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A COUPLING MODEL FOR A PAIR OF
SKEWED TRANSMISSION LINES

ABSTRACT

A coupling model in the form of an equivalent circuit is
developed for a pair of skewed transmission lines. The inductive
coupling is evaluated in closed form and the capacitances are obtained
from the solution of a pair of coupled integral equations for the
excess charge distributions along the transmission lines. The coupled
integral equations for the excess charges are solved by an approximate
analytical method and alsc by employing the method of moments. The two
solutions are seen to be in excellent agreement. The excess charge
distributions are then used in a parametric study of the capacitances
in the coupling model. The results are presented in graphical form.
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I. Introduction and Problem Definition:

This report addresses a rather specific problem in the
area of multiconductor transmission theory. Specificaliy,rwe
desire to obtain an equivalent circuit ih the vicinity of the
junction region of two skewed transmission lines, so that the
coupling of energy from oné line to another can be estimated.

It is noted that the term "junction" does not refer to lines

in physical contact, but rather the position of smallest separa-
tion between the lines. The geometry of the problem is shown

in Figure 1.1. It consists of a two-wire transmission line of
characteristic impedance Zoo passing over another two-wire trans-~
mission. line of characteristic impedance ch. The wires 1 and 2
in Figure 1.1 are both parallel to a perfectly conducting ground
plane and are located at heights of hl and h2 reséectively.
The wires are assumed to be of the same radius, although this is
not essential. Figure 1.2 shows an equivalent geometry with the
image condugtofs; the relevant distances between source and
observation points are also indicated. As illustrated in this
.figure, the two iines aré medelled by closed rectangular loops
by introducing the vertical segments at both ends.

The objective ié to compute the elements of a coupling
model in the form of an eguivalent circuit. In general, for
arbitrary values of 6 1in the range of [0 < 8 g (n/2)], one
would expect inductive and capacitive coupling between the trans-
mission lines. The special case of § = 0 is precluded here
because of the distributed nature of the coupling which cannot

be treated with localized lumped elements. Appendix A includes
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Two skewed wires of the same radius

above an image plane.
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Equivalent pair .of skewed two-wire

transmission lines of length 2L.
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this special case, reported elsewhere [1], for the sake of

completeness.
For values of 9 in the range of [0 < 6 < (7/2)], ;
the inductive-capactive couplingvmay be represented by a
junction equivalent circuit of Figure 1.3.‘ In this figure,
Clj and C2j are the lumped capacitances in lines 1 and 2
owing to the junction. That is, Clj is computed from the
excess line capacitance of liné 1, due to the presence of
line 2, for a distance of sufficient magnitude away from the
junction on both sides. Cmﬁ is the lumped mutual capacitance.
The inductive coupling is shown in the form of a transformer
compriseﬁ of self inductances Lij and sz, as well as a
mutual inductance Lmj' To display the symmetry, the gnduc-
tive circuit should be denoted with half of the nominal values
on either side of the junction. However, we immediately recog- .
nize that since the wires are assumed to be electrically thin
and perfect conductors, there is negligible reduction in the
self-inductance of each wire, due to the proximity of the
other wire. This implies that Llj = L2j = 0 and results in
only inductive coupling via Lmj' Figure 1.4 shows the coupling
model after setting the excess self—inductances to zero and
representing the mutual inductances by appropriate voltage
sources. Figure 1l.5a is essentially the same as Figure 1.4,
showing the equivalent circuit model above the image plane.
In Figure 1.5b, we show the symmetric form of the coupling

model and the potentials on all the- four lines with respect

to the image plane which is chosen as the reference potential.
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Note:

The inductive circuit is shown on
one side of the junction for
convenience only.

Line |

"Figure 1.3. A generalized coupling model for the
junction of two skewed transmission lines.

Figure 1l.4. Coupling model showing the mutual
inductance as voltage sources; (note
that the subscript j, denoting the
junction has been dropped).
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The problem at hand then, is to determine the

elements Lm’ C C., and Cm'

17 72

tion, we define a set of normalized lumped parameters as

For ease of data presenta-

follows.

(nl) _ '

Lp = L/ (hynhy)
(n1) _ 1

C; 7 = &/ (hyChy)

(1.1)

{n2) — 1]
(nl) — ¥

Cm - Cm /(hlC l)

The superscript ni in the above equation indicates normali-~
zation with respéct to the line constants of line 1 and like~
wise for n2. Some preliminary information concerning the two
isolated transmission lines is given below in Table 1. ©Note

that the image plane is chosen as the reference potential.

TABLE I. PRELIMINARY INFORMATION ABOUT THE TWO ISOLATED
TRANSMISSION LINES.
Parameter Line 1 Line 2
radius a (a<<hl) a (a<<h2)
Separation 2h1 2h2
inductance/ unit L’l L'2
length
Mo Mo
“Qﬁ'ln(Zhl/a) —-EF-Zn(2h2/a)
capacitance/unit C'l C'2
length
= %Weo/zn(zhl/a) =2W€O/2n(2h2/a)
characteristi JIL! ! VL' !
impedanczls e b l/c 1 - 2/C 2
= 60 ln(Zhl/a) = 50 2n(2h2/a)
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' Ix. Mutual Inductance

In this section, we evaluate the mutual inductance

element L, between the two skewed transmission lines of
Figure 1.2. It is believed that more insight into the
problem is gained by looking at the skewed transmission
lines of finite length 2L and later let L tend to

infinity. The assumptions made in the following analysis

are listed below.

L >> h> (long lines) {2.1a)

(h> - h,) >> a {sufficiently apart) (2.1b)

0 <6 < (n/2), but 8 £ 0 (no distributed (2.1c)
' interaction)

1l

(8/881)(charge distribution) =0 (thin wire approximation

(8/862)(charge distribution) = 0 or rotational symmetry)

(2.14)
where h_ and h, are respectively smaller and larger of

hy and h,. With the above assumptions, one can write

the mutual inductance as [21],;

U — —
~ o - ————l
Lm = T : dsl A N d52 (2.2)
e C 1
1 2
where
By o= free space permeability = 471 x 10-7(H/m), and

Cl and C2 represent the closed (assumed) loops formed
by the two transmission lines. With reference to Figure

1.2, we can formally write
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st

:: o —_— N — ;_
Lm VT dsl . d52 (R)
BCD (PQRS )
EFGA) TUVP

Taking advantage of symmetry, we have

u .
~ Do r - (L
L = — f ds; - f ds, (R) B (2.3)
BCDE PORS
TUVP

Since there is no inductive interaction between the
sections of transmission lines that are orthogonal,

equation (2.3) simplifies to

K
-1
hy b,
+ f dzlf (R—l— %) d22 (2.4a)
0 “h 1 2
2 .
uo : .
= = [cos (6)11(9) + IZ(G)] (2.4b)

In view of the assumptions of equation (2.1), the R's in

the above equation may be approximated by

R. . = 2 2 2.%
12 = [x° + £ - 2x& cos (&) + (h2 - hl) ] (2.5a)
B [x2 2 i
191 = [x® + & - 2x& cos (8) + (h2 + hl)] (2.5b)
Ry = [(z2 - ?1)2 + 4L2 sin2 (6/2)]% (2.5¢)
R, = [(22 - 21)2 + 4L2 c052 (9/2)]1é (2.54)
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We will now proceed to evaluate the two integrals Il(e)
and 12(6) separately. Setting

o = {(h, - h,)| and 8= (h, + hy) (2.6)

2
I,(8) is given by

2

L Ly
1 _ 1
I.(8) = dx dg
1 Jx2+£2-2xg cos (8)+a J;2+€2‘2X§ cos (9)+52
0 -L

=jdxf L - L ag
Jg2+g2-2xg cos (e)+@2 v;2+g2—2xg cos (e)+32

+ 1 - e dg
V.2, .2 2 .22 2
0 x"+ET+2xE cos (8)+a X fg +2xg cos (g)+3

L
= f ax [zlJ_(x,e) + Ill(Xrﬂ—eﬂ (2.7)
A |

where I
I, (x,0) =fd£( L
J 2, 2 2
0 (x"+a")+[-2x cos (g)lg+g

) 1 ) (2.8)
(x2+62)+[-2x cos (gllg+ €2

This integral may be performed using the result 2.261 of

reference [3},
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V.2, 2 2
- x“+a"-2xI, cos (B)+L" + IL-[x cos (6)
Ill(x,e) = n
'V%2+82—2xL cos (6)+L2 + L-[x cos (8)]
\/ 2, .2
+ n X"+B8" - x cos (8)
Vx2+a2 - X cos (6)
(2.9)
“’ 2, .2
= n X +8" - x cos (8)1, I (x,8)

= 5 n
x2+a2 - x cos (8)

where In(B) is the first term on the right side of

equation (2.9). Therefore,

2 .2
1-0) = and VEEB + x cos (O)(, I_(x,7-8) (2.10)
Vx2+a2 + x cos (8)

Substituting the above two equations into equation (2.7), we

T1y (=

obtain,
L L
2 2 2
1,(8) = jdx m{x;sz cosec (0} +f I_(x,6) dx
0 X" +a cosec (eﬂ
L ) 0
+ f In(x,w-—e) dx (2.11)
0

Using the result 2.733.1 of reference [3],

2, .2 2 [ 28 L sin (8)
L7+R cosecC (6) + E—m arctan _——'—————B ﬂ

[ 20, L sin (8)
- [ty axeean [

L

—

Il(e) = L &n { 5
L"+a” cosec”™ (9)

-

+ in(e) + in(ﬁ—eﬁ (2.12)
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where in(e) is an integral to be evaluated numerically

and is given by
L

in(e) Jr In(x,e) dx
0

L 1[22 2
on X"+0"-2xL cos (8) + L™ +I1~[x cos (8}]
dx
0 2

ﬂJx +62-2xL cos (8) + L24-L—[X cos (8]

: (2.13)
It may be shown that, when the lengths of the transmission

lines are large compared to the heights, in(e) does not
contribute significantly to the result in eguation (2.12).
We still have the second term of equation (2.4a) to compute,
which accounts for the interaction between the vertical end
wires and it is given by

h h

1 2
I, (8) =[ az f az 1 - 1 @
2 R 2 z 2 — 2 2
~h, (22—21) + Al (22 zl) + AZ
- ' (2.14a)
where
A, = 2L sin (8/2); A. = 2L cos (8/2) (2.14Db)

1 2

Consider the first term on the right side of the above,

y )
Integral = ‘[ dz, j’ dz, 1 \ (2.15)
0 -h

\/<22_21)2 + Ai}

Using (2.261.2 of Ref. [3]), we can evaluate this integral

to be
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h
1
h.,—-2z h.+2
=f dz {arcsinh { 2 1} + arcsinh{ i l}]
1 A A, .
1) 1
0
(8/2) (/) 1
= A arcsinh . {y) dy - J, arcsinh (y) dy
na) |
L 2771 (h,/3q)
(B/Al)
= Al arcsinh . (y) 4y
L(a/Al)

using (2.741.2. of [3]), we get

(a/Al) —V62+A§ +Va2+A§ }

= [g arcsinh (B/Al) - o arcsinh

(2.186)
Therefore
12(5) = g[arcsinh {B/Al) - arcsinh (B/AQ}
-QLarcsinh (a/Al) - arcsinh (a/A2ﬁ
¢ 2 2 2 2}
[ 3T + Al B~ + A2
.2 2 2 2
* [‘a Ay e T Az} (2.17)
Substituting our results for Il(e) and Iz(e) from
gquation

uvations. (2.12) and (2.17) respectively into e

eq
y obtain for +he mutual inductance

(2.4b), we finall
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L =211 ¢
m

.l.

+

+

We recall

are

and in(e), given in equation (2.13),

can be evaluated numerically, however small its contribution

may be.

2
§§ csc2 (8)
L

2
95 csc2 {8)
L

'+
(o

R {arcsinh

o {arcsinh

o

{ 32 + A

that in the above expression, the various guantities

Lsin § ' Lsin 8
arctan ( ) 51n ) arctan( S j}cos (9}

(8/2,) - arcsinh <5/A2)}
(a/a,) - arcsinh (a/Az)}
- Ve AS}

N

=N

half length of the transmission lines

skew angle

(hl + hz)

2L sin {(8/2) ; A

free space

i o= |h, - h, |

5 = 2L cos (8/2)

permeability

192
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‘ A. Discussion of Results

Equation (2.18) is the mutual inductance of two
skewed transmission lines each of length 2L. It is
interesting to note that for finite values of heights
hl and h2 and the skew angle in the range of
0 <8 < (w/2), and letting the length of the transmission

lines tend to infinity, the mutual inductance becomes

Lim I, = u (B-a) cot ()
I > o m o)
= 1 l(hy+h) = }hz-hl]] cot (8)
= Zuo h< cot (9) (2.19)

with h, being the smaller of (hl and h2).

This result has been independently verified by
‘ starting the problem with infinitely long lines. It suggests
o that if the transmission lines are infinitely long, the mutual
inductance is a property of only the transmission line with
smaller spécing.
However, under the assumptions outlined in equation
(2.1), equation (2.18) accurately gives the value of the
mutual inductance and is parametrically-displayed in Figures 777777
2.1, 2.2, and 2.3. The quantity plotted is the normalized
Lénl)

mutual inductance of equation (1.1} given by

. 193



EMf 3-39 349-17

=
I

(nl) _
- = Ihy// [hlLl] (dimensionless)

Lm/ [hl(%?> zn(ii—ll)] (2.20)

All linear dimensions are normalized with respect to h

i

1
by choosing hl = 1. The radius a is chosen to be .01347
so that 2n(2hl/a) = 5 and it occurs only in the normaliza-
tion procedure. With this choice of normalization, Lénl)

is a function of three variables, 8, h and L. In

2
Figures 2.1, 2.2, and 2.3, Lénl) is shown plotted as a

function of these three variables respectively. In computing

L(nl)

- from equation (2.20), the "exact" expression of Lm

given by equation (2.18) is used which includes the contribu-

tion from the end wires as well. The two integrals appear-
ing in equation (2.18) have smooth integrands and a simple
Simpson’s rule of integration was found to be adeguate.

As a function of the skew angle 6, the mutual in-
ductance in Figure 2.1 goes to zeroc at 8 = (n/2), as one
would expect. In this figure, one can see the insensitivity
of the mutual inductance with respect to h even for small

2
8 as the lengths of the transmission line increase. For all

the four cases of varying L, it is seen that for 6 = 0, the

mutual inductance displays a singularity corresponding to the

transmission line or distributed type of interaction.
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In Figure 2.2,'the normalized mutual inductance is
plotted as a function of (h2/hl)’ for a fixed skew angle
& and with the length (L/hl) as a parameter. The four values
of 6 considered are = 15°, 20°, 30°, 45°. For all these
cases, the normalized mutual inductance is zero initially
[(hz/hl) = 0] and reaches a peak when [(h2/hl) = 11 and
monotonically decreases as (hz/hl) is increased beyond the
value of unit§.  Aiso,ras one ﬁould expect, the peak vaiﬁé7
itself is decreasing as 6 1is increaséd and the normalized
mutual inductance tends to zero for the orthogonal case of
6 = 90°.

Finally in Figure 2.3, the normalized mutual inductance
is shown plotted as a function of the length of the wires
(L/hl) with the relative height (hz/hl} as a parameter.

Note that the normalized length (L/hl) is plotted on a log-
arithmic scale and the same four values of 6 as before are
considered. These plots show that at the two extreme values
[(L/hl) -~ 0 and {L/hl)>>ll, the normalized mutual inductance
tends to values that are .ndependent of (hz/hl). The residual
value when (L/hl) = 0 accounts for the interaction between
the vertical end members of the transmission lines. However,
for large lengths L>>h, the mutual inductance is seen to
obtain a value which is dependent only on h< (see equation

2.19). We reach an interesting conclusion that, if the
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transmission lines are infinitely long, the mutual inductance

is a property of only the transmission line with the smaller

wire separation.
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ITT. Capacitive Coupling

The physical mechanism that Justifies the use of a
capacitive coupling model of Figure 1.5 may be described as
follows. When the two lines are present by themselves and
unperturbed by the other, the total charge per unit length oﬂ
the two wires are constants given by Q'lo and Q,ZO ([41y.
The effect of the proximity of one wire on the other::esults
in a redistribution of charge in the vicinity of the Jjunction
so that the total charges per unit lengths Q'l(x,e) and

Q'2<c,e) now become position dependent according as
| Y g — ] 1
Q l(Xle) - Q 10 + Q l(xre)

Q'z(‘:re) = Q'ZO + qlz(Cre) (3.1)

where the excess total charges per unit length Q‘l(x,e) and
q‘2(c,e) permit us to derive a capacitive coupling model.
Implicit in such a derivation is an assumption [4] that the
excess charges which decay with distance away from the Jjunction
will have an integrated effect and can be represented by lumped
parameters at the junction itsélf.

We alsc note here that for the case of 8 = 0, the
total charges per unit length once again become independent of

position, denoted by
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1 = t = 1 !
(3.2)
' = 1 = t 1
Q', (5,00 = Q' Q' + @' 50!
where the excess charges for the case of 6 = 0 also are
constants according as
q,l(xlo) = q'lo
(3.3)
¥ = ]
', (5,0 = q',,

The entire electrostatic system for all values of © is electri-
cally neutral because the image wires carry exact amounts of

opposite charges, i.e.,

l
Il

o, o = -0 o) 5 [2r, e = -0, 0]
(3.4)

q' . (%,8) = -q¢',(x,8) ; [q' 1 (2,8) = -¢',(5,9)
1 1 2 2

Furthermore, by virtue of symmetry about the junction, all the
charges are even functions in their respective variables, as

shown below.

(0,0 = 0 0] 5 [20,06,0 = 2, 0-z,9)

(3.5)

[ 0 = o0 5 a0 ¢, (-2,9)

For © in the range of our interest [0 5 & < (m/2)],

the coupled pair of integral equations for the potentials
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Vl and V2 in terms of the linear charge densities may be

written down as,

S [on s o e o L o :
(3.6a)
V., = 1 Qr.(x',8) X,,(z,x",8) dx' + L Q' (z',0) K (z,z') dz!
2 4ﬂ€o 1 ! 2177 ! 4ﬁ€o 2 ! 22 f
- (3.6b)
where the kernels may be written down by inspection as,
1 1 1 1
Ko (x,x') = |—/—=— =~ ; Ko, (x,0',8) = - (3.7a)
L1l [rll rll'] 12 [rlZ rlZ']
- 1 1 1 1

K,, (g,x',8) =] — =~ i Ko, (g,g') = —— - (3.7b)
21 [er r21':) 22 E’zz rzz':]
with ' ‘

e rs 2 2,172 _ a2 2.1/2
rll [{(x=x")" + a“] PoTyqa [(x-x")" + 4hl] {3.8a)
Xy, = [x2+c'2-2x;' cos(0) + a2]l/2

= [{g'=-x cos (8)}% + {a? + x2 sin2(p)}] /2 (3.8b)
rlZ‘ =‘[x2 + C,Z ~ 2xz' cos{(8) + 8211/2

= [{g'- x cos(8) 12 + (8% + x? sin?(p) n1/2 (3.80)
r21 = [x‘2 +r§2 - 2x'z cos(8) + azll/z

= [{x' -z cos(8)}% + {a? + 2 sinZ(s)}]3/2 (3.84d)
r21, = [x'2 + CZ ~ 2x'rc cos(8) + 8211/2

= [{x' -z cos(8)}* + {g% + 2 sin?(p) 111/ (3.8e)

1y 2 2 t

ryp = L=z 2+ %12 o = L(z-z)? + an311/2 (3.81)
where recall that o = [h2 - hll and B = (h, + h,) (3.8qg)
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Substituting for the total charges

Q'i(x

:6)

equation (3.6) from equation (3.1), we have
x

_ 1
Vl’[Q'lo {41T€'
O

1
+Q {%ﬂe
20 o]

1
= '
v, [Q 10 {4”50

1
@ (e
20 4weo

The

can be

1
4W€o

{1
4ﬂ€°

integrals of

(=e]

<]

-0

<«
-0

performed

x©

j'Kll(x,x') dx}

-0

to give

[oo]

fKZZ(C' C') dC‘}

e

[>~]

leZ(x' Ql +9) dﬁ}

=
@

-0

fKZl(;,X' r 8) dX}=

1
1] 1
lel(x,x ) dx} t T
o
. Ko {x,z's8) A\ + 1
12 %16 & Lre,

f Kzl(;,x',e) d% +
K, ( 'y dg'y + L
J T22ttrt ) G 4T T

dye

(<o)

1
J+

-0

[od

j'q‘l(X',e)KZl(;,x',e) dx’

-0

=]

o

EMP 3-39

and Q'2(C,e) in

(X',e)Kll(x,x') dx?

fq'z(c',e)Klz(x,c'e) dc]

(3.6a)

(g'r8)Ky (i ") dc‘]

— (3.6b)
the kernel functions are somewhat tedious but
2h
1 1) _
2weo gn( a.) :Sll (3.7a)
2h
1 2\ _ ‘
2weo 1n< a.) :822 (3.70)
-1 xzsin2(6)+a2 _ =f(x,8)
2 e A S 5y E 77 (3.7¢c)
TEq x"sin” (8)+R TEqs
2 ., 2
-1 m{g 51n2(6)+a}:—f(2;,e) (3.74)
dge ;zsin2(6)+52 4‘WEO
203
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. . 1 — ¥ =
Recogélzlng that @ 10 511 vy and @ 20 S22 v, for the
isolated lines, we arrive at the coupled pair of integral

equations for the excess charges given by,

<

fq'lcx',e) Ky (x,x) dx' o+ fq'zm',e) K, (x,0,8) az’

—co )

= cv, £(x,8) (3.8a)

jq'l(X',e) KZI(QIX'IG) dx' +]Q'2(C‘Ie) KZZ(C’C|) dC'

-0 -0

=c' v, £(z,8) (3.8b)

In writing above, we have introduced the unperturbed line

capacitances of the two transmission lines given by

1 — - 1 1
C' _ Q 10 ( Q 10) _ Q 10 _ 271-80_— - ZTFEO (3 9a)
1 Vl - (—Vl) Vl 2n(2hl/a) Ql )
N a0 = 27900 25 AT (3.90)
2 V2 - (—VZ) v, 2n(2h2/a) 92

‘and the two forcing functions can be written in a shorthand
form as

Ez sinz(e) + o2
g2 sin®(s) + g°

£(£,8) =~ 4in (3.10)

We can now define a capacitive coefficient.matrix associated

with the excess charges as
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k,,(x,0)

12

and the lumped self

klz(x,e)

Ky, (2,8)

Vl = 0

given by,

Q
It

= 2

+

/

ko (2,8)1 dz

@

205

[kll(x,e) + klz(x,e)] dx
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(3.11)

(3.12a)

(3.12Db)

(3.12¢)

(3.124)

capacitances in the coupling model are

(3.13a)

-2 -[. [kzz(;,e) + k21(€,6)] ag (3.13b)
-0
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Cm = —.[. klz(x,e) dx = —ZJ{ klz(x,e) dx
puy. .Y O
(3.13c) .
= “.[. kZI(C’e) dg = —2‘[ klz(C,e) dg
-0 0

We may now set up the integral equations for the excess
capacitive coefficients of eguation (3.12) by successively

considering Vl = 0 and VZ = 0 in equation (3.8).

1. Setting v, =0 in equation (3.8) with v, + 0, but finite,

leads to
.7 klz(x',e) Kll(x,g‘) ax' + Jszz(ﬁ',G? Klz(X,E’,e) ag!
| = C', £(x,98) (3.14a)
JF klz(x',G) Kzl(C,X',S)dx' + JFk22(€',9) K22(C,C') dag' = ¢
- | - (3.14Db)

2. setting V, = 0 in equation (3.8) with v, + 0, but

finite, leads to

fkl}.(x"e) Kll(XIX|) dx' + fk21(C',e) Klz(xl‘c'le) d;‘ = 0

(3.15a)

=<3

- 00 -0

= C'1 £(z,8) (3.15b)

06 ®
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The remainder of the procedure consists of solving coupled
pairs of eguations (3.14) and (3.15) for the excess capaci-
tive coefficients and ﬁsing them in equation (3.13) to get
the lumped capacitances.

In concluding this formulation,vit is observed that
for the special case of 6 = 0, wusing equations (3.3) and

(3.7) in (3.6), we obtain

— ) ¥ 1 1
Vi = Q'3 Sy F @ty Syp t Q0 S, @'y Spy
(3.16)
— ' 1 ' '
Vs Q10 Sa1 * 4739 Sp1 F L pg Sap 450 8oy
or, using eguation (3.2), (3.16) becomes
Vi ® Q30 811 * Q5 Sy
(3.17)
Vo = Q9 831 * Q0 Sy
with
Sy < 2nl zn(2:l>’ 522 = 2:L zn(2h2>
80 TTEO a
(3.18)
and
S = S = l Qn é - ! 'Q'n _il.i.i
12 21 2me a 2me lhz"hl|

These results for 6 = 0, are in complete agreement with the

published results in the literature (see for example [l or 51).
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A. Approximate Analytical Solution

We now develop an approximate analytical solution for
the coupled pairs of integral equations (3.14) and (3.15).
Rewriting. these equations in terms of dimensionless excess

capacitive coefficients, we have

e o] [==]

' = Y t .
jrfl2(x ,8) Kll(x,x') ax' + Jr 122(5',6) Klz(x,c ,8) dagt = f(x,8)

—~ -0

(3.1%9a)

@

jrf12<x',® Ky (2,%7,0) dx' + j—f22<c',e) Ky, (2,2') dg' = 0

-0

(3.19D)
and
[fll(x‘,e) Ky, (%) dx' o+ ffZl(;',e) Ky, (x,2',8) az' = 0
- (3.20a)
jrfll(x',ﬁ) K, (Z,x',6) dx' +—jrf21(c',e) K,,(£,8") at' = £(z,8)
(3.20b)

where the unknown and normalized excess capacitive coefficients

are defined by

flz(x',e) = klz(x',e)//éé

i
w
l»—l
f—
w
@
0
-

]
fll(x $9)

(3.21)

£,,(2',0) = kZl(C‘,G)//Ci b£,,(en,0) = k0 /e

208




349-32 N EMP 3-39

We now consider solving the‘coupled integral equation
(3.19) and a similar method of*solu@ion will apply to eguation
(3.20) also. To begin with, we expand the excess charges per
unit length Qi(x',ﬁ) and Qé(C',G) in Taylor series
about the points x and ¢ respectively. Then, the leading

and the first correction terms are given by

3@& (x,9)
Qibﬂ,e) = Qi(x,9)~+(x‘->d T S
(3.22)
8¢’ (t,9)
Qé(C',e) = Qé(C,e) + (' -1T) FIa + ...

As a result, the unknown functions in equation (3.19) will have

expansions given by

RN
flz(x',e) = £,,(x,8) + (x'-x) pe (x,8) + ...
(3.23)
3,
fzz(c',e) = fzz(c,S) + (¢' -=1) 52—— (z,8) + ...

Considering these expansionsg in the integrals involving the

self kernels in equation (3.1%9), for instance,

@

j.flz(x',e) Kll(x,x') dx' = Allflz(x,e)
8f12 (x,6)

+ 9x

jﬂ (2" - x) Kll(x}x') as' + ... (3.24)

-l

where, using equation (3.7a)," All is a constant given by

All = 4ﬂ€0 Sll = Z‘Qn(2hl/a) (3.25)
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King [2] has shown that all of the terms in eguation (3.24)

involving the derivatives of flz(x,e) contribute insignifi-
cantly compared to the first term under the condition that

the radiation from the transmission lines are negligible.

As a consequence of this approximation which is well justified
at low frequencies, the coupled integral equation (3.19) may

be written approximately as

Ajy flz(x,e) + jr f22(C',8) Klz(x,C',e) ac' = -£(x,6) (3.26a)

jr flz(x',e) Kzl(c,x',ﬁ) dx' + A22 fzz(C,e) = 0 (3.26b)

-0

where it is recalled that

All = 2 2n(2hl/a) and BAyy = 2 2n(2h2/a) (3.27)

It is now observed that the above equation can be uncoupled

by straightforward algebraic manipulations to obtain,

=~}

£(x,8) (3.28)

- ) , Yy - 1 1 t ¢ 7

-

Aqyq

1 '

-0

22
(3.29)

where the various kernels and the forcing functions are

given by

zwlo . .
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o

T(x,x',8) = J[ Kiolx,z',0) Kyy(ghyx',0) df (3.30a)

T(z,5',8) = jr Kip(x'rg',0) Kyp(gyx',p) dx!' (3.30b)
2,2 2

f(x,8) = gn{X_SiP (8) + o (3.30c)

X2 sinz(e) + 32

t(Z,S) = f T(CIC,IG) dC, = = f f(X',E)) KZl(C'X'Ie) dx!’
{(3.304)
similarly,
t(x,8) = ]r T({x,x',8) dx' = - Jr £(z',8) Klz(x,;',e) dg'!
- e (3.30e)

Once again, using the same approximation as before i.e.,
essentially retaining the leading terms of the Taylor series
expansions of flz(x',e) about flz(x,a), and of, £,,(z',8)
about fzz(q,e), in equations (3.28) and (3.29), we have

£f(x,8)

{%(C,G)/AlQ}

or, the approximate analytical solutions of the coupled pair

A5, flz(x,e) - flz(x,e) {%(x.e)/Azz}

(3.31}

A, fzz(g,e) - fzz(c,e) {%(c,e)/Ali}

of integral equation (3.19) are given by

Ay, £(x,0) £(z,6)

£,.(x,0) = - ;o £..(z,8) L
12 \¥ B B,, - E(X,8) 2257 K 1B,, - £(2,0)

(3.32)
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This procedure of obtaining an approximate analytical

solution can also be applied to the other coupled integral
equation (3.20) resulting in similar expressions for
le(C,e) and fll(x,e). Collecting all the solutions and

making use of equation (3.21), we may write the excess

capacitive coefficients as

- 5 1
ko (x,8) =c! £..(x,8) = CJ elx,8) (3.33a)
11 1 711 1 LA11A22 t(x,06)
K. _(x,8 £ 0 [ Pap T
x,0) = CJ (x,0) =C. — (3.33b)
12 2 712 AllA22 t(x,90)
L .
. oAy £(5,0) ]
. (5,8) = ¢! £,,(0,0) =CI — (3.33¢c)
21 1721 1 jA B, - E(5,9)
e ¥ 3 t(z!e\
ks (8,8) = €5 f22<c,8) =Cy s m . =) (3.334)
11722 R
and therefore the normalized capacitances may be calculated .

using the above in equation (3.13) along with equation (1.1),

1) ¢, =[ £(x,8) + Ay, £(x,8) | ax .

1 S VA Byihgy ~ Exe0) |l

om2) _ [ ©2 ):f B(E,9) + By, EL2/8) ) 4 (3. 34p)

2 h,C} A By, - E(5,8) | h, .

clnl) f.z;.) = . a jf £(z,8) dx (3.340)
. o e o]

m R CT 1] |EE,, - e By

212 = o
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Equations (3.30) and (3.31) are adequate in evaluating the
normalized excess capacitive coefficients (fll' f12’ le
and f22) and the normalized lumped capacitive elements of
the equivalent circuit in Figure 1.5. In the following sub-
section, we describe and solve the coupled integral eguation
(3.16) or (3.17) by an alternate numerical method by casting
the integral equations into a system of linear equations.
The approximate analytical solution is compared wiﬁh the

numerical solution in Section III-C.
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B. Numerical Solutiocn

The set of coupled integral eqguations (3.19) and (3.20)

can also be solved by the method of moments. We may use the
symmetry properties summarized below, to economize the cal-
culations.

f.,(x%,6) (3.35a)

fll(_x’e) = £

f12<—x,e) = flz(x,e) (3.35b)
f21(-z_;,e) = fZl(;,e) (3.35¢)
£,,(-2.8) = £,,(5.9) (3.35d)

The infinite integrals of (3.19) and (3.20) become the follow-
ing semi-infinite integrals by using the above symmetlry

relations.

=]

ffl (x',8 Gll(x,x') dx" + ffzz(c',e) Glz(x,C‘.G) dag' = £(x,8)
0 0 (3.36a)
f L(x",8) Gy (T,x",8) ax’ +f £,,(5'.8) Gyp(z,2h) dg' = 0

0 0 (3.36b)

£1,(x',8) Gy (x,x") ax' + IfZI(;',e) G,,(x,2',8) Az =0
0

{3.37a)

0

'£
0 (3.37b)

where the new kernels are

214




349-38 EMP 3-39

Gyy(x,x') = Kyq(x,x') + Kyq (6,27) (3.38a)
Gy (%,8',8) = Ky (x,07,0) + Kpp(x=2%0) (3.38b)
Gyy (B,x",0) = K21(C,x’,9) + KZl(C,—x',e) (3.38¢)
G,s(5,8") = Ry, (2,2')  + Kyy(Z,=Ch) (3.38d)

In order to use the moment method, we divide x into

x;0 i=0,1,2, ..., N; and & into G4 i=20,1,2, ..., N.

The values x, are taken to pe equal to &, for convenience.

The points
p S Xy and §N

moment method.. It is expected that the charge density near

are the truncation points for the

the junction region of the wires changes fairly rapidly, and
decays slowly to zero when x OF r is very large. Hence

the two Qifferent mesh sizes are considéred: from X to

X . the swaller meshes are used, and from Xy to Xyt we
| 1
may use large meshes. The breaking point Xx,  Wwas found to
1

be very closely related to the right-hand-side vector £(x,0).

N

For brevity, we shall consider equation (3.36). Let us

assume
i .
alp = Ey,(x;,8)  and 45, = £55(55/9) (3.39)

Using the linear basis functions, we find that (3.36) can

be evaluatod by

N N
i i, E: i .i,3 _
_z 12 I1]_ u 9292 Il.;_ = f(xj,e) (3.40a)
1=C i=0
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N N
i 71,3 i 71,3 _

Z 435 To17 # Z 432 1557 = 0 (3.40b)
i=0 1=0
where

X ]
i,3 S o ,

r = 1
Iuv 810 f X, - X, Guv(xj'x ) ax
1 i-1

X

i-1

R TS

——— 1 . . = . =
+ 8iy pe—— Guv(xj,x) dx' ; u 1,2; v 1,2
<. i i+l
i (3.41)
s 1 if i =k
ik =
0 if i # k

Since X, = Ci' the variables x and ¢ are interchangable
in equation (3.41). The integrations of (3.41) can be

evaluated analytically. By reviewing equation (3.38), (3.7),
and (3.8), we find that all the integrations in (3.41) are of

the following type:
u

2 rax'+xr
3 4 2 2
- dx' = r \/u ~2r.u,+r’ +r
f[<x,_rl)2+r2]1/z 3[ 2 1727717 2

g :l
2 2
o "\/ul S2Tgup Iyt

u, -y u, - ry
+ (1:'4 +r3rl) arcsinh{ ~————} - arcsinh|————

JI, r

2 2

(3.42)
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A total number of (2N + 2) linear equations can be
formulated from eguation (3.40) by taking i = 0,1,2, cees N
The (2N + 2) unknowns, qiz and qéz can then be readily
solved by matrix methods. The values of le(xi,e) and
f22(ci,e} can also be solved in’a similar manner.

The lumped capacitances can be obtained from egquations

(1.1), (3.13), and (3.18). They are

(n1) _ 1 |
cl = hlf [fll(x,e) + flz(x,e)] dx
2 [T ’ :
= HI jr fll(x,e) + flz(x,e) ax {(3.43a)
5 g .
2 e b
(n2) _ 1
C2 = ,hz J[ EZZ(C'G) + le(Clel ag
2 - -
2 J
0
(nl) _ L
Cm = hl f21(§,9) dg

g b ——s .

Jﬂ“’

This completesra brief description of the numerical
method of solving the coupled integral equations. In the
following subsebtion, we compare the aé?roximate analytical
solution with the numerical solution and present the

capacitance data as well.
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C. Discussion of Results

In this section we present the results of a para-
metric study of the normalized excess charges and the
normalized lumped capacitances in the eguivalent circuit
of Figure 1.5. It is recalled. that, to cbtain the
normalized excess charges, one has to solve a set of
coupled integral equations (3.19) and (3.20). Owing to
a lack of experimental data on this problem, and also to
ensure confidence in the solution, the coupled integral
equations have been solved by two different methods. In
Section III-A, an approximate analytical solution which
leads to a closed integral form for the excess charges
was presented. On the other hand, Section III-B described
a numerical method of sclving the same set of coupled

integral eqguations.

In Figures 3.1 to 3.4, we compare the normalized
excess charge distributions along the transmission lines,
obtained by the two methods. This comparison is done

graphically for the four representative cases;

1.5, 8

it

a) (h2/hl) = 1.5, § = 15° b) (hz/hl) 9Q°

©) (hy/hy) =5, @ =15 d) (hy/hy) =5, g = 90°
The normalized excess charges are plotted as a function

of normalized coordinates (x/hl) and (;/hl), starting
from the junction region and moving along the transmission

lines. 1It is seen from the Figures 3.1 to 3.4, that for

all the four cases, the agreement between the approximate

- e
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.10 0
.08
-0.1
.06
— -0.2
sl .04 =
— ~—
i ]
h .02 wﬁ -0.3
0 0
0 10 20 30 40 0 10 20 30 40
(x/h;) (z/hy)
0 .10
08
-0.1
.06
-0.2 }
—~ 04
—_— [y
o T S.02
Lo
-0.4 0
0 10 20 30 40 0 10 20 30 40
(x/hq) (z/hy)

Figure 3.1. Normalized excess charge distributions along

the two transmission lines; (hz/hl) = 1.5,
(a/hl) = 0.01, 8 = 15°; approximate
analytical solution, numerical solution
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0.10 0 S
0.08
-0.1
0.06
~C.2
0.04
= -0.3
0.02 i
—
. [
0 L e 4 W -0.4
0 5 10 15 20 25 ¢ 5 10 15 20 25
(x/hl) (r,/nl)
0 0.10
—0.1 0.08
0.06
-0.2 }
. 0.04
-0.3 =
8 0.02
-0.4 S
—- — . -0
0 5 0 15 20 25 ' 0 5 10 15 2¢C 25
(x/hl) (C/hl)
Figure 3.2. Normalized excess charge distributions along the
two transmission lines; (hz/hl) = 1.5,
(a/hl) = 0.01, & = 90°; approximate
analytical solution, ...... numerical solution
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Neormalized excess charge distributions along

the two transmission lines; (hz/h1) = 5.0,
(a/hl) = 0.0l, g = 15° approximate
analytical solution, ...... numerical solution
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analytical and the numerical soluticn is excellent. Further-
more, as may be expected, the normalized excess charges have
a peak at the junction and decay as one moves away from

the junction.

The normalized excess charges computed from the approxi-
mate analytical solution can then be used in computing the
normalized lumped capacitive elements via equation (3.34) or
(3.43). The capacitance plots are parametrically displayed
in Figures 3.5 and 3.6.

In Figure 3.5, the normalized lumped capacitances are
plotted as a function of the skew angle which ranges from
small angles to 90°. The case of 68 = 0° 1is excluded here,
because of ~the distributed interaction and has been considered
elsewhere in this report. As expected, Figure 3.5 shows that

as the height of the top line is increased, the self capaéi—

tance terms decrease.

Figure 3.6, graphically shows the normalized lumped
capacitances as a function of the relative height-(hz/hl)
with the skew angle 8 as a parameter. Once again, we
see the expected behavior as the skew angle or the relative

height is varied.
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3.5 ¥ T - T
3.0
2.5 1
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C(nl) 1.5
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Figure 3.5 Normalized lumped capacitances as a function ‘

of skew angle.
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‘ Figure 3.6 Normalized lumped capacitances as a function

of relative height.
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Iv. Conclusions

In this report, the problem of obtaining the lumped
equivalent circuit to represent the junction region of a
pair of skewed transmission lines is presented. The
coupling model involves evaluating the inductive and capaci-
tive elements. The mutual inductance is evaluated in a
closed form and has been parametrically displayed. To
obtain the capacitive elements, a set of coupled integral
equations have been formulated for the excess charge dis-
tributions. The integral equations have been solved by an
approximate analytical method and also a numerical method
employing the method of moments. The approximate analytical
solution uses a Taylor series expansion of the unknown
functions about a variable, and enables one to express the | .
excess charges in closed form using a single integration.
The two independent calculations of the normalized excess
charge distributions are compared graphically for representa-
tive cases and seen to be in excellent agreement. Once the
excess charge distributions are determined, it is a simple
matter to evaluate the normalized lumped capacitances. The
results of a parametric study of the capacitance computations

are also presented.

e - o
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APPENDIX A

i
o

Transmission Line Coupling for the Special Case of 8

In this appendix, we consider the speciai case of dis~
tributed interaction between the two transmission lines (see
Figure 1l.l) when the skew angle 6 is zero. In other words,
the two wires are parallel to each other and are located at
heights hI and h2 above a perfectly condgcting ground plane.
In this case, one cannot derive a junction equivalent circuit
because of the distributed interaction between the wires.

Using the same notation as in Section III, the total charges

per unit length Q'lo and Q'ZO may be related to the

potentials Vl and V2 on the two wires with respect to the

ground plane, via the capacitance per unit length matrix [C!]

given by
H 1 - f
0 €11 g A4
= c (A.1L)
* 1 1
Q50 21 C a2 v,

It was seen in Section III that the elements of the coefficients

of elastance matrix [S']are given by

[S'n,m] - { rn,m} B (A.2)

2h 2h
' - 1 1 . ! - 1 2
Sll - ZWEO ln('a ) P89y T 2nao ln( a ) (%‘3)

227 ‘ :
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These results are in complete agreement with the results
reported in the literature [1]. The elements of the [C]

matrix are then given by

c'll = (s'zz/A) i Clyy = <s'll/A) (A.5)

Clip = Clpy = (=871,/8) (A.6)
where
A = determinant of the S matrix

2 2h 2h -
1 1 2 B B
() [(3)() - ) (9

Furthermore, the inductance per unit length matrix

is simply related to the [S'] matrix as

‘ = .
[ n,m] = uoeo[s‘n’m] . (A.8)
so that,
U 2h U 2h

t = _9. .__é . t - ._O. ..._._2.

L1 (2w> 2“( a) Y <2w) 2“( a (2.9)
U

1 = ' = ....9. _B_
L 12 L 21 <2W) 2n<a) (A.10)
We have included this special case of 6 = 0 in this

appendix mainly in the interest of completeness. These results
are available in the literature and serve to check the con-

sistency of our formulation in a limiting situation.
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