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ON THE ANALYSIS OF GENERAL MULTICONDUCTOR
TRANSMISSION-LINE NETWORKS

ABSTRACT

Starting from the graph describing the topology of a transmission-
line network in terms of junctions and tubes, this note addresses the
formation of the overall network equation referred to as the BLT equa-
tion. The matrix equation of propagation on a tube consisting of a
multiconductor transmission line with sources is formulated in terms
of the combined voltage vector (a special combination of the voltage
and current vectors) which reduces the differential equation to first
order; this readily incorvporates the combined voltage sources and
boundary conditions into the solution of the tube propagation. Util-
izing intercomnnection matrices (defined by the topology) which related
waves on the tubes to junctions (tube ends) which the waves leave and
enter, the scattering supermatrices for the junctions are converted
into a scattering supermatrix for the waves on the transmission-line
network. Appropriate supermatrices describing the delay on the tubes,
the source terms on the tubes, and the identity are also defined.
Together with combined voltage supervectors for waves and sources,
the BLT equation is comstructed in one of its possible forms. Various
properties of the BLT equation and the associated supermatrices, or
dimatrices (matrices of matrices) in this case, as well as the corres-
ponding supervectors are developed.

231



350-2 EMP 3-39

FOREWORD

This note has been planned for quite some time now. Some of the
resultswere included in two papers [1.6,7] presented at the USNC/URSI
Meeting in Amherst, Mass., October 1976. The basic concepts include
the topology of the transmission-line network, the propagation on
multiwire transmission lines, and supermatrix/supervector forms for
representing the variables so as to produce the BLT equation. This
note is then the first in perhaps a series concerning a general kind
of approach to transmission-line network theory. It allows the con-
sideration of the analytical properties of the network, besides the

properties of the network components.

"About half way up is a cave,

A gloomy cavern facing the West and Erebus,

And beneath this cave, my gallant Odysseus, you

Must steer your ship. It will be so high above you

That not even the strongest man could reach it with an arrow
Shot from the deck of his hollow ship below. ,

In it lives Scylla, yelping terribly, with a voice

That sounds no stronger than that of a puppy just borm.

But she herself is an evil monster that no one

Would be glad to see, not though a god should meet her.

She has twelve feet in all, horribly dangling,

And six necks, tremendously long, on each of which

Is a terrible head with teeth in triple tiers,

Close set and chocked with black death. From her waist down
The deep cave hides her, but her heads sway out from the awful
Abyss, and with them, around the rock, she avidly

- Fishes for dolphin and dog-fish and what greater beast

She may catch of the countless creatures that Amphitrite,
Deeply moaning, feeds. Never yet have sailors

Been able to boast that they got by her unscathed

In their ship, for with each of her heads she snaps up a man
From the dark-prowed ship.”

From The Odyssey, Book XII, by Homer, translated by Ennis Rees,
Modern Library, Random House, 1960, p. 198.
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I. INTRODUCTION

Transmission-line theory has been with us for quite some time
(1.1]. 1Its impact on communication technology should be obvious.
However, its expression in one~dimensional scalar form for a single
voltage-current pair has rather limited application to modern complex
electronic systems. In the analysis of EMP interaction with electronic
systems, transmission-line theory is commonplace [1.2]; however, its
practical use is still in a rudimentary form, usually being applied
in a one-dimensional scalar form as in the case of a coaxial cable or
some simple approximation of a more complex system in one-dimensional
scalar form [1.3].

Recent investigations have considered multiconductor transmission
lines as an extension of transmission-line theory applicable to complex
systems problems such as involved in EMP and EMC [1.4,5]. However,
one should recognize that such models are still quite simplistic in
the context of the total system response in typical cases. This note
addresses the problem of networks of such multiconductor transmission
lines.,

Basic to the analysis of transmission-line networks is the net~
work topology based on junctions and tubes, each tube being a represen-
tation of a multiconductor transmission line, and tube terminations
(including connections to other tubes) occurring at junctions. So first
we consider the network topology and the associated interconnection
matrices which will be used to construct the network equation. This
transmission-line network topology is compared to other kinds, such as
those used for lumped-element networks and electromagnetic scatterers.

Next the equations describing a single tube or multiconductor
transmission line are considered. The problem is reduced to a first-order
matrix differential equation through the introduction of a combined
voltage vector which is a special linear combination of the voltage
and current vectors. This equation is readily solved for given boundary

conditions at the tube ends and source vectors along the tube. The
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propagation matrix is assumed diagonalizable and the resulting eigen-
modes and eigenvalues are used to give representations of the various
parameters describing the tube and its respomse.

The remainder of the note then integrates the result of a single
tube with the scattering matrices of the junctions using the inter-
connectivity of the transmission-line network topology and its associlated
wave indexing. This forms the overall equation of the multiconductor
transmission-line network, referred to as the BLT equation [1.6,7].

For this purpose it is useful to introduce the concept of supermatrices,

or matrices of matrices, and corresponding supervectors. This separates
the indices in a manner which associates different indices with different
physical aspects of the multiconducter transmission-line network and its
associated topology. 1In addition, the supermatrices correspond to a
symmetric partioning of matrices in a manner which makes them block sparse.

The supermatrices used in this note can also be referred to as
dimatrices corresponding to a single level of partition resulting in
two pairs of indices or subscripts to describe the dimatrix elements.
This concept has already been generalized to higher order partitions
and hence higher order supermatrices in applications concerning the
topology of complex electromagnetic scatterers [1.8]. So when the
reader has waded through the present tome he can cheerfully contemplate

that more is to come (or he may need cheering up for the same reason).
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IT. TCPOLOGY '

Network topology is a generic name given to the topological
properties of a network., It is studied widely in lumped circuit
theory to gain reliable knowledge concerning the number of independent
equations in a circuit of arbitrary structural complexity [2.1].

For electromagnetic problems, a more general type of topology is
required to describe the three-dimensional volumes and surfaces that
are generally associated with the scatterers. Indeed, the scatterer
topology has been introduced by Baum [2.2, 2.3}, Tesche [2.4] and
has found useful applications in considering practical shielding

and grounding problems [2.5, 2.6].

For transmission-line networks, the topological description
falls between that of lumped circuits and that of scatterers. Similar
to a lumped circuit, there are well-defined material paths along which
energy propagates, and there are positions in the transmission-line
network where energy is distributed according to Kirchhoff's laws.
Unlike a lumped circuit, energy may be coupled between the material
paths, and the path characteristics (length, geometry, etc.) alter the
ways energy propagates. FEnergy sources may also be induced along the
lengths of the paths. These latter properties which are attributed
to the distributed nature of transmission lines are more similar to
those of scatterers. In fact, it is more appropriate to describe the
transmission—line behavior as wave phenomena.

The specialized topological description of a transmission-line
network has been called the transmission-line topology [2.3]. In the
following, we first review the concept of circuit graphs and circuit
topology. The transmission-line topology is then described. A brief

outline of other related topologies is also included.
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A. Graphs

The basic elements of a graph are edges and vertices. They are
termed differently in specific types of topology, and are summarized

in Table 2.1 wunder Section 2F.

A graph is thus made up of a set of vertices which are inter-
connected by edges. It is structured to represent, in a simplified
form, the electrical connections and/or signal flow paths of the

network or system.

Cften, for a complicated network, one cannot represent the
network comprehensively by a single graph. Parts of the network are
then represented by subgraphs. A subgraph fulfills all requirements
of being a graph, but is limited to represent only part of the network.
An example is that of a multiconductor transmission-line network
where a network graph 1s used to show the transmission-line connections
using tube and junction representations, but the detailed electrical

connections within junctions are represented by separate subgraphs [2.6].

On the other hand, a network graph may be a subset to a graph
which represents a larger system. The latter is called a supergraph.
In the previous example, the transmission-line network graph is a

supergraph of that of the junctions and tubes.

The concepts of supergraph, graph and subgraph define a
hierarchical order of representing a system. However, the naming
of super- and sub- are only relative when compared to a smaller or

larger part of the network.
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B. Electrical Circuits

The most common network topological concepts have been applied
to lumped circuits. The comstruction of the network graph and its
associated development of cut sets and tie sets are assumed to be
familiar to the reader. In transmission-line networks, often the
junctions contain lumped elements, or the transmission-line discon-
tinuities may be accurately modeled by lumped circuits at low fre-
quencies [2.7 - 2.10]. Hence, in tranmission-line network analysis,
it is often necessary to include lumped circuit analysis. We summarize

the essential points in the following.

The basic elements of a lumped circuit network graph are branches
and nodes. A branch is a component part of a circuit characterized by
two terminals to which connections can be made. A node is formed where
two or more branches are connected. The graphic symbols for branches
and nodes are respectively lines and dots. The nodes in a circuit are
numbered and the nth node is denoted by Nn . The total number of nodes
is NN » The branch connecting nodes Nn “and Nm is labeled Bn o

k4

Hence, Bn o and Bm 0 denote the same branch. The total number of
’ y

branches is NB . If between a node pair there is more than one branch,

then by parallel combinations one can reduce this to a single branch.

As an example, a cilrcuit graph is shown in Fig. 2.la, representing
a four node, five branch circuit, The branches are numbered by double

subscripts using the rule outlined above,

It is useful to intréduce three topology matrices which define
the topological structure of a graph. They describe node-node (or node
interconnection), node-branch and branch-branch (or branch interconnection)
connections. These matrices contain somewhat redundant information
and usually only one of them is sufficient to specify the associated
graph. However, the last type (branch-branch) does not give unique

node numbering.
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(a)

(b)

Fig. 2.1 A circuit graph with (a) double-subscripted branch
numbers, (b) single-subscripted branch numbers.
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For a circuit with NN nodes, the node-node interconnection

. . % (. .
matrix (Cn,m)N-N is an NN N.. matrix. The elements are defined by

N
n#mn C =1 if nodes N and N are connected
n,m;N=-N n m
=0 if no connection (2.1
n=am Cn,n;N—N = 1 to denote self connection

Note that the node-node interconnection matrix is symmetric, i.e.,

= 2.2
n,m;N-N Cm,n;N—N ( )

For example in Fig. 2.1, the node-node matrix is

1 1 1 0
_ 11 1 1
Coyn~l1 11 1 (2.3)
0 1 1 1
Similarly, the node-branch matrix <Cn,m)N~B is NNXNB,
where NB 1s the total number of branches in the circuit. The elements
Cn,m;N—B are defined by
C =1 if node XN is connected to branch B
n,m;N-B n m

C =0 1if N is not connected to B
n,myN-B n m

(2.4)

This matrix is in general rectangular instead of square. A single-
subscripted denotation of the branches is necessary for matrix mani-
pulations. The numbering of the branches starts at node Nl for

the branch going to the node with the lowest node number. The rest of
the branches connected to node Nl are numbered consecutively with
the increase of node numbers they are connected to at the other ends.

The sequential numbering continues for branches connected to node N2 s
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again according to the increase of node numbers they are connected to
at the other ends., Here, branches already assigned a branch number

are not renumbered. This process repeats for all nodes.

The single-subscripted branch numbering for the graph in
Fig. 2.1la is depicted in Fig. 2.1 b. The node~branch matrix is given
by

1 1 0 06 0
{10 11 0
Coedns "o 11 0 1 (2.5)
0 0 0 1 1
r _ . . . .
he branch-branch interconnection matrix (Cn,m)B—B is an NBXNB

matrix describing branch-to-branch connections. The elements are defined by

n#m C . BB = number of connections between the ends of
n,ms branches B and B
n m
= 0 dimplies no connections
=1 dimplies one end of each branch is connected
n=nmn Cn m:p-p = O excluding branches with both ends
7 connected to the same node (2.6)
Note that this matrix is symmetric, i.e.
2.7)

n,m;B-8 = Cm,n;B—B

The branch-branch matrix corresponding to the graph in Fig. 2.1b is

01 11 0
1010 1
¢ . _=1110 11 (2.8)
n,m’ B-B 101 0 1
01 1 1 0

Note that the node-node matrix specifies the connections for a-
given set of nodes. The node~branch matrix specifies the connection for a

given set of nodes and branches. Either of these two matrices can regenerate
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the graph with the same node and branch numbering. This may be much
more difficult for the branch-branch matrix. However, all the matrices

are derived from the given network (graph) consisting of nodes and branches.

The Kirchhoff's laws can be written down comprehensively. One
defines voltages Vn(s) at each node Nn and currents fn m(s)

s

leaving N to N_  along the branch B with the condition
n m n,m

3

f = T -
z: n,mn o, In,n 0 (2.9)

The voltages and currents are related by

& & _ 3 = s(8)
Vn Vm Zn,m In,m Vn,m (2.10)
where Visi is a voltage source along branch Bn o (and increases
b4 >

from n to m) and Zn o is some impedance (assumed linear) on the
*

same branch. In a degenerate case the branch current might be specified

by a current source. TFor a closed loop, ?n -¥,=z0, and (2.10) becomes

~ ~ ~ ~ ~

7 T + 7 T ..+ 7 ;i
n,m; “n,m my,m, my o, m,0 MW, ,0
- (ﬁ(S; + V;s)m + o+ Vés)n) =0 (2.11)
71 172 i’

Appropriate applications of (2.9) and (2.11) to a given circuit
yield the network equations. There are many forms of network equations
which are derived according to the cut sets or tie sets chosen [2.1]. It
is not intended to go into this subject here, but instead one form of
the network equations for the example illustrated in Fig. 2.1 is given.
Currents are labeled by single subscripts in the same way as the single-
subscripted branch numbers. Application of (2.9) to Nl’ N2 and N3

yields
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1 1 0 0o o\l
-1 0 1 1 offT = (0))
. 3 n

0 -1 -1 o0 1 14

I

o]

For the mesh containing branches B B B and the mesh

1’ 72 73
B3, B4, BS’ (2.11) becomes
L
21’2 -21’3 22,3 0 0 fz 1 1 1 0
is =
0 0 22’3 -52’4 ZaA, L\ o 1 1
I

For dimensional consistency, using an arbitrary impedance

nation of (2.12) and (2.13) gives one form of the network

ref Zref 0 0 0 0 0 0 0
—iref 0 ref éref 0 0 0 0 0
0 _zref —Zref 0 ~ref 0 0 0 0
21,2 21’3 22’3 0 0 1 1 1 0
0 0 7 -Z yA 0 0 1 1

350-15

(2.12)

containing

~(s)
v 3 (2.13)

~

Z combi-

ref’
equations, viz.,

\ [+
0 vgf%
0 véf% (2.14)
o/ |5
1 \wés)

The currents are readily obtained by inverting the 5x5 matrix.

It is the purpose of this note to present similar network

equations for transmission~line networks. These equations are com-

plicated by the wave nature of the voltages and currents,

dependence on positions and modal properties.
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C. Transmission-Line Networks

Concepts similar to those of circuit topology are developed for
transmission-line networks to help summarize the network configuratioms,
to define topology matrices and to set up network equations.

The basic elements of the transmission-line network graphs are
tubes and junctions. A tube is a collection of wires characterized
by two ends to which electrical comnections can be made. A junction
is where wires terminate. Usually a bundle of wires is considered as
a tube which may be terminated by a circuit. Branching of a bundle
of wires can be considered as a tube divided into a few tubes with the
position of branching as a junction within which only direct electrical
connections occur.

The graphic symbols for tubes and junctions are respectively
"parallel" lines and circles. The Vvth junction is denoted as J

for v=1,...,N

v

3 where NJ is the number of junctions in the network.

For transmission-line networks, it is possible to have more than one

tube between two junctions. The pth tube between junctions Jv and

Jv' is labeled Tépi, . If there is only one tube between Jv and
. e . (1) .
Jv, , the simplified notation Tv’v,(—Tv,v,) is often used.

Each tube can be characterized by two sets of waves: the forward
traveling wave and the backward traveling wave. The waves on the pth

tube between junctions Jv and Jv, are labeled W(p’+) and W<p’-) s

(p,+) ( \))’w v,V
where vas, travels from Jv to Jv' and vas, travels from
g (P,+) _y(pa") ’
Jv' to Jv . Thus, Wv,v‘ = Nv;v . There are thus two waves

traveling in opposite directions on a given tube.

As an example, a transmission-line graph is shown in fig. 2.2a.
There are four junctions and six tubes. The tubes and waves are numbered
with double subscripts according to the rules outlined above. The
parallel tubes and the self tube* are unique for transmission-line networks
as there are no corresponding elements for the circuits. Topology matrices

similar to those used for lumped circuits can be defined here involving

*A self tube is one that has both ends terminating in the same junction.
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(a) Double-subscripted

(b) Single-subscripted

Fig. 2.2 A transmission line graph with (a) double-subscripted
numbering and (b) single-subscripted numbering
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junctions, tubes and waves. Specifically, there are six useful interconnection .
matrices: junction-junction (or junction interconnection), junction-

tube, tube-tube (or tube intercomnection), junction-wave, wave-wave

(or wave interconnection), and tube-end-wave.

For a transmission-line network with NJ junctions, the junction-

junction interconnection matrix t i X ix.
J ( v’vy)J_J is an NXN. matrix. The

elements are defined as:

't‘ - . .
vV E VY v,V I=T number of tubes connecting junctions Jv and JV

t . = (0 1implies no connection between the two junctions
V,v' =T
Vo= V! toyegey = 1 denotes self connectlon (since a junctiom
> is always connected to itself)
tv,v;J—J > 1 denotes existence of self tubes

1 + 2 X(number of self tubes)

(2.15)
For the example in Fig. 2.2a, the junction-junction matrix is
1 1 1 1
_{1r 1 2 0
tyol3=17 2 5 ¢ (2.16)
1 0 0 1

Similarly, the junction-tube interconmnection matrix (tu n)J—T
2

has elements defined by
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t =1 if junction J ls connected to tube T
v,n;J-T Y n

= 2  if junction Jv is connected to self tube T
n

=0 if junction Jv is not connected to tube T,
The single-subscripted denotation of the tubes Tn is useful for
matrix manipulations. The numbering system is similar to that for
brariches in the circuit topology. Consecutive numbering starts at the

first tube linking junction J to the junction that has the lowest

1

node number. (If there is a self tube at J this would be first.)

1
The tube number increases for other parallel tubes going from Jl to
the same junction until all these tubes are labeled. This process

contindes for tubes going to the junction with the next higher number

until all junctions connected to J, are exhausted. The procedure

1
continues at J2 except for tubes which are already labeled: they are
not repeated (i.e., tubes Tfp; are already labeled and are left out
2

here). The process continues until all tubes are numbered.

One may note here that the tube labeling is not oriented, i.e.,
(P (P

v,Vv’ vi,v

For the example in Fig. 2.2b, the junction-tube matrix is:

11 1 0 0 O
(t ) - 1 6 01 1 O
wn ' J=T 60 1 0 1 1 2
0 01 0 0 O
The tube-tube interconnection matrix (t ) is defined in

n,n” T-T
the following table:

249
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n#mo tn o T=T = number of connections between the ends of
2T tube Tn and tube Tm

= 0 dimplies no connections

= 1 dimplies one end of each tube is connected

= 2 dimplies either (i) two parallel tubes or
(ii) one is a self tube

= 4 implies both are self tubes

=0 for a simple tube (normal situation)

n,n;I-T
= 2 for a self tube
(2.19)
The (tn,m)T-T matrix for the case of Fig. 2.2bh is
0 1 1 1 1 0 ‘l’
1 0 1 1 1 2
ey =-|11o0000
n,m’ -7 1100 2 2 (2.20)
1 10 2 0 2
0 2 0 2 2 2

Each tube is also characterized by two waves. The junction-wave
matrix (tv u)J W describes the waves that are incident or reflected
X -
from a junction. One defines

(transmitted and/
1 1if wave Wu is leaving junction J,, or reflected)

1 if wave W_ 1is entering jumction Jy (incident)

v, 330 " _— . ,
~ 0 if junction J, is not associated with wave Wﬁ

2 if wave W 1is on a self tube
~ u ' (2.21)

250 ‘I'




EMP 3-39 350-21

The single-subscripted denotation of a wave, W 1s numbered similax

u
to that of a tube. However, there are two waves on a tube, oriented to
propagate in opposite directions. Thus, numbering starts at junction
Jl for a wave leaving Jl on tube Tl until all tubes are exhausted.
Numbering continues at junction JZ for all tubes (in ascending tube
numbers), again for waves leaving JZ . This is repeated for all
junctions. This results in different numbering as compared to the

tubes. In fact, for NT tubes, there are Nw waves given by

———

N, =2N (2.22)

The junction-wave matrix for the example in Fig. 2.2b is

1 1 1 1 0 0 1 0 0 0 0 1
(t ) - 1 0 0 1 1 1 0 1 1 0 0 0
vyu’ J-W 6o 1 0 0 1 1 1 1 1 2 2 O (2.23)
0 0 1 0 0 0 0 0 0 0 0 1
The wave-wave matrix (Wu v) describes interconnection of waves
(via junctions). Elements are defined by
W = 1 if wave W _ scatters into wave W , 1.e., 1f W_ 1is
1,V i v u v
connected to Wu via a junction into which Wv is
incoming and Wu. is outgoing.
1 for a self tube
W =
u,v
0 otherwise (normal situation). (2.24)
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For the example in Fig. 2.2h, (W ) 1is

u,v
¢ 0 0 10 001 0 0 0 0 1
0 60 610 0 1 0 0 0 0 1
0 0 01 0 01 0 0 0 0 1
1 6 60 0 0 0 01 1 6 0O
1 0 0 00 0O 0 11 0 0 O
1 0 6 00 0 0 1 1 0 0 O
= 2.25
LA 0100110007110 (2.25)
0 1.0 6 1 1 0 0 0 1 1 O
¢ 1¢ 011 0 00 1 1 0
01 0 61 1 0 0 0 0 1 O
0 1 ¢ 01 1 0 0 O 1 0 0
0O 01 0 0 0 0 0 Q 0 0 o0
Another matrix of interest is the tube-end-wave interconnection
matrix. We denote by the index r in Jv~r the tube ends reaching the
junction JV ; then, for a wave entering Jv via Jv'r s, 1t is labeled
)
as J , and for a wave leaving J via J ,» it is labeled
vir,- v vir
Jv;r,+ )
The tube-end-wave interconnection matrix (t},u)v;E—W is
defined as follows:
0 if wave W_ does not connect to J via end J
u v v;r
tr,u;V;E-W = (-1 if wave Wu enters Jv via Jv;r (i.e., Jv;r,-) (2.26)
1l if wave W leaves J wvia J (i.e., J )
u A% wr Vir,+
Thus, for junction J3 of fig. 2.2b, a new illustration is depicted in
fig. 2.3. Here the tube-end-wave interconnection matrix is
0 -1 0 8] y; 0 1 0 0 0 0 0
0 0 0 0 -1 0 0 1 0 0 0 0
Cedwey = |0 0 0 0 0 -1 0 0 1 0 0 o
0 0 0 0 0 0] 0 0 0 -1 1 0
0 0 0 0 0 ¢ 0 0 0 -1 1 0
(2.27)

Note that the junction-wave interconnection matrix is formed by
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Fig. 2.3. Tube—end labeling for Junction J3 .
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[

v
= 2.
tv,u;J—W 'tr,u;v;E—w (2.28)
r=1
where
r, = maximum value of r
= number of tube ends at Jv (2.29)
| | = absolute value
D. Equivalent Circuits of Junctions and Tubes
Most junctions of interest either consist of physical lumped
circuits or are transmission-line discontinuities modeled by lumped
circuit elements {2.8-2.10]. Topological descriptions of a junction
can thus be similar to those for a lumped circuit, as outlined in
Section 2B.
Junctions can be classified according to thelr complexities.
The simplest one involves only one tube terminated by an impedance
network (including sources), This includes the special cases of open-
circuited and short-circuited terminations. The voltage-current
relation is given by
& ~(s) _F LT x(8)
@0 + (T () = B () [T () + (¥ ()] (2.30)
The dual relationship is
» = (s) o . (s)
@0+ @56 = @ () [T () + T % () (2.31)
The configuration is depicted in fig. 2.4; note that current is taken
positive into the junction.
For the short-circuited case
vV () = (0) _ (2.32)
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L (I_(s))
n
O—-
» o~ (¥ (s))
CAROY Q o

=@ (snHt . '
n,m ~(S>
({8 ()
Py

Fig. 2.4. Terminating Network
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and for the open—~circuited case
(I (s)) = () | 2.3 @

A more general type of junction is one that connects to many tubes,
and connections between wires of the tubes are by direct electrical
contacts. This type is extremely relevant in modeling the case of
branching. As is well known, branches connected at a node have equal
voltages and the sum of currents leaving the node 1s zero. Thus, each
connecting point within the junction 1s a node and the above voltage
and current relations €2.9-11) apply [2.7].

More general forms of junctions are multitube junctions. While
the equations take the same form as in (2.34,35), these equations need
to be partitioned according to the different tubes (and associated
waves) that connect to the junction. This partitioning is considered
in some detail in Section VI; it utilizes the topology matrices discussed
in the previous subsection.

A tube is characterized by its physical construction and geometry.

These are in turn described by the per—unit-length quantities such

as the per-unit-length impedance matrix (2; m(s)) and the per-unit-
~ *
length admittance matrix (Yé m(s)) for the general case, or the per-
>
unit-length inductance matrix (L; m) and the per-unit-length capaci-
b

tance matrix (C; m) for the lossless case.
k]

Based on the~per—unit—length series impedance (%A’m(s)) and
shunt admittance (Y;’m(s)), a per—-unit-length electrical network can be
developed. It illustrates the electrical model of the tube at a peint
on the tube. This is shown in Fig. 2.5 where for completeness two sets of
distributed sources are also shown.

Note that the per-unit-length sources (Gés)') and (Eés)l) R
as well as the voltage (V;) and current (i;) vectors, are functions
of the coordinate =z along the tube as well as the complex frequency s
The equations governing these variables om a tube are considered in

detail in Section III.
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(s T (,80)

-
= '
(V_(z,s)) . (Er'l,m('z,S)) _
—CO 0 ? T
<§;1’m<s>> g gB e
l (i (z,8))
© ]

Fig. 2.5 The per-unit-length model of a multi-
conductor transmission line,
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E. Other Related Topologies

The development of scatterer topology and the hierarchical
scatterer topology is useful in dealing with scattering and penetration
problems [2.2, 2.3, 2.4]. TFor an aircraft, missile or other systems,
there are many cable bundles enclosed inside the walls of the system.
The use of hierarchical scatterer topological concepts is well-suited
to aid in the sblution of these kinds of problems. Here one deals with
the problem layer-by-layer, dividing it into many subproblems of
coupling, propagation and penetration. The details are treated in the

above-cited references and are not described here.
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F. Topology Summary

The various types of topologies and their associated quantities
are summarized in Table 2.1, which was first presented in ref. [2.3].

As mentioned earlier, the hierarchical scatterer problem can be
divided into the following subproblems corresponding to the electro-
magnetic processes associated with each layer (principal volume) in the

transport of signals into the system:

1. coupling
This relates the response of each system layer to the electro-

magnetic fields coming from the layer external to the one under
consideration. Quantitatively coupling can be identified with
the source terms in the equations used to describe the respomnse

of the layer of interest. -

2. propagation

This deals with the distribution of signals within the layer
of interest in the system. It is concerned with the operator
(integral, differential, etc.) in the equations describing the

response of the layer as well as the resulting response itself,

3. penetration
This deals with the excitation of the signals in the next

layer (going to the interior). Specifically penetration is
concerned with the conversion of the response within a layer
into an appropriate set of parameters which can be used for the
coupling process in the next layer. It is then the transitiom

from one layer to the next.

In the hierarchical decomposition of a system oné or more of the layers
of interest may be represented as transmission line networks, in which
case the above breakdown is relevant to transmission-line problems. The

above breakdown within a layer is summarized in Table 2.2.
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@

(closed but <::§

sometimes in more
than one part)

Elementary V(A‘)
Volume AsT

] ]
Elementarys(xl’XZ)
Surface .

vk A Tde
(usually
open but \f’\““/
and
sometimes
closed) Yeornl s

Basic Topological Interconne?ting Diagramatic
Topology Quantity and Symbol Topological form of
‘ b m Quantity and Symbol Topology
1 Graph Vertex Edge
(Generalized)
2 Circuit Node N . Branch B(T) o ®
n n,m
3 Transmissdion | Junction I (:) Tube T(T) : :
Line ?
4 Scatterer Volume V Surface S ‘/r\.// (:::S::)
n n,m
|
5 Hierarchical Principal(v)(k') Principal (S)(X‘)
Scatterer Volume A Surface A

Table 2.1 Various topologies
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- .

Layer N-1

-——— Penetration}- ———————————————————————————

1

A

Layer N Coupling Propagation
¥
- Penetration F-——=—-——-
Layer N+1 , ]
Coupling Propagation

Table 2.2 Hierarchical decomposition of a system

=
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IIT. PROPAGATION ON AN N-WIRE TRANSMISSION LINE TUBE

In this section the phenomena of waves propagating on a
single section, N-~wire transmission-line tube arg considered. An
N-wire transmission line is one that consists of n conductors
and a reference which may be infinity or ground. As will be
derived later, such a system has N modes of propagation.

The equations governing the voltage aﬁd current propaga-
tion on an N-wire transmission line, i.e., the generalized trans-

mission equations are the current change equation
L3 (2,8)) = =@ ()T (280 + G (2,80 (3.1)
dz " "n""7’ n,m n "’ n ’

and the voltage change equation

RGO NIRRT AN O R IO CARMI GO (3.2)

where

z position along the tube

(in(z,s)) = current vector at z

(%n(z,s)) = voltage vector at =z (3.3)
(?; m(s)) = per-unit-length shunt admittance matrix

b
(Z; m(s)) = per-unit-length series impedance matrix

4 .

"'S' .

(Ii ) (z,8)) = per-unit-length shunt current source vector
5(s)! . .

(Vi ) (z,8)) = per-unit-length series voltage source vector.

It is noted that all vectors are of dimension N, and all matrices
are N x N. The per-unit-length equivalent circuit has been given

in Figure 2.3.
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There are a few ways of solving (3.1) and (3.2). One
could reduce the equations to a second order differential equa-
tion in either the wvoltage vector or the currect vector, or one
could express the voltage-current relations in terms of a trans-
mission supermatrix [3.1}. Still another way is to solve for
the unknown propagation vectors that are associated with the
waves. Here, the derivation is in terms of a yet undefined
combined voltage. This approach, as will be illustrated later,

has many definite advantages over other methods.
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A. Combined Voltage Equation

Pre-multiplying (3.1) by a matrix (Kn m(s)) which

3

is N X N and non~-singular and adding (3.2), then
FA RO ONERUNON
= I- Gy )@ )T (D) = B () (X ()]
FLE ) @) + @ o] (3.4)

Defining the following quantities:
(Vn(z,S))q = (V (z,8)) + (Kn’mKS))'(Tn(z,s)) (3.5)

and

@ o, 2 @ @ + @ )@l @) e

(3.4) becomes

d _ ’ ()
3 TN == € )T () + @ (o)), (3.7)

where

@ p&) (@ (2,80 = &

())+ (¥} ()" (T (2,5
+ (Zé,m(S))'(In(z,S)) (3.8)
Using (3.8) and definition (3.5), one obtains

©, o)) = @& () () (3.9)

and

@ p&) G () = &) () (3.10)
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Equating (& {(s)) in (3.9) and (3.10)

n,m
(ﬁn,m(s)) . (?r'l,m(sj)_l = (Cn,m(s))—l- (Zr‘l’m(s)) (3.11)

l.e.
@, N7 = @ ()] () - (3.12)

One can also write

1/2

©, o) = 1@ ()] ()] (3.13)

which has many values. One may define a principal value (or

matrix)*® (?c (s)), i.e.
n,m )

c

€% (s)) = prinecipal value of [(2; m(s))-(?; m(s))]l/z
n,m 7 ’ ’

(3.14)

(?C (s)) 1is called the propagation matrix. Expressing
n,m

(3.7) in this new form, one obtains
IR AR CANION RUACIO MR
n,m

1 I for n=m
n,m 0 for n#m (3.15)

q = 1 for forward and backward traveling combined

N-vector waves, respectively.

Essentially, (@n m(s)) has been restricted to q(¥ (s)) in
(3.5).
From (3.9), (3.10) and (3.14)

(En’m(S))

1]

W, @)@y )7

n,m

a@, 7 6D (3.16)

n,m

* see definition under Section ILI-B.
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Thus, (ﬁn m(s)) is a characteristic of the transmission line
s

and has the dimensions of an impedance. Define
5 B L -1
@, GN= F, N F ()
n,m n,m
~ -1 &,
= . 3.17
G, NT@L ) (3.17)

n,m ’

which is called the characteristic impedance matrix. Now,
definitions (3.5) and (3.6) are rewritten to be

(Vn(z,S))q = (V (z,8)) + a(Z, m(S))'(Tn(z,S>)
& o sy, 319
(vn (z,8)) + aZ_ (D)1 (z,s))

n
n,m

~ (8)!
(Vn (z,S))q

One can also define the characteristic admittance matrix to be

the inverse of the characteristic impedance matrix, viz.

o o -1

¥ (8)) = (2, () (3.19)
n,m n,mn

Putting q =+l and q = -1 in (3.18), one can obtain

the following relations

(T _(2,)) = 2LO_(z,8)), + ¥ _(2,9))_] (3.20)

@, () A (z5) = T (), - T s 32D

n,m

Thus, for forward traveling waves

(¥, (2,83, = <zcn m(S))-(incz,s))_Jr (3.22)

and for backward traveling waves

¥ (z,8))_= -(Z, (s))-ﬁn(z,s))_ : (3.23)
n,m

This is an important result which allows one to easily separate the
voltage and current vectors into forward and backward waves and easily

reconstruct the voltage and current vectors from the waves.
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B, Eigenmode Expansion

Expression (3.14) for (?C (s)) clearly indicates the
n,m

necessity of eigenmode expansion of the matrix product

(Z' (s))+(¥' (s)). The eigenvalues would yield the values of
n,m n,m

the propagation constants of the eigenmodes. Corresponding to

each eigenmode, there is a complete set of eigenvectors for the

combined voltage. These properties are examined in this section.

1. Positive real properties

a, Definitions

A rational function f£(s) which is real for real values
of s and whose real part is positive for all values of s with
a positive real part is called a positive real function (p. r.
function) [3.2]. A positive real matrix is one whose eigenvalues
are allp.r. functions. Let (?n’m(s)) be a p.r. matrix of size NxN,

then the eigenvalue problem becomes

3 (o) 5 5(r)
(Pn’m(S)) (B 77 (D) Bs(s) (B 77 (D)

(3.24)

5 )y . 3 5 o)V
ORI ONES NOT IO

where ¢ = 1,2,...,N is the eigenindex and ﬁé(s) are the eigen-
(r)
values, and (?n (S))S and (Fég)(s))a are the eigenvectors. Since
(Pn,m(s)) is a p.r. matrix, 56(5) is a p.r. function of s. If
ﬁa is independent of s , then 56 is real and 56 2 0 for all

8. For the oft encountered case of symmetric p.r. matrices we can

set

O INENCISI S

(3.25)

OO
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b. Eigenmode expansion

A p.r. matrix can be expanded as follows [3.3]:

() = Z 55() @ (60) (37 (60 167 00y - B (o)) T Ga2e)
8

If the matrix is the argument of a scalar function F , then

FIE, 1] = 9 P01 ), P 69 16 60 o 3P (o)1
§ (3.27)
One assumes that the scalar function F is single-valued for all
complex 56(5) . Otherwise the principal value of FEpa(s)] is
defined to define the principal value (or matrix) of F[(?n m(s))]
For example, powers of the matrix can be expressed as
E_ ()%= ). By@1°E )P ) 1D 005 3P (1) 17
$§ (3.28)
where for Re(s) >0 and Im(g) =0 , [ﬁ(s)]€ > 0 defines the
principal value of the ¢&-~th power of a p.r. matrix.
c. Normalized eigenvectors
The normalized eigenvector is defined by
;)
() @M )
(o7 (8))g = (3.29)
Ve o0 P o),
In terms of the normalized quantities, (3.26) and (3.27) become
@ () = Z 550G 00,67 0
(3.30)

= ~(r) ~ (L)
PG, ()] = Z 5167 6,680 60,
6 .
Note for symmetric p.r. matrices the normalized eigenvectors can

be:reduced to
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G5 = 6 ey = G e, (3.31)

d. Transmission line p.r. matrices
Assume that the per~unit~length impedance and admittance
matrices (Z' (s)) , (¥' (s)) are passive. Then they are p.r.
n,m n,m
matrices.

In the special case of a lossless traasmission line,

1 = '
(2} () = s D
(3.32)
X' (s = '
n,m( )) s(Cn’m)
where . )
(Ln m) = per-unit-length inductance matrix
’ (3.33)
(C% m) = per-unit-~length capacitance matrix.
3
which we also assume to be frequency independent {dispersionless)
and, hence, constant matrices. The elements L; o and C; o 2re
b 2
real, being derivable from quasi-static boundary-value problems
(Laplace equation). The p.r. property of the per—-unit-length
impedance and admittance matrices then implies that the per-unit-
length inductance and capacitance matrices are both p.r. and
positive semidefinite. Thus, (L' _) and (C' ) have real
n,m n,n
non-negative eigenvalues.
If we further assume that (Lé m) is symmetric, then
b
1 . (1.1 = ¢t '
(Ln,m) (Ln)ﬁ 2’5 (Ln)é
(3.34)
T ! — T \]
(Ln)ﬁ(Ln,m) - ’Q'é (Ln)S
In terms of the normalized eigenvectors (2&)5 , (2; m(s)) is
3
expressible as
Al = t ' i
@ L) =5 ) 2p () (3.35)
8 .
Similar expressions exist for symmetric (§' (s)) and (C' ) .
, n,m n,m
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2. Propagation matrix (?C (s))
n,m
The squared quantity of the propagation matrix is equal to

the product of two matrices, each of which is typically symmetric

(reciprocity), i.e.,
oy p 2 — 7t .« (<71
(ch _ (s))y = (Zn,m(S)) (Yn’m(S)) (3.36)

Let (Vc (s))6 be the right eigenvector of (?C (s))é
n : n,m

1 o (1Y o (7 _"'2 TF
2 m ) T GG ) = Ty ()T, (D) (3.37)

n

The corresponding quantity for the combined current mode is given

by
G, NI= @ ()@ () (3.38)
n,m s s

Let (TC (s))6 be the left eigenvector of (?C (s))é
n n,m

: e _ 32 .
(TCnFS)XS-(Zn’m(s)) (Yn,m(s)) = (Ié(s)(fcn(s))6 (3.39)

In this note, the following simplified notation is used:

G, G =@q, )

n,m n,m (3.40)
Defining the normalized eigenvectors by
(V (S))
(S>) (3.41)
'\/(V (s)) (I, (s))
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and
(1C (S)>6
(i, ()) 5 = n__ (3.42)
n
-\/(Vc () g+ (T, (D)
n n
it is possible to expand the squared propagation matrix into
~ 2 2 ~
F, NF=) YA EF N, () (3.49)
“a,m P n n
and using (3.31) the propagation matrix is
(7, )= ) T GNE, ) (3.44)
n,m n n
’ 8
~ .. 2, 1/2
where Yé(s) is the principal value of Eyé(s)] .
Here principal value means for
£E(s)y 2 0 for s 20 (3.45)
and then
#1/%6) 20 for s3>0 (3.46)

with analytic continuation away from the s 2 0 axis. We then

assume
72(8) 20 for s 20 (3.47)
so that we may choose
Ys(s) 20 for s 20, 8 =1,2,...,N (3.48)

We further assume that the ?5(5) are p.r. functions so that

Re[?s(s)] 20 for s >0
" 8=1,2,...,N (3.49)

?5(5) analytic for s > 0
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Note that ?6(5) having this property corresponds to a + or right-
going wave, since a positive real part corresponds to an attenuation
in the + direction. A p.r. propagation constant is then a causal
propagation constant. However, other more general forms are perhaps
possible. For present purposes, p.r. propagation constants are assumed.

The necessity of choosing which square root to use for the
propagation matrix is potentially troublesome.v The matrix transmission-
line equations may have buried in them certain mathematical problems,
such as related to existence and uniqueness of solutions, representation
of solutions, etc. The diagonalization of the square of the propagation
matrix may depend on certain properties of the per-unit-length impedance
and admittance matrices; this in turn influences the nature of the
square root of the square of the propagation matrix. The problems in
choice of the propagation constaﬁts may lead to some restrictions to
situations that such choices are applicable or even possible. There are
then some open questions requiring further research.

With the above definitions we obtain two sets of waves propagating

in opposite directions along =z . For all modes we have

exp[—(?c (s))z] is + propagating
i (3.50)
eXP[(?c (s))z] is - propagating

n,m

For a function F of (?c (s)), assuming nondegenerate modes, one

n,m
can express

FIG, )] = ) Flige)] G, (DA, ) (3.51)
n

n,m 5 n

Specifically, we have
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&, )= Z ?6<s><6cn<s)>6ticncs))5

n,m S

SANOM Z?5’1<s><Gcn<s>>5@cn<s>>6
8

n,m
-q(ch m(s))z ~ag(s)z . (3.52)
’ - ). G () g(E, ()
e e <VC § & 8
5 n n
~ 0 ~ > . . ,
G, @)=, =) G, (N, () (dencity)
n,m 5 n n
3, Properties of (VCn(s))6 , (icn(s))5
The two normalized eigenvectors as defined in (3.36), (3.37),
(3.41), and (3.42) possess unique properties, which are exploited in
this section.
Rewriting (3.36) and (3.37)
- o 2 ~
(Zz'hm(s)) (Yr'l,m(s)) (vcn(S))5 = Yg(8) (v, (D)
7 (3.53)
g a3 —_ ~2 .
(1cn(S))51 (Zr'l,m(S)) (Yr‘l’m(S)) = YS'(S)('Lcn(SDé'
First, premultiply the first by (EC CS))GV’ then postmultiply the
second by (;c (s))6 (both in dot p?oduct sense). The difference
of these two ngw equations becomes
4 . ' . ¥ f— ' . Al L3 >
G, @) [, (@ 6 = E L6 )]G, (D)
SR - @] @ () a0 G (8)
) 8! cq 8! c §
n
(3.54)
=0
. . , 2 2
There are two possible cases. First, if Ys # Y then
(1Cn(s))61'(vcn<5))6 = 15,6' . (3055)
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where

1. ' = (3.56)

are elements of the NXN didentity matrix (16 6‘> (or Kronecker
3
delta). Equation (3.55) is called the biorthonormal relation;

(ic (s))6 and (;c (s))6 are the biorthonormal eigenvectors. Second,
n (

n
if Y% = Yéz , i.e., the degenerate case, the orthonormal vectors are

constructed by other means such as the Gram-Schmidt piocedure.

C. Solution of Combined Voltage Equations

1. Integration of combined voltage equation

The combined differential equation (3.15), i.e.,

d o ~ > - st
3z Vae q(ch m(s))-(Vn(z,s))q = (V7 (z8)) (3.57)

can be readily solved [3.4] to give

(Vn(z,S))q = eXP{-q(?Cn m(S))[z—zO]}°(Vn(zO,S))q

2 ]
]
+ J{ eXP{—Q<?C (S))[Z—z']}'(Vés) (z',s))q dz' (3.58)
2 n,m
0
For a + wave (i.e., a wave propagating in the + z direction), let us

assume that (Vn(O,s))+ is specified, giving

F_(z,8)) = exp{—(?c .CS))z}°(?n(0,S))+

n,m
z
v ' (s)!' 1 1
+ [ expl-(¥, () [z-2'1}- (V77 (2',8)) de (3.59)
o n,m
Similarly for a - wave with (Vn(L,s)); assumed specified, we have
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W (z,8))_ = expl(¥, () [z-L1}-(V_(L,8))_

m (3.60)
z
+fexp{(7 (S))[Z-z']}‘(v(s) (z',s8))_ dz'
] i n

These results illustrate one aspect of the simplification introduced
by the combined voltage in that the + wave depends only on the left
boundary condition and the - wave depends only on the right boundary
condition in a very compact way. Note that for the minus wave if we
replace z by L-z as the coordinate variable, then the - wave
has precisely the same form as the + wave, which one would expect
by symmetry.

Using (3.52), equation (3.58) can be written in terms of

~

eigenmodes, i.e.,

. -qY < (s) [z=2.] .
T s = ) {e ° T, 6D Ty lague ] G, o)
8
-q¥:(s) (z-2,) '
+fe ° 0 [czcn<_s>>§-<vrfs> (z‘,s))]dz'}(x?cn(s))é
20
- Y LA, g T e ] G () (3.61)
6 )1 n
Define coefficients of expansion as
avs (Z,S) = ({C (S))S.(vn(z’s))q (3-62)
2 q o

For a + wave, i.e., one that travels from z=0 to z=L along the

transmission line, let us assume that (ffn(O,s))+ is specified. Then

T, (z,8)), = Z CV@ (z,8) (¥ (s)) (3.63)
8 jai

’
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and
Oy, (o) = Ay @5 e,
V()2 _
= e [(ichS))s'(Vn(O,S))+]
=Y. (s) (z~2") .
* Jf e ° [, )@ 2o ] a2 (3.68)
O n
Similarly for a - wave with (Vn(L,s))_ specified
T o) = ) G (a) G, (D) (3.65)
5 8= n
and
CVS _(2,5) = (Icn(s))d-(vn(z,S))_

?6(3)(Z—L) .
e {(1cn(S))5°(Vn(L,S))_]

2 5.(8)(z-2")
+ J( e S [(ic (s))a'(VQS) (z',s))_ ] dz' (3.66)
L n

Equations (3.63) and (3.65) show that there are 2N eigenwaves
for a N-wire transmission line (plus a reference). These waves are
characterized by CV6’+(VCn(S))6 and CV _(vcn(s))s , §=1,2,...,N.

One could define an eigenmatrix as follows’
En®y = (G 65 @G (D) ey G @Y (3.67)

where the columns are the voltage eigenvectors. The eigenmode coef-

ficient vector 1is defined by

Cy @) = € (@8 4 & (2,8) ,.o0s T (2,8)) (3.68)
n 1,q 2,q
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Equation (3.61) can be rewritten as

(Vn(z,S))q = (En’m(S))v (Cvn(z,s))q (3.69)

2, Semi-infinite transmission line

Many transmission-line properties can be learned by
studying the semi-infinite line where the complications due
o reflections do not exist. As discussed earlier, the per-unit-
length electrical model of a transmission line is given in
Figure 2.5. |

Assuming that (Vn(O,s))+ is given and there are no other

sources along the line so that only + waves propagate, (3.59)°

gives
(?n(z,S)L_= eXP[—(?cn m(S))Zl - (V0,80 (3.70)
At z =0, ’
(%n(o,s))+ is specified
~ (3.71)
(V_0,8))_ = (o)
from (3.19)
(V_(0,8))_ = (V_(0,8)) - <”zcn m(s))-cfnm,s)) = () (3.72)
Thus
(V_(0,8)) = (‘zcn (o0 (50,80 (3.73)
Or, from (3.20)
(T_(0,8)) = cEcn ()@, 0,8]) (3.74)
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As 1s well-known, waves propagate in only one direction on a
semi-infinite line driven at the one end, with voltage and current
related by the characteristic impedance (Equation 3.73). Thus, the
effect of a semi-infinite multiconductor transmission line can be repre-
sented by an equivalent impedance network that is equivalent to the
characteristic impedance matrix (Z (s))

Cn,m
3. Normalization relation of (Gcn(s))6 and (fcn(s))CS in terms
of (ZC (s)) and (YC (s)) and associated modal expansions

n,m n,m
For forward traveling waves only, (3.22) gives -
(Vn(Z,S)) = (Zc (s))*(In(z,s)) (3.75)
n,m

For (Vn(z,s)) chosen as a single mode, (3.63) gives
(Vn(z,S)) = CV (vc <S)>6 7 (3.76)

5,+ n
Hence . -
(In(z,s)) = CVS (Yc' (S))‘(Vc (S>>6 (3.77)

s+ n,m n

Therefore, the §-th mode for the current can be normalized as

(I, (g = T () F, ()
n n

n,m

T, Ny = (@ (S>)‘(ch<s>)a

n n,m

Together with (3.55) this specifies (GC (s)) and (fc (s)) including
their units. v o

For nondegenerate modes (3.53), (3.55), and (3.78), give
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G, G E, N = G, (N @, (N (Ng = 1g g
cn n n n,m ’ n ’ (3.79)

(i”c (5))6'(‘7c (s)) g0 = (ic (8))5'(71C (8))°(fc (s))gr = 16,5,
0 n n n

n,n

For the first of these equations left dyadic by (GC (s))6 and right

dyadic multiply by (ic (s))a‘ and sum over §,8' .0

n

(SDS('{C (S))6
n n

Y@ e, Nyl s = Y G
56" n n 3

[}

G (N F (N (T, ()+F, () g, )y
n n n n

n,m

1Y @, oG, gl (s)>-[ ) G (), (s))g,]
n J n,m 8t o n

T

G @G, @)@ @0, )

$
2 e
$

-
= [ (x”rc (s))a(\“rc (8D -(Yc (s)) (3.80)
n n n,m
From which we conclude
~ ~ -1 ~ ~ -
Z, ()= 6N - Z F, () F, () (3.81)
n,m n,m s n n

In a similar manner from the second of (3.78) dyadic multiplication by
(Gcn(s))ﬁ on the left and (ic (s))5, on the right and summing over
n

§,8" gives
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) @, SICRCIFE Y G, N, @0

8,8 o S
- (ln,m)
= Z G, N, N @, N E )T (N,
6,6' n n n,m n n

DG DA, Nl o] Y, @ @)
8 n jo3 n

n,m X n

(1, & ) Y a, ()5 @ @),

n,m 6' n

@ |y a, (20,5, (@) (3.82)

n,m 8 n
from which we conclude
o -1 v >
@, =@ =) G 6 E, () (3.83)
n,m n,m 5 n n

These results are quite illuminating. Specifically, they show

that the characteristic impedance matrices are symmetric, i.e.,

O A O

n,m n,m

(3.84)

5 T o
SO
This is evident from (3.81) and (3.83) which expand these as sums of
symmetric dyads. The form in (3.84) is usually referred to as reciprocity,
but this property was not assumed in the beginning, but is required by our
results. Again, this is possibly associated with the assumed characteristics

of the propagation matrix.
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. -1 1 .
4. Expansion of (anm(s)) and <Yn,m<s)) in terms of

(GC (S))5 and <iC (S))(S
n el

From (3.58) for the case of no sources along the semi-infinite

line, 2z 2z 0 , with only + waves, we have
¥ (z,9)), = exp{-(F_  (s))2}+ (¥ (0,8))
n,m
W (z,8))_ = (©,) (3.85)
(T (z,8)) = (Z_ (s))(T (z,8))
n,n

Expanded in modal form we have

- —\?6(5)2 N . B
(T (2,80, =) e @, ()5, (g 4 0,00,
; n n (3.86)

d - BOSUEN N
£ @, =) s e G (N, ()5 T, 0,80),
5

T

Noting the special relation between the voltage and current .
vectors we can then write equations for the voltage vector the same as

for the combined voltage vector, i.e.,

N -.?S(S)z . ~
(Vn(z,S)) = §Ze (vC (s>)5<ic (s))6 °(Vn(0,8))
§ “N o (3.87)
d . “Ygle)z N
i (Vn<z,5))= - ZYé(s) e (Vcn(s))é(lcn(s))G '(Vn(O,S))
) §

Similarly, for the current vector we have by multiplication (dot product)

by the characteristic admittance matrix

N ":{6(5)2 N
(1, (2)) = @, GN{) e F, ()@, (D) p+ & () (T_(0,5))
n,m ; n n n,m

(3.88)
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Then using the modal expansions for the characteristic admittance and
impedance matrices in (3.83) and (3.81) respectively, together with the

biorthonormal modal relation in (3.55) we have

5 | “Ys()z .
(i (200 = { ) e (T ()G, (g ¢+ (T (0,80
5 " ° - (3.89)

n

=Y. (s)z
L @G == ) Fee e O, SICAOSPE HENCRSS
8

Recall (3.1) and (3.2) without sources

~;~(Tn(z,8)) -(?g,m(8>)'(vn(2,8))

(3.90)

35 Ta(z9)) = =@ () (z,8))

Comparing these to the above modal expansions of the derivatives we

have first, considering the current derivative

. —?é(s)z . . 5
S Y T e CRIOSFEAROINS SCAOHIACES

s n,m

- —:\76(5)2 N
EDIRAOE (T, (&), ()5 4+ (T (0,8))
8 n n

-(7;’m(8))°(vn(z,8)) (3.91)

Evaluating this at z=0 and noting that (Vn(O,s)) is an arbitrary

N wvector, we have

) = ) Ty @, g, () (3.92)
S

Similarly, using the voltage derivative equationms
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. “Ys()z _ ~
) For e Gy G5 Vg {2, ) (T,0,0)

8 o,

N -?6(5)2 - -
DR ACE G, ()4, () b+ (0,8)
8 hat n

@ () (T, (2,5)) (3.93)

Evaluating this at 2z=0 and noting that (fn(D,s)) is an arbitrary

N vector, we have

CARNONE PIRRS F, @50, @) BRERD
§

Note now that (3.92) explicitly illustrates that (Y; m(s))

is symmetric and (3.94) does the same for (Z; m(s)) , i.e.,
b

t T 1
@ N = @ ()

(3.95)

o T
@) p) (?Q,m(s))
As in (3.84) for the characteristic impedance and admittance matrices,
this symmetry is a statement of reciprocity for the impedance and
admittance per-unit-length matrices. While this was not explicitly
assumed at the start, it is a consequence of the development. This may
be assoclated with the assumed diagonalization characteristics of the
propagation matrix. Then let us consider the reciprocity (symmetry) of
the impedance and admittance per-unit-length matrices as one of our
assumptions for the present development.

Taking (3.94) and left or right dot multiplying by a current

eigenmode, we have

?5(5)(5Cn(5))6 (Z%,m(s>)'(1cn(s))6

S OIRCNO) (3.96)
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A dot product with the G&'-th current mode gives

76(8) 15,5, = (fcn(S))5'(Z;,m(S))°(fC ()) 51

n

Given Y. .(s) this normalizes the (. (s)) in terms of
5 ¢, 8

Zv
( n,m

Note also the relationship of the voltage and current modes via

(Z;’m(S)) and  Y,(s)

350-55

(3.97)

Similarly, dot multiplying (3.92) on left or right by a voltage

eigenmode gives

Tol) (1, g = () L6 G, ()

n

~ s
(7, ()5 @1 L(s))

n
A dot product with the J&'-th voltage mode gives

'?G(S) 15’61 = (Gc (S)>6.(?I!1,m<s>).(\7c (s))sv

n n

This normalizes the (v, (s))CS in terms of (‘?I'1 m(s))
ksl ?

and the

(3.98)

(3.99)

?6(8) . Note also the relationship of the voltage and current modes

via (Y;’m(s)) and ?6(3)

5. Termination condition of a tube

A transmission line is usually terminated at the two ends

z=0

and z=L . The termination could be a lumped impedance, a distributed

network, open-circuit or short-circuit. If sources are included,

conditions can be represented by a generalized Thévenin equivalent

network or a generalized Norton equivalent network.

Passive terminations can be specified as an impedance matrix

(Zr  (z,8)) or an admittance matrix (?Tn (z,s)) where z=0

n,m
The condition (Z (L s)) = (ch m(s)) , or equivalently

these

L.

14
(?T (L s8)) = (Y (s)) specifies a perfectly matched line and the

n,

transm1531on line behaves like a semi-infinite line for 0 £ 2z £ L

(with an equivalent single end at z=0 ).
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Alternatively, the terminating conditions can be specified by
scattering matrices (§n’m(z,s)) where 2z=0 or L . Consider at
z=L (see Figure 3.1); let the incoming waves be designated by a super-
secript - and the outgoing waves + . The scattering matrix is

defined by
@76 = 6, L5 @ 7 @)

For the case illustrated in Figure 3.1, one observes that if this

termination is taken as z=L , then

@ (1) = (@ (@,9))_

(=) N
CAMONENUN RN

One can then rewrite (3.94) as
(Vn(L,S))_ = (Sn,m(L,S))'(Vn(L,S))+

which in this terminating case is the same as the definition of a

reflection matrix given by

(§n’m(L,s)) = [(zT (L,s)) + (ZC (s))]*l.[(ZT (L,s)) - (ZC (s))]

n,m n,m n,m n,m

Similarly, at =z=0 the termination conditions are

(V,0,80) = (8, [(0,8)) (¥ (0,8))_
and

8,008 = [E )+ & NN, ©,9) - & ()]

n,m n,m n,m n,m
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(1)
. ]
(Vn) (§n,m(s))
—

Figure 3.1. Incoming and outgoing wave at a junction
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6. Solution of combined veoltages

Combination of (3.58), (3.102) and (3.104) gives the solution

of the combined voltage equation. Rewriting these equations

(Vn(z,s))+ = exp 1- (?C (s)z} '(?H(O,s))+
n,m
z

#f e e, @)1 @ e,
Q n,m

T s = exp LT, () [2-L]) - (V_(L,8))_
n,m
z

fjr exp{ (¥, (s))[z-z']} '(Vés)'(z',s)j_ dz'
L

n,m

00, = (B 0,9)) (T (0,8))_

(V_ (@,8))_ (B a9 (¥ (L)), (3.106)

These equations can be solved by substitutions, or can be arranged
in a matrix form, as described later in the BLT equation. As written
here, these correspond to the special case of a transmission-line network

consisting of two junctions (or terminations) connected by a single tube.

7. Reconstruction of total voltages and total currents

Once the combined voltages are evaluated, the total voltages
and total currents are readily obtained.

From (3.18), one obtains

(T_(2,9) = FLT s, + T (z,) ]
1 (3.107)
(I (z,8)) = 5@, () - [V (z,8)), - (¥ (z,8))_]

n,n
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Hence, if one knows (ﬁn(z,s))+ and (Vn(z,s))_ for a given tube, as

well as (§¢n m(s)) or (Z (s)) (being measurable or conceivably
» m

c
n’
even calculable), then the measurable voltage and current vectors are

directly reconstructable.

D. Sign Convention of g

It 1is noted that in the definitions of the combined voltage,
the convention q = +1 1is chosen to represent the wave propagating
from 2z=0 to z=L . Correspondingly, gq = -1 represents the wave
propagating from z=L to z=0 .

Let us further denote the above quantities with a subscript u ,
i.e., q, = +1 corresponds to wave propagating from left to right,
i.e., from z, = 0 to z, = L . This is shown in Figure 3.2.

It is also permissible to choose, on the same tube, a different
convention. Let z_=1L - z, be a new coordinate, as shown in

v
Figure 3.2. The new ¢ convention, qV , 1s now oppostie to q_ .

u
Here, q, = +1 corresponds to a wave traveling from right to left
(i.e., z, = 0 to z, = ).

This convention will prove useful and is recalled in deriving
the BLT equation.

The subsequent sections deal with multitube multiconductor
transmission-line networks. More general notations, primarily in the
form of additional subscripts denoting either the tube or the junctionm,

are used.

E. Summary

Since there are so many expressioms, relations, etc., introduced .
in this section, it is useful to summarize them in tabular form, as

presented in Tdbles 3.1-4.
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A W (g =1, q =-1)
O W ) - -
Wv(qu 1, q, +1)

l v

2 M ]

3
z =0 — z =1
u u u
z =1L *—Z z =0
v v v

Figure 3.2 Left and right traveling waves
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Table 3.1 Transmission-Line Equations
Name Svmbol Relation
Trans. line egns. - - (5 i 5(s)°
telegrapher equs.) dz <vn<z’5>) (Zn,m(s)) <In(z’5)> * (vn (z,8))
—~ ~ ~ - t
£ A s = =@ LN T e + G (2,80
Combined Voltage Vecter (Vn(z,s))q "(ﬁnKZ,S))*-Q(zcn m(S))’(in(Z,S))

Cembined Per-Unit~Length

Source Vector

Voltage Vector
Reconstructien

Current Vector
Reconstruction

Separation Index

Combined Voltage
Equation

Propagation Matrix

Characteristic Impedance

Matrix

Characteristic

Admittance Matrix

General Solution

(referenced to arbitrary

position zo)

Solution for tube
¢sz31L

in terms of
boundary values

(V§s>i(z,5))q
(?n(z,S))

(I (2,8))

(T’D(z,s))q

+ or right wave (&n(z,s))+

~ or left wave (Vn(z,s))_

(f]‘ésy(z,s)) +q(7.c (s))'(in(z,s)).

n,n

10~ .
B CACRR IR AN

L e [T e, - (_z,e))_]

o,

1.
55 ¥
= ]

, 4 ~ ot =(s)!
[\ln,m) T q(ch m(S))}'(Vn(z,S))q = (v (z,SJ)q

= {<zé,m(s)>.(§;,m(s))}% (principal or p.r. value)

= (v e al ‘1= ¥ =1, /5
(o™ Tau®V7 =0, @7 @)

" -1 - - -1
=, N a gl ) F, N7
5 -3 . DeB
= ) () e @)

= axp {}q(?c (s)) [z—zoi}-(vn(zo,s)>a
n,n :

z ’

N e o lowis) ;
_[ exp{chcn ) [ z}} @ @e @

’
ZO

= exp {;(?C (s))%}'<vn<0,S))+ +
o,m

Z
S PR B O (s)' ' '
+fexp{('°n,m{sn [ z]} AN CERS PR

(s)) [~L]}-<\7D(L.s>>_

n,m

+f axp{c“c (s)) [-z']}-n"f)'u*,s))_ dz’
L n,m
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Table 3.2 Diagonalization of Propagation Matrix

Name Symbol Relation
Square of Propagation (?c (s))2 = {Zr‘l L8N ()
Matrix n,n ’ ’
~ ~ 2~ ~2 ~
Normalized Voltage (v (s)) ¢ (N7 (v, (s)¥); = Yi(s) (v  (s))
c 8 c e 8 ) ¢ &
Eigenvector n n,m n n
- - ~ 2 2 ¥
Normalized Current (L. (s)) 1, N F (s1)" = ¥.(s) (I, (s)),
X c ) c § Me e [} M)
Eigenvector n n n,m n
: ~ ~2 % .
Eigenvalue of Ys(s) = Yé(s) (principal or p.r. value assumed)
Propagation Matrix
Eigenindex § = 1,2,...,8 (NXN matrices)
Biorthonormal Property . ()T, (8))ey = 1 oy (N independent
A S ¢ c & §,8 .
(used for normalization) n n eigenvectors assumed

of both voltage and
current types)

Function of Propagation ME, (&) = Z F(?a(a)) (:rc '(s))é (ic (s))(S
Matrix Ti, 00 3 o n
Special Fropagacion Marrix (e () = Z T G @ G @)y
Cases 0
Transpose e (s))T = Z ?5(5) (Ec (8))s (':;c (s))é
n,m 5 n n
Inverse €7 -1 = 5=l m ~
Special ° m(s)) Z Yo (8) (VC (S))d (1c (s))6
Cases ’ 3 o n
- . 0 N 5
Identity (ln,m) = (Yn,m(s)) = Z(vc (s))a (ic (s))é
8 a n

Tl & g G G0,

8

292




EMP 3-39

350-63

Table 3.3 Normalization of Voltage and Current Eigenmodes

Name

Symbol

Relation

Normalization vi
Characteristic
Impedance and

Admittance
Matrices

Normalization via
Per-Unit-Length
Impedance and <

Interrelation of
voltage and current
eigenmodes

3Jeparate voltage
and current eigenmode
normalization

Interrelation of
voltage and current
eigenmodes

G, = &, N, GNg= A NgE 6N
n n n

n,n n,m
E, (g = G, (D) G (Mg = G (N T (51
o 1} n n,m

n n, ’

Ls g = (e (050 E ) G
n n,m n

Ly o = G (N Ee ()G (N
n ,n n

T(o) Ge (8)g = @y (807G )5 = (e (g2 (&)

V() Ge (205 = (F 5@ () - Ge (850 ()

Admittance
Matri o - x
trices Separate voltage and 1y 5 = Vo) (B ()" @) L(e))+ . ())g
current eigenmode * n ’ n
normalization Ly g0 = Vo) @ (D) (@ ()G (),
’ n ? n
Table 3.4 Representation of Other Matrices in Terms of Voltage
and Current Normalized Eigenmodes (indicating assumed
reciprocity)
Name Symbol Relation
Characteristic 2 (s)) = Z - v N
Impedance Matrix Cn,m 3 (v‘:rx(s»6 © Cn(S))o
Characteristic & (s)) = Z (i . 3
Admittance Matrix C1:1,1:: 3 lcn(S))O ( cn(s))d
Per-Unit-Length @' () = z ¥ v .«
Impedance Matrix o, - Ys(S) (vcn(S))° (Vcn(S))6
8
Per-Unit-Length ¥ _(s)) = Z ¥ I “q
Admittance Matrix Rl 2 YS(S) (lcn(snrS (:}.cn(S))(S
8
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IV. SUPERMATRICES AND SUPERVECTORS

Define a supermatrix, or more specifically, a dimatrix or tensor

of rank four, as a partitioned matrix or matrix of matrices in the form

(@ ) )

n,m u,v

with elementary matrices or blocks

(D

n,m u,v

and elements

D
n,mju,v

such that the blecks or elementary matrices are

m = 1,2,...,MV

and the dimatrix is NxXN , i.e.,

u=1,2,...,N

<
L]

1,2,...,M

Note that this corresponds to a matrix with

rows

™=
‘:Z

o]
i
H

columns

M=
=
<

i

295

N XM
u v

3

i.e.,

350-65

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)
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which has been partitioned into blocks or elementary matrices by a
partitioning of the row and column indices. Pictorially this corresponds
to drawing horizontal and vertical lines completely through the matrix
between selected adjacent rows and selected adjacent columns.

For our purposes, the dimatrices will be square, i.e.,

N=M (4.7)

N =M for u=v (4.8)
Hence the diagonal blocks

(Dn,m)u,u , size NuXNu (4.9)

are square and off-diagonal blocks are symmetrically rectangular, i1.e.,

(D ) , size N XN

n,m'u,v u v

(4,10)
(Dn,m)v,u , size NVXNu
Supervectors or divectors are similarly defined in the form
v, (4.11)
with elementary vectors as

(vn)u
n=12,...,N (4.12)
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remembering that n,m and u,v are merely dummy indices. Note that the

. elements are designated as

\ (not V ) (4.13)
nju n,u

Define supermatrix multiplication imn the dot product or contraction

sense as

(a ) J: ((B

n,n u,v n,mu,v

e P

(An,m)u,u' (Bn,m)u',v
u'=1
N Nu'
B z Z An,n';u,u' Bn',m;u',v
u'=1l n'=1
= ((Cn,m)u,v) (4-14?

Here we note contraction is done twice involving the second indices of
the two pairs of indices for the first matrix, and the first indices of
the two pairs of indices for the second matrix; this is denoted by two
levels of dot product : , noting the two dots one above the other.

In (4.14) the two dimatrices are not necessarily square. It is
merely required that the second indices m,v of the first dimatrix have
the same range (hence same partitioning) as the first indices of the
second dimatrix. Two dimatrices with this property are said to be of

compatible order, for multiplication in the double dot product sense in

this case, with order of multiplication specified.
In the present note all dimatrices are taken as being of

symmetric compatible order, i.e., (4.7,8) apply and N and the N, have

the same values for all dimatrices in the particular discussion (i.e.,
describing a given physical situation). Furthermore, the divectors are
also taken as having the same compatible order. Thus we can form any

such operations as
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((An,m)u,v) + ((Bn,m)u,v) dimatrix
(<An,m)u,v) :((Bn,m)u,v) dimatrix
(<Bn,m)u,v): CcAn;m)u,v) dimatrix
(4.15)
((An,m)u,v) =((Vn)u) divector
((Vn)u) :((An,m)u,v) divector
((Vn)u) ’((Wﬁ)u) . scalar

where dimatrix-divector and divector-divector multiplication in the

double dot product sense are obvious specializations of (4.14).
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V. IDENTITY SUPERMATRIX

Before continuing the supermatrices of the previous sections to

yield an equation, it is necessary to define an identity supermatrix

(. J ).

n,mu,v
The identity supermatrix is such that its diagonal element matrices

are all identity matrices, and all off-diagonal element matrices are

zero matrices, i.e.,

(ln,m>u,v = lu,v<ln,m>
(5.1)
1 for n=m
ln m
> 0 for n#m
invelving Kronecker deltas. The individual elements can be written as
1 for both n=m and u=v
= (5.2)

n,m;u,v
2T 0 for either n#m or u#v
as a sort of super Kronecker delta or superidentity element. Note the
identity supermatrix is then a symmetric dimatrix as in (4.7,8).
For a supermatrix (M ) ) of symmetric compatible order,

n,m' u,v
then

(O, Py 2 D = (0 > (A ) D= (0 ) ) (5.3)

n,m u,v n,m u,v n,m u,v n,m u,v n,n"u,v

Also, an inverse (M ) )-'l of (M. ) ) exists such that

n,m u,v n,m u,v
-1 ) . -1
R I e R A IS PR RN
= (1. ) ) (5.4)

n,m’u,v
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provided
det[(Cr ). )] #0 (5.5)
Note that (M ) )_l is of symmetric compatible order with
n,m u,v
<(Mn,m)u,v) ’
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VI. SCATTERING SUPERMATRIX

The concept of scattering matrices introduced in Section III for
a terminated tube is extended here for junctions where more than one
tube is connected. Collections and suitable ordering of scattering
matrices at all junctions of the transmission-line network form a

scattering supermatrix.

A. Junction Scattering Supermatrix

Consider the vth junction Jv with tube ends denoted by
Jv'r with index r as discussed in subsection IID. Let this junctiomn
3
be characterized by an impedance matrix

_ oy -1
@y a8y = @ 6N (6.1)
The junction scattering matrix is defined so that

RO OMI RO (6.2)

where the subscripts + and - refer to the aggregate of respectively
outgoing and incoming waves (N-waves) on the various tubes in the form
of combined voltage vectors:; remember that the current convention for
outgoing waves is positive direction outward, and for incoming waves is
positive direction inward.

In the supermatrix form partition according to waves on the T

VvV
tube ends connected to J as

v
@O0, = (@ 6N, @ e,
(6.3)
o - -1
(@ o, 0y = () ), 0]

where
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(0 0)
UARNO DI Al © DN

(6.4)
r=1,2,...,r
are the voltage and current vectors on the rth tube ends at Jv
with current convention into Jy .

The tube associated with the rth tube end at Jv has
characteristic impedance and admittance matrices which can be put in
supermatrix form for Jv as
((ZC (s))r r,) = tube-end characteristic-impedance :

n,m ’ v ,
supermatrix for Jv
((Yc (s))r r,)\) = tube-end characteristic~admittance
i ? .
B supermatrix for Jy
AR (6.5)
c rT,r Vv
n,m
where

characteristic—-impedance matrix for rth tube

end at Iy for r=r' (sgquare)

, - ‘
(On m) for r#r (rectangular)

b4

E, Ny gy T

characteristic-admittance matrix for rth tube end at

Jv for r=r' (square)

1
(On,m) for r#r' (rectangular) ;

iy
H
It
" "

(?C (s))

T, r 3V
n,m O

(6.6)
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Thus, these impedance and admittance supermatrices for the tube ends
at a given junction are block diagonal and may be represented in

terms of the direct sum (:) as

(O NN AN O DA ® @ <s>>2’2;\)(:)...(:)<2C CODIR
n,m i n,m ’ n,m n,m vty
r
VvV
(D@, L,
-1 n,m
(@, N, 0,20 ®>Mﬁth) @, oﬂ>Lzﬂ)()u.()dQ DI
n,m » n,m n,m AVASEIAY)
)
z@(? SN, (6.7)
r=1 n,m

where the convention used here is to maintain the partitioning according
to the two pairs of indices (n,m and r,r') instead of combining them
in one pair as in a regular matrix (or monomatrix). Note the subscript
V on the supermatrices; the elementary matrices are also identified
with Vv and the r,r' indices range over the tube ends at Jv , not
over the wave indices u,v .

The scattering supermatrix for Jv is defined by

(T ), 4 = (G ) )T ),
(@, = @ e, - 2, m<s))r,r')v:((TéO)(S>)r)v
= outgolng wave supervector at Jv
(@ 6N, = @ )+ @, m<s>>r,r.>v:<<T§O)<s>>r>v
= incoming wave supervector at J (6.8)

\Y
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Again note that the Jv current convention is positive current into
Jv so that the usual Ohm's law convention in (6.3) holds for Jv .
Solving (6.8) for the voltage and current supervectors at J,
(@D, =2 W@ (), L+ (T (1)), ]

n T’V 2 n r'V,+ n r’v,-

(@D eno =2, e, o, l@ P e, - @
m > 3

,

(1)), ]

(6.9)
Now we can compute the junction scattering supermatrix for J

by combining (6.8) and (6.9) with (6.3} to give

Y

=~ -1
TG ARNO P NE N (R I

mr,r
n,m ’ ’

(8, o0, L0y = [, ) )

vV

JCCNOI NI AN OIS MEN (IR

n,m r,r
n,m * s

a0

n,m' r,r'’'v

+ ((ZC (s))r,r')\):

o -1
GANOIIEN
n,m

: - ((Z s (¥ s
[, D)y = (G 6L 0 (60 0]
n,m
(6.10)
Note the identity supermatrix corresponding to Jv 3 it is of course
partitioned in the same symmetric compatible order as are the various
impedance and admittance supermatrices and the scattering supermatrix
for .
J\)
For the junction SN let the rth tube end have Nv-r conductors
b
(plus the reference) so that the wave on this tube end is a vector of
dimension Nv'r . The supervectors then have dimension for Jv as’
3
T
N =
b =Y w, .10
r=1

The associated supermatrices are rvxrv in terms of the blocks or elementary
matrices; the corresponding matrices (unpartitioned) are NvXNV . The
reader may comnsult fig. 2.3 for an example of tube ends connecting to a

junetion.
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B. Reindexing of Elementary Matrices in the Collection of Junction

Scattering Supermatrices

Having considered the junction scattering supermatrix for Jv

and noting that Vv = 1,2,...,NJ gives all the junctions, we then have

the elementary scattering matrices from one tube to another wherever

there is such a comnection at any junction. The problem is one of

rearranging the equations so as to combine the results for junctions

and tubes to obtain a description of the overall transmission-line network.
To convert the junction scattering supermatrix to a network

scattering supermatrix, consider the tube-end-wave matrix (tr,u)V;E-W

which relates the tube ends (r) at junction Jv to the waves Wu on

those tubes. Recall the definition from (2.26) of the elements of the

tube-end~wave matrix as

0 4if Wu does not connect to Jv via the rth

tube end (i.e., Jv;r)

-1 if Wu enters Jv via the rth tube

end (i.e., Jv;r,-)

tr,u;\);E—W -

+1 if Wu leaves Jv via the rth tube end
(i.e., Jv;r,+)
(6.12)

Once can then construct this matrix for each JV for v = 1,2,...,NJ

from the topological diagram (graph) for the transmission-line network
giving the junction Jv numbering and wave Wu numbering (as in the
example in fig. 2.2b), and from the corresponding diagram for each

junction JV including tube-end labeling (r or Jv-r) (as in the
s
example for J3 in fig. 2.3).

Now to associate an elementary scattering matrix (§n m(s))r £1ev
H H H]

for two tube ends, J and J with (8 8 corres ing

o Jur Jogret ( n,m( ))u,v rresponding

to two waves, Wu and Wv » in the overall network is straightforward;

one must associate

r' (or J r,) + v (or Wv) for the incoming wave

V3

H

r (or JV r) +u (or Wu) for the outgoing wave (6.13)
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However, this is what the tube~end-wave matrix does.
Consider incoming waves corresponding to the second index, v ,

in 3 s . For one and only one J there is a negative entr
( n,m( ))u,v 7 v g v

in (e, ) under the vth column; the corresponding row is the
', v V;E-W
value of r' . Hence, for each v

r' (in S y) is that ' 3 t -1 (6.14)

5T r',v;V;E-W

which is readily found and even automated on a computer. Said another

1

way, v 1is a function (an integer function) of Vv and r To aid

in the search for J the value of Vv {(or junctiom Jv) igs found

vi;r!
from the junction-wave matrix (tv v)J—W (as in (2.21)) by finding those
?
values of VvV for which t is nonzero; there are at most two
v, v3J-W

such values of V corresponding to the Wv leaving one junction and

entering another junction, except in the case of a self tube where W&
both leaves and enters the same junction. Considering the one or two

possible JV the value of v and r' are readily found as in (6.14)
or via a diagram. After going through v = 1,2,...,N. one can

*TW
construct a table in the form

v
1
2
NW (6.15)
Table of Correspondence of incoming waves W& to
junctions Jv and tube ends Jv;r‘
with the values of VvV and r' filled in for every v .
Similarly for outgoing waves corresponding to the first index
u in (Sn,m(s))u,v , we have a value of r given by
» J s = + - .
r (in v;r) is that r 3 tr,u;v;E-W 1 (6.16)
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Hence, u 1is a function of Vv and v . Again utilizing the junction-
; s hi
wave matrix (tv,j)J-w and finding the values of tV,u;J-W which are
nonzero, one reduces the consideration to at most two values of the
junction index v . The values of V and r are then readily found
from the tube-end-wave matrices as in (6.16). After going through
u = l,2,...,Nw one can construct a table in the form
\ T
1
2
Ny
Table of correspondence of outgoing waves Wu to
junctions Jv and tube ends J,,
with the values of v and r filled in for every u.
Hence, with each pair (u,v) we associate the pair
(JVl;r R Jvz;r') . Now we have
V, =V, =V s s . .
1 2 for WV scattering into Wu at junction Jv
v . .
1 # Vs for Wv not scattering into Wu (no
interconnection) at any Jv
(6.18)
Then we form the network elementary scattering matrices as
(Sn,m(s))r,r';v for vl = v2 =V or Wv
S = scattering into W  at
(Sn,m(s))u’v— N . u
n,m’ n,m)u,v or vl 7 V2 or W§
not scattering into
(6.19)

This gives an explicit algorithm for constructing the (§n m(s))u . from
2 b

the collection of junction scattering supermatrices ((§n m(s))r r')
* H

07



350-78 EMP 3-39

The reader will alsc note the correspondence of these results with the

wave-wave matrix (Wu v) as defined in (2.24) as
s

1L for v, =v, =V and W, scattering into
W ) Wu at Jv
u,v 0 for vy # v, or W, not scattering
into Wu
(6.20)

The wave-wave matrix then indicates which (u,v) pairs must be
considered for finding nonidentically =zero scattering matrices,
thereby simplifying the search among the elementary matrices comprising
the junction scattering supermatrices.
C. Scattering Supermatrix ;

The proper ordering of all the junction scattering matrices
into one large matrix forms the system (or network) scattering super-
matrix ((gn,m(s))u,v) . This supermatrix is a collection of the
junction scattering matrices, which themselves are collections of
individual tube scattering matrices. The latter are matrices con-
taining reflection and transmission coefficients of individual
wires within the tubes. Thus, ((gn,m(s))u,v) is a dimatrix (or
tensor of rank four).

The wave-wave matrix (Wu,v) gives the structure of the
scattering supermatrix since the scattering supermatrix is in general
block sparse as

(§n,m(s))u,v = (On,m)u,v for wu’v =0 (6.21)
Hence, also, the scattering supermatrix is NW.XNW in terms of the
u,v indices, i.e.,

u,v = 1,2,...,N (6.22)

W
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The mentary scattering matrices S s are N XN i.e.
elementary g ( n,m( >)u,v b N s

n=1,2,...,N

u
(6.23)
m = 1,2,...,NV
where
Nu = number of conductors (not including reference) on the
tube with uth wave , (6.24)
and likewise for Nv .
As a special case, it is interesting to note that if there are
no self tubes (with both ends connected to the same junction), then
W =0 foru=1,2,...N.  for no self tubes
u,u W
(6.25)
(Sn,m(s))u,u = (On,m)u,u for n,m=1,2,...,N (square)

In this case the scattering supermatrix has zero matrices for its
diagonal blocks; this will complement the identity supermatrix which
has, as its only nonzero elementary matrices, the diagonal blocks
which are identity matrices (as discussed in Section V). This case

is anticipated to be quite common in practice.
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VII. DEFINITIONS OF SOME IMPORTANT SUPERMATRIX AND SUPERVECTOR
QUANTITIES BASED ON RESULTS FOR WAVES ON A TUBE

This section takes the results for the combined voltages on a
tube and separates them into the wave variables for the network. The
resulting equation for a general combined voltage wave Wu is used to
relate the combined voltages at both ends of the tube with the sources
along the tube. Each term is generalized to a form appropriate to
the transmission-lipe network, i.e., supermatrices and supervectors,

by aggregating the results for all Wu for u = l,?.,...,NW .

A. Common Equation for the Two Waves on a Tube

Let us take the results for the propagation on a single tube

developed in subsection IIIC from (3.59) and (3.60) as

(V’n(z,S))_F = eXp{-(?c (s))zhe(¥_(0,s)),

n,m
z
+ fexp£-<?c () z=2"13 @5 (27,00, dz
n,m
0
(7.1)
(pee))_ = el NIt (T, (L,s))_
zZ
+ fexp(«?c () L2213+ (7 (a',9)) _ aa’
L e |

Then, as discussed in subsection IIID, let us identify the two waves on
the tube with two waves of the transmission-line network, say Wu
and W
v
Consider the + wave; call this Wu and set the coordinate

and dimension varisbles as
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Lu = L = length of path for Wu

zZ, = z = wave coordinate for Wu

0 g z, < Lu

Nu = N = number of conductors (less reference) on tube

and dimension of vectors for Wu (7.2)

The wave and source conventions are then

W)y  Gu@e), = TG + & @), (T (2,8))

= combined voltage for Wu

~(s8)! = () _ () 5 Ny L (8)!
(Vn (Zu,S))u = (Vn (Z,S))+ = (Vn (Zu,S)) + (ch m(S))u (In (Zu,S))
Z combined voltage source per unit length for Wu
-y -1 . . .

(ZC (8)), = (YC (s)),” = characteristic impedance matrix for W,

n,m n,m
(Yc (S))u = (Yc (s)) = propagation matrix for Wu

n,m n,m 7.3)

Note that for Wu the current (Tn(zu,s)) convention is taken as
positive in the direction of increasing =z (as in fig. 2.5). Likewise,
the voltage source per unit length (Vés)'(zu,s)) (including any
discrete voltage sources) is taken as positive increasing in the
direction of increasing z, - The first of (7.1) then takes the form

for W as
u

(W, (z,80) = exp{-(F, (), 2} (¥ _(0,8)),

n,m
z

u ' '
[ e, el @ e, dey (7.4)
0

n,m
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Next consider the -~ wave; call this W& and set the coordinate

dimension variables as . )
L =L = length of path for W
v v
zv = L - z = wave coordinate for WV
0 <z <L
v v
Nv I N = pumber of conductors (less reference) on tube and

and dimension of wvectors for WV (7.5)
The wave and source conventions are then
Tplzpo), = Oy (me)_ = T (zpe) + @ (), (80
*

= combined voltage for Wv

A I S A CHRS DI S S DT ASUM CHR)

AT
n,m

combined voltage source per unit length for Wv

m

= 3 -1
@, (sh), = & (s)),

n,m n,m

characteristic impedance matrix for WV

(7c (S))V = (?C (s)) = propagation matrix for W
n,m n,m (7.6)
Now for Wv the current (fés) (zv,s)) convention is taken as positive
in the direction of increasing z, and, hence, of decreasing =z
(opposite to that for Wﬁ). Similarly, the voltage source per unit
length is taken as positive in the direction of increasing z, which
is the direction of decreasing 2z . This is so that for Wv the
conventions are defined with respect to z, in the same manne% as for
W~ they have been defined with respect to. z, - The second of (7.1) then

takes the form for W& as
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(Vn(zv,SJ)v = exp{-(?cn m(S))V z 1+ (V_(0,8))

z
v
+ Jr exp{-(¥ (s)) [z -z']}'(v<s>'(z' s))  dz’
c v v v n v’ v v
n,m
0

which is exactly the same as for Wu' in (7.4). Hence, only one such
equation need be considered; it is applicable for all u = 1,2,...,Nw
thereby applying to all waves in the transmission~line network.

The chosen conventions for Wu and WV to have the same form
with respect to zZ, and z, are then important to simplifying the
formulation of the network equations. With these choices we have
relations between the two waves Wu and Wv on the same tube for

coordinates and dimensions as

L =L =L
u v

z + 2z =1L
u v

N =N =1N
u v

The wave and source relations are (for uncombined quantities)

(Vn(zu,S)) (Vn(zv,S))

(Tn(zuas)) -(TH(ZV’S))

@9 (2,80 = =@ (@80

@ ) = @ @ L

(Zc (e)), = ¢/ (s))_ = (Z (s)
n,m cn,m v Cn,m

G, Ny = @, G, =G )
n,m n,m n,m
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B. Relation of Combined-Voltage Waves on Both Ends of a Tube

Now in (7.4) (or equivalently, (7.7)) we have the combined voltage . <

at any z, in terms of the value (boundary condition) at z, = 0

Setting zZ, Lu we introduce the boundary value there as giving

(vn(Lu,S))u = EXP{‘(VCn m(s))u Lu}‘(vn(O,S))u
L
u
+ J[ exp{-(?c (s))u[Lu-z&]}'(?is) (z"l,s))u dz;. (7.10) :
0 n,m

This evidently relates (V’n(O,s))u which is an outgoing wave from the
junction at z, = 0, to (Vn(Lu,s)) which is an incoming wave to the
junction at z, = Lu . This is used later with the scattering super-
matrix to form the BLT equation for the transmission-line network.

As a matter of convention, let all sources be considered as being
present in the tubes instead of the junctions. If one has a junction
with an equivalent circuit containing sources, as for example in fig. 2.4,
then the sources can be moved just across the terminals into the tube,

a movement of zero distance. Note then that the boundary values

(Vn(O,s))ﬁ and (Vn(Lu,s))u are combined voltages on the junction
"side" of the conmections to the junction. Given this convention again,
note the different conventions for sources for the two different waves

on a tube, as discussed above.

C. Propagation Characteristic Supermatrix

Considering the various terms in (7.10), let us first aggregate
all the propagation terms not associated with the sources into a block

diagonal propagation supermatrix as

((Tn,m(s))u’v)
= exp{~(¥ (s))lLl}(:)exp{-(? ()),L} (:)...(:)exp{-(? (s))y Iy }
¢n,m “n,m “n,m WOOW
N,
W .
e exp{-(?c (S))uLu} (7.11)
u=l . n,m )

propagation supermatrix
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where the elementary matrices (blocks) are given by

. expl- (¥ (s)) L} for u=v
(T ) ‘nm BT
n,m U,V o ) for u#v
n,m

3

1u’V exp{—(?c (s))u Lu} (7.12)
n,mn

D. Source Supervector and Supermatrix Integral Operator

Again from (7.10) let us define a source vector for WU in
traveling from z_ =0 to z =1 as
u u u
L
" iy 17} =(s)' ' 1
exp{~(ch m(s))u[Lu—zu}_'(Vn (zu,s))u dz;, (7.13)
O s

~(s)
(Vn (S))u

The source supervector is then merely

L
u '
( 4[ exp{—(?c (s))u[Lu~zé]}'(§§S) (zl'l,s))u dzél> (7.14)
I n,m

(@ o))

Once can factor the above result by the use of a supermatrix integral

operator. Define the elementary matrix blocks of this operator as

(An,m(za’s;(.)))u,v

L

4 u )
J[ exp{—(?c (s))u[Lu—z;]}(') dz& for u=v
n,m

O b
=4

\(On,m) for u#v

L
u
= lu,vf exp{—(?c (s))u[Lu—zt'l](') dz"l (7.15)
0 n,m
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where the argument (*) indicates the place to put the expression
following the operator in order to perform the operation. This is
defined so that
X 5 (s)!

! « (o '3 t
(A, o(2iass () =@ Gl

_ ~(s)

= lu,v ARSI

L ,
-1 U eple@ () ML =211 @8 (21,8)) aa! (7.16)
u,Vv xp Cim vov v n v’ v )
0 E

with the multiplication which is part of the operation taken in the dot

product sense., We can then readily form

@) = (G Gl D@ @l

((An,m(z;’S;(.)))ugv) |
. °

() s,

u=1
NW Lu
() f expl-(7_ () [L-2]1}(+) dz]
n,m
u=l 0 ’

= propagation supermatrix integral operatfor
1
((Vés) (z&,s))u) = distributed source supervector (7.17)

Note that the propagation supermatrix integral operator in (7.17) is a
generalization of the propagation supermatrix in (7.11) to allow for
continuous comﬁined voltage sources along the wave coordinates instead
of just the boundary conditiomns (equivalent sources) at the set of

z =0,
u
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E. Combined Voltage Supervector

For completeness we have the aggregate of combined voltage

vectors in (7.10) as

((Vn(O,s))u) = combined voltage supervector of outgoing

waves at the junctions

((Vn(Lu,s))u) = combined voltage supervector of incoming

waves at the junctioms

In this note we will formulate the BLT equation in terms of the

outgoing waves at the junctions, but other forms are also possible.
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VITII. BLT EQUATION

Combining the results of the previous derivations we can write . .
the BLT equation for the description of the transmission—line network.
We begin with the scattering supermatrix in Section VI which relates

the incoming waves to the outgoing waves as

(W, 0,800 ) = (B, 1)) (T @8 ) (8.1)

using the combined voltage supervectors from subsection VII E. Note

the distinction between incoming waves (zu = Lu) and outgoing waves

(zu = 0) at the set of junctions or tube ends.

Next, relate the incoming waves at the output ends of the tubes
(zu = Lu) to the same waves at the input end of the same tubes
(zu = Lu) , albeit at different junctions in general. Taking (7.10)

in supermatrix form, we have

(F_ @ ,8)))

(F, a0, (@ 0,0 ) + (@ (1))

(T @)Y (0,0 ) + (s (1) (@ e )

(8.2)
Combining (8.1) and (8.2) we have

((¥_(0,)))

= (8, G0, D 60 D@ (0,50 + (G L) (T @)

(8.3)

That is rearranged by use of the supermatrix identity as
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fca_ ) )

n,m'u,v

(B, LN, D@ 6N, DI (T (0,8)) )

x o (8)
(G, (N, P76 )

[

(G, LN, D s () (@ al,e)

3

(8.4)

This is one form of the BLT equation with the unknowns taken as the
combined voltage waves leaving the junctions. Note again that all sources
are given a convention as being on the tubes in the wave coordinates
0 < z, < Lu so that they are picked up in the integration along the
wave coordinates and are not included in the combined voltages at the
junctions ((Vn(O,s))u) which are being computed.

For computational purposes the BLT equation is one large matrix

equation with square matrices of size NXN and vectors of dimension

N where
Nw : --
-y 6.5
u=1

Noting, however, the sparse nature of these matrices with blocks of
zeros, one may be able to take advantage of the partitioning used to

construct the supermatrices to simplify computations.
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IX. RECONSTRUCTION OF VOLTAGES AND CURRENTS

Having solved the BLT equation as in (8.4) in some form or other,

we have a set of combined voltages such as the outgoing combined
voltages ((Vn(O,s))u) at the junctions. From these one can find
voltages and currents essentially everywhere, including at the junction
terminals (tube ends) and at arbitrary positions on the tubes.

Consider the important case of voltages and currents at the
tube ends (junctions). Let the two waves on a particular tube be
Wu and Wv as in subsection VIIA. Using the conventions established

there we have
N =N = N = dimension of wvectors

L =1L_ =1L = length

N
+
N

it

L = relation between two wave coordinates

z =z =1L~ z, = tube coordinate (9.1)

Then we have at z=0

@_©0,8) =5 [T_0,8), + T_@ )]

(T 0,80 =5 (. ([T (0,80 = (T G .8 ] (9.2)

n,m

with the current positive in the +z direction or out of the

junction at 2=0 ., At the other end with z=L we have
@ (L)) =3 [T, + T (0,8 ]
(T (L,8)) = %-(?cn LT, A8, - T 0,0)] (9.3)

with current positive in the +z direction or into the junction at

z=L . Tor substitution into the above equations, one uses
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~

(T L T 0,80+ ()

7 ol aa (e (8
(vn<Lu’S))u m(Zu,S,( ))>u,u (Vn (Zu’s))u

@ ey = By (@), @ @)+ A s, @ o,

(9.4)
so that W has z_ =L related to z =0 and W_ has z_ =1
u u u u v v v
related to z, = 0 . In this form the current and voltage vectors at
the tube ends can be computed from the combined voltage vectors leaving
the junctioms (i.e., ((vn(O,s))u) from the BLT equation (8.4) and the
combined sources along the tube via (9.4) for the two waves on the tube,
For more general positions along the tube of interest we have
F (2,8)) == [T (z_,8)) + (T (z_,s))_]
ot 2 n u’ u n v’ v
(T (z,90) =5 F_ () [T (2,9 - F (.80 ] 9.5)
n,m
with current positive in the +z direction which is equivalent to the
+zu direction and to the -zv direction. For substituting into (5.3),
one uses (7.4) and (7.7) repeated here as
7 = I S ( Ve (7 \
(V_(z,8)) = expl-(V (D), z 7V (0,8)),
n,m
z
N (s)!
. —(~ —! o (7 ' 1
+ f expi (YC (s))u[zu zu]} (Vn (zu,s))u dzu
5 n,m
(9.6)
= - {(~ o (T
(V_(z_,8)), = exp{-(Y_ (), 2 3+ (¥ (0,8)),
n,m
Z
M (s)"
N —(~ —o! . t []
-j. expl (", (s))v[zV zv]} (Vn (ZV,S))V dz|
0 n,m

In this form the combined voltage supervectors '((Vn(O,s))u) leaving
the junctions as computed from the BLT equation (8.4) and the combined

1
sources ((Vés) (z;,s))u) along the tubes (or waves) can be used to

cempute the combined voltages and thereby the voltages and currents at

Fry pesiticn z =z 0= LV -z, along any tube of interest.
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X. SOME FORMS OF SOLUTIONS OF BLT EQUATIONS

Having formulated the BLT equation (8.4), one can represent its
solution in various ways. The reader should note that the particular
form in (8.4) is only one of many forms the BLT equation can take; in
this case the unknowns are the combined voltages scattered from (outward
propagation from) the junctiens.

Since the BLT equation has been cast in the form of a supermatrix

equation, the solution can be written directly as

((7_€0,8)) )

5 -1
= L Dy ) - (@G e, D@ ]

s
,M U,V ,m( >)u,v

HE, L) DA G2lss (), DA e ) (10.1)
For each complex frequency s this solution can be directly computed
via integration (for the distributed sources), supermatrix multiplication,
and supermatrix inversion, typically by computer. However, this approach
may have limited utility for some kinds of problems due to a desire for
the transient behavior and/or the characterization of the solution
(such as bounding it) for a large class of excitations ((Vés)'(z&,s))u)
Considerable work has been done in representing the solution of
electromagnetic scattering problems, as formulated in integral equations,
in terms of the eigenmode expansion method (EEM) and the singularity
expansion method (SEM). The literature on SEM and EEM is quite extensive
and the reader can comsult two review book chapters [10.1,2] concerning
this subject and obtain a bibliography. While the SEM and EEM concepts
have been cast in terms of electromagentic integral equations, there is
a direct connection to matrix equations because of the moment method (MoM)
which is used to matricize the integral equations, i.e., put the integral
equations in a form for numerical evaluation as on a computer [10.3].
In fact, some of the original developments in SEM and EEM theory and
application used matrix concepts to arrive- at the needed ideas and

techniques [10.4-6]. Hence, SEM and EEM are directly applicable to the
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BLT equation, as in (8.4) or in other related forms of it. A few of
the results are presented here to indicate the forms of some of the
basic results as applicable to the supermatrix BLT equation.

In EEM form one defines eigenmode supervectors and eigenvalues

via

[((ln,m)u’v) - ((§n,m(5))u’v)=((Tn,m(S))u’v)I:((Vn(S))u>B AB(S)((VH(S))U)B

2080, DT N D1 = A (L (D))

(E N gl Dy ) = (6 ,

(10.2)

where for distinct eigenvalues we have the biorthogonal property
T . ( (T = L oAt
((E () )i (T () )g =0 for B#8 | (10.3)

This result also applies in the weaker case of independent eigensupervectors.
From (8.5) we have N eigenvalues and assume the existence of N inde-
pendent eigensupervectors (of both left and right kinds separately). The
right eigenmodes are used to expand (VH(O,S)) which gives the outgoing
waves at the junctions. The left eigenmodes appear to be related to the
incoming waves at the junctions, and this aspect will hopefully be con-
sidered in a future note.

Defining normalized eigensupervectors as

N

(@ (0 g & LT () D ((F () Dl ™ (T ()))g
(10.4)
~ - ~ ~ —i ~
(20 g = LU (8)) )t ((F () D177 (T (D))
we have the biorthonormal property
((QIH(S))U)B:<({;H(S))U)B' = lBgB' (10-5)

This allows us to write the expansion
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(G ay) = (B, 26N, i ), )

n,m’ u,v

D Tale) TCE () g (T, (61321 (T (1) ) (T (D) ) g
B

) 2,0 (G 0, (), (10.6)
B

which is an example of a dyadic expansion using a dyadic or outer

product of supervecters. The inverse is

S 5y =1
[, Dy = (B L), D (E () )]

5 ¥

-1 ~ N ~ .
= Z?\B (s) ((vn(S))u;S ((’%H(S))u)8 .
g

arr the identity is

(A o) = ) (G eNg (G N,

:
= ) (G ey, (F N, (10.8)
B
Combining (10.6) with (10.8) also gives
(B, i, De(E 60 D =) 1= o] (@), (o),
g (10.9)

The solution of the BLT equation (8.4) can then be written as a

sum of eigensupervector contributions as
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((F_(s0))

=1 p’t . (3 (A Tgs (e AR
= E:AXB (S)[((ln(s))u)s-((Sn’m(s))u’v)-((An’m(zu,S,( )>)u,v)'((vn (z58)) 2]
8

(v, (s))) (10.10)

8
Note that this solution expresses the outgoing combined voltages at the
junctions in terms of eigenmodes at the junctions. These eigenmodes can
be extended throughout the tubes of the transmission-line network by the
techniques discussed in Section IX; these extended eigenmodes can then
be used to comstruct the combined voltages and voltages and currents
throughout the tubes. However, these eigenmodes are not anticipated
to be simply related to the tube eigenmodes (Section III) which may be
more appropriate for extending the combined voltages at the junctions
to the combined voltages, voltages, and currents throughout the network
tubes.

Concerning the SEM representation of the solution, there is much
that can be adapted from the work on electromagnetic scattering and
antenna problems. The general form of the solution of the BLT equation

in the form expressed in (8.4) is

-0l
((Vn(O,S))u) = 2: E(sa) M (8) () ), (s=s) @
o

+ other singularity terms {10.11)

where £(s) (or £(t)) is some excitation waveform which appears in the
combined sources ((§§S>‘(zu,s))u) and which is taken out so as to give
some equivalent delta-function response in defining the coupling coeffic-
ients ﬁa(s). For present purposes, we can set £(s) = 1 assuming that
the excitation has been appropriately normalized. The order of the pole

is n, = 1,2,..., but here only the first order is considered; second
order can be adapted from [10.2].

The natural mode supervectors are found from
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~

[((1n,m)u,v) - ((Sn,m(su))u,v): ((ln,m(sa))u,vl:((vn)u)a = (0 ) )
' (10.12)
(D [0, D ) = (B s )y DT 500, T =(0,))
where the left mode supervectors are also referred to as the coupling
supervectors. The natural frequencies are found as the solutions of
dec[((1y 3, ) = (B (s (@ (s ] = (©O)) (10.13)
These can be related to the eigenvalues via
D(s,0) = det[(-0) (A ), ) = (B ), (T (), )] (10.14)
for which we have
D(s,is(s)) =0
(10.15)
D(sa,O) =0
from which we set
a = (B,8") (10.16)
such that
X =0 | | 10.17
associates the natural frequencies with the zeros of eigenvalues. The
natural modes are similarly related to the eigenmodes as
((Vn)u)B,B' = NB,B' ((Vn(SB,B'))u)B
(10.18)

(2 Jg gr = Mg o0 (g 00) g

where N and are complex constants related to the normalization

8, &' Mg g

chosen for the natural modes.
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The class 1 coupling coefficients are given by
g, ()
~ ’ [ "'(S‘S )t
() gt (B (@i (O, (@ ey e F0°
8 a T .
() i3 [((ln,m)u,v) - ((Sn,m(s))u,v):((Fn,m(s)>u,v)] S_S-((Vn)u)a
a
-1 [ L. -~
= Ny g [g*'XB(S)l_ ] ((ln(sg’8.>>u):((An’m(zu,ss’g.;(')))u,v)
S 5=g '
' - (s~s )t
. "‘(s) ' B,B‘ Q
.((Vn <zu’sB,B'))u) e (10.19)

where the turn-on time to can be taken as a function of position (n and

u indices) in the network. With this class 1 coupling coefficient, the

time-domain form of (10.11) is

~ N st
(v (0,e)) ) = 2: £(sy) Ny (v ) ), e ult-t )

a

+ other singularity terms (10.20)

The class 2 coupling coefficients (corresponding to the SEM

representation of the inverse matrix in (10.1)) are given by

N, (s
~(s-s )to - 1
Lo T g Ltelhss (O, D@ e )
.8 ;
(et 5, 1Dy 0 = (B o0, D o0, 1]y,
Q

-1
] <(e—(s_58>3')t°

%(5898'))11) : ((A(Z&,S; (.)))U,V)

n u (10.21)
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where the turn—-on time tO can be taken as a function of two sets of
position variables (n 2and u) in the network corresponding to both

the summation with the left mode supervectors and the position of
observation. In time domain the class 2 coupling coefficients give
more complicated results than (10.20) for class 1 due to the appearance
of a time convolution.

Like the eigenmodes, the natural modes can be extended throughout
the transmission-line network and made a function of the z, coordinates.
These can then be used for representing voltage and current supervectors
throughout the tubes in the nework.

This section has merely indicated some of the properties of BLT
equations, particularly due to their formal similarity to electromagnetic
integral equations. This analogy should provide much insight and

future results.
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XI. CONCLUSION

)

This has been a long quest. While we have found a few things of
apparent significance, the quest is not finished. As with many results
the answers raise as many, if not more, questions. There are several
general areas for future development that come to mind.

The BLT equation (including its alternate forms) expresses the
characteristics of a multiconductor transmission-line network in a
single supermatrix equation. In this form various properties of the
network can be explored. Various properties related to energy and -
reciprocity can be formulated. In this regard, the symmetry properties
of the various impedance and admittance matrices in the network need
to be explored. This appears to have some relation to the diagonaliza-
bility properties of the propagation matrices.

A development parallel to transmission-line network topology is
scatterer topology. In scatterer topology a hierarchical topology
related to shielding concepts has been introduced. Perhaps this hier-
archical topology can be introduced into some kinds of transmission-line
networks to simplify their analysis and/or synthesis. Turning the

question around, perhaps the transmission~line network topology and the

BLT equation can aid in developing new insights into scatterer topology

and the associated equations describing the electromagnetic scattering.

330



EMP 3-39 350~-101 -
EPILOGUE :

"Then he subdued the Pisidians who made head against him, and conquered
the Phrygians, at whose chief city, Gordium, which is said to be the

seat of the ancient Midas, he saw the famous chariot fastened with

cords made of the rind of the cornel-tree, which whosoever should untie,
the inhabitants had a tradition, that for him was reserved the empire

of the world. Most authors tell the story that Alexander finding himself
unable to untie the knot, the ends of which were secretly twisted round
and folded up within it, cut it asunder with his sword. But Aristobulus .
tells us it was easy for him to undo ity by only pulling the pin out of _
the pole, to which the yoke was tied, and afterwards drawing off the )
yoke itself from below." - -

From The Lives of the Noble Grecians and Romans, by
Plutarch, translated by John Dryden, revised by
Arthur Hugh Clough, Modern Library, Random House,
reprint of Clough edition (1864), from the section
on Alexander the Great.

¥ U.S. Government Printing Office: 1879 — 678-488/301
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