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SECTION I

INTRODUCTION AND SUMMARY

1. INTRODUCTION

One of the major divisions of EMP technology is the
coupling, penetration, and propagation of EMP to critical
internal points of various systems of interest, such as
aircraft and satellites. This penetration can occur through
deliberate points of entry (POEs), inadvertent POEs and
through shielding. To develop a predictive capability for
the internal response produced by a threat EMP, it is neces-
sary to include a realistic estimate of the accuracy of the
predictions. The development of this capability must involve
a close interplay between theoretical analysis and experi-
mental measurement.

The theoretical formulation for the internal response at
' a point is in terms of excitations at the various POEs and
transfer functions from the individual POEs to the point of
interest. Ideally, both sets of these quantities should be
calculable from the presumed known EMP environment, and the
known geometry and physical parameters. In actual practice,
it is often necessary to resort to, for example, rough

estimates, simplified model calculations, or measured values.

When a large complex system is under consideration, it
might not be feasible to perform all the detailed theoretical
calculations and numerous experimental measurements necessary
for a complete deterministic analysis. In such a situation,
a statistical approach may yield very useful, although less
information without the expenditure of large amounts of time



and effort (ref. 1). There are a number of issues for which
a statistical analysis has relevance. The most obvious is
the fact that the necessary ingredients in making a predic-
tion have errors and uncertdinties associated with them so
that the resulting prediction has a corresponding uncertainty.
We must be able to calculate the latter, given the former
(ref. 2). However, for a complicated system, there are some
less obvious questions, which nevertheless are of interest.
(Here, we can parameterize the degree of complexity by the
number of POEs.) For example, given the fact that'the pre-
dicted response is the result of a large number of contribu-
tions, do we expect that the individual errors in these -
contributions will accumulate to such an extent as to make
prediction meaningless, i.e., as the number of POEs increases,
what is the expected relationship between the predicted
response and its corresponding uncertainty? Moreover, for

a physical system with many POEs, it is likely that some will
not be identified. We require techniques to estimate the
number of POEs unidentified and their relative importance
compared to the identified POEs. Although not fully answered,
these issues will be addressed in the following sections.

This is an initial effort concerning various aspects of
POE uncertainty, and, as such, it is largely exploratory.
The main emphasis has been conceptual with a goal of developing

1. Graham, W.R., and Mo, C.T.C., Probability Dlstrlbutlon_oL
CW Induced Currents on Randomly Oriented Sub-Reasonant
Loops and eres, R&D Associates, RDA-TR-105900-011, May
1976; also in IEEE Transaction on Antenna and Propagation,

EMP Special Issue, February 1978; also as DNA-4162T
(May 1976); also as AFWL EMP-IN-321 (June 1976).

Mo, C.T.C., Statistical Relationship Between Testing and
Prediction of EMP Interaction, R&D Associates, RDA-TR-
105500-001, January 1977; also as AFWL EMP-IN-331
(Fanuary 1977).




ideas relevant to the area of investigation. The findings
may not have immediate applicability, as would be the case
for a manual with a list of formulas. Rather, we have
started to delineate the problem area and made the first
steps toward solutions.

The organization of this report is as follows. In sub-
section I.2, we detail the model used in this investigation;
in subsection I.3, we summarize our findings and indicate a
few of the important open questions. Section II is devoted
to an investigation of the contribution to the response due
to the identified POEs, while the contribution of the uniden-
tified POEs is considered in Section III. Appendix A discusses
a few explicit examples, the results of which are used to
motivate some conclusions in the main text. Appendix B

contains formulas for some moments of random variables.
2. THE MODEL

The physical situation under consideration is actually
one of great complexity. For the purpose of analysis, we
will introduce a number of simplifying assumptions into the
basic relationship between response, excitation and transfer
function. (The effect of penetration through shielding
{ref. 3) will be ignored.) Typically, both the excitations
and responses (e.g., electric fields) are vector quantities
and, consequently, the transfer functions are dyadics. We
will assume all three are scalars. Likewise, the quantities
are complex numbers as the natural approach involves a
frequency analysis of the driving EMP. We will assume all

3. Karzas, W.J., and Mo, C.T.C., Linear and Nonlinear EMP
Diffusion Through a Ferromagnetic Conducting Slab, R&D
Associates, RDA-TR-109900-001, July 1975; also published
as AFWL EMP Interaction Note No. 293; and in IEEE Trans-
actions on Antennas and Propagation, EMP Special Issue,
February 1978.




three are real numbers. Aside from simplifying the model,
these assumptions are not fundamental in nature. The results
of a statistical analysis are general, rather than specific
and therefore, likely quite independent of the detailed
algebraic structure of the model. What we learn here should
be useful for more realistic models. 1In reality, the contri-
bution from a given POE involves an integral over that POE.

We will assume the POEs are small enough that the excitation
and transfer function can be represented by single algebraic
numbers. (fhis assumption is not essential, since an integral
is just a sum, but we introduce it here for the sake of _ : —
clarity and simplicity of the model.) If the excitations

become strong enough, we would expect the response to become
nonlinear. Here, we will restrict our attention to linear

responses.

We will now incorporate the above assumptions into a

model; namely, we assume the following real, linear, scalar,

relationship:
N
R; (w) = ; Tij(w)Ej(w)-. (1)
j=1
The notation is as follows:
N = number of POEs,
j = label of 3E2 poE, 1 < 3 < N,

i = label of iEll internal location of interest,

w = angular frequency,
. th

Ri(w) = response of frequency w, at the i=— location,
Ej(w) = excitation with frequency w, at the jEE POE,
Tij(m) = transfer function (matrix) connecting the jEE
POE, driven at frequency w, to the iE location. .

6
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For ease in writing, we will usually drop the reference to
frequency (w) and location (1) so that Equation 1 becomes

N
R = 2
ElTJ 5t (2)

It is to be noticed that the transfer function, Tj’ itself
might involve structure due to multiple conduction paths from
the jEE POE to the point of interest. However, within the
context of a linear theory, i.e., no interaction among POEs
is assumed, the net transfer function can be considered as .a
single algebraic number. The extent to which Equation 2
deviates from an actual physical situation is indicated by

the various input assumptions discussed above.

3. SUMMARY

The findings of this report can be separated into two
. relatively loosely distinctive pieces. The first piece
concerns explicit results. Included here is the calculation
of the uncertainty in the predicted response (due to the
identified POEs) arising from the individual uncertainties
in the excitations and transfer functions. We also derive
bounds on moments of the distribution of the predicted
response. Finally, the implications of the central limit

theorem, for a simple case, are presented.

The second piece of the findings can be characterized as
expected behavior of the response based on reasonable assump-
tions. Here we exhibit that the relative error of the
response, typically, should not grow with increasing numbers
of POEs. At worst, the relative error should be a constant
characterized by the input relative errors. As for uniden-
tified POEs, we first estimate the relative importance of
these based on extrapolation of the identified POE behavior



and suggest that when a large number of POEs are involved,
the error resulting from a relatively small fraction of them
being unidentified can become very significant, if not domi-
nate. Then a crude method is suggested to quantify and
improve errors in the predicted response by incorporating an
estimate of the contribution due to the unidentified POEs.
Finally, by pushing the data harder than it probably should
be, we calculate a set of parameters that should represent,
approximately, the number and distribution of the unidentified
POEs. The goal here has been to try to reasonably parame-
terize our ignorance of the unidentified POEs and then to
organize the data as to extract meaningful information about

these parameters.

There are many questions remaining. The restrictions
of the model to scalar and real gquantities could be removed
with a corresponding increase in algebraic complexity. In

particular, the application to a given situation could be

effected quite straightforwardly, i.e., the uncertainty in
the predicted response due to the input uncertainties, but
the general estimates will be more difficult to obtain.
Similar remarks apply to larger POEs and composite transfer
functions. The incorporation of nonlinear effects is very
important for the evaluation of the response in the event of
a threat EMP. However, the theoretical foundations of such
nonlinear effects must first be better understood before we
could hope to statistically model them. Finally, the whole
question of unidentified POEs needs further investigation.
Since the area is very nebulous, it is difficult to guantify
its effects and yet, they could be of major importance for
predicting the response of a system. The material in Section
ITII is exploratory and merely a start. It is characterized
by a lack of mathematical rigor and consequently by a large
amount of speculation. There are many formal mathematical




questions here that need to be investigated. Where completely
rigorous answers are either impossible or not reasonably
attainable, some reasonably plausible input assumptions would
be very useful. However, apart from these purely mathematical
questions, comparison with some experimental data would be
needed in suggesting fruitful theoretical developments.



SECTION 1II

IDENTIFIED POEs

1. UNCERTAINTY IN PREDICTED RESPONSE

For this section, we assume we have identified n (<N)
of the POEs. For each POE, we assume that the transfer

function is known to within some accuracy,

T. = t. * 8., 1l <3j<mn, - (3)
J J J =)=
where tj = the predicted or measured value,
6j = its uncertainty range.

As such, there are two possible sources for the value of

the transfer function. One source is due to a measurement

of it in a preliminary experiment in which the jl—c-E POE 1is .
locally excited and the corresponding response measured.

The other source is due to a theoretical calculation of the
transfer function. This typically requires simplifying the
geometry and the calculations involved so that the result

has an estimated error. For the purposes of this report,

the value of the transfer function from either source is
acceptable. We will not consider the comparison of theory

and experiment for this input data. Statistically, Equation 3
is viewed as follows. The transfer function Tj' is a (con-
fidence) random variable, with the measured, or calculated
value tj' as an estimator of the mean of its distribution

and 8. as a given input estimate of the standard deviation

of that distribution. Likewise, the excitation at the jEll
POE, for the actual experiment of interest, is assumed known

within certain errors,

10



E. = e, t 0., 1 <3j<n. (4)

Again, the source of these numbers is either measurement or
calculation while the statistical interpretation is the same
as for Equation 3.

For a given experiment, Equations 3 and 4 are known
quantities. Then, based on our model, but only arising from
the identified POEs, we can predict the expected response in
this experiment. This response (note n, not N),

n
R= 2 T.E., (5)

is a random variable with a mean or expected value vy (i.e.,
our prediction) and a standard deviation o (i.e., the associ-
ated error). Assuming the Tj and Ej are independent, we

find the mean to be

n
vy = E{R} = 2 t.e., (6)

while the standard deviation is given by

0% = E{RZ} - [E{R}]2 =

3

+ e8]

it M

2
J

2 2.2 2.2
€50t + 8705}, 7
1 ( JU J 3] J J) (7)

For the special case in which all the products, TjEj have
identical distributions (uo = mean, 0 = standard dewviation),
we have the simple results,

Y=n4u_, (8)

11



g =n o, (9)

In many experimental situations, it is reasonable to
assume that the relative errors in Tj and Ej are independent

of j; i.e.,
§. = Bltjl, (10)

g. = B8'le.l, (11)
Consequently, Equation 7 becomes

n
g2 = (32 + 3'2 + 323'2) ) tge. (12)

YN
n
>

N

N o

o
- N
(©
(NN

which also defines the "relative error" A in the product

tjej'

When the values tj and ej become.too small, Equations 10
and 11 probably become invalid as there will always be some
additive residual error. In *his case, Equation 12 becomes
an estimate of the standard deviation which still should be
reasonable as long as not all values are small or comparable

to those residual errors.
2. BOUNDS

It is interesting to derive bounds on the relative error
for the predicted response. Also, under many circumstances,
the expected value of the absolute value of the predicted
response is a useful quantity to consider, e.g., the total
peak induced current in a wire bundle. Based on the inequality

E{[IR’ - E{IR]}]Z; > 0, (13)

12



we easily see that

VE{R?} > E{|R]}

Consequently, we have the bounds

| v

|E{R}]. (14)

g N g g

|[E{R}| T E{|R]|} - JE(RZ2}

v

(15)

which, in the simple case embodied in Egquations 8 and 9,
becomes

o] o] 1l
0 > g > o

lu lVn = E{|R[} l“oL/H\/i . [ % 2

u O\/'rT

(16)

The standard deviation of the absolute value of the
response, 8, is a quantity of interest which, however, is
not readily calculable. In fact, all we can say in general
is that the distribution for the absolute value of the

response 1is tighter than for the response itself,

G < g, (17)

and thus

v

o < o (18)

E{|R|} T E{IRI}.

That is, its upper bound is bounded by Equation 15. For the
simple case considered above, Equation 18 implies

13
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¥ . % .

B[R}~ fugl/a

(19)

3. EXPECTED BEHAVIOR
a. General Comments

For any given experiment, Yy, Equation 6, and o, Equation
7 or 12, can be calculated. However, it is useful to attempt
to obtain some rough indications of the behavior of vy and o,
not in a single given experiment, but within a class of
experiments. The experiments themselves are related to each
other in some way; e.g., a given system is illuminated from
various orientations but with the same source strength. The
experiments are labeled by a set of integers, a < NZ' Each
experiment, then, has a predicted value for the response, Yo
and an associated error squared ci. In the following, it
will be convenient to view these gquantities as sampled values ‘

of two respective random variables with certain distributions.

Let us call these random variables X and Y.

We will now discuss two questions concerning this set of
experiments. First, if we were to perform a further experi-
ment of this class, labeled N2 + 1, what is the likely value
of the true response and its uncertainty, without and with
another prediction (or measurement)? Second, is it possible
to say anything about the relative error in this class of
experiments? The first question can be discussed in general
while the second cannot. Some degree of insight is imparted
for both questions by consideration of a few examples. The
individual responses are composed of tj ej, and the examples
are characterized by the different ways in which these pro-
ducts can occur. We will briefly discuss the examples and

then answer the two questions we have raised.

14



b. Examples

The first type of example is motivated by considering a
situation in which there is some degree of correlation between
tj and ej. Here, think of ordering the tj from minimum to
maximum; i.e., some POEs, due to the fact that they are closer
to the point of interest or are physically larger, are more
important than others. A degree of correlation then means
that the ej vary in some more or less systematic way, closely
related to the tj. This can result from the fact that the
system has been excited by an EMP from a definite direction.
Examples 1 and 2 in Appendix A are of this type. The dominant-
feature here is that most sums scale with n.

The second type of example has a lack of correlation
between tj and ej. Here we assume that the signs and magni-
tudes of these quantities fluctuate so much that the product
can be considered as random between minimum and maximum
values. Example 3 has fluctuations which are symmetric with
respect to zero,

E{x} = 0, (20)

while Example 4 has a bias so Equation 20 is not satisfied.
These examples can be characterized by the magnitude of the
quantity /;Iuol/co = £

where “o the mean, and

(o] the standard deviation of-the distribution for

o
the individual terms in the sum for X.

Example 3 has § —» 0, while Example 4 has § >> 1.

15



In the following, we will make use of the gquantities
E{|X|} and ¢ x|
distribution for |X|) and E{Y}. For simplicity, we will
assume J is given by Egquation 12. We list here the results

(the mean and standard deviation of the

for the various examples, for large n;

E{|X]|} = Ay nTE, (1, 2, 4, (21)
E{|X]} = x, Vn T E, (), (22)
I|x| = \, nTE, (1, 2), (23)
I || = x; JaTE, (3, 4), (24)
E{v} = Ay a2 n7? £, 1, 2, 3, 4. (25)

Occurring here are T and E which are the respective maximums
of [tjl and Iejl while all the A's are constants of order one,

depending on the example.

c. Implications for Further Experiments

We now consider experiment N2 + 1 which belongs to the
same class of experiments under consideration. If no effort
is made to specifically predict the response, we could expect
that the magnitude of the response should be E{|X|}, within
an uncertainty range. This latter range reflects both the
fact that |[X| has a spread in its true value as well as the
fact that the individual products that compose X have uncer-
tainties. Based on Equation B-5 in Appendix B, the realization
of the response for the N2 + 1 experiment is expected to be

E R I EN 1y (26)
2 x|

16




This is approximately true in general, subject only to the
approximation that sample quantities (based on experiments «)
are used for population quantities (of the random variable X).
This approximation can be shown to be valid when n is large.

For this case of no further prediction for the Nz + 1

experiment, the uncertainty range for |xN + ll for our
examples behaves as, concentrating on the n dependence,
> ) n, (1, 2), (27)
o + E{Y} ~
\/'Xl Ja, (3, 4).

The examples with randomness (3, 4) show a Jg—behavior since
the distribution of [X| is relatively narrow (see Equation 24).
On the other hand, the examples that have a degree of cor-
relation (1, 2) have a n behavior due to the fact that the
distribution of |X| scales with n.

If the N2 + 1 response is predicted but not the uncer-
tainty range, we can improve on Equation 26. This is due
to the fact that the spread in [X| in the previous N, experiments
is no longer useful as an indicator of where the xN2 + 1
and all we have to consider is the individual uncertainties
in the new products. We then have

is,

T TN, + 1T Zoy/n- (28)

The uncertainty range here, for all examples is less than in
Equation 26. Notice that nothing based on the information
{Xi}ggl can be said of the new relative error, precisely
because the new prediction adds a new piece of information
to the set.

17



d. Relative Error

For each experiment a, the relative error is oa/lyal which .
is a realization of the random variable Z = J§7|X|. Possible
values of this random variable can be arbitrarily large so
its expected value is not particularly useful. However,. a
bound on the probability of large values would be useful.
Unfortunately, a tight bound, independent of distributions
for the random variables X and Y, is very difficult to obtain.
(A loose bound is given by the Chebyshev inequality (ref. 4).)
Consequently, we will use our examples in Appendix A in order
to get an indication of some reasonable behavior. Explicit : .-
calculation for large n and values of ¢ somewhat larger than
1, ¢ > 1, show that

P{z > cAA/n} = 1/c, (1, 2, 4), (29)

P{Z > cA}

1

.6/c, (3). (30)

Therefore, for these examples, the probability of large
relative errors is comparatively small. To expect similar
behavior to hold for an actual experiment is, of course,
hardly guaranteed. However, for a situation of great com-
plexity without much symmetry, it would be anticipated that the
data would have characteristics similar to one 'of the examples
so that either Equation 29 or 30 (probably with different
constants) should be a reasonable approximation to what is
observed. The inference to be drawn from these equations

is that the probability is small that the relative error

grows with increasing n.

4. Feller, W., An Introduction to Probability Theory and
Its Applications, Volume I, Wiley and Sons, New York,
p. 183, 1971.
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4. CENTRAL LIMIT CASE

There is at least one circumstanée in which the standard
deviation of the absolute value of the predicted response,
¥, can be easily calculated. This is the case of n becoming
large. Then, according to the central limit theorem,* the
distribution for the random variable R, Equation 5, will
become normal with mean u and standard deviation o. We can
now calculate the expected value of the absolute value of
the response,

' -u?/202 ( '
E{|R|} = |u| + v2/7 [ce =lulv2r e(=|ul/a)| > |u| (31

where
X -t2/2
d(x) = 1//27 dt e . (32)

Consequently, we have

3% = 0% + u? - [E{|R|}1?, (33)

and the relative error is

8 _ [o% 4 y?
E(|R|} VIE{(|R[}]12

- 1. (34)

This limit becomes particularly simple when all the
products have identical distributions so that Equations 8
and 9 hold. Then the relative error is

*
See ref. 4, Chapter 10.
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1/2
¥ _ |1- 2v2/m g£(8) - 2/ £2(&) (35)

EC(|R|} (Va/m £(8) + g)2

where, as, above,

& =vn |u /0 (36)
and
~£2/2
£(E) = e - gVar e (-5). (37)

The relative error, Equation 35, is a monotonically decreasing

function of £ with the limits,

A, VTT/Z - ll €<<ll
-9 = . (38)
EURIY (1/g, g1,

The interesting result that the relative error is confined to

a small interval,

n,
0 < —2 < 9.7555, (39)

T E{|R|}

1s consistent with Equations 29 and 30. This simple behavior
could well be a very good first approximation to many compli-

cated systems.

5. SQUARE OF THE RESPONSE

We end our discussion of the identified POEs by a brief
consideration of the square of the response as the primary
variable. The virtue of such an approach is that we would

20




then be dealing with an explicitly non-negative quantity and
do away with the hardship of takirng absolute values. 1In
terms of the products, Rj = T, Ej' the random variable under

J
consideration is

n
r2 (E R.)z. (40)
j=1

Let the various moments of Rj be

k
. = E{R.]}. 41
M5 (J) (41)
The expected value of R2 is then
2, _ _ .2 2

while the standard deviation is given by a somewhat more
complicated equation which can be found in Appendix B, Equation
B-18. Apart from the greater algebraic complexity, the main

disadvantage to the use of R2

is that up to the fourth moment
of the input Rj's is required and therefore, also for Tj and
Ej' Moments beyond the second are not usually measured or
estimated and would require more effort. If the Rj are
assumed to be normally distributed, then, of course, the
resulting equations are somewhat simpler. However, to the
extent that the moments can be considered input data, the

use of R2 could be quite fruitful. A full statistical

analysis, based on Rz, has not, as yet, been done.
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SECTION III

UNIDENTIFIED POEs

1. GENERAL REMARKS

The question of unidentified POEs is one that is very
difficult to quantify. We do not know the number unidentified
nor their distributions. Any measurement that bears on this
question does not concern only one but an aggregate of them,
The techniques required to extract information about the
unidentified POEs are not readily at hand. In fact, there
does not seem to be any rigorous mathematical methods available
at all for this problem. Consequently, we must resort to
various assumptions, approximations, estimates, and expecta-
tions. Which particular mixture is used is determined to a
large degree by the particular question posed concerning the
unidentified POEs. In the following subsections, we will
state the gquestion of interest and the assumptions used as

inputs.

The contribution of the unidentified POEs can be deter-

mined by rewriting Equation 2 as

n N
R- X T.E. = X T. E., (43)
j=1 7 3 j=n+1 J
or, in an obvious notation,
R - RT = rY. (44)

A combination of experiment and predicticn, then, can be
viewed as a determination of RU. The representative wvalue
of the random variable R is the measured wvalue, YM, which

22




has a certain error, cM. The representative value of RI is

just the predicted response we discussed in Section II, vy % o.

Consequently, the representative wvalue of RU, YU, is

YW=y o (v oa. (45)

In principle, if (1) all the POEs have been identified and
(2) the Tj and Ej and R have been accurately measured, then
_YU in Equation 45 is zero and the calculational errors, o,
in the prediction procedure of Y can be statistically cali-
brated by the measurements (ref. 2). In practice, if the
errors in (2) are large enough, unidentified POEs cannot be
ruled out, except at some level of importance. If Equation
45 is not zero, within errors, the fault can be with (1) or
(2), or both. Here we will concentrate on the fault with
(1)--the unidentified POEs. The idea is to extract or
"squeeze-out" information about YU using known information
in the measured and predicted responses.

There afe now a number of questions that can be addressed.
First, is it possible to estimate the relative sizes of YU
and, say Y? Second, if something is learned about YU from a
given experimental situation, is it possible to use that
information in a similar experiment in order to make a better
prediction by incorporating, somewhat, the effect of the
unidentified POEs? Third, is it possible to extract inform-
ation about the number and distribution of unidentified POEs
from knowing something about YU? These are the questions
that will concern us in the following subsections.

2. ESTIMATE OF RELATIVE IMPORTANCE OF UNIDENTIFIED POEs

If we define k = N - n, the contribution due to the
unidentified POEs, Equation 43, is
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. (46)

None of the quantities on the right side of this equation

are measured (individually) or calculated. However, we
would, as a first approximation, expect their distribution

to be similar to the identified POE contribution. In Section
II, the two possibilities discussed would imply (cf. Appen-
dix A)

s k ¥ E, _
E{[Re |} = ¢ Y (47)

where T (¥) = the maximum of Itgl (legl) for the unidentified
PCEs,
c' = a constant of order unity.

Although k, in any given situation, is some definite
number, we do not know it. We can parameterize this lack
of knowledge by introducing a probability distribution for
the number of unidentified POEs, assuming for simplicity
that the sampling realization of the k unidentified POEs is
independent and is from the same one population. Therefore,
let us define Py as the probability that exactly k POEs are
unidentified. Thus, the expected value of IR | is

E(|&7]} E{|Ry |}
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where we have incorporated the assumption of Equation 47 and
v we have identified the sums as average values of k and\/i.

We next ingquire about the magnitudes of T and . It would
be expected that all POEs with large transfer functions would
be identified. Therefore, we expect that the maximum of the
unidentified (%) should be smaller, or even considerably so,
than that of the identified (T),

=cT, € < 1. (49)

o,
On the other hand, the maximum excitations (E and E) should
be comparable, say

n
E=E (50)

Incorporating the estimates of ¥ and ¥ into Equation 48, we
. have (compare Equations 21 and 22)

k/n
E{|RV|} = " ¢ E{|X|}, (51)

e/
where c¢" = another constant.

The presence of unidentified POEs acts as a source of error
in the predicted response. According to Egquation 51, we
find that the effective relative error is

k/n
U
E{|R"|} _ Lu

E{|x]|} - E\/f/\/;.

(52)
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If we knew the distribution for k, we could calculate

the k averages that occur in Equation 52. For example,
consider the case that the probability of the unidentified
POEs can be characterized by a Poisson distribution with an
average rate A; i.e., the predictor has an average ignorance
of ignoring A POEs. There are then two simple limits we can
consider explicitly. The first consists of assuming that X
is small compared to one; i.e., almost all POEs have been

identified. Then we have

k = a,
_ (53)

v

1

A

Therefore, to the extent that A does remain small, the
effective error, Equation 52, decreases with n faster than
the relative error in the predicted response, as implied by

Equations 29 and 30.

As indicated above, the parameter, A, that occurs in the
assumed Poisson distribution is equal to the expected number
of unidentified POEs. If n is quite large, it is unreasonable
to assume X being small; it is very likely that some fraction
of POEs will remain unidentified. Consequently, the second
limit consists of the more reasonable assumption that A grows
with n. If we define p as the expected proportion identified,

n = pN, then an estimate of X is

A=gNvg/pn, gq=1-p. (54)

When A is large, the sums in Egquation 52 become

(55)

Eﬁ| ~1
?ﬁ




The effective relative error, Equation 52, is now modified to
read

g:-ﬁ_li]_} = c" I q/p (56)

ellx]} a/p

Consequently, for this more reasonable case of a fraction of
the POEs remaining unidentified, the unidentified POEs should
either become the dominate source of error for large n, or of
comparable size to the error in the predictive response, as
can be readily seen by comparing with Equations 29 and 30.

In making the error estimate of Equation 56, we have
assumed:

1. Similar distributions of transfer functions and

excitations for identified and unidentified POEs.
2. Distributions similar to those of Appendix A.

3. The Poisson distribution for the number of uniden-
tified POEs.

4. An expected proportion identified, p.

5. A measure of relative importance of an unidentified
to an identified POE, €.

3. TIMPROVEMENT IN PREDICTED RESPONSE

We will now start to make use of the assumed result that
a determination of the contribution of the unidentified POEs,
Equation 45, is available. How can we make use of this inform-
ation to improve the value of the predicted response in a
similar circumstance? To do this, again consider the series
of experiments, labeled by the set of integers {a} considered

in Section II, in which a given system is illuminated from
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various orientations but with the same excitation source
strength. For each of the experiments, we measure the
response at a given point, Yg % Gg' and we calculate the

predicted response there, Yo ¥ T4y Using these results, we

can calculate, by Equation 45, the value of the contribution
of the unidentified POE, yg x og, for each experiment.

These numbers, including errors (og); are sample values
assumed by the random variable RU. As such, the collection
of these numbers constitutes a sample distribution of the
random variable RU. The sample distribution has a sample
mean, 1, and sample standard deviation, G. (See Appendix B,
Equations B-1 and B-5, for formulas to calculate these
quantities.) The sample mean and sample standard deviation
are random variables which, themselves, have spread. If the
number of sample points is large, the sample parameters and
the corresponding population parameters are expected to be

in close accord. (For example, if RU is normally distributed,
the spreads can be explicitly calculated.) Given the fact
that the sample distribution is the only information we have
about RU, we can use the sample quantities, ﬁ and 3, to param-
eterize the distribution for the unidentified POEs, keeping
clearly in mind the caveat that sample guantities are not

population gquantities.

Having arrived at ﬁ and 8, we still cannot use these
quantities in a different, but similar, experiment. The main
obstacle to their use is the fact that their values depend
explicitly on the overall strength of the excitation source
of the experiments. A different experiment will employ a
different strength, but the method of normalization is not
immediately clear. One possibility is to note, within the
context of a linear theory, that the ratio of the contri-
bution due to the unidentified POEs and the identified POEs
is independent of the overall scale of excitation. We next
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have to decide on the standard predicted response to be

used in the ratio. Since the unidentified POEs are charac-
terized by 0o+ G, in this series of experiments, the corres-
ponding quantity for the predicted response should be used,
namely E{|X|} * VE{Y}, (cf. Equations 21, 22, and 25). We
can then define a measure of the relative importance of the
two contributions by

~

= u
E{|X]|}

i+

g (57)

JE{Y}'

I+

a quantity independent of the scale of excitation. Notice
that this, by its very nature, may be a reasonable approxi-
mation for the quantity e gq/p or ¢ /375 and thus may be used
to roughly calibrate the ignorance parameter A of Egquation 54.

We can now use p in an effort to improve the predicted
response in a similar experiment. What we mean by a similar
experiment is that the same personnel and equipment are
involved so that the ratio of unidentified to identified POEs
should remain about constant and the measuring and computing
capability should remain about constant. The idea is that
the experiment statistically calibrates the contribution due
to unidentified POEs. Removing the scale dependence, we
expect its statistically calibrated relative contribution to
lie near p. Consequently, we alter our predicted response by

Yt o —= (ytag) (L+nop), (38)

where

n = sign of ¥y (59)
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since p is normalized with a necessarily positive quantity.
This can be, at best, a rough first-order approximation to
the inclusion of the effects of the unidentified POEs.

Nevertheless it is clearly desirable to have some means of
incorporating the unidentified POEs into a predictive capa-
bility, particularly when applied to a threat EMP environment
where direct measurement is not feasible. A more compre-
hensive quantification of such, necessarily probabilistic in

nature, is imperatively needed and is yet to be obtained.

In arriving at the scaled alteration in the predicted
response, Equation 58, we have used the following approximations: -

1. The sample mean and standard deviation are equated
to population mean and standard deviation, respec-

tively.

2. The ratio of contributions is independent of the

strength of excitation.

3. The relevance of p to a similar experiment.

4. PARAMETERS OF THE UNIDENTIFIED POEs

It would be useful for the experimenter to estimate the
"average" number of unidentified POEs and their relative
importance. As indicated above, no rigorous method of
obtaining this information is readily at hand. However,
within the context of a number of assumptions, it is possible
to calculate numbers that should give indications of this
information. Above, we introduced a sample distribution of
the random variable RrY and noted that we could calculate a
sample mean and a sample standard deviation (equivalently,
the first and second moments). Of course, it is possible
to calculate any moment of the sample distribution. (Formulas
for the first four are contained in Appendix B, Equations B-1
through B-4.) When the number of sample points is large,

30




theée sample moments can be shown to be good approximations
to the corresponding population moments. With the theore-
tical objections clearly in mind, we will use the former to
represent the latter.

We now have to relate these moments to a simple model to
exhibit how the unidentified POEs contribute in the series
of experiments {a}. Since all the experiments have the same
strength of excitation but random orientations, the contri-
bution of a given unidentified POE should be random. The
idea is to use the experimental results to estimate and
calibrate the unknown distribution of the effect of the
unidentified POEs. As a simple example to illustrate the
ideas, consider a case that this distribution can be approx-
imated by a normal one with M, = mean, o = standard
deviation. We next assume that all unidentified POEs are
identically distributed. Consequently, we use two numbers
(uo, co) to parameterize the contribution of an unidentified
POE. If, as above, we further assume that the number of
unidentified POEs has a Poisson distribution characterized
by a parameter A, then a calibrated knowledge of the numbers
Hor Tgr and ) would tell us a great deal about the effects
of unidentified POEs in a similar experiment.

We can calculate, in this model, the various moments of
RY in terms of Hor Og7 and A. These formulas are contained
in Appendix B, Equations B-11] through B-14. Equating the
sample moments to the calculated ones, we solve for the three
parameters. For example, if Mg were to be zero, we could
solve
2} 2

E{ (RY)%} = o2 1, (60)

E{(RU)4} =

|
w
Q
—
>

+ A, (61)
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for 0 and A. If ug # 0, the first three moments determine _
the three parameters. Mathematical pitfalls notwithstanding, ‘ {
this program should yield numbers of sufficient validity to ;
be useful in the evaluation of EMP test data.

The approximations used in obtaining these estimates of

u_, Uo and A are as follows:
1. Sample moments are used for population moments.

2. All unidentified POEs are independent and are
sampled from an identical and normal distribution.

3. The number of unidentified POEs has a Poisson ) . -

distribution.
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APPENDIX A

We here consider four examples of the calculation of vy
and o0, two with correlation (1 and 2) and two with randomness
(3 and 4). Notice that the index j is defined slightly
different from that in the main text for Examples 1 and 2.

Example l1: Let j = -L,..., L - 1, n = 2L, and we have
for the transfer functions,

((L/z-j), 0<j<L-1,
tj = 2/L T (A-1) .
l(L/2+j)r ‘Li]f__or
while, for the excitations, (o > 0)
((L/2+a-j)l aijiL-ll
ej = 2/L E < (L/2 - a + 3), ~L +a < 3j<a (A-2)

(-3L/2 + o - j), ~L < 3J < -L + qa.

Figure A-1 shows a graphical presentation of these behaviors.
Here the maximum (in absolute value) transfer function occurs
for j = 0 and -L while the maximum (in absolute value) exci-
tation occurs for j = o, =L + a. The experiments are labeled
by a. The calculation of the respective Yq and Oy involve
appropriate sums, which can be done. However, if L is large,
the sums can be accurately approximated by integrals with

a new parameter vy,

y 2/L a. (A-3)
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FIGURE A-1. VARIATION OF tj AND e; FOR EXAMPLE 1.
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We then find (y > 0),

TEL/3L (L-y) (2+2y -v2), (A-4)

<
0

2 52

o? = a2 72 g2 1/30 L (12 - l0y?

2 - )21, (A-5)

where A is defined in Equation 12. The quantities of interest
used in Section II are

E{|X|} = 5/24 nE T, (A-6)
o|§1 = n? 2 72 [2/45 - (5/24)%], (A=7)
E{¥} = A% 1/9 n EZ T2, (A-8)

Finally, for a number c somewhat larger than 1, ¢ > 1, we

‘ find the probability statement
pIVY/|x| > ca//n) = 2/(/30) + 0(1/c3) . (A-9)
Example 2: Let j = -L,..., L - 1, n = 2L, and now we
have
tj =T cos 2m (j=-a)/L; (A-10)
e. = E L/27 1/3j sin 27 j/L. (A-11)

For L large, we find the leading behavior to be
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Yo = ETVL/4 cos 27 o/L, : (A~-12)
o2 = 2% g2 1% /4. (A-13)
We now have
E{|x|} = /47 n E T, (A-14)
Ulil = n® E® 7% [1/128 - (1/4m7?], (A-15)
E{Y} = A% 1/8 n o T2, (A-16)

while the probability condition becomes

pIVE/|x| > cap/n] = VB/(nc) + o(l/cd). (A-17)

Example 3: Assume that the possible values of the indivi-

dual products tj ej are

TE (,, 1/2, 0, -1/2, -1), (A-18)

all with equal probability. Also assume that different
individual terms are independently distributed. The possible

values for Y, are

Yo = {n, n -11/2, ... -n} T E (a-19)

with a distribution that depends on n. The calculation of

E{|X]} for a large n is, in general, very involved. However,

explicit calculations for n = 4, 5, and 6 show that
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E{[X|} = 17/30 T E V/n (A-20)

*
where the factor 17/30 is just a reasonable approximation

while

°Iil =n T E? [1/2 - (17/30)%], (A=-21)

22 12 g% 1/2 n. (Aa=-22)

E{Y}

A rough estimate of the probability statement, again based on
explicit calculations, is

PIVY/|X| > cal = .6/c. (A-23)
The calculations here are tedious. However, we get a similar

conclusion from another example of this class for which

explicit results can be obtained. If we were to replace
Equation A-18 with

T E {1, -1}, (A-24)

it is straightforward to show, for large n, that

PIVY/|xX] > cA] = V2/7 1/e. (A-25)
Example 4: If we assume that the possible values of the

individual products tj ej are not symmetric with respect to
zero, but, for example, are

TE {3/2, 1, 1/2, 0, -1/2}, (A-26)

*
' The central limit theorem shows that the correct factor
is 1/4/m.
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. *
then E{|X|} grows with n. For the case above, we find , for ‘

large n, that

E{|X|} = 1/2 T E n, (a-27)
and
2 .2
=1/2n T -28
lei / n E ’ (A2 )
E{y} = 2% 7% E® 3/4 n. (A-29) _

The probability estimate for J§7|X| is extremely difficult

to get in this case. However, we expect very small probabil-

ities for large values of this random variable. We can get

an idea of the behavior by briefly considering another example
of this class (random but with a bias). Let Equation A-26 be

replaced by ’ .

TE {-1, 3}. (a-30)

It is then possible to prove (ref. 5), for large n and moderate
c, ¢ > 1, that

{VI/|x| > V5oA/m (1 + 8/5 cA/mI| = 1 - 8(c)

(A-31)
2

= 1//21 1/c e~ € /2,

- )
The central limit theorem shows that the approach to Equation
A-27 to be E{|x|} = TE {1/2 n + /4/n7 e-n/3},

5. Handbook of Mathematical Functions, edited by Abramowitz,
M. and Stegun, I.A., Dover, 1972, p. 945, Equation 26.5.21.
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We expect a similar behavior for the above sample, i.e., the

probability rapidly goes to zero for wvalues larger than some

c//zi




APPENDIX B

A sample distribution of the random variable RU is given
by the set of numbers (yg * oaU). We incorporate the errors

by assuming that the individual points are spread out according

to a normal distribution with mean yg and standard deviation
cg. If we have N points and they have been independently

sampled, the first few sample moments of the sample distri-
bution are (we here delete the superscript U)

E{R} = 1/N § o (B-1) .
E(R%} = l/N§ (Y§ + c§> (B-2)
E{(R’} = 1/N X Y, (yi + 3 oi) (B-3)
" .
E{r*} = 1/N E (yi +6 Y2 a2+ 3 ci), (B-4)

where carot = sample guantities.

We notice that the inclusion of the errors leads to a

wider distribution then if the errors were not present, i.e.,
the distribution of the true values YU themselves. The
standard deviation of the sample, 8, is given by

5% = £{r%} - [E{R}]Z. (B-5)

The model for the calculation of RU is to randomly select
k numbers from a normally distributed (uo = mean, co = standard
deviation) random variable and to assume that the number selected,

k, is distributed according to a Poisson distribution (po=e_A).
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‘ That is, we take

L
Y = k§l R (B~6)
in which
Rﬁ e N (Hyr Gg)
L e Poisson (1). _(B-?)

The calculation of the moments of such a random variable is

then
E{R} = u. 2 k p., (B-8)
o k=1 k
‘ 2 2 - 2 o .2
E{R°} = 0° X kp,+ us T k° p.s (B-9)
o) k=1 k (o} k=1 k
3 3 <« .3 2 o .2
E{R°} = u> Y k” p, + 3u_ 02 X k% p,., (B-10)
o k=1 k o 0 k=1 k
4 4 & .4 22 « .3 4 « .2
E{R'} = u k® p, + 6uZo k® p, + 30, ¥ k° p,_. (B-11)
o k=1 k o o] k=1 k o k=1 k

Finally, making use of the moments of the Poisson
distribution,

-A A

T klp. o =e " azan® (" - 1n. (B~12)

k=1
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we have, ,

E{R} = Llol: (B-13)
2, _ 2.2, (. )
E{R®} = uix +x(uo+c ), (B~14)
E{RI} = u3A (A243A+1)+6p 02 (A+1), (B~15)

(o] Q O
e(r%} = ugk(A3+6A2+7A+l)+6ugcgk(x2+3x+l)+30gk(k+1). (B~16)

For the random variable Rz, Equation 40, we have its mean
and standard deviation as (all sums run from 1 to n)

E{R?}

2 2
‘? (“21 - “11) + (‘E“li) ' (B-17)

2 - girY - [E{(R®}]° (B-18)

Q
il

4 2 2

=‘§ (“41 = 6upy o duggugy * Ll2ugsug, 3“21)

3
+ (21“11) ? (4“33' - Louggugy ¥ 8“13‘)

+ (Zuli)z ‘:'" (4“2j - 4“]2.j>

i

+

(31s) 2 (215 - %)

-, 2(§u21>2
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where the individual moments are defined in Equation 41. If

the individual Rj are normally distributed (uj,oj), the above
equations simplify to

E{R’} = Zo? + (z_pi)z, (B-19)
1 1
o2 = 4 (2.“5.)2 Zof + 2 (Zci)z. - (B~20)
i j i
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