. The currents Ii(z) on
the individual conductors are specified positive when flowing in
(+z) direction. This apparently trivial fact is pointed out because
by using this convention, the current at z={ points out of the MIL
section, which is not customary in the network theory. However, the
present convention is found to be more natural for the matrix
manipulations which follow. The consequence of this convention is
that the total power

P = 2 Re<V|I>

is not always pointed into the network, as customary in network theory,

but here P represents the power flow in the positive z direction.

Thus, at z=0, P is into the MTL, at z=%, P is out of the MIL.

The use of |a> and |b> variables in place of |V> and [I> vari-
ables is indicated in Fig. 8. (b). At each end of the MIL there
is a transforming network NT, which transforms the variables according
to (35)-(38). At z=0, the left-hand terminals of NT are the actual
MTL conductors. Here, the variables are |V(0)> and |I(0)>. The
other side of the NT network has the mode variables |a(0)> and |b(0)>.
Each mode is represented by a fictitious single transmission line,
shielded from all the other lines. Each single transmission line
passes the wave through by simply adding the phase shift (-8;%) as
follows

= -js'z
ai(l) ai(O)e i
At the other end of the MTL, at z=%, variables |a(%)> and |b(2)> are
transformed back to variables [a(%)> and [b(R)> in another identical

transforming network NT'
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Fig. 8(a). MIL section of length %.
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Fig. 8(b). Equivalent circuit for normal modes.
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SECTION III
EQUIVALENT SOURCES FOR APERTURE EXCITATION

Each normal mode is described by its scattering amplitude a;
(waves traveling in +z direction) or bi (waves traveling in -z
direction). The detailed distribution of the electric and magnetic

field, for the ith. mode traveling in +z direction, is

-J'Biz -
Ej(x,y,2) = aze " 1 e (x,y) (39)
ﬁ 'JBlz ->
1 (X,y,2) = a e h; (x,y) (40)

Ei and Hi are the normalized modal field distributions over the cross
section of the MIL. The total power transmitted by the ith mode
traveling in +z direction is obtained by integrating the Poynting

vector over the cross section:

p; = %Re[f[ﬁi(x,y) x ﬁ:(x,y)b ds

Ccross section

For normalized modal field distributions

%
[-éi(X,Y) x HJ (X,Y)]' d—g = Gij (41)
cross section

and the power transmitted by the ith mode is

+ _ 1 .2
P; = 7l

in accordance with circuit theory.
Fig.9. (a) shows the junction representing an aperture on a MTL.

The aperture is excited by an external field from below the ground plane.
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This excitation is replaced by an cquivalent pair of dipoles Cox and
Cey‘ In what follows, an equivalent circuit will be established for
the junction between the two infinitely close planes, denoted by
L and R (letters stand for "left" and "right").

According to (13), the dipole pair Cox and cey excites the ith

mode traveling in +z direction as follows

= % (i X 0) - Coue s (x0,0)] (42)

31 mx x1i ey yi

As indicated previously, a convention in the present report is that
the waves traveling in +z direction are denoted by a;, while the waves
traveling in -z direction are denoted by bi' Therefore, (42) gives a
source of the traveling mode in +z direction, and is denoted by ;-

A traveling wave source is a thrce-terminal device, as explained in

Appendix B.

Another word about the notation in (42): hxi(xo,O) is the x-component
of the magnetic-field modal distribution of the ith mode evaluated
at the point X=X, and y=0, Similarly eyi(xo,O) is the y-component of
the normalized electric modal field.

For the traveling-wave source of the ith mode propagating in

-z direction, the following is obtained from (9):

. -
bSi = 7 [ mehxi(xo,o) Ceyeyi(XO,O)] (43)

Fig. 9.(b) shows the modal sources between the left and right
reference planes. This equivalent circuit is appropriate for an analysis

in terms of scattering coefficients, The equivalent circuit in temms
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of voltages and currents can now be obtained by a simple matrix
manipulation. First, define the vectors containing the scattering

sources as follows:

a> = | . Ibg> = | . (44)

sN sN

The traveling wave vector, laR> traveling in +z direction out of the
right-hand reference plane is a sum of the source vector Ias> and

the wave vector |aL> incoming from the left upon the left-hand reference
plane:

lag> = [a;> + la> (45)

Similarly, the waves traveling in the -z direction are related as
[b> = Ibg> + [bg> (46)

The voltage and current variables of the source junction are
shown in Fig. 9.(c). The voltages and currents at the left-hand
plane are defined by IVL> and IIL> » Wwhile the right-hand variables
are |VR> and |IR>. The current sources from Fig. 9,(c). constitute
vector |Is> while the voltage sources make |Vs>' The Kirchhoff laws

require
V> + [V = [V (47

and

|
—
A\

1> + 11> = |1g | (48)

To change from scattering representation to voltage representation,

use (35)
IVe> = IVp>-IVp> = Wy (lag>-lay> + [bp>-|by>)




By virtue of (45) and (46):

V> = M (Ja>-[b>) (50)

The components of |as> and |bs> are given by (28) and (29). The
difference temm is

a_. -b_.=c ,0) (51)

si si mxhxi (XO
and it depends only on the magnetic dipole excitation, Thus, the
voltage sources in Fig. 9(c) are to be computed as follows:
“mcfieg Xg-0)
Vo =Ml - (52)
“mxyn (%05 0) ]

The current sources are similarly found as follows
1> = M; (lag+ [b>) (53)
The sum term depends entirely on the electric dipole moment

i, 4
355 * bsi = Ceyey; (x4,0) (54)

so that the formula for computation of the current sources becomes

Cey ey1 (xo, 0)
1> =M | . (55)

Cey eyN(xo,O) )
In the above derivation, the energy storage at the junction was not
taken into account. The circuits from Fig. 9.(b) and (c) are thus the
zeroth-order equivalents, such as the zeroth order equivalent of a single

transmission line from reference [13].
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SECTION IV
EXAMPLES OF VOLTAGE WAVEFORMS

The voltages induced on a 2-conductor transmission line
filled with inhomogeneous dielectric will now be computed in order
to illustrate the use of the theory developed thus far. The system
is shown in Fig. 10. A small circular aperture of diameter d = 2 cm
is located at z = 0. The two-conductor transmission line is located
between z2=-27 = -7m and z = Ly = 5 m.

The cross section of the transmission line is shown in Fig. 11:
it consists of two strip conductors of width w, placed between the
three layers of dielectrics denoted el, €55 and €ze The dielectric
thicknesses are denoted by hl, h2’ and h3. This parallel-plate
model of the transmission line is selected because of its simplicity,
and it will be used to illustrate the procedure of computing
voltages induced by an EMP wave. The electiostatic field within the
transmission line from Fig. 11 may be produced in two independent
ways. In the excitation A, a potential Vé is applied to conductor
a, while conductor b and the shield are held at zero potential. Then,

the fields in the three regions are

In the excitation B, a potential vy is applied to conductor b, while

conductor a and the shield are held at zero potential. The corresponding

fields are
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Fig. 10. Terminated 2-conductor transmission line with an aperture.

s BN

Q

o

Fig. 11. Parallel-plate 2-conductor transmission line.
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-7 . -2 b . -3 b
BEg=0 ; Ep- % h, ° Exp % b,

Under arbitrary excitation the fields in the individual regions

(i =1, 2, 3) are obtained by superposition:
(56)

In order to compute the coefficients of electric induction
matrix, one must find the charge per unit length of the conductor a.
This is accomplished by integrating the electric flux through the

closed surface Sa around the conductor a:

Qa = ,//.E:E - d8

Sa

where ¢ and E depend on the point of integration. Using (56), the
charge Q, is found to consist of two parts, one proportional to V,

and the other proportional to VB.

Qa

P
ksjz_\\
>m+
B

P
—

wrﬂ&

7

Qa VéKaa * VBKab (57)
The constants of proportionality are called induction coefficients,
denoted Kaa and Kab' They depend only on the geometry of the system.

For example, K__ is computed as follows:

aa
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w/2 w/2

— ° - . *
aa = €1 / ElA aydx €z ESA aydx
x=-w/2 x=-w/2
€ €
1 3
K_=wl— +3= (58)
aa [hl hs}

Similarly, the other induction coefficients are found as follows:

€3
Kap = Kpg = W E (59)
€~ €
- 2 (60)
=W [-—i + —_— ]
Kb R, B,

These coefficients form induction coefficient matrix K

K K
aa ab
K= [ K J (61)

ab  pb
As an example of a symmetric system, the following dimensions have been
selected:

h

=2cm,h2=2cm,h3=1cm,w=10cm,e 1.0,

1 1r=

€, = 1.0, €5 = 2.0, d=2an.

'

The corresponding matrix K is
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25 -20
K=¢y [-20 25

The induction coefficient matrix with only air as dielectric will be

denoted K':

15 -10
L
K'=¢ l-10 153

By using matrices K and K' one can find the modal velocities, voltage
and current eigenvectors, and the impedance matrix by the procedure
described in Appendix C. The inverse of the induction matrix L is

directly proportional to K' as follows

-1 Z

=
n

0

~

(62)

where ¢ is the velocity of the light in vacuum. Next, the eigenvectors
and eigenvalues of L_-l are found, and an auxiliary matrix B is formed
according to (C-15). When the eigenvalues of B are computed, the modal
velocities v, are found as their inverse square roots, according to
(C-16). The eigenvectors of B are then used to form the modal matrices

M\, and MI’ according to (C-42) and (C-43):

%21  %a2 -6.136  -2.369
M = = (63)
- (
%1 b2 \-6.136  2.369
[ -
Va1 Va2 -0.081489  -0.21106
M = = (64)
Yp1 W2 (-0.081489  0.21106
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Subscripts a and b denote the conductors, and subscripts 1 and 2
denote the modes.

Next, modal functions ey and hx will be evaluated. The aper-
ture is placed at the center of the bottom shield conductor, as shown
in Fig. 11. By definition, the electric field of the nth mode trav-

eling in positive z direction is

. -z
E (x,y,2) = ae (x,y)e (65)

By selecting a = 1, the electric field at z = 0 becomes

E (x,y,0) = & (x,) (66)

When a = 1 and bn = 0, the voltage vector is obtained from (35)

as follows

¢
lm>=|%>=h$] - (67)

Thus, in order to find the modal function Eﬁ of the mode n (here,

n =1 or 2), the potentials on the two conductors must be selected
equal to ®an and Opn 25 shown in Fig. 12. Then the modal function is
equal to the electric field, according to (66). Since the field has

only the y component, the result is

e = ¢ E + ¢ E =-¢b;n (68)
yn an yZA bny2B h3

The modal function ﬁh(x,y) is equal to the magnetic field ﬁn(x,y,o)

inside the transmission line, when conductor a carries a current Ia==wan
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and conductor b carries current Ib = wbn' The situation is shown

in Fig. 13. The currents are assumed to be uniformly distributed over

the conductor surfaces. An elementary computation gives the following

value for the magnetic field modal function:

h = lpanhl * l‘Ubn(hl * h3)
xn w(h1 + h2 + h3)

(69)

In the example treated here, a time domain response will be evalu-
ated, while most of the theory presented until now has been formulated
in the frequency domain. In order to use formulas (8) and (9) for a

general time variation, they are rewritten as follows:

= - 9 ext _ .int

“mx T "M% 3% [ Hys Hys ] (70)
- 9 ext rint

Cey = €% 3% [ Eys Eys ] (71)

The polarizabilities o and a, are given by (10).
The incident wave orientation is specified by angles o and 6 as
shown in Fig. 3. Then for a TM polarization, the field components of

importance are

ext

%o
ys n

ECXT = 2B F(t)sing HEXT =

‘s F(t)sino (72)

An arbitrary time variation of the incident plane wave is described by

function F(t). For EMP wave, a simple function is selected as follows

-a.t -B,t
F(t) =e 1 - 1 (73)
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Fig. 12. Evaluation of the electric field on the line from Fig. 11.
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Fig. 13. Evaluation of the magnetic field on the line from Fig. 11.
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having the following derivative

F'(t) = -a,e + Bye (74)
The following parameters of the incident plane wave have been

selected for the present example:

Ey= 100 kV/m, o = 30°, 8 = 45°, oy = 3.10%71, 8. = 10871,

The electric and magnetic current moments are now computed by (70)

and (71):
3
c =289k pre) sina (75)
mx n 6 70
d3
Cey = 2 e Tf'EOF'(t) sind (76)

These values are to be substituted in (42) and (43) in order to compute
the traveling wave sources for different modes on the multiconductor
line. For the present example, the modal functions eyi and hxi which
are needed in (42) and (43) are determined by (68) and (69). The ini-
tial amplitudes of the traveling wave sources can now be computed and
the multipole reflection traced down in a manner indicated in Fig. 7.

As long as the loading at each end of the multiconductor line consists

of pure resistances, such as in Fig. 10, the wave shape remains unchanged

after each reflection, and is specified by the function F'(t) from (74).

41



In the first example to be computed, the following loading
resistances have been selected:

R = 1k, RbL = RbR = 100%, RCL = R.CR = 1Q

aL = Rar

The load impedance matrix of a T network is then obtained as

Z1; = Ry * Ry = 1.001k0
2112 = R = 10
Z,, = R *+ Ry = 1.001k0

The corresponding scattering matrix is obtained from (33)

0.43488 0.17495
0.17495 0.90584

Since the load resistances on the right-hand side are the same as on
the left-hand side, §4 = §5. For each incident wave a; at the port 4,
the reflected waves are computed by

b. = S..a. for j = 1,2
Then, the voltages are obtained from (35)

V> = M, (Ja> + [b>)
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The velocities of the two waves are v, = 3-108 m/s and

1
vy, = 2.236 - 108 m/s. Fig. 14 shows the voltages on the right-

hand end of the transmission line. V1 is the voltage on the con-
ductor a , while V2 is the voltage on the conductor b. First

pulse arrives at t, = 24/V1 = 16.6 ns. Note that this is even

mode, since the polarity of the pulse is the same on both conductors.
Shortly afterwards, at ty = 2,4/v2 = 22.4 ns, the odd mode arrives
producing a positive pulse of V1 and a negative pulse of VZ' The
next arrival is the group of four waves which are reflected from

the left-hand end of the line, and the process is continued through
multiple reflections bouncing back and forth on the line.

At each of the bounces, some of the energy is lost in resis-
tances terminating the line, so the process gradually dies off as
seen in Figure 14. If one end of the line is terminated in a resis-
tance matrix equal to the characteristic impedance matrix EO’ there
are no reflections from that end. In the next example, we terminate
the right-hand end of the MIL by a matched impedance. The necessary
Tesistances are obtained from Z, as follows. First ZO is computed

2p
by (C50)

43.260 32.036

25
32.036  43.260

Then, the resistances of the T-network are obtained as

RiR = ZOll - 2012 = 11.224Q
RbR = 2022 - 2012 = 11.224Q
RCR = 2012 = 32.0369Q
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Fig. 14. Voltage waveforms on a 2-conductor line: moderate mismatch.
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4

With such a matched termination on the right-hand side, the resulting
voltages take the shape as shown in Fig. 15. The first arrival of
the odd and even mode is similar to the previous situation in Figure 14.
Also, the next four pulses are similar to those from Figure 14, but
after that there are no more waves left on the line.

Another extreme situation occurs when there is no attenuation ,
because the terminations consist of open-circuits or short circuits.

In ¥igure 16, the following terminations have been selected

R; =R, =1k, R

pL = R

bR = 0.1%, RCL =R, = 0.01¢Q

cR

There is little attenuation of the voltage waveshapes in the first
300 ns, and the multiple bouncing on the transmission line continues
for a long time.

The computer program evaluates the individual pulse arrivals in
the close analogy with the time-table from Figure 7. If the MIL can
support N différent modes, each of those prod.ces N other reflected
modes at each bounce. Very soon the storage requirements become
prohibitive. For a 2-conductor line of the total leng+h 12 m as in
Figure 10, there are 510 pulse arrivals within 300 ns. If the number
of conductors is increased to three, there are 9840 arrivals which are
to be stored before sorting them in chronological order. It is obvious
that this procedure is practical only for computing the early time
responses.

An example of the three conductor parallel-plate MIL is shown
in Figure 17. The voltages on the individual conductors are denoted

by Vl’ V2, and V3.
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Fig. 15. Voltage waveforms on a 2-conductor line: matched load at left-hand

terminals. .
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Fig. 16. Voltage waveforms on a 2-conductor line: large mismatch at both ends.
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Fig. 17. Voltage waveforms on a 3-conductor line: moderate mismatch.
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All the examples computed in this Section utilize a parallel-
plate model of the MIL with inhomogeneous dielectric, because of
the availability of simple formulas for the evaluation of induction
coefficient matrix K and of the normalized modal functions ey(xO,O)
and hx(xO,O). However, the same procedure for computing the voltage
waveforms may be applied to any other set of data for K, ey and hx
which may be obtained by a numerical solution of the arbitrary
shapes of conductors. Several numerical procedures for computation
of the induction coefficient matrix K have appeared in the recent
literature (see [16] to [18]). If these methods are supplemented by
computation of ey(xo,O) and hx(xo,O) at the aperture center, the rest
of the computations of voltage waveforms described in this Section

is applicable to arbitrary conductor shapes and sizes.

16. W. T. Weeks, '"Calculation of Coefficients of Capacitance of
Multiconductor Transmission Lines in the Presence of Dielectric
Interface," IEEE Transactions Microwave Theory Techn. Vol. MIT-18,
pp- 35-43, Jan. 1970.

17. J. C. Clements, C. R. Paul, A. T. Adams, '"Computation of the
Capacitance Matrix for Systems of Dielectric-Coated Cylindrical
Conductors," IEEE Transactions on Electromag. Compat. Vol. EMC-17,
No. 4, pp. 238-248, Nov. 1975. Also see Correction in EMC-18
No. 2, pp. 88-89, May 1976.

18. C. R. Paul, "Computation of the Transmission Line Inductance
and Capacitance Matrices from the Generalized Capacitance
Matrix,' IEEE Transactions Electromag. Compat., Vol. EMC-18.
No. 4, pp. 175-183, Nov. 1976.
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SECTION V
FIRST-ORDER EQUIVALENT CIRCUIT OF THE SMALL APERTURE

In Fig. 13 , a set of incident waves coming from the left is described
by !aL>. The aperture region is located between two planes denoted L
and R. There is no incident wave coming from the right, IbR> = 0. The
waves laL> excite the pair of dipoles cey and Cox’ The excitation field

produced by the jth incident mode is

int _
Hxsj = AL XJ(X 0 (77)
gint _ ,0 (78)
ysi = 21i%;j %0r 0

This is an internal field, according to Fig. 2. From (8) and (9),

the dipole moments produced by the jth mode are

cmxj. = jwuotmhxj (xO,O)aLJ. (79)
ceyj = -staeeyj(xo,O)aLj (80)

Summed over all the incident modes:

N

“mx ~ IV lehXJaLJ (81)
N

Cey = - jwea le eyJ Lj (82)

where argument (xO,O) has been ommitted for brevity.
These dipoles produce the outgoing waves . Their ith component

is, according to (13) and (14):
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Fig. 19.

Fig. 18. Aperture junction with sources.

lag >

lae > T 4 lar >

1o

|bg >

| b, >

l_" A

| bg>

Signal flow graph of the aperture junction with sources.
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aRi = [ cmxhx1(X0’O)-Ceyeyi(X0’0)]+ aLi (83)

bLi = %[mehxi (XO’O) ceyeyl (XO’O)] (84)

In what follows, argument (x,,0) will be ommitted for brevity. In (83)
the ith mode outgoing wave at the right-hand plane in Fig. 18 con-
sists of the (unattenuated) incident wave ary and the wave originated by

the dipole. Using (81) and (82)

N
= 3 85
i '2'[ Junay XIJZ hXJaLJ Jwenag f Cyj LJ (85)
N -
b; = 2[;)wu - x1j£1 hXJaLJ juena, Z eyJ LJ (86)
This can be written as
lag> = (U - j H+ j B)lap> (87)
lb>= G H+jBlap> (88)
where the real, symmetric matrices H and E are defined by
[H].. = Swuo h_.h (89)
—='ij 27 mxi Xj
(90)

1
[Elj; = 2%%0e8yiCy;

Thus, the scattering matrix of the aperture junction in partitioned

Iby> I z] laL>‘*
= (91)
lag> T I |bg>

form is




where

(92)

t—
"
w

i H+

ftr

+

13
n

U-jH+3E (93)

The signal flow graph,[16],is in Fig. 19. Also shown are
sources |aS> and |bs> from the zeroth-order equivalent circuit. Figure
19is a complete first-order equivalent circuit for scattering represen-

tation. The corresponding immittance representation will be derived next.

Fig. 20 shows a small parallel perturbation on a MIL. The perturba-

tion is described by

|VL> = IVR> (94)

and

IIZ> = X_IVL> (95)

Kirchhoff current law requires
|IL> = ]12> + |1R> “(96)
Change variables |V> and |I> into |a> and |b> according to (35) and

(36). Then, (94) and (96) become:

Mv(laL> + |b>) = MV(IaR> + [bp>) (94a)

Mp(lap> -1b>) = Y M (lag> +[b;>) + Mp(lag>-[bp>) (95a)

Multiply the first equation from the left by M'l and the second equation

Vv
by Mil. Use (C-46) and (C-47) to obtain
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Fig. 20. Small parallel admittance perturbation on MIL.
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Fig. 21. Small series impedance perturbation on MIL.
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la;> + |by> = |ap> + |bp> (94b)
|aL> - lbL> = XlaL> + X]bL> + IaR> - |bR> (95b)

where the normalized admittance matrix is introduced as

=M YM
Y= ym | (97)

By subtracting the above two equations one obtains

|bL> = -(22+X)'1x|aL> + 2(2!+X)'1[bR> (98)

When the normalized admittance matrix is ''small',[19],it is possible to

use the first two terms from Neumann's series:
-1 .1
@W+ptiu-Ip
Retaining only the linear terms in y, (98) is approximately given by

> 3 - %X lag> + U+ %X)]b}f (99)

Next, consider a small series perturbation in Fig. 21, described by

IIL> = |IR> (100)

IV1> = ZIIL> (101)
and

IVL> = [V1> + ]VR> (102)

Expressed by scattering variables
MI(IaL> - lbL>) =M—I(laR> - le>) (100a)

M, (la;> + |b>) = Z Mp(lap> - [b>) + M(Jap> + [bp>) (101a)



Introduce the normalized impedance matrix

z=M IM

Using the same approximations as in (99) one obtains

1 1
Iby> =z zla>+ U- 7 2[bp

Now add both series and parallel perturbations as in Fig. 22.

small reflections are simply added as follows
_ 1 1 1
Ibp> = (z-pla>+ U -5z -79bg>

Invoking reciprocity and symmetry of the junction

N =
|

]
N| =
N~

o>

<
]
NI
fe
1
N =
M=

lag>

Comparing (106) with (91), one concludes

jH+JE=3(z - P
jH+ JE= - 2z + Y)
=+ JjE sz + Y
Solving for z and y:
z=JH
Y= -J&E
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Fig. 23. Equivalent circuit of the aperture junction with sources.
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From (89) and (90) it can be seen that all the elements of H and of

E are real and proportional to frequency w. Thus, the elements of

2z are represented by self and mutual normalized inductances
z = jol (209)

where:
.. = uamhxi(xo,O)hxj(xo,O) (110)

1)
These inductances may be positive or negative, depending on the signs

of h . and h ..
xi Xj

Analogously, the normalized admittance matrix consists of self
and coupling capacitances:
(111)
where the elements of ¢ are

cij = eaeeyi(xo,OJeyj(xo,O) (112)

The negative sign signifies that the capacitance is negative if the pro-
duct e ieyj comes out to be positive. A note of explanation is necessary
on the meaning of the coupling capacitance cij(when i# 3j). Such a cir-
cuit element does not exist in lumped-circuit theory. It signifies that
the current at the port i is proportional to the rate of change of vol-
tage at the port j, the constant of proportionality being defined as a
coupling capacitance.

Finally, to obtain the actual impedance matrix Z, (103) has to be
denormalized as follows
+

Z=M_ zM

Moz Moo= o M2 My (113)
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Similarly, the denormalized admittance matrix is

F_ +
Y=M yM =-juM cM

. (114)

Note that all the matrices on the right-hand sides of (113) and (114) are
real, thus the equivalent circuit is easy to interpret.

When also the voltage- and current sources from (52) and (55) are
included in the circuit, the complete first-order equivalent circuit takes
the form shown in Fig. 23.

This representation is valid below the first resonant frequency

of the aperture. As shown in reference [20], the lowest

resonance of a circular aperture of radius a appears at

ka=1.841

Thus, the representation is valid for frequencies

8 £ 87.9-10°
a

For an aperture of radius a = 10 am, the equivalent circuit is valid for
f<< 880 MHz. The validity of the equivalent circuit could be further ex-
tended in the region close to the aperture resonance by the methods
described in[21], which will not be pursued here.

The circuit diagram of matrix Z for a 3-conductor system is shown in

Fig. 24a. The self inductances are denoted by Lll’ LZZ’ and L23, and

[20] R. E. Collin, Foundations for Microwave Engineering, New York:
McGraw-Hill, 1966, p. I11.

[21] G. L. Matthaei,L. Young, E. M. T. Jones, Microwave Filters,
Impedance-Matching Networks, and Coupling Structures, New York:
McGraw-Hill, 1964, p. 242.
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the mutual inductances are denoted by le, LlS’ and L23. The voltage

Vl is then given by

Vp = JullyyVy * LypVp * LysVs)
Analogous expressions are valid for VZ and V3. This circuit is familiar
from the conventional circuit theory and it does not require further
comments. Ho&ever, the circuit representation of the matrix Y is some-
what unconventional. The self capacitances are denoted by Cll’ Cyy s
and C23, while the coupling capacitances are denoted by ClZ’ C23, and
C13' The current I1 is given by

I. = -ju(C

1 + CyoVy *+ CyaV3)

11V1 * G2,

and similér expressions may be written for I2 and 13. The negative

sign signifies that all these capacitances are negative, as compared
with the conventional capacitances. From the point of view of energy
balance, the negative capacitance is an active element, capable of
supplying the energy to the rest of the network. This may be considered
as an inconsistency of the equivalent circuit of the aperture, but it
will be shown that these negative capacitances are extremely small.

Furthermore, the negative capacitance can be thought of as the element

which represents missing capacitances on a uniform transmission line which

is perturbed by the aperture.’

The values of the elements in the equivalent circuit from Fig. 24
will be next computed for a 2-conductor parallel-plate MIL described
in Section IV. For a circular aperture of diameter 4 = 2 cm the electric

modal functions are computed from (68)
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_ -6.1358

e ;(x,,0) = == = 613.58
y1™0 1.107%

_ 2.3690 _
eyZ(XO,O) = m = -236.90

The values of the magnetic modal functions at the position of the

aperture are found from (69)
hxl(xO,O) = -0.81491 hxz(xo,O) = 0.42212

From (110) and (10) the normalized inductances are obtained as

L. =1.1127 - 10712

_ . 1n-13 - . . 1013
11 » Lpp = 2.9855 - 10 s %7, = -5.7636 + 10

For the frequency 1 GHz, the normalized reactances are

3 3 3

wl y = 6.9913 - 10°

1 , wlzz = 1.8758 - 10

, w2y, = -3.6214 - 10

Similarly the normalized susceptances in parallel with the MIL are

found from (112) and (10)
wey, = 1.3963 + 1072, we,, = -5.3909 « 1070 | we.. = 2.0814 « 10"
1 =1 » WCpp . » WCyy = 2.

Therefore, even at the highest frequency of interest for EMP calculations,
the normalized reactances and susceptances are small numbers. Thus it
is expected that they do not cause appreciable reflections when a wave

is propagating along the MIL.
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Consider that an incident wave laL> is coming from the left
toward the equivalent circuit of the aperture in Fig. 22. Assuming
that the right-hand side of the equivalent circuit is terminated in
an infinitely long MTL, it is of interest to find |bL> in terms of
IaL>. Since for an infinitely long MIL the vector le> vanishes,

the equation (106) gives

b > = %(z-y) la;> (114a)

Therefore, the reflections due to the presence of the equivalent cir-

cuit on a uniform MIL are determined by reflection matrix [

S wl, + WC wl

PRSI B s § S b1 12 7 %12
) - =L 2w, + we W, + we (114b)
. 12 12 22 22

For the case under consideration, the reflection matrix is

2 -9.0123 - 10°°

3 (114c)

1.0478 - 10~

-9.0123 « 1073 3.9572 « 10°

It can be seen that the reflected amplitude of the first mode is only
1.05% of the incident amplitude for the same mode. The other reflections
are even smaller than 1%. At lower frequencies all coefficients of the
reflection matrix are proportionally reduced. This fact justifies

the procedure from Section IV of computing the voltage waveforms by
entirely neglecting the presence of inductances and capacitances in

the equivalent circuit.



It is of interest to investigate the equivalent circuit of the
aperture on a single-conductor transmission line. The geometry of the
problem is such as specified by Fig. 3. A round wire of radius r is
placed in parallel with the ground plane, so that the center of the
wire is elevated above the ground plane for distance d. The circular
aperture of radius a is located at x = Xg> ¥ = 0, z =0.

When N = 1, it follows from formulas in Appendix C that

matrices M; and M, reduce to simple scalars:

4
- e _ /L (114d)
My \/: o M= UG

where C' and L' are the distributed capacitance and inductance of the

single-wire transmission line. When the subscripts i and j are omitted,

the normalized inductance from (110) becomes
L = o, hz(x 0) (114e)
mx-0’°
and the normalized negative capacitance from (112) becomes
c = €0 ez(x 0) (1146)
ey 0’

The normalized modal functions h.x and ey for the TEM mode of a single

wire above the ground plane have been derived in [13] as follows

[13] D. Kajfez, "Excitation of a Terminated TEM Transmission Line Through
a Small Aperture," Interaction Note 215, July 1974.
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. h
h_= 114¢g)
X w/zo (xoz + hz) ( &

. - nh | (114h)
Y . o (xg’ + 0

where h denotes the reduced height of the wire:
(1141)

In order to obtain the actual values of the equivalent inductance and

capacitance, the values are to be denormalized according to (113) and

(114):

N
]

. . 2 114j
JmL=J¢uMVz ( 3)

<
]

SjuC = -J'wMIZY (114%)

The values of L and C are, therefore

L= wo zhz — (115)
© ﬂz(xo + h®)
2,2
- nh 116
C = ea, > > (116)
Z0 (xo + h°)

where
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Zy = 60 cosh™- () (116a)

0
The similar formulas have been derived by Lee and Yang [22]. Their
formulas (20.a) reduce to (115) and (116) in the case of a thin wire
(r << d, h~d). For thick wires it is believed that (115) and (116)
are more accurate, because the exact TEM modal functions have been

used in the derivation.

[22] K. S. H. Lee, F. C. Yang, "A Wire Passing by a Circular Aperture
in an Infinite Ground Plane,'" Interaction Note 317, February 1977.
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SECTION VI

INTERACTION BETWEEN AN APERTURE AND A SINGLE WIRE

In this section we examine the validity of the assumption that the
dipole moments in the aperture can be determined from the plane wave exciting
the aperture ignoring the presence of the MIL. This assumption has been
used to derive the model for aperture coupling to the lines in the preceding
sections. For simplicity, we treat only a single wire line over a ground
plane. It is possible, in principle, to extend the analysis to treat a MIL
backscattering into the aperture by superimposing the backscatter from the
individual lines, accounting for the mutual interaction of the various con-
ductors. The general situation is too difficult to treat here, however. As
an additional simplification, we assume the conducting line is bare.

Referring to Figs. 2 and 3, in addition to the plane wave fields EEXt
and pext exciting the aperture, we must now consider aperture fields
f;nt and ﬁint which are the fields reradiated from the transmission line.
Theze fields are linearly related to the dipole moments in the aperture and
we show in the following that they can be written as

H}i:slt =t (117)
E}l,gt = o, (118)

where tm(te) is the x(y) component of the short circuit magnetic (electric)
field at the aperture reradiated from the line due to the appropriately
directed unit magnetic (electric) current moment in the aperture. In the
absence of any other sources in the interior region, Equations (8) and
(9) in combination with (117) and (118) become

- junis pext
“mc = (ot Y (119)
i J9H% T

-



jweae Eezt
=€ yS (120)

4 1+juea t,

It is easily seen that the coupling from the line to the aperture can thus
be neglected if it can be shown that

we ot << 1 (121)

we aete << 1 (122)

In the following we determine t, and t, the aperture fields scattered from
the wires due to unit electric and magnetic dipoles in the aperture.

Beginning with the dipole sources Ee and Em (see, e. g., Fig. 1(b)},
and a single wire in the internal region, the ground plane is removed so
that the dipole and wires are imaged as in Fig. 25. Note that imaging merely
doubles the current moments of the dipole sources. Transverse polar coordi-
nates B = (p,¢) and Ei = (pi,¢i) measured from the wire axis and the image
wire axis, respectively, are also introduced in Fig. 25. The vector 30
establishes the location of the aperture with respect to the wire axis.

The fields due to the dipoles in the absence of the conductors may be
determined from free space magnetic and electric vector potentials given by

-jkl?-x03¥]
uc e
A = - S (123)
Y 2T - pol
-jk[?—xoail
Ec _ e
F o= LS (124)
2m [r-poj
respectively, where
R G S
T =xa +ya .
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IMAGE
CONDUCTOR

Fig. 25. Geometry of wire over a ground screen with equivalent dipole moments
representing an aperture.
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The currents on the wire and its image are assumed to be entirely z-directed
but in opposite directions. Hence they determine a magnetic vector potential
Az which can in turn be used to determine all field quantities. Boundary
conditions require the z-component of electric field to vanish at the surface
of the upper wire in Fig. 25. However it must vanish everywhere interior to
the wire as well and if we restrict our observation to the wire axis, 3==6,
only the total or average current I(z) from the upper wire contributes to

the vector potential there. This choice of the observation point thus averages
out of the problem any circumferential variation in the current on the upper
wire; the circumferentially varying currents on the image wire do, however,
contribute to the vector potential at %=0. But if the wire is thin and
sufficiently far from the ground plane in terms of the wire radius, i.e., if

kr << 1, (125)

T << d, (126)

then the image wire may essentially be replaced by a line source along the
image wire axis which carries a current I(z) directed opposite to that of the
upper wire. In other words, under conditions (125) and (126), if the image
wire is replaced by multipole line sources located at 3i==5, the contributions
of the dipole, quadrupole and higher order multipole terms can be neglected
compared to that of the monopole current filament I(z). Thus the magnetic
vector potential along the upper wire axis due to the wire and image current

is approximately

U ’e-jk/::2+(2-z')2 e—jk»’4d2+(z-z')2
= I(z") -
z 4w

l3=6 Y r2+(z-z')2 /4d2+(z-z')2

-00

dz'. (127)-

Along the axis of the upper wire Ez must vanish, that is
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> 1 2 -> -> 1 -> _
a [:J.um (P17 ) BA A, - EVx(alxpm)_')+ =0 (128)
[o]

]
o

or writing out the desired components,
2

2 3"A oF
1 12_+sz _>_>=__1 _Tex+ _lg_mx*
Jwpe | oo z 5=0 JwuHE 923y p=6 e dy p=5

(129)

Equation (129) with (123), (124), and (127), is an integro-differ-
ential equation for the current I(z) induced on the transmission
line by current moments cey and Cmx in the aperture. In order to
determine the current we introduce the Fourier transform pair

(22

1 ~ -k, z
v(z) = ;%: W(kz)e dk, (130)
e
~ 1 +jkzz
v(k,) =';%: ¥(z) e dz (131)
™

where the tilde indicates Fourier transformed quantities. Writing the
current in (127) as an inverse transform and making use of the identity

o[22 w
e-Jk/p +(z-2") . @) -jk, (z-2")
= = H'“) (k p)e dk (132)
/IT)—Z_ 2_'] 0 fo] r4
p +(z-2'

-0
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2
where kp = fﬁ“-kzz ,Reke>c, Imkp<0, (127) becomes

@ o o

- -jk -k")z!
P e — fjj Pk )HP xn) - BB @d)] e 2 2
z 3=6 4j(2ﬂ)372 V0 p 0 )
e (133)
-jkéz
x e dkzdkédz'
Noting that o
-3k, k})z!
e dz' = Zné(kz-k;) (134)
(133) simplifies to the transform representation
[N E— f fa ) HP & ) - 189 x d)]e-jkzzd:k (135)
z 3=6 4j/7§ z 0 p 0 p z

Similarly, we express the right hand side of (129) in transform representa-

tion:
-jk|T-p,|
2 J 0
3°A, 2 J:u Coy © ',
9z3y 2=0 9z3dy o ’;_EOI By
uc 2 -jk.z |
_ %y 2% @ 122 z
4jm  3z9y H0 (kplp QODe dkz =0
uec d . —-— -jk_z
| — ik k HOD i Aded® de % dk
w72 2P -0 z
x0+d

- | (136)
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and

'jkl?'aol
ame s [ﬁscmxe ‘]
W |36 oy 2|73, | 30
£cC -
- 9 (2) >
—o p=

[}

. d ik
4n/xg+d2

Z

-00

(137)

Substituting (135), (136) and (137) into (129) and taking the Fourier
inverse of the resulting equation yields finally the transform of the current,

(2) 7, 2
I(k) = jv2/m d (H% [ko'&% 3 d ] KGnx k.c ]
z 2 2 n z ey
ko &€+d2 HO (kpr)-HO (kad) .
= %n(kz) * Ie(kz) (138)

where in(kz) and fe(kz) are identified as the partial currents arising from
the corresponding source terms Cix and cey’ respectively. Note that I is
an even function whereas Ie is an odd function of the variable kz'
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The total line current can be obtained by taking the Fourier inverse
of (138). Our interest, however, is in obtaining the fields that the wire
and image currents scatter into the aperture and these can be found most
easily from the vector potential expressed in terms of the current transform.
The vector potential at an arbitrary point is obtained by again treating
both the line and its image as current filaments at p=0 and Ei=6, respectively:

o0

—jk{3+gz(z-z')i -jkf31+§z(z-z'Jl
u e e
z  4n -J’\ I(Z')[ > > \ B > > '7 ] dz'

lp+a, (z-2") | lo;*a, (z-2")]

X
]

-0

- - - -jk,z
f T 5P & 181 - B 130T T 7 ak,

43/2m (139)

where,again, (132) and (134) have been used. The desired field quantities

in the aperture are

2
gint 1 24,
ys jwue 9ydz X=X,
y=2=(0
- id HORTRRS) [kp/x02+d2'dkz
2/2_Trwe/xg +d° T

[ fT7 4
T, (k,)k k /x0+dldk
Zﬁw&’ f [ i i
2 fw 2[(2)Lk/ +d2] dk
2

§8 aery - B§H )

= teCey (140)
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4

and

H11'11:
XS

£ (2) 2, .2
jl(kz)kpﬂl [kp x0+d dkz

-00

d
2jV7m /xé+d2

oo

= (2) 2
f T (kK HY [kp/x0+d dk,

-0

d
2iVER /x€+d2

Zmn xg+d2 ng) (k,r) - H(gz) (2k )

=cmxk{ Iy }J‘w [H{Z)(kp@?]]zdkz

i
t
(g]

nCmx (141)

where we have used the even and odd properties of fm and Te to appropriately
simplify the integrals (140) and (141).

Returning to the examination of conditions (121) and (122), we first
note that the four parameters k, Xy d, and r in the integrals can be
reduced to three parameters if all distances are measured in terms of wave-
lengths. Thus, we examine

3 2=
(SF)_(ke)“(kd)” t_ (kx,, kd, kr)
ot = " (% (142)

(o) + (k)
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(SF) o () * (k) 2 & (kg Kd, ko)
(ﬂeaete = 2 - 2 (143)
(ox)® + ()

where we have introduced the aperture shape factors defined as

Q
(SF)_ = 2—’;‘ (144)
(SF), = %} (145)

where o and a, are the aperture polarizabilities and £ is the largest aper-
ture dimension. The shape factors have been determined for a variety of
aperture shapes by numerical and experimental means [11-12] and are typically
somewhat smaller than unity. The normalized functions Em and Ee are

defined as

i} n(xg+d2) .
tm(kxo, kd, kr) = ——];:;f' m
- (2) ’
_ L f Hy Y (1-a?) [(kxg) 2+ (kd) “] do (146)
2T

- HSZ) 1-a2 1 p - HéZ) Y1l-0% kd

[11] S.B. Cohn, '"Determination of Aperture Parameters by Electrolytic-
Tank Measurements', Proc. I.R.E., Vol. 39, pp. 1416-1421, November
1951.

[12] S.B. Cohn, ''The Electric Polarizability of Apertures of Arbitrary
Shape," Proc. I.R.E., Vol. 40, pp. 1069-1071, September 1952.
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2
1 o2 H{z)( /?l-az)[(kx0)2+(kd)21)] da

S i) (/1-:7 kr) -H§) (/5737 kd)

(147)

Since our assumption that the aperture may be replaced by current moments
Ee and %n requires that the aperture be small, say less than a tenth of a
wavelength, then (kﬂ,)3 < .25 and since

(SF) <1 (148)
kd?

< 1 (149)
()% + (k)

we need only demonstrate that

]%m} << 1 (150)

|Ee| << 1 (151)

to show that the wire does not sufficiently excite the aperture that its
effect needs to be accounted for in computing the aperture dipole moments.
The integrals (146) and (147) are numerically evaluated by (1) noting
the symmetry of the integrals about o = 0; (2) integrating mumerically using
Gauss-Legendre integration on the interval 0 < o < 2, with a singularity
of the form 1/(a-1) removed; (3) adding a contribution from the branch point
at a = 1; and (4) integrating numerically on the interval 2 < a < « using
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Gauss-Laguerre integrationwhich assumes an exponentially decaying integrand.
The appropriate rate of exponential decay in the integrand can be determined
from the large argument approximations to the Hankel functions appearing in
(146) and(147).

From the numerical calculations, Figs. 26-33 show that over a wide range
of parameters kxo, kd, and kr, Egs. (150) and (151) are indeed satisfied. How-
ever, when the wire is directly above and close to the aperture (kxO = 0 and
kd small), (150) and (151) are not satisfied. If the wire is close to the
aperture, however, the aperture must be small in order for the dipole moment
representation to remain valid. Calculations by Lee and Yang [22] indicate
that the dipole moment representation of a circular aperture (without considering
backscattering from the wire) is accurate to about 10% only if 2kf < kd and it
seems reasonable that this upper bound on the maximum aperture dimension would
hold for other aperture shapes as well. Using this as an upper bound on k&
and noting that Em and Ee are largest when kxo # 0, it is sufficient to show

that

3.
[k_zd] % (0,kd,kn)| << 1 (152)

[52‘1] 3IEm(o,kd,kr) | «<1 (153)

in order to exclude consideration of wire-to-aperture coupling. These quanti-
ties are plotted in Figs. 34-35. The figures show that the effect of the wire
on the aperture dipole moment is negligible whenever the representation of the

aperture by dipole moments is valid.
This completes the task set for this section, but it is interesting and
instructive to return to the current transform (138) and use it to find the

current on the line by inverse transforming:

[22] K. S. H. Lee, F. C. Yang, "A Wire Passing by a Circular Aperture in an
Infinite Ground Plane,' Interaction Note 317, February 1977.
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Fig. 26. Magnitude of th for a wire of radius kr = 0.1.
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Fig. 27. Magnitude of t, for a wire of radius kr = 0.1.
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Fig. 28. Magnitude of th for a wire of radius kr = 0.01.
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Fig. 29. Magnitude of te for a wire of radius kr = 0.0L.
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~ -jk,z
I1(z) = — / I(kz)e dkz
o )
o e )(k /x-2+d2) ke
. L 1 e 9 == - kzcey
(2) (2) n
m/xZvd2 J o x P ey - Hp? 2k )
x e'jkzZ dkz (154)

The contour of integration in (154) is shown in Fig. 36 which
assumes that the medium is very slightly lossy so that k is com-
plex. Branch cuts in the kz plane are chosen along the loci
Imko = 0 and kZ is assumed to be in the sheet Imkp< 0 so that the
radiation condition is satisfied for each component cylindrical
wave in the integral representation (154}, If z is positive, the
contour then may be deformed around the branch cut as shown in
. Fig. 37 (where k has also been allowed to become real) and the
integral becomes

1(z) Ie(z) + Im(z) (155)

¢ de ikz

I.(2) = —5F
2 2d
e (X0+d2)10g ?

K ] ,
2c, d { H{?) (/(kz-az) (:;(2,+d2)) 6o 3824,
O A Im —
2 (LA -
. 77_Tx0+d“ A Hé )(/Ez-ez 1) - Hé )<2 2.2 d) /kZ- g2

(2)
2c_. d 7 Hy /Tk2+a‘) (x5+d2) ae *Zaq
N mpe
n/xl+a? ./(: 152 (Aea® 1) - 0P (247w alf e
‘ = -I_(-2), z>0 (156)
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Fig. 37. Deformation of the contour around the branch cut.

90



24

e xd H{2) /(k2-8%) (x%+d?) -i8
mx Im - — .
nm/xZ +d? ] n{? (/1(2-82 r)- HSZ)(Z 2.2 d) /2 -2
0
(2)
@ 2.2 Z .2
 Zc  kd o Hy /?k +a”) (xp+d”) o
B s
mr/x01+d‘ H(()Z)(4;2+a2“r> } H(EZ) (2 4;2+u2d) %2
0
= Im(—z), z >0 (157)

The first two terms on the right hand side of (156) and (157)
represent the TEM modes excited by the electric and magnetic di-
poles, respectively, and arise from the branch point contribution
from the deformed path in Fig. 37. The remaining two integrals in
each expression represent the current due to the propagating and
the evanescent spectrum, in that order. Noting that the inte-
grands for the evanescent fields are bounded by some number C,

we can bound those integrals by the integral

7 - (Zl -Fa/. (158)

Ce *"dq

0
The integrands for the propagating fields are of bounded variation
and hence, by the Riemann-Lesbegue lemma, [23], are C*1/z as well.

Hence, for large z,

Cmx de K2 +1/2) (159)

I(z) - (CeY ) —77) (xg+d2)log %g

wuich shows that at large distances from the aperture, only the

TEM wave is significant.

[23] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis,
New York: Cambridge Press, 1973, p. 172,
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APPENDIX A
LUMPED ELEMENT TRAVELING WAVE SOURCE

In many network computations it is convenient to use scat-

tering parameters, defined in (ref. Al), (ref. A2)

1
a, = V, + 2..1.) (A1)
kT oom kb Zoxlk

"Rox
b, = —L _ (V, - Z..1.) (A2)
Ko kT fadk

In the above, Vk and Ik are the actual (not normalized)} voltage
and current at port k of an N-port, while ZOk = ROk + jXOk is the
normalization impedance at port k. The asterisk denotes a com-
plex-conjugate number. When scattering representation of net-
works is used, it is convenient to replace the voltage and cur-
rent sources with corresponding traveling-wave sources. It seems
that no convenient circuit elements have been found for that pur-
pose. Penfield and Rafuse (ref.A3) have used a symbol reminis-
cent of a voltage source in combination with a directional coupler,
such as in Figure Al. However, this symbol represents a pure
traveling-wave source only in the limiting case when the coupling
tends to zero and the voltage source tends to infinity. For any
finite value of the coupling, a fraction of the energy from the
main guide will be unavoidably absorbed in the matched termination.

Al. D. C. Youla, "On Scattering Matrices Normalized to Complex
Port Numbers," Proc. I.R.E. Vol. 49, p. 1221, July 1961.

AZ. M. T. Carlin, A. B. Giordano, Network Theory, an Introduction
to Reciprocal and Nonreciprocal Circuits, Englewood Cliffs:
Prentice Hall, 1964, pp. 326 and 144.

A3. P. Penfield, Jr., R. P. Rafuse, Varactor Applications,
Cambridge: M.I.T. Press, 1962, p. 26.
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A convenient source of the traveling-wave to be proposed
here is a combination of the voltage source and the current
source such as shown in Figure A2(a). To verify this, write the
Kirchhoff laws for this circuit:

I, +1I,+ I_=20 (A3)

Vv, -V, +V

[}
o

(A4)

Take the normalization impedance for the port 1 to be Z01 and

for the port 2 to be 2 Then using (A1) and (A2)obtain the

02°
following:
A - * %Y [ ) - A
2027201 \|Ro1 Zo02*Z03 ( Zo11s Vs
by YA/ R e a) Ros 7 =7
02% %01 02 02*%01 01 * Zo2
= . + (AS)
* - *
Ro1  Zo1*Zo1 %017%02 Zo21s*Vs
b, R Y 7 %7 a, Ropy 77
L L {Roz 01*%02 Zo1%%02 | | %) | 01* %02

A convenient choice of the normalization impedance, is as
follows:
(A6)

When such a choice is made the diagonal terms in (AS5) become zero
and the two port in Figure A2a becomes an allpass:

by 0 1 (al . ZpIg-Vg
= + (A7)
2V/R
b, 1 0 a, 0 ZEI +V

Furthermore, the source of the outgoing wave at port 1 can be
made equal to zero by choosing

VS
IS = 2; (A8)
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Fig. Al. Conventional symbol for traveling-wave source.

L, A L
+ u +
v, (A) I v,
o- o

(a)

Fig. A2(a). Combination of voltage and
current sources.
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Fig. A2(b). Proposed symbol for

traveling-wave source.




Therefore, under constraints (A6) and (A8), the
A2(a) becomes a true source of an outgoing wave
port 2. Matrix equation (AS5) reduces to

where the outgoing-wave source bZs is

v Z,*
by T = 17
> 2/R;

0

Very often, one chooses a real normalization:

circuit in Figure
emerging from

(A9)

(A10)

(Al11)

(A12)

so that the corresponding outgoing-wave source becomes

b, = —2
2s R

0

3

(A13)

From (A9) it is apparent that any wave a, impinging upon port 2,

passes through the circuit in Figure A2a2 unaffected, and emerges

at port 1 as an outgoing wave bl' On the other hand, it follows

from (A10) that wave aj, incident at port 1, passes unaffected

through the circuit and emerges at port 2. In addition to ag,

a source wave bZS also emerges at port 2. This source wave 1is

independent of b1 or b2' Hence, it has been shown that a source

of a traveling wave is a twoport consisting of a voltage source

and a current source such as in Figure AZ2a. These two sources

must be related by (A8) and the normalization impedances must be

selected according to (A6) for the complex normalization, or

according to (Al2) for the real normalization.



To simplify the circuit diagrams, the traveling-wave source
between ports 1 and 2 could be represented by a single symbol
such as in Figure A2b. Note that the symbol represents a two
port which is a three-terminal device. The value of the source
b25 is given by (All) for complex normalization and by (Al3) for
real normalization.
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APPENDIX B
MATRIX ALGEBRA IN DIRAC'S NOTATION

The presented material is an abridgement from (ref. B1)

and (ref. B2). A column vector in an N-dimensional space is
denoted by

A square matrix in an N-dimensional space is denoted by

- A
(a1 21, 21N
a3 23 T asy
A = ) ) )
4Nl an2 anN

Matrix A is an operator. When it operates on vector |x>, the
result is a new vector |v>

[v> = Alx> (B1)

Using the rule for matrix multiplication, one finds that the kth
component of the vector |v> is

ijj (B2)

Bl. B. Friedman, Principles and Techniques of Applied Mathematics,
New York: Wiley, 1956, pp. 1-33.

B2. A. Messiah, Quantum Mechanics, Vol I, Amsterdam: North
Holland, 1965, pp. 162-179.
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The transpose conjugate of column vector |x> is denoted by <x|, °
and it represents a row vector as follows

<xl = (xf XE e xﬁ) . (B3)

where * denotes a complex-conjugate value. The transpose con-
: . . +
jugate of a square matrix A is denoted A

¢ x|
all seoe g
* *

+ 212

The transpose conjugate of a product of several matrices is
obtained by reversing the order of multiplication and by taking
the transpose conjugate of each individual matrix in the product:

+ +

ABO"=c" B A"

The same rule applies if one of the matrices is a vector (=Nx1

matrix):

A B |x>)+ - <x[é+ g* (B4)

The result of the above operation is a row vector. A matrix

which is equal to its own transpose conjugate:
+

AT = A

is said to be Hermitian. Instead of N2 distinct elements, such

a matrix contains oniy % N(N+1) distinct elements. The elements
located symmetrically across the main diagonal are complex conju-
gates of each other. Also, the elements on the main diagonal are
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all real.
Frequently, a product of a row vector and a column vector
is to be computed as follows

N
* % * y *
<x|y> = (xl Xy oot xN) 2 = ) xjy. (BS)

The result of this operation is a scalar (= a complex number),
and (BS5) is called scalar product. The same two vectors |x>

and |y~ «can be used to form a scalar product in the reverse order:

( Xy N
* * * *
<Y|X> = (y]. yZ ¢t YN) xz = Zl YJXJ
. J=
xN J

The result is equal to the complex conjugate of (B5). Thus,
*
<xly> = <y|x>

If one of the vectors in a scalar product has been obtained
by the linear transformation such as in (B1l) above, the scalar
product takes the following form

<v|y> = <x|A+|y> (B6)

Again, the result of this operation is a scalar. The right-hand
side in (B6) may be interpreted as a scalar product of the row
vector <x|é+ with the column vector |[y>. Alternatively, (B6)
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may be interpreted as a scalar product of the row vector <x|
with the column vector A+|y>. Computing the product in either
way gives identical results, because a matrix multiplication is

associative:

When the order of multiplication in (BS5) is such that a
column vector multiplies a row vector:

( Y1 )
- .* * *
ly><x| = |y, | (xq x5 ¢ =0 x)
| IN
the result is a square matrix:
[ * * * )
Y1¥Xp MaX2 0 0 t iXy
Iy)(xl = ee 0 s s et e 0RO (B7)
* * *
[ ] [ ] [ ] x
YNX1 YN®2 NN

This is a special class of a square matrix, defined by only 2 N
distinct numbers (y1 through YN and Xy through xN).

One of the advantages of writing the matrix equations in
Dirac's notation is that the notation itself clearly indicates
what type of the result one should expect. For example, the

expressions like
<x[A|x> , B<c[x> , <x|A'B|y>

represent scalars. Another class of expressions which looks
like
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N
Al o<yl , Ta x>

n=1
represent vectors. Finally, the operations like
ABC" or Alx><b|B|y><c|
will each result in a square matrix. For the sake of clarity,
one should specify the following was assumed:
B, a_ - + + are scalars,

xn>: fx>, |Y>, Ib>, IC> * = * are vectors,

A, B, C - - + are square matrices.
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APPENDIX C

MULTICONDUCTOR- LINE FORMULATION BY SIMULTANEOUS
DIAGONALIZATION OF TWO MATRICES

Multiconductor transmission line (abbrev. MTL) consists of N
conductors and a reference, or a ''ground" conductor. The
voltages of each conductor with respect to reference are arranged in
voltage vector [V> V1

[V> =
N
and the currents are similarly arranged in current vector |I>., The
length coordinate of the MIL is z, while the cross section coordinates
are x and y. The reference directions of the currents and voltages on

any of the conductors are such that real, positive values of Vi and Ii

result in a power flow in the positive z direction (see Fig.(Cl). On
the lossless MIL, the sinusoidal steady-state voltages and currents are
related through the following equations (see e.g. references [C1] through

(cs

Ciiz V> = -juL]I> (C1)

dd—z |I> = -juwK[V> (€2)

L is the inductance matrix, and K is the electric induction
coefficient matrix. Often a symbol C is used to denote the induction
coefficient matrix. Unfortunately, some recent publications associate
the erronecus term ''capacitance matrix'' with the symbol C (see[C8] and
[C9], although the proper term should be 'electric induction coefficent

matrix)' [C10]. To avoid the possible confusion, symbol K has been used here.

102



Fig. C1. Voltages and currents on MTL.
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Only the lossless lines without magnetic materials and with iso-
tropic dilectrics will be considered here. When the dielectric is
homogeneous, the well-known TEM propagation occurs, in which all the waves
propagate with the velocity of 1light, Such MIL are commonly treated
in terms of impedance parameters [C11], [C8], image parameters
scattering matrix parameters [C13], and chain parameters [C14].

When the dielectric between conductors is not homogeneous, the waves
on MTL are HEM,[C15], i.e. both the electric and the magnetic vectors
acquire a longitudinal component. However, the dominant HEM modes do
not have a cutoff frequency, and at very low frequencies, their longi-
tudinal field components are negligibly small. For this reason these
dominant HEM waves are called '"quasi-TEM'" waves, which are the subj ect.

of the present report.

The formulation of voltages and currents on MIL in terms of voltage
and current eigenvectors, as introduced by Amemiya [C6] and Marx [C7],
is well suited to the treatment of transients as well as steady state
waveforms. Their analysis starts from the decoupled equations, which
are obtained from (Cl) and (C2):
2

i— S V> = -w2£§|V> (C3)
YA

a2 2

= ,[I> = -w"KL|I> (C4)
dz

In the present report, the eigenvector formulation of Amemiya
and Marx will be extended by using a simultaneous diagonalization
of two matrices,[C8], [C16], [C17]. For this purpose, it is convenient to

rewrite (C3) and (C4) as follows:
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Lt v = ks (C5)
- dz -
-1 d® 2
K —-2|I> = -w"L|I> (€C6)
dz

The method of simultaneous diagonalization of two real, symmetric
matrices [C16] presents a convenient way of solving these two equations.
The method can be applied only when one of the two matrices is positive
definite. Since both L and K matrices represent the stored energy of a
passive multiconductor network, they are both positive definite and thus
qualify.

The first step in the method is to find the eigenvectors lxi> and

eigenvalues X; of the matrix L_lz

-1 _
L7 lx> = A x5 (c7)

The corresponding eigenvalue equation is

det(L'l-ap) = 0 (C8)

where U is the identity matrix. It is convenient to make eigenvectors

orthonormal:

<xi|xj> = 8 (Kroneker delta) (€9

Next, a square matrix G is formed, having eigenvectors Ixi> for

its columns
G = (]xi>.......|xN>) (C10)

G is an orthogonal real matrix which diagonalizes E_l

as follows . -1 fA] 0
— — _1 'l ( )
0Tt A cll
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where superscript + denotes a transpose conjugate. Since L'1 is

positive definite, }\i's are positive real, Therefore, it is meaning-
1

ful to define a square-root matrix AZ

/X 0
A% = ., (C12)

such that

-1
2

-1
ATAAT= U

with U being an identity matrix,

Next, a new variable, |y>, is defined in temms of |V> :

V> = G A%|y> (C13)

When this change of variables is introduced in (C5), the following
equation is obtained

2
% ,ly> = -w? Bly> (€4
Z

where B is a symmetric real matrix

B = AT%GKG AT (c1s)

where (C11) has been used to eliminate matrix L.

Thus, B can be diagonalized by an orthogonal transformation matrix,
which will be here denoted by Q. The eigenvalues of B are all real

positive. It comes out that they have a dimension of inverse velocity

squared:
1
§|t1> = ;"2 lti> (C16)

where |ti> are eigenvectors of B. Transformation matrix Q consists of

106




orthonormal eigenvectors lti> as its columns:

Q= (|t1>......|tN>) (C17)
Q diagonalizes B as follows
+ - !'_2 0
QBQ = | v, (C18)
.1
0 . ;7
N

(C14) canbe thus diagonalized by the following change of variables
ly> = Q &> (C19)

Using (C19) in (C14) one obtains the diagonal equation

¥ B 0
_2|£> = - ", | &> (C20)
dz 0 'Bﬁ
where
2 wz
BT = = for i=1,2,....N (C21)
i 2
i

(C20)is a decoupled system of differential equations

- . = —B.gi for i=1,2,....N (Ccz22)
which has exponential solutions

~iB.z
+eJl . e

_ jB.z
1
i< 54 e

(C23)

These are the normal modes (or fundamental modes) of the multiconductor
transmission line, each of them propagating with its own propagation

constant Bi in the positive or negative z direction. The total vector
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|&> is then

L L
+E e 7 )|up> (C24)

N , -
|E> = Z (Ei e
i=1
where lui> denotes a unit column vector having all zero components except
the ith: 0
0
u,> = . . (C25)
1 <— ith row
0
Vector [£> thus represents the state of the multiconductor transmission
line in terms of individual modes, the component Ei describes the magni-
tude of the ith mode at some position z along the line, Each mode has
in turn certain magnitude of voltage and current on each of the conductors
of the multiconductor transmission line. The voltages on individual

conductors can now be determined by transforming the coordinates |[&>

back into |V>, where the transformation is specified by (C13) and (C19)

-1
2

V>=G6Aa7*Q |&> (C26)

The voltages on individual conductors are now

N -jB.z_ jB.z o
v>= ] (eje T v e 1) GA > (c27)
i=1

In the above (C17)was used to write Qlu;> = lti> . The current vector
may now be obtained from |V> by using (Cl):
B + ‘jBiZ jB'Z

1 - 1 -1 -1
= (&5 e -g e LG ARt (Cz8)

- 12

i=1
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The power carried along the multiconductor transmission line is

P=ZRe <V|I> (C29)

where <V| denotes a transpose conjugate of |[V>, and Re denotes the real part.

For simplicity, consider only the waves propagating in positive z direction

(E; = 0 for all i). Then, (C29) gives the following simple expression for

the power transmitted in the positive z direction:

"o
]
N
e~z
<

+2
13 (C30)

i=1 i

The ith mode carries the power %-|£+|2/vi. In analogy with the two-wire

transmission lines (which e.g. consist of a single conductor and a shield),

the forward-wave scattering amplitude of the ith mode will be denoted

by a;, and the reverse-wave amplitude with bi:
{C31)

so that the forward-traveling wave carries the power %Jailz, and the
reverse-traveling wave the power %Ibilz. In terms of scattering
amplitudes, (C27) becomes
N -jB.z jB.z
V> = T (a;e o b.e 1 ) 6:> (C32)

i=1

where the voltage eigenvector |¢i> is defined as

6> = A7 G A |e,> (C33)

The current vector |I> from (C28) may be expressed in terms of the same

voltage eigenvectors ]¢i> as follows:
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N 1 -1
1> = z (aie - bie. ) 5 L |¢.> (C34)

Alternately, one can introduce the current eigenvectors fwi> as follows:

1.1
lo;> = Vi‘é o> (C35)

and represent the current vector as

N 'jBiz jBiz

| 1> =i£1(aie - bie )l¢i> (C36)

If (C36) is substituted in(C2), an alternative expression for |V>

is obtained
N -jB.z jB.z _
V= J (ae T+be )L klys (C36a)
i=1 i 1

Comparison with (C32) yields

1 -1
lo;> = v, K> (C37)

Normalized voltage eigenvectors |¢i>, defined by (C33), are also

eigenvectors of the matrix LK

_ 1
LK|¢;> = S2 o> (C38)
1

what can be verified by using(C33) and (C16). Similarly,l\pj> is the

eigenvector of the matrix KL

KL [p>=1 5 lv.> (C39)
iy
j

Voltage and current eigenvectors form the bi-orthonormal set

<¢i]¢j> = dij (C40)
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From (C37) and (C11) the explicit expression for current eigenvector
is obtained
1
;> == G A% |tp> (C41)
Following the notation from[C6] and [C7], define My as a matrix which

contains the voltage eigenvectors as its columns:

My = (o> - o) (C42)

Similarly MI is a matrix containing all the current eigenvectors
M; = ([w1>...|¢N>) (C43)

An arbitrary forward traveling wave is, from (C32)

.- N -jBiz
=) ae |¢i> (C44)

|V
i

£ i=1

Take the scalar product from the left with <wj|

= -jB'Z
<uylo> = ae738;

-jB.z
t j

| Ig
<. |Ve> = a.e
itE i

Thus, the expansion (C44) can be also written as
N
IVf> =izl <¢'ilvf> I¢i>
Since the bracket is a scalar, one can place it behind |¢i>
N
IVf> =izll¢i> <lbi|Vf> (C45)

The above is true for arbitrary |Vf>, thus the following identity is

obtained N
iledai><u»il = U
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which can also be written as

+
= C46
MMy =U (C46)
Similarly, one obtains
+
= 7
My My =0 (C47)

When the propagation is assumed to be in the forward z direction, as in
(C44), the current vector for an arbitrary forward-traveling mixture of

modes 1is | Ig
1> = a.e
I

-jgiz
PPy (C48)

By multiplying from the left with <¢J.| one obtains
- ijz
.e = <q |l >
% 411g

Comparison of this equation and (C45) yields

N
[Vf> =iZl <¢i|1f> |¢i>

Again, the bracket is a scalar, thus it may postmultiply [¢i> :
N N
Ve> = L log> o511 = Zolle
The matrix relating |Vf> and |I g 1s the characteristic impedance matrix
ZO:

N
EO =i£1 |¢i> <¢i| = [¢1><¢1| +, ...+ ]¢N><¢N| (C49)

This can be written as

-1
Zo = My My = My 2y (50
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where also (C46) has been used. Similarly one finds the characteristic
admittance matrix as

=771 2 +_ -1
Y= =M M =MW (€s1)

Multiplying (C49) from the right by le> and using the biorthogonality
property (C40) one obtains

05> = Zg lv;> (C52)

which has the inverse

I
=<

°
v

|¢j> Y, (C53)
Characteristic impedance and admittance matrices can be also related
through matrices L and K. The relationship can be obtained by sub-

stituting (C35) into (C42) and (C43)

M, = LM v (C54)

=8 ¥

waere the diagonal velocity matrix is defined as

v = diag (Vl, Voseees N) (C55)
When (C37) is substituted into (C42) and (C43) it follows

M= KM, v (C56)

If these equations are now substituted in (C51) the following relation is

obtained _
XO L= E.&o (C57)

For each mode i, there is a fixed ratio of the voltage and current
on conductor j. This ratio is also called a characteristic impedance of

the conductor j for the mode i, denoted ZJi,[C18]. These characteristic

impedances
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(scalars) are not to be confused with the elements of the characteristic

admittance matrix go. If the coordinates of the eigenvectors are denoted

by superscripts, such as
o} o
i i
o3> = 47 15 e =
‘N 'N
¢; vy

then, for the mode i, the characteristic impedance of the jth conductor is

J
T T 1110 (C58)
01 wjl <uj|1pi>
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