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DIFFRACTION THROUGH A CIRCULAR APERTURE
IN A SCREEN SEPARATING TWO DIFFERENT MEDIA

Harvey J. Fletcher and Alan Harrison

1.0 INTRODUCTION

The classic problem of the diffraction of a plane electromagnetic
wave through a circular aperture has been treated by many authors.

Exact solutions for arbitrary incident direction and arbitrary

(1)

frequency have been given by Meixner and Andrejewski

(2)

(1950),
(4)

Flammer (1950), Lure(3)(1960), Nomura and Katsura (1955) .

Some of these solutions were published by Bowman, Senior,

(5)(1969). Thomas(6)(l969) derived the integral equa-

Uslenghi
tions which would give the solution of the diffraction of a
plane electromagnetic wave by a circular aperture in an infi-
nite plane screen which separates two different media. He
assumed a low frequency and gave an approximate numerical re-
sult for the special case of zero conductivitity. Butler and
Umashankar (1976) generalized the problem to an aperture of
arbitrary shape and described a numerical procedure by the
method of moments to find a solution. In this paper, we shall
derive an exact solution to the problem with arbitrary frequen-
cy and arbitrary media. We will specialize the result to the
case of a circular aperture illuminated by a plane wave normally
incident. The special case of the two media being equal reduces

to the solution given by Flammer.



2.0 MATHEMATICAL FORMULATION OF THE PROBLEM

The problem at hand is illustrated in Figure 1.
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Figure 1 1Incident Plane Wave On Circular Aperture

A plane wave 1is travelling in medium I with permitivity, per-
meability and conductivity € Hyy and 0g- The wave illuminates
an infinite perfectly conducting screen at z=0 with a circular
aperture whose center is at the origin. On the shadow side of
the screen is a medium with permitivity, permeability, and
conductivity given by ¢
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We shall assume the incident wave is sinusoidal and suppress

the factor e-lwt. The general impulse can be found by Fourier

Transforms. Maxwell's Equations are given by:
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Subscript 1 will indicate the incident medium and subscript 2
will indicate the medium on the shadow side of the screen. The
incident wave will be travelling in the z direction with the
electric field in the x direction. The incident electric and

magnetic fields are given by

B = E_(w)et*1%x
Zi Ho(w)elklzy
where
3
k, = w
Cy (W) 2= 1,2
> Real parts of Square
_ 1
Cl(w) - Roots are Positive.
* 2
(e,%H,)
H (0) = Eo(w)/Zl
*';i
Zg(w) (“2/82)
e¥ (w) £ -0 /iw
£ L 2 y,



The boundary conditions are the following:

1. The scattered wave satisfies the ratiation boundary
condition at large distances from the aperture.

2. The tangential electric field is zero on the screen.

3. The tangential electric and magnetic fields are
zero at the aperture.

4. The tangential electric field goes to zero as the rim
is approached from the aperture.

There is a unique solution of Maxwell's Equations which satisfy
the above boundary conditions.
Let us introduce oblate spheroidal coordinates defined by

a /(1 + 52)(14:7n2) cos ¢

a ﬂi + Ez)(l - nz) sin ¢

»
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aén sign z

so that £=0 is the equation of the surface of the aperture and

n = 0 is the surface of the screen.

The range of the variables is

0i€<oo

Oi”il
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If there were no aperture, the wave would be relfected so as

to satisfy the boundary condition at the screen..

Er - -F (w)e_lklz <
o)
ﬁr - Ho(w)e-lklz

The fields on the incident side with an aperture present are

given by
> _ =i >T >8
hl = E + E- + El
= _ =i >Y >5
Hl = H + H + Hl

where E° and H° are the scattered electric and magnetic
fields, on the incident side of the screen. The mathematic

description of the boundary conditions is:

0
Elx(E,OHP) = Ely (E,Or(b) = sz(grol‘b) = EZY(EIOICM
ElX(O' ﬂr¢) = E2X (01 ﬂ,¢) Ely(Ol T],¢) = Ezy(Ol n,¢)
Hlx(o’ n,o) = H2X (o, n,9) Hly(or n,o) = sz(O, n, )
llm ¢-E (O, r],¢) = 0
n>0
lim EZ(E,nr¢) e _ikzgg = constant

g>

lim Ei (E, n,d) e_1k1£ £ = constant
gorw



3.0 DERIVATION OF THE SOLUTION

~

-5
Let us introduce a vector potential T = anxx + anz. The elec-

tric and magnetic fields are then given by (%)

> . % > (s) - 3 % >
H2 = -iwej V x ﬁz Hl iwey vV x Hl
o, = v v E (s) _ VxV x

J_.2— X X 2 1 = 1

HX and Hz both satisfy the wave equation but with different

velocities in different regions. Thus,
2 - .2 2 - 2
Vi = kT Vi, ky Ty,
2 - .2 _ 2
(Lt SR V2l,, =~k I,

All of Maxwell's Egquations are automatically satisfied. If

I and I and BH22 and aH22 are chosen to be zero at n=0,
1x 2% 5 3

then all of the screen boundary are satisfied. A separable

solution of the wave equation in Oblate Spheroidal coordinates is

RP) (ic, i5) (@ (mic,m) ¥ (4

p=1,2,3,4, g=1,2 k=1,2
where

¢él)(¢) = cos mo

¢;2)(¢) = sin m¢




where Rég)(—ic, i£) are the radial spheroidal wave functions,
(see Abramowich(s)) and where S$g)(—ic,n) are the angular wave
functions (see appendix). If the fields are to be finite on
the axis, (n-1), then g=1, and also n is an integer. If the
fields are to satisfy the radiation boundary conditions at g£=«,

then p=3.

: (1), . I S
The functions S_ ° (-ic,n) —rEO 1fr(C)Pm+n(ﬂ)

where the sume is over the odd integers if n-m is odd and over

the even integers if n-m is even. P$+r(n) is the Associated
Legendre's Function. If this is to vanish at n=0, then. n-m must
be odd. If the derivative of this is to vanish at n=0, then

n-m must be even.

Let us find Hx satisfying all the boundary conditions except

the rim condition

. 3 . . .
Hlx = Z(A cos m¢ + B sinmo ) R;n) (~ic, 1§&) S(l) (~ic, n)
_ . (3) ,_. . (1) ,_.
n2x )".(Cmn cos mo+ Dmn sinmod) Rm_n ( 1c2, if) Smn (-ic, n)

where the sum is such that n-m is an odd integer. The scattered

fields are given by

By = . ix ¥ kinzx By = Boz = * Tax
a2 Y  5xdy Z sxbz

- -0 - o anzx - o ?Hzx

ex. | by = iwe . oy = 1wey oy



The continuity of E is assured at &=0, if Hlx = H2x at &=0.

The continuity of H is assured at &=0, if

x 01l
i IXx _ ., % 2% o e
ZHO lUJEl 32 = lw€2 —*a~z— at E—O

The partial with respect to z is given by ’

--9.=:[ n(+g?) 3, _£(1-n?) 3
S Y L

where the plus sign is used if z>0 and the minus sign if z<O0.

It follows that

- 3 am
2Hoan = € Hzx + € _ix at &£=0
iw 2 T3¢ 17 3¢

Substituting the series in the above two boundary conditions

leads to
B =D =0 and m = 0 so that

(3) . . (1) . _ (3) ,_. . (1) ,_.
ZAonROn (—1c1, 1o)sOn (—1cl'n) = ZconRon ( 1c2,10)Son { 1c2,n)

(3) (1) (3! (1)

s . s + s . s
eleonRon ( 1c1,1o)sOn { 1c1’n) ezzconRon ( 1c2,1o)SOn { ic,, n)
- -ZHOan _ _ZHoa_Pl(n)

iw iw
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where the prime indicates a derivative with respect to £. Since

the Son functions an orthogonal, we can multiply both sides by

Son and integrate

_ _ o(3) . . _
Aon +1 Egl Con Ron ( ic,, io) Inn
(3) ,_. . .
Ron ( 1cl, 1o)In odd
and
01
= _ 2H af
Aon = 1 o 71
(3", _. . jw3
ROn ( 1cl, 1o)elIn
*® (3)°
- €5 _E CoﬁRoH (—1c2, lO)InH
n=1
odd

Eliminate Aon and obtain

i E_ - =F
on nn n
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where

En | f1fon (Ficyr 10IRT (-ic,, lo)

(3) ,_. . (3)' s . _
+ €_R n { 1c2, J.o)ROn ( 1&1, io) Jnn

2 0

(1)

_ — IS G B R . . —
Inn(cl’ cz) = Inn = foson ( icqy, n)SOH ( ic,, n)dn (n,n = odd)
_ 2 01 (3) ,_, e
Fn = -3 aHofl (cl)Ron ( icy, io)/iw
I = Inn(cl' cl) (

The solution of this infinite set of equations can be substi-

0 1] > “)— .
tuted in the equation for Aon’ H2x’ E2, and H2 to give the

diffracted fields. However, the rim condition is not satisfied

(ECP -> co). '
Let us look for another solution involving H2.

(3) (1)

le = Z(Gmn cos mo + Hmn sin mq))Rmn (—icl’ié,')smn (—icl, n)
Il = Z(J cos m¢ + K sin m¢)R(3)(—ic iE)S(l)(-ic n)
2z mn mn mn 2’ mn 27

where the sum is such that n-m is even.

12



The fields are given by

2 2 2 2
371l %l | o 1l 2
Elx _ Lz E%y - 2z Elz - - %z _ %z + k H%z
9xX 02 dy 3z X oy
_ s ol . _ oll
HX =0 Hy = 1w€2_"&z sz = -lwe, aéz

oll all

1z _ %2z at £ =0
9k &
2H x 2H a 2H aPl( ) cos ¢
M, - e, = ——0 = 2 1-n% cos ¢ = - —2 1 at £=0
. €2%22 7 f1M1z2 T TIw T 1w e

H = K =0 and m=1

3
3
3
=1

It follows that

st (3) ', _. : (1y ,_. _ S (3)',_. . (1), .
nil Glann ( icy, 1o)S1n ( 1cl,o) = nilJlann ( ic,, 1o)Sln Elcz,o)l
odd odd

(3)

5. 6. R (cic o) + e. £.J. R

) ), .
€1 nZ1%nRin 1r 101857 (micy, 1 nZ191nR1n” (7icyr i0)
odd odd
1
2H aP_ (n)
. (l) - - _ [e) l
° D ey o o P
1w
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solve both equations for G1n

©o

- -1 _ -3
®In = (3 " (cic., io)L a1 JiaRin  (7icy-
1n 1’ n odd
. _ 1 B B ) 4Hoa
In  ___(3),_; . .
eRln ( 1cl, 1o)Ln 3iw
@ (3) . .
€5 nf1715R1g (Ficy, 10) Lo
odd
Eliminate Gln and obtain
[ee)
R
n=1 n n
odd
where
=1 _ (3", _; : (3) ,_. ,
Mnn = Lnn [_ElRl— ( 1c2, 1o)Rln ( 1cl, io)
(3) ,_. . (3)', .
+ €2RlH ( icy, 1o)Rln (—1cl,

(3)°

14

io)

io)L —
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1 , .
L.— = fOSln(-lcl, O)Slﬁ(—lcz, o) dn

1n
4aH f
- _ e )Ke) (3)' s .
Nn - L ln ( i io)
3iw
Ln = Lnn(cl’ cl)

This again gives an infinite set of linear equations to solve

for Jln

will give the fields. To get a unique solution, we take

~ ~

ﬁ = uHxx + Bsz where o + B =1

This will satisfy all the boundary conditions except the

condition that Ecb =0 on the rim.

E¢ is given by (2)

Substitution of these constants in the above equations

1
l-nz)2

(3) , . . ’
- —a(l-n ) (E +l) Jkon (—1c2, io) a
E¢ = c¢ Lonl 2 > o
(E +n ) (£7+1) dn
( ) (3)
. On ( 1C2,T1) i €2+l);5dROD (—102,15)
(1-n )2 ag dg
3 5 er!3) (-ic_, i£)s) (-ic.,n)
‘e (1-n ) (g +1) £'Jy, “Sln 27 1n 2’
ka’ (£%+n2) £2+1
(3)
dr
+ S(l)(—ic ;M) in (-ic.,, iE)}}
1-p2 “ln 2 ac 2 _
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The differential equations for R and S are

dRr .
4 (g241) ( A+ c%E?
dc ag mh

as
4 yj_n?) —mn an+c2n2 _ m

(l) Q on
Since Son (—1c2, n) = £ fr (c2) Pr(n)
r=1
odd
and P_(o) =0
r
it follows that S(l)(—ic n) =20
on 2, :

m

Put n=0 in the differential equation and get

() '
on

S (—icz, o) =0

Expand in a Taylor Series

g (1)
on

_ g
on

(—ic2, n) (-ic

16

2’ o)n + Son

(1) [N (_ic

2 ) R —
mn




Further expansion leads to

(1)
a  (1-n?)*98gy

an dn

- [S'"(—icz, o) - 8'(-ic,, o)] n + 0(nd)

ar‘3) .
and & (£241)7% —9m _ Réi) (-ic,, io) + 0 (£2)
ac ac

Using the differential equations

3", . L (3) ,_. :
. Ron ( ic,, io) = )‘onRon ( ic,, io)

S(l) "

D e, i0) = (2—Aon)S(1)'(—ic io)

on 27
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Collect the highest power of n in the expression for E¢.

= _C¢ - (3) - (l)'
Ey = 2 ﬁ a IC {.Ron (0) (1-1_ )8 " (0)

(! (3)
* Son (00255%on (0)

+ 8z g sib (O)Rm'(o)}

In"1ln

- ‘23¢ {-— a I Cg R(3) (O)S(l)'(o)
kTan

F BT Ty r{3)° (0)5(1) (0)

in
+ O(nz)}

This is infinite as n-»0 unless o and B are chosen so that

r$3)

on on

(l)'

a IC (O)S (0)

(3) '

(0)5(1)

=8 LJ,_R

1nt1in (0)
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In this case

(3)° (1)

o = ZJ1nR1n (O)Sln (0)
- (3 (1) (3) ("
ZJlann (O)S1n (0) + ZconROn (_O)Son ()
and B = l-a and EqJ = 0 at £ = n = 0.
i ¥ x h -1 &P
In the special case when €1 = €5 and ul = U2’ then Inﬁ = I,0,
and L — = &% L
n n n
(3) (3)" n
_ = 2%
Lnn € Ron (O)Ron (O)Gnln
iaH f?n
‘ Bon = Son T it
)
30e*r 3 (o) 1
n
_ -2 (3)" (3) n
Mnn ERln (O)Rln (O)GnIn
2anifén
“Cin = Y91n =

i (3)
3kI_ Ry’ (0)

(2)

These check the values given by Flammer Thus, we have found
a solution which generalizes that of Flammer to the case of

arbitrary medium.
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