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ABSTRACT

This note discusses the excitation of a multiconductor trans-
mission line by an incident electromagnetic field. Specific relations
for the terminal (or load) response of a multiconductor line are derived
in terms of field-induced voltage and current sources which are dis-
tributed along the transmission line. It is shown how these sources
are derived for a general multiconductor line and how they may be
derived from a knowledge of the incident (or free space) fields by
using a field coupling parameter. The components of the exciting fields
along the line are then given explicitly for the special case of an
incident plane wave with arbitrary angle of incidence.
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SECTION I
INTRODUCTION -

Recently there has been a renewed interest in transmission-line
theory and its application to the internal interaction problems
involving electromagnetic pulse (EMP) excitation of aerospace systems.
One new development in this area has been the formulation of an
analysis procedure to study large interconnected networks of multi-
conductor transmission lines. This analysis, which is described in
refs. (1) and (2), and the resulting computer program (ref. 3), will
permit not only simple branching of transmission lines within the
network, but also complicated looping of lines. Thus, an arbitrarily
interconnected set of transmission lines can be analyzed using this
approach.

The analysis of the transmission-line networks described in
refs. (1) and (2) is based on the network excitation being due to
Tumped (or discrete) voltage and current sources located at a source
position somewhere along each transmission-line section (tube). While
this specification of sources may be useful for certain applications,
it is not particularly useful for EMP studies, where the transmission-
Tine network is excited by an incident, transient electromagnetic
field. In the EMP case, not only is the transmission-line excitation
distributed along the line, but the fundamental excitation quantities
are the incident electric and magnetic fields (E and B), not the
current and voltage sources. Thus, it is necessary to modify the past
analysis to permit distributed field excitation of the transmission lines.

Field excitation of simple open two-wire lines has been
considered by a number of authors and two separate, but equivalent,
approaches used. Taylor, Satterwhite and Harrison (ref. 4) and
Smith (ref. 5) derive a coupling model based on the incident tangen-
tial electric fields on both wires of the transmission line and on
the short wires of the loads at the ends of the ine. This approach
is based on the integral, form of Maxwell's equations as applied to
the closed Toop formed by the two parallel wires of the transmission
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Tine and the two loads at the ends. In this formulation, there
appear distributed voltage sources in both wires of the transmission
line, as well as voltage sources at both Toads terminating the line.

A different approach has been used by Lee (ref. 6) to determine
the distributed field excitation. This is based on the differential
forms of Maxwell's equations and yields distributed current and
voltage sources along the line, with the voltage source being propor-
tional to the H field and the current source being related to the E field.

Both of these formulations yield identical results for computing
the TEM currents flowing on a two-wire line excited by an incident
field. The former approach has been extended to the case of multi-
conductor transmission lines by Paul (ref. 7) and Frankel (ref. 8),

and is similar to that discussed in this report. A slightly different
approach has been employed by Kajfez and Wilton in ref. (9), where the

concepts of reciprocity have been used to obtain the multiconductor
transmission-line response to a small aperture excitation of the Tine.
The method of refs. (4) and (5) has been applied to multiconductor
systems by Strawe (ref. 10), but his report is not widely distributed.
The present report discusses in detail the excitation of
multiconductor transmission lines by an incident electromagnetic
field using the differential formulation. Section II presents the
derivation of the equations describing the terminal, or load, current
responses of a multiconductor transmission line. These equations have,
as sources, both distributed voltage and current generators which are
induced by incident magnetic and electric fields. Section III first
discusses the derivation of these local sources in terms of the local
fields and transmission-line geometry. The concept of an "equivalent
separation" between conductors, as commonly used for two-wire lines, is
then developed for an arbitrary multiconductor transmission Tine.
Finally, in Section IV, the incident field components which contribute
to the distributed sources are given for an incident plane wave striking
the line at an arbitrary angle of incidence.



SECTION II
MULTICONDUCTOR TRANSMISSION-LINE RESPONSE TO DISTRIBUTED SOURCES

As discussed in ref. (1), the fesponse of a general transmission-
Tine network may be calculated by decomposing the currents on each
tube of the transmisison line into forward and reverse propagating
components. At every junction within the network, a scattering
matrix can be derived to express all scattered components of current
in terms of the incident components. These two sets of relations can
be combined to form a large matrix equation for the incident currents.
This equation, called the BLT equation, can be inverted numerically
and the incident currents determined. Through the scattering matrices,
the scattered and, thus, the total currents on the lines, can be
determined.

A basic element of the above network analysis is the determina-
tion of the propagation properties of the forward and backward waves
on the line, as well as their relative excitation by sources along the
line. For the purpose of this section, therefore, we will consider
only a single section (tube) of multiconductor transmission line.

Consider a lossless section of multiconductor transmission line
having no sources, as shown in Figure 1. The length of the line is
denoted by 2 and it contains N wires with the N+1St wire being
the reference conductor. The N+1 wires are required to be parallel,
but not necessarily coplanar. For such a line, its electrical properties
are determined by a capacitive coefficient matrix, (Cﬁ,m) , and an
inductive coefficient matrix, (Lﬁ,m) » which depend only on line
geometry and dielectric properties around the line. For this line,
these matrices are nonsingular matrices of order N.

As discussed in ref. (1), the voltages and currents on this line
vithout sources must obey a coupled set of partial differential
equations as
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where the notation (Vn) represents an N-vector for the line voltage
and a similar notation holds for the current. The parameter s s
the complex frequency variable, and the tilde represents a Laplace
“transformed quantity.

Equation (1) can be manipulated into two separate equations
for voltage and current vectors. The current equation becomes

22(T (2.5))
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which is a one-dimensional wave equation for the N-vector current.
For a lossless multiconductor section immersed in a.uniform,
homogeneous dielectric, the matrix product (ca,m)(Lﬂ,m) in
Equation (2) is diagonal and the individual elements of the current
N-vector are themselves a solution to a simple wave equation:

2
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In(z,s) =0

where v is the velocity of wave propagation on the line.

A more general line, however, does not have a diagonal result for
the (Cﬁ,m)(LB,m) matrix, although it is possible to diagonalize it
through the use of a nonsingular NxN transformation matrix, denoted
by (Tn,m) » Which consists of the current eigenmodes, (¢n)i , as
calumns. The ¢n's are-solutions to the eigenvalue equation

(0 ) () ) = 75 (), (3)



where ?? is the ith eigenvalue corresponding to the eigenmode

By introducing a change of variables as
(Ip(2:5) = (T, (G, (2.5)) (4)

where (?n(z,s)) represents the modal currents, the wave equation
for the modal currents becomes

Pzs)) P
= ST W TG R )T W ) = G ) () (8)
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where (7n m 2
3

is a diagonal matrix confaining the ?i terms as
elements.

Since the matrix (7n’m)2 in Equation (5) is diagonalized,
the solution for themodal currents can be expressed directly as

exponential functions of position, and the total solution for the
line currents becomes

“ Y Gomz -
(1,(z,5)) = (T, o) (e ’ (&;)+eY"’m (a )) (6)

where (&:) and (&;) are N-vectors which define the amplitudes of
each of the propagating modes on the line and which depend on the line
termination and excitation. The terms et Y“’m)z are diagonal
matrices having as elements eiYiz, where ?i = + ?% .

A similar development for the line voltage (Vn(z,s)) can be
‘carried out to determine voltage modes and a propagation equation similar to
Equation (6). By defining a characteristic impedance matrix as

(@ )= sTHG ) (T ) (T (T )7 (7)
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the line voltage N-vector can bemexpressed using the same constants
(&:) and (&;) as in Equation (6):

_ - SO Tz
(W (2,9) = (F )T, ) (e N (a,,)) - (8)

n,m

The unknown constants (&:) and (&;) are determined by
taking into account the loads at each end of the line, as well as
the excitation. Consider the line shown in Figure 2, which has
Tumped voltage and current sources at z = z, 5 as well as load impe-
dances (Z]n m) and (22 ) at z=0 and z =1 respectively.
On the section of the 1iné&" 0 < z < z, Equations (6) and (8)
are valid, since this section of the 1ine is source free. Similarly,
for z, $z$9e similar equations are valid, but with different
constants, (&n) . By relating (Vn(z,s)) to (fn(z,s)) at
zZz=0,and z =2 through the 1oad impedance matrices and by
relating the discontinuities of (Vn(z,s)) and (fn(z,s)) to the
voltage and current sources at z = z, ,a set of linear equations
can be developed with the (&n) constants for each section of line as
unknowns.

Of special interest are the load currents, i.e., (Tn(o,s))
and (In(z,s)) . Using the solutions for the (&n) as well as
Equation (6) for z =0 and z = £ , the load currents may be

expressed as:
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Figure 2.

Sinj]e length of multiconductor transmission
line with loads and lumped sources at z = z, .



where the terms (7 ;(zs,s)) and (}';(zs,s)) represent the source
terms for the positive and negative traveling waves on the multi-
conductor line. Those are referred to as combined current sources,
since they have the dimension of current but arise from both the
applied voltage and current sources at z = z, . In this equation,
the terms (T]n’m) and (Tzn’m) are generalized current reflection

coefficient matrices given by

. . -1 ~'
(T )=[(z + (2 ] -[z - (z ] 10
]n,m ]n,m) ( Cn,m) ( ]n,m) ( Cn,m) (10)

for the load at z = 0 , and similarly for (fzn,m) at z =12
with (Zzn,m) as the load impedance. As defined previously,
(ZCn,m) is the characteristic impedance matrix of the line.

Notice that the matrix equation in Equation (9) has, as its
elements, matrices. Thus, it is referred to as a super matrix equation.
The double dot operator (:) is used to signify the product between
two super matrices by first treating the super matrices as if they
were regular matrices and then performing matrix multiplications for
each of the individual multiplications of the super matrix product.

The form of the source terms in Equation (9) can be shown to be

(G oe) = 1 e W (‘Zc,, RRISCAS)

+ (T,(]s)(zs,s))) (1)
and
(50 = 5 (Tn,m)'eﬁ_'""')(Q-ZS)*Tn,m)'L ((ZC;,. m)"-(v,ﬁs)(zsss))

- (I,‘,S’(zs,s))) (12)

With these source terms, the terminal response of the transmission
line can be determined for lumped voltage and current sources at

z=12z . For field excitation of the transmission line, it is
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necessary to consider distributed excitation, as opposed to the

discrete excitation discussed above. This can be regarded as a

simple extension of Equations (11) and (12) by integrating over

the source terms (Vﬁs)) and (Tgs)). Doing this, the combined
current sources become

Fals)) =%j(‘Tn,m)'e(?"”")g-nn,m)'l-((zcn m)'?-(V;}S’(é,s))
0 + (T;,‘S)(s,s)))ds (13)
MO) ;%_7(‘Tn,m)‘eﬁ(“"")(z_s)-(Tn’m)‘l—((zcn rn)'1~(V,;,(5')(e;,s)) |
O - (1) (F’.’S))) dg | (14)

which follows directly from superposition. Notice that now the voltage
and current sources are per-unit-length quantities, and hence denoted

- by a prime. These quantities must be determined given a knowledge of
the incident electromagnetic field on the 1line, as well as a knowledge
of the transmission line cross-sectional geometry. This is discussed
in the next section of this report.
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SECTION III
DETERMINATION OF DISTRIBUTED VOLTAGE AND CURRENT SOURCES

As indicated in the previoussection, the terminal (or load)
currents of a multiconductor transmission line can be evaluated using
Equations (9), (13) and (14) if the distributed voltage and current
sources (Va(s)(z,s)) and (TA(S)(z,s)) are known everywhere along
the line. In some instances, such as a small aperture or other
localized source close to the transmission line, it is possible to
approximate the solution using a discrete source position, as in
ref. (9). For an arbitrarily incident plane wave, howevér, this is
not possible. Sources distributed over the entire line are necessary.

Consider the case of a single multiconductor cable in free space
and with impedance terminations at each end, as shown in Figure 3.
Assume that in this bundle there are n+l1 wires, with the n+15t
wire being the reference conductor. The electric and magnetic fields
in the vicinity of the line can be divided into two parts. These
are the incigent compgnents,, Eﬁnc and ﬁinc and the scattered

components E> and W , such that
E=E"+¢ (15a)
H=F"C e (15b)

The scattered field components are caused entirely by the induced
currents and charges on the n+1 wires, as well as by the currents on
the terminations. The scattered fields from the line can be further
subdivided into three different classes. There are TEM, TE and TM
transmission line modes, which are produced by "transmission line"
currents, having the property that the components of the total current
on each of the conductors sum to zero.

In addition to these currents, there are "antenna mode" currents.
These are currents which flow on each wire (but with a different magnitude

12
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Figure 3. Isolated multiconductor line excited by
incident plane wave.
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for each wire, in general) and are subject to the constraint that the
voltage difference between any two conductors in a transverse plane
ijs zero. Furthermore, these currents go to zero at the ends of the
line.

Finally, there can exist quasi-static current and charge distri-
butions which contribute to the scattered field but have a net current
or charge of zero on each conductor. Although these latter currents
and charges do not play a role in computing the transmission-line
response directly, they are important in determining the coupling of
electromagnetic fields to the transmission line. ,

A complete and rigorous solution for the field induced currents
on the multiconductor line in Figure 3 can be obtained by formulating
and solving a set of coupled integral equations for the wire and load
currents, given a particular incident field. In many cases, however,
such a complete solution for the current is not needed. For lines
which are long compared with the wire separation, the currents due to
TE and TM fields attenuate rapidly from the loads or other line
terminations, giving rise, therefore, to a current distribution which
corresponds primarily to the TEM currents plus the other scattering
currents mentioned above. Moreover, in many cases, only the transmission-
Tine current response is desired since the antenna mode currents do
not contribute to the load response in the general case, and if the
transmission line is next to a reference ground plane, the antenna
mode currents are not excited at all. Under the assumption that the
TE and TM currents are negligible and neglecting the effects of load
currents, the total E and H fields in the vicinity of the transmission
Tine can be written as

-~

E - -Lﬂ'nc + Eant + %TEM + -Est (16a)

and

~

H = HNC 4+ ﬁant + ﬁ¢EM + ﬁst (16b)

14



where the subscript {inc) refers to the incident (or free space)

fields, (ant) denotes the fields produced by the antenna mode currents,

(TEM) stands for the fields due to the transmission-line currents,

and (st) is for the portion of the fields caused by the static

distribution of current and charge on the wires, determined with the

condition that the total current and charge be zero on each wire.
Following the approach used in ref. (11) for single-wire lines

and in ref. (7) for multiconductor lines, Maxwell's equations can

be used to derive a v-i relation for the transmission line currents.

Consider a uniform section of multiconductor line shown in Figure 4.

st

For a time dependence of e”" , Maxwell's equation may be written as

UXE = -s B ' (17)

and on a path C1 , from the reference conductor to wire 1 (where
di} represents an element of the path, and ﬁ1 is the normal to the
path), we canintegrate Equation (17) to yield the following:

b b
d =~ _ od
- iz ﬁ Eedf = s f: B-fi dg (18)

a a

This result is standard, and its derivation will not be repeated here.

Noting that the line integral of the electric field in Equation
(18) 1is the negative of the voltage between the two conductors, this
equation may be written as

d—v‘— = jw i BTEN.4 do + 50 4. B2"t.n do
z " h @ h
a a
- w4, (B¢ 4+ 85%).q4 de (19)
a

15
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Figure 4. Cross section of multiconductor line showing
integration path C] from point a to b.
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As discussed by Paul in ref. (7), the term involving the %TEM field,
which arises from all TEM currents on the multiconductor line and is -
a magnetic flux per unit length, can be computed in terms of the

inductance coefficient matrix elements as

b

I,+ ... L

STEM o
2

B I (20)

1

de = ¢] = L]] I] + L12

~

where T]...In represent the currents on the n (non-reference)
conductors.

From our definition of the "antenna mode" currents, the voltage
between wire 1 and the reference is zero for these currents, which
implies that the antenna current flux term is also zero. See ref. (12).
Thus, we have the relation

b
j: B"qde =z o0 (21)

da

With these substitutions, Equation (19) can be written as

b
1. s VY v F VT Finc , =sty .
a4z - Cdu (L-”I-I + L12I2 + ... Linln) + S‘/; (B + B")-f de (22)
a

This procedure may be repeated for each of the n wires in the bundle,
and the resulting equations expressed in matrix form are

17



dwﬁ pe Pn lmc“:ﬁ ~ -
= s () ) (0 v s ﬁ B¢+ 8%)en dg | (23)
a

The last term in this equation has dimensions of (volts/unit length)
and is essentially a distributed voltage source for the transmission
line. Denoting this by (Vﬁ(s)) , we then have

b
~|(S) = n =inc =st .
(S =su | g @£ WA de . (29)

where the relation B = uoﬁ' has been used. The differential equation
for voltage and current in Equation (23) then becomes

d(v.) - . '
sty o)1) = G (25)

A similar manipulation can be performed using the other
Maxwell equation

T

Uxil = se E | (26)

to obtain the second telegrapher's equation containing sources. Applying
this to the contour C] in exactly the same manner as in ref. (1),
the following relation may be derived.

: b
d S —_
-4z h Hide =5 ¢ j; E de (27)

a ' a

r
x
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By inserting Equation (16a) into this last equation and noting that
the antenna mode contributions vanish, since by definition of the
antenna currents, § E°"t-d% = 0 and 'g-ﬁa"t°ﬁ det = 0 , this
equation can be written as

b
- g, @B AT ade=se ) EdR (28)
a a
or, as done by Lee (ref. 11), expressed as
b . b . .
-4  AMade=seqd Edo-s ej: (E'MC+ES).dT  (29)
a a '

b -
Using Equation (20) and recognizing that .jﬁ E-de is the voltage
-V, » Eqaution (29) becomes a :

b
I]Iagz_ (Lilfl +...1"T)=-s¢ \7] -s ¢ j: (E'"C + E%).dz  (30)
a

for the first wire. This process can be repeated for each wire, and
the following matrix equation can be developed for the transmission
1ine currents (In) and voltages (Vn) :

n) "

b
n ~. ~
= _ bord - —"nc . —
s e(V) -se j; (E'"C +E°) e (31)

a

. d(I
_'(Ln,m)' dz

Rearranging terms slightly yields the second telegrapher's
equation

19
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at )

dz

' vy = ~|(S) . -~
sscy - = @) (32)
where the source term (Ta(s))' is given by

b
(1:08) = =s(c; - j; " EC . E)edT (33)

a

Note that in deriving this relation, the assumption that
Ly ) (€ ) = Mg (34)

has been employed, a result which implies that the lines are within
a uniform, homogeneous dielectric medium.

In an inhomogeneous dielectric region, say for the case of
each conductor having a separate dielectric jacket, it is known that
true TEM modes cannot exist. However, an approximate analysis can be
carried out by assuming that Equations (25) and (32) are applicable.
The validity of this "quasi-TEM" assumption lies in the reasonable
comparison of theoretical and experimental results for the multi-
conductor system (ref. 13). ;

It is to be noted that the basic te]egrapher'é
here for the transmission line currents and vo]tages are different in
form than those developed by Paul (ref. 7). This is due to the fact
that Paul has integrated from the center of one conductor to the other
center, not from one surface to another of the thin, widely spaced
conductors which he considers. For the more general case of fat;
~ closely spaced wires, the total static electric and magnetic field in

equations derived

20



any transverse plane must be used to compute the equivalent line
sources. '

Aside from a difference in the definition of the unit normal
vector 0 , the major difference between the formulation of Lee in
ref. (11) and the present analysis is the existence of an additional
antenna mode source term in Lee's two-wire analysis. This two-wire
analysis could be extended to a multiwire case, and thus would imply
the existence of similar source terms in the present multiconductor
analysis. As discussed by Frankel (ref. 12), the apparent discrepancy
arises out of different choices for the "antenna current" by Lee, which
thus has an effect on the remaining transmission-line current.

As stated earfier, our choice of the "antenna current" is
that current flowing in each wire which produces a voltage difference
of zero between any conductor and another at any transverse plane in
the Tine. This choice is also used by Uchida (ref. 14), and thus leads
to a decoupling of the transmission line currents from the antenna
mode currents. _

Although explicit expressions for the voltage and current sources
have been developed in Equations (24) and (33), it §ti11 remains
3 W

necessary to evaluate the scattered static fields and

s
before the source terms can be used in Equations (13) and (14) to
determine the load response of the multiconductor line. To determine
these source terms, it is necessary to solve two static boundary value
problems. To determine the current source in Equation (33), it is
necessary to solve the two-dimensional static problem illustrated in
Figure 5. An incident (free space) electric field strikes a collection
of conductors, on which the net charges are zero. A static scattered

field is produced by the local charges induced on each wire, and the

21
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Figure 5. Cross section of multfconductor cable in
incident E field showing typical field
distribution and integration path from a
to b . Each conductor has zero net charge.
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integrals in Equation (33) are then evaluated along any contour from
point a to b , using the total scattered field, Eﬁnc +E5 .

The solution to this problem for the multiconductor case is
similar to the two-wire problem discussed by Lee, but extended to
more wires. It is solved by looking for the solution to

v2¢ =0 (34)

exterior to the wires, with the condition that ¢ = constant on
each of the conductors subject to the constraint that

on each conductor, i , and that at infinity, the potential is

¢)::>¢1’nc - _;;Eﬁnc (36)

Here ¢1"C represents the incident or free-space potential field in

the absence of the transmission line. Once this equation is solved
(usually by numerical means) the potentials of each wire, ¢; » can be
determined, and the integrals of Equation (33) can be determined directly

b.

1 ~2 ~ _
’{; (E1nc + ES)°d»Q'.l = '(¢.| - ¢n+'|) (37)
a

It is possible, however, to express the integra]lin Equation (37)

in a simpler form, using only the incident field, E'™C | and a vector

equivalent distance, _F} , in a manner similar to that of ref. (11).
Consider an auxilliary problem which has a potential field given by ¢*

and is defined by the relations
2.* _
Ve =0 (38)

3 * .
with ¢j = constant (but unknown) on each of the i conductors of

23



the multiconductor bundle, and with

f—lds (39) i
for all conductors except for the ith conductor and the reference
conductor, where we have the constraint

L Q%

f ET Tl - (40)

wire i
and .

3¢ Q*
n+l S

f an ]dS 1% _ (41)

reference

The solution to this auxiliary problem can be used to find the
field excitation of the transmission line by using Green's identity,

V2 - ovi¢* = 0 (42)

and applying Gauss' theorem to give the expression
f(w—"’ A ¢)d5+f (* JL) -6
all conductors S, (43)

where S_ is a closed surface at infinity. Using the facts that
¢ and ¢* are constant on the conductors, that

f—ids (44)
for all conductors except the ith and tﬁe reference conductor, and
that

9 _ 4 3* )45t = inczdz:) -1 inc
f("’* 2 _ 2% gs f (¢nc 3 )as = - fq; o* ds
S wires wires (45)
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o* = -g =L (46)

s the charge density on each conductor for the auxiliary problem and is
a known quantity. Equation (43) can then be expressed as

1 _ | _ 1 inc _1 inc
€(cp]. ¢n+1) !0i ds].--€ fcp oy ds; €f¢ o, ds, - ...
i

S] 52
, (47)
Using Equation (40) and the relation ¢ "C = -E-¥ , this last
equation takes the form
_ Finc —
(¢i - ¢n+1) = =B h; (48)
where the vector E} is defined as
f r‘c’]* dS] +£ r 0’5 dS2 + ... f r o*n+1 dsn+1
— S S
j 0’1!‘ dS_i
S

With this expression, Equation (37) can be conveniently expressed as

b.
5 — —Sne —
i (E'7C + B°)-dz, = E'"-h, (50)
a
and the N vector equivalent current source becomes
T (S) = [ .( —inc_— )
(In ) = -s(Cn’m) (E hn)m (51)

The vectors F} are referred to as the "field coupling vectors"

for the line, and also as the "effective height" of the conductors.
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Physically, they correspond to the vector distahce betwéen the charge
centroids on the multiconductor system, given a total charge Q on the
ith conductor, -Q on the reference conductor and zero net charge
on all others. Figure 6 illustrates these relationships.

For the case of thin, widely separated wires, the vectors

E} are simply the distances from the center of the reference con-

ductor to each of the wires' centers. For more closely spaced wires,
the field coupling parameters must be éa]cu]ated, using the integral
equation approach outlined by Giri in ref. (15).

A similar procedure can be carried out for determining the
distributed voltage source in Equation (24) by solving a magnetostatic
problem. The details of this are identical to that described by Lee
(ref. 11), modified by the presence of more than just two conductors.
The results are that the same field coupling parameters, F} , that
are used for the electric field calculations may be used for the
magnetic fields. This results in the following equation for the -

distributed voltage source.
(@ () = su (@ <1,)-H"C) (52)

The preceding discussion has been for the field excitation of
an isolated multiconductor line, in which one of the conductors in
the bundle serves as the reference. An often encountered situation,
however, is not this configuration, but one with an n-wire bundle
next to a flat, conducting ground plane. For this case, the ground
plane serves as the reference conductor, and the antenna mode currents
are not excited.
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ith conductor

center of postive charge

center of negative charge

reference conductor (n+1)
Qn+'l = -Q

Figure 6. Cross section of isolated n+l1 wire
multiconductor 1igﬁ, showing field coupling

vector for the i conductor.
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For this case, the field coupling parameters are still
calculated as above. For example, as shown in Figure 7, the
coupling parameter F} is calculated by placing a charge Q on
wire i and no net charge on the other wires. By image theory,
there is an image charge of -Q on the image of wire i and the
resulting charge centroids may be computed. The coupling parameter
vector is directed away from the ground plane and has a magnitude equé]
to the shortest distance from the ground plane to the ith wire's
charge center.

In this case, note that the incident fields Eﬁné and H"C
which are used in Equations (51) and (52) must include the reflection
effects of the ground plane. Thus, if Einc and ﬁinc represent
the free space fields in the absence of the ground plane, the
exciting fields of the line to be used in the above equations are

E
n

2(EPNC.4) | (53)
and - . '
2(kxn)-R'NC (54)

o
n

where A 1is a unit normal to the plane, k 1is the direction of
propagation of the incident wave and the subscripts n and t
represent field components normal to and parallel to the ground
plane, respectively.
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Figure 7. Field coupling vector for Wire i of multiconductor
line over a ground plane.
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SECTION IV
EXCITATION FIELDS DUE TO INCIDENT PLANE WAVE

The expressions for the distributed current and voltage sources
in Equations (51) and (52) in the previous section are quite general
and depend only on the local incident electric and magnetic fields
on the line. One type of incident field which is useful to consider
is a plane wave of arbitrary angle of incidence.

Consider a single transmission-line tube being illuminated by
a plane electromagnetic field. As shown in Figure 8a, the tube is in
the 2z direction and the k vector of the incident field arrives with
angles wo with respect to the z axis and 90 , which is the incli-
nation angle of the incident field. Two different polarizations of
the incident field are possible, and are denoted as TE and TM,
respectively. The TE case occurs when the incident E field is
perpendicular to the plane of incidence, which is defined as the
plane formed by the k vector and its two-dimensional projection in
the x-y plane. The TM case, conversely, occurs when the E
field Ties within the plane of incidence. Figure 8b illustrates
these different polarizations. '

For both of these polarizations, the field components at the
multiconductor tube can be expressed as follows:

TE Fields

inc _ ,inc _. inc _ pinc _.
HZ = -H sin wo Ez E sin Bo cos wo
inc _ ,inc ' inc _ inc . .
Hx H -€os Y, Ex E sin eo sin wo _
inc inc inc
H =0 - E =E cos 8
Y Y 0
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Figure 8. Geometry and polarization of the

incident plane wave.
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TE Fields

inc _ _,inc _; inc _ .
HZ H sin 90 cos wo EZ E, sin wo
inc _ ,inc _. . inc _ _ '
Hx = -H sin 60 sin wo Ex = Eo cos wo
inc inc inc
H = H cos © E =0

y 0 y

As seen from Equations (51) and (52), the important quantities
for determining the distributed sources are the electric field
component parallel to the vectors E} , and the magnetic field
component perpendicular to hi . Consider the geometry shown in
Figure 9. The ith conductor is shown with its coupling vector having
an angle ei with respect to the chosen x axis, and a magnitude
hi . For this case, the components of the electric field in the
direction parallel to hi are given by the following expressions

for the ith conductor:

E - Einc

”i y sin 91 + Ex cos ei

inc
En

(sin ei cos eo - CO0S ei sin 60 sin wo)
(TE polarization) (53a)

=--EinC cos 95 cos P; (TM polarization) (53b)

and

o
|

= —Hy cos ei + Hx sin ei

= H'C sin Gi cos ¢, (TE polarization) (54a)

inc R . .
- . + .
H (cos 8; cos 8, + sin 6, sin eq sin wo)

(T™M polarization) (54b)

With these field components, the distributed vector current
and voltage sources take the form
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i conductor

reference

Figure 9. Cross section of multiconductor line showing
field coupling parameter and pertinent
field components.
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.

(0N =5 @ ) (hy By ) (55)
and n
(@2 (5)y = suy (b ) (56)
n

and should be used in Equations (13) and (14) to evaluate the Tine

response for an incident plane wave.

S

34



SECTION V
CONCLUSIONS

This report has presented a discussion of the field excitation
of multiconductor transmission lines. First, a general expression
for the current response at the terminations of an N-wire multicon-
ductor cable has been developed 1in terms of distributed voltage
and current sources. In Section III relationships between these
sources and the total static electric and magnetic fields in the
vicinity of the transmission 1ine are then derived. These are then
related to the free space (or incident) fields through a vector field
coupling parameter or equivalent separation of the lines. Finally,
Section IV expresses the distributed source terms for the multi-
conductor line in terms of the angles of incidence and polarization
of an incident plane wave.

This work expands upon the past studies of field excitation
of two-wire transmission lines. The field coupling parameters for a
multiconductor line are seen to be determined from a series of cal-
culations involving specifying a zero net charge on all conductors
except the reference and the conductor for which the coupling para-
meter is being determined. It is noted, furthermore, that the
excitation of the line depends strongly on the line's orientation
with respect to the incident fields.
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