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Abstract

The problem of electromagnetic transmission through a slab, where
transmitting and receiving antennas are at finite distances from the slab,
is considered. The mathematical formulation of the problem is quite gen-
eral. A detailed solution is presented for the case of a highly conducting
sTab exposed to sinusoidal and transient excitations. A discussion is
given of the conditions under which measurements with source and receiver
at finite distances are equivalent to the same measurements with plane wave

excitation.
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1. Introduction

One of the simplest conceivable ways for determing the electro-
magnetic properties of materials is to measure the electromagnetic field
transmitted through a slab of the material under test. The corresponding
mathematical model consists of an infinite stab with transmitting and re-
ceiving antennas placed on opposite sides of the slab. The model provides
a reasonably good approximation to the real situation of a slab of finite
extent when the distance between transmitting and receiving points is small
compared to the transverse slab dimensions.

Measurements can be made in the sinusoidal or the transient regime.
For instance, MIL standards for evaluating the shielding effectiveness of
materials [1] require that transmission measurements be made in the steady
state atprescribed frequencies and then in a pulsed regime using wire and
loop antennas placed at prescribed distances from the slab of shielding
material. Although these standards are useful for reiative comparisons,

a fundamental question remains unanswered: does the measurement depend
only on the electromagnetic properties of the slab (and on its thickness),
or does it depend also on antenna type and orientation, antenna distance,
and (for transient measurements) on transmitted waveform?

A crude but simple method for studying (or, at least, having an
estimate of) the field coupled to the inside of an enclosure is to consider
the transmission through a slab. The slab may be perforated, or inhomo-
geneous, or described by stochastic parameters, the last case being rele-

" vant to near-millimeter propagation through aerosols used for camoufTage

tactics. In electromagnetic pulse (EMP) experiments it is customary to




simulate the EMP plane wave signal by using rather sophisticated antennas
and guiding devices [2,3]. An attractive alternative to this approach can
result from an understanding and exploration of the role played by Tocalized
sources at finite distances from the test object.

The objectives of this paper are to reconsider the problem of steady-
state and transient coupling through a slab with transmitting and receiving
antennas located at finite distances from the slab; to cast the problem in
an elegant form; and to show that, at least in the case of a highly conduc-
tive slab, simply analytical solutions to the problem can be obtained. An
important result of the paper is the determination of antenna positions and
(in the transient regime) of incident waveforms that will yield a trans-
mitted field practically the same as that produced by plane wave excitation.

Transmission through highly conductive slabs is certainly not a new
problem. For plane wave steady-state excitation, transmission line tech-
niques can easily be applied [4]. For pulsed plane wave excitations, the
solution is also available [5]. The situation is much less satisfactory
for the case we want to study. It is not the aim of this paper to provide
a full bibliography on this subject (for a more complete bibliography,
see [6]). We note only that the first attempt to solve this problem was
made in 1936 [7] by accommodating the classical results of Maxwell on eddy
currents and thin shields to the case of two coaxial Toops separated by a
plane conducting sheet. Early studies on antenna coupling through plane
shields were based on low-frequency [8.9] or quasi-static [10] approxima-
tions, were mainly relative to loop excitation [8-10], and required numerical
computation [8-12] of integral expressions for the transmitted field.

Although the validity of the simple transmission line theory [4] for antennas



at finite distance from the shield, or shields of finite extent has been

questioned [13], it appears that all expressions derived in the referenced
Titerature resemble these Shelkunoff formulas [14].

Due to the symmetry of the problem, it can easily be surmised that
plane wave expansion techniques provide a powerful tool of analysis for an
arbitrary type of excitation of an infinite slab. These techniques have
been recently applied [14,15] to the case of electric or magnetic dipole
excitation in parallel or coaxial configuration, by computing the trans-
mitted field through the use of fast Fourier numerical programs. In this
paper we shall use the same approach. However, we will show that, although
the Fourier transformation of the fields is a logical intermediate step of
the analysis, it is not needed in the final formulation of the solution.
Indeed, the solution can be conveniently expressed in terms of a convolu-

tion integral, wherein the presence of the slab is described by an appro-

priate transfer function. Then, at least for antennas in coaxial configur-
ation, the convolution integral can be analytically evaluated both in
steady-state and transient regimes and no numerical work is necessary.
Inspection of the solution allows us to answer the original question about
the influence of the finite antenna separation on measuremenfs. After all
the mathematical machinery has been worked out and simply, physically sound,
understandable results are obtained, a discussion of the final results is

presented in Section 6.

2. Circuit-Like Analysis of Electromagnetic Transmission through a Siab

With reference to Fig. 1, let us consider an infinite slab of thick-

ness s and characterized, in frequency domain, by permittivity € = €oEps
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Figure 1. Geometry of the problem.



permeability p = HoHps and conductivity o. We want to compute the

field EF,ﬁF transmitted at any abscissa z>s when the incident field

Ej,ﬂj, i.e., the field produced by the sources when the slab is removed,

is known at z = 0. For this purpose, it is convenient to expand the in-

cident field in a plane wave set, since the interaction of individual

plane wave components with the slab can be conveniently taken into account.
Accordingly, let Hl(x,y,o), Ei(x,y,O) be the z-components of the

field incident on the slab surface, with an assumed time dependence

exp(jwt). The corresponding spectral components h;(u,v), e;(u,v) are

given, at z = 0, by

+oo +c0
h;(u,V) = 5 f dx f dy H;(x,y,O) exp(Jux+ jvy) (2.1)
(2m) 2 e
+co +oo ‘
e;(u,V) = ( 1)2 J dx J dy E;(x,y,o) exp(Jux+ jvy) (2.2)
2m

-0

At z=s, i.e., at the output ¢f the slab, the spectral components hg(u,v),

ez(u,v) will be linearly related to the incident components (2.1-2) in

the case of a slab made of a linear material. Hence:

hE(uv) =ty (u,v) bl (u,v) (2.3)
e;(u,v) = tE(u,v) e;(u,v) (2.4)

The transfer coefficients tH,tE can be easily computed for a homogeneous
isotropic slab by noting that the transverse spectral components Qt(u,v),

gt(u,v) are related to the longitudinal ones hz(u,v), e_{u,v) via the

z
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following relations:

we ek X z+wh, zZXixz

h, = (2.5)
t 2,2

A A A
-wp hk X z+we, zXKXzZ

&t (2.6)
t A

~

wherein k = ux + vy + wz and is the propagation vector referred to a
Cartesian system of unit vectors X,y,z, and upper (lower) signs refer to
waves propagating in the positive (negative) direction of the z-axis.

Eqs. (2-5,6) represent the total spectral field as a superposition of TE

(eZ = 0) and T™™ (hZ = 0) parts. And, the medium being identical at both
sides of the slab, it is then evident that tH coincides with the usual
slab transmission coefficient for TE plane wave incidence and, similarly,

tE is the same as the slab transmission coefficient for TM plane wave in-

cidence. Letting

w =VZ - (D) Y O T .- W+ V2 (2.7

s ro Jueg
W Jjwe W
S o} S
Yy = > Yp < W (2.8)
H W E ot Jue g, W
we have:
exp(-jw_s)
t(u,v) = — s (2.9)
2 }_-12 .
()™ 1= ()" exp(-23ws)

wherein vy may be taken equal to Yy OF Y in order to obtain tH or tE,

respectively, and « = w/souo.




The spectral components hz,eZ at any z > s are equal to the corre-
sponding values (2.3-4) at z = s times the plane wave transfer function
exp[-jw(z-s)]. Accordingly, any z-components Fi(x,y,z) of the field trans~
mitted at any arbitrary abscissa z > s will be expressed in terms of the

double Fourier integral

+o o _
Fg(x,y,z)= J du f dv f;(u,v) t(u,v) exp[-jw(z-s)]

+ exp(-jux - jvy) (2.10)

wherein f; may be taken equal to hi or el and, correspondingly, the values
of tH or tE should be used.

On the other hand, the spectral representation of the z-components
of the incident field (the slab is now removed) at any abscissa z is ob-
viously the following:

o 4o
F;(x,y,z) = J du J dv f;(u,v) exp(-jwz)

00 =00

- exp(-jux - jvy) (2.11)

Comparison of (2.10-11) shows that the transmitted field can be computed
as the double convolution of the incident field and the double Fourier

transform of t(u,v) exp(jws), hence:

+oo +
t .[ t ] t 1 ] ]
F (x:y,2) = PRY: i dx Jo dy' F(x'sy'sz) T(x-x',y-y') (2.12)
+co +eo
T(X,y) = [ du f dv t(u,v) exp(jws)} exp(-jux - jvy) (2.13)




In the words of system theory, Ft is identified with the output of
a linear system described by the unit response function (2.13) and excited
by the input Fi.

We further note that relations similar to (2.12) exist between the
transmitted and incident transverse components of the field, as easily

follows from (2.5-6). It is only necessary to decompose the incident field

in its TE and TM parts and then apply superposition.

3. The Azimuthally Symmetric Case

A case of particular interest is obtained when the incident field is
not depending on x and y separately but rather upon the transverse coordinate

0 =\/x2+y2. For instance, if the source is taken equal to an elementary

electric or magnetic dipole parallel to the z-axis at P(0,0,-d), then

Fo(x.y,2z) = Fi(p,2) = - 49 [®A + vveAl -2 =
K

-3 p2a 2
K

[V

|
s

)
T35 0 B (3.1)

N

K

wherein

c exp(-jrv o’+ (d+2)°)

oz+ (d+z)?

Alp,2)

and is an electric or magnetic vector potential, the source intensity being
proportional to the constant C.

The integrals (2.12-13) can now be simplified by using the change of

coordinates:



X=pcos ¢; y=psing; u=gcosv; v=¢gsiny

Accordingly,
Tﬁd)=ﬂm=fid£ﬂ@ewﬁ/g£29
0
2m
. J expl-jp £ cos(y-¢)] dy
0

on [ € 2 9(08) t(8) exp(s e )
0

and the field transmitted on the axis is given by

F2(0,0,2) = | o do Fl(p,d+z) T(p)

(3.3)

(3.5)

£ 4z exp(d =67 5) £() [ o do Fio,0+2)d (50)
0

wherein the order of integration has been reversed. Upon substitution of

(3.1) in (3.5) the inner integral can be evaluated by repeated integration

by parts as follows:

J o dp F' (p,d2) Jo(eg) =
0

i 2 7 o exp(-ji /oo (d+2)% )

"2 b .
<0 o (an)?

R Sk - g2 (d+2)]
2
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the last expression stemming out from a known Fourier-Bessel transform
[16]1. Note that Jk®-£% = -3 Je-® for £2 > «® and that we have implicitly
assumed in this section « # 0.

The formal expression for the z-component of the field transmitted

through the slab is now the following:

t
FZ(O’O :Z)

WK f (1-u?) t(u) exp(-jciu) du (3.7)
T

wherein £ = d-s+2z, the integration path T is depicted in Fig. 2, and the

2 2 2

substitution «*= - & = K2u has been used.

4. The Case of an Electric Plane Shield. Steady-State Excitation.

A case particularly interesting for applications is obtained when

B, =1, 0 > WE B s i.e., when a highly conducting nonmagnetic slab is used

r
as a shielding screen. As already noted in Section 1, this is an important
configuration in shielding theory and practice. The solution to this
problem is available in numerical form [14,15] for prescribed sinusoidal
time variation and arbitrary spatial dependence for the fields; and in
analytical form [5] for prescribed plane wave excitation and arbitrary time
variation.

The case of a magnetic dipole excitation is considered first. The

expression for t{u) pertinent to this case is the following:

11
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Figure 2. Integration path in the complex u-plane.
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4u Va?+u2 exp(-j Va2+u2 ks )

t,(u) = (4.1)
H 2
(u+Voa2+u2) J2, 2
1- [l_l__oa__j‘_t_l__:,Z exp(-2j 0L2+u2 KS)
u+ a2+u
2. o+ jweo(er-l) o (4.2)
jweo B Jmeo *

It is noted that tH(u) exhibits no singularity in the lower right quadrant

of the complex u-plane, so that the integration path I' can be freely deformed

therein, e.g., in the new path I'' (see Fig. 2). When expression (4.1) is
substituted in (3.7), it is noted that we can neglect u2 with respect to az
provided the integrand is negligible when u > |a|. Accordingly, when

«e|a| >> 1 the integral (3.7), specified to the case at hand, becomes

15(0,0,0) = -juck & —exp(dars) o)
“ q- exp(-2joxs)

J v(-jv2+ 3v+ 2j) exp(-kav) dv (4.3)
0

and the origin of coordinates is now & = 0. The integral is now straight-
forward to evaluate and can be conyeniently normalized to the value of the

incident field H;(0,0,z). We have

3 3
t P R N
000 4 exp(ogas) I (3e)?
1 o .
£ - - )
H,(0,0,2) T - exp(-2jaxs) 1+ 5
= to(&,KS) QH(KQ) ' (4.4)

It is noted that the first bracketed term to(a,Ks) is just the plane
wave transmission coefficient under normal incidence and appropriate to a

highly conducting screen. The second term 9(k&) depends on the mutual

13




distance £ between transmitting and receiving points and approaches 1 when
k% >> 1. Accordingly, it follows that simple plane wave transmission coef-
ficient can be used for evaluating shielding effectiveness provided that
transmitting and receiving antennas are a few wavelengths apart.

On the other hand, when X% is small QH(Kz) = 3/jx%, and

t
HE(0,0,2)

Z exp{-joxs - jm/4) 38
H,(0,0,4)

[1-exp(-2joxs)]vVZ 2

= KT tO(OI.,KS)= (4'5)
wherein & is the skin depth of the screen. Note that Eq. (4.5) is valid
provided that 6/2 << 1, otherwise the assumption k|a|2 >> 1 is no Tonger met.

The case of an electric dipole excitation can be treated similarly.

We have

802y Vo2 exp(-j'Ja+u2 KS)
(au+ u +VoZsu2)? 1 - ((’LZU"'“"‘/O‘Z*'u2 )2 exp(-Zj\/a2+u§ KS)
<§u+u+VaAu2

te(u) =

(4.6)

We can now neglect u2 with respect to uz without serious limitation in the

validity of the results. The integral corresponding to (4.3) is the follow-

ing:
[ee]

EF(0,0,2) = uk t(ayks) - [M
1 u

du +
[ee)

‘3 J (1 - 5u) exp(-cav) dv | (4.7)
0

which can be easily evaluated to yield

14




52(0,0,2)
= t (a,ks) QE(KR)

E;(O,O,Q) °
(4.8)
ar G+ (32)2 exp(3k2)[Ci (k) - 3si (k2) ]
1+ ——
Jx&

wherein the cosinus integral Ci(x) and sinus integral si(x) functions [17]
do appear.

It is again noted that QE(KQ) + 1 when & >> 1, as easily follows
upon use of the asymptotic series expansions [17] of the functions Ci(x)
and si(x), so that expression (4.8) reduces again to the plane wave trans-
mission coefficient to(a,Ks) provided that transmitting and receiving
antennas are a few wavelengths apart. On the contrary, when x%& is small,

a proper series expansion [17] shows that QE(KQ) = jk&/2 and

t
E-(0,0,2) .
f ~ ng t(a.ks) =
E_(0,0,2)
z
-+ exp(-joxs + jn/4) 2 8
U e exp(-2joks) (k) (4.9)

V248

5. The Case of an Electric Plane Shield. Transient Excitation.

We have shown under Section 4 that the steady-state z-components of
the field transmitted through a highly conductive plane shield are given

by .
Fz(o,o,z) = F1(0,0,8) t (a,xs) (ck) (5.1)

It is then evident that the z-components of the transient transmitted

field can be obtained by time-convelving the transient z-components of

15



the fncident field with the inverse Fourier transforms of to(w) and Q(w),

say To(t) and Q(t). Use of Laplace inversion tables [18] shows that

— O 2
T exp{-n"n/t 2
To(t) = 2 7 ]Zn 57z (i)

o

°° 2
vl ® ¥ t1?znt =4 [L ], FS (5.2)
1 ' 1

T &tn dt

where T = VE;78' and is the relaxation time of the material of the shield,
n = sz/czr and is the diffﬁsion time through the shield thickness.

A qualitative behavior of the first termn=1 of To(t) is given in
Fig. 3, wherein Smax = 4 /t/27en = SO(Zn) and is the maximum value of the

function So(t) (see also Fig. 4. e" is the Neper's constant.)

In Smax
The behavior of successive terms of the serjes (5.2) is similar to
that depicted in Fig. 3. The maxima occur at later times and their abso-
Tute values are smaller by the factor exp[—2.6(n2-1)}/n3. Accordingly,
they can be safely neglected and we can take the only first term of the
series (5.2).
After some algebra, Laplace inversion [19] of the two functions

Q(w) Teads to

ay(t) = 5(t) + 3=eCUT) iy (5.3)

2p(t) = 6(t) - & exp(-t/T) U(t) +

t/T
3 expl-u
+3 S (5.4)
0 T




To )4

s  153[__
B Smax = 4y 27:617

Figure 3. Qualitative behavior of the first series term of the function
To(t).
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where §(t) and U(t) are the Dirac and the unit step function, respec-
tively, T=2/c and is the free-space transit time from the transmitting
to the receiving antenna.

Convolution of (5.2) with the &§(t) terms of (5.3,4) just reproduce
the function To(t). Convolution with the other terms may become signi-
ficant only after a time of order T. Accordingly, if the incident field
has a time duration small compared with T, i.e., its spatial length is
small compared with the in-between antennas distance £, then the time
dependence of the transmitted field is simply given by the time convolu-
tion of the incident signal and the function To(t).v This transmitted
field is the same that would be obtained for the case of plane wave ex-
citation. Accordingly, the result is ob%ained that the finite distance
between antennas plays no significant role if the incident waveform is
sufficiently short in time. For instance, if the incident signal is a

pulse of unit amplitude and time duration T', then

exp (- )
FY0,0,0,t*) = 4ﬁ = t*<T'  (5.5)
2 T

= [ exp(- Lp)  exp(- ——ﬂ—ri
F:(O,O,z,t*) = 4/1 —t* . t*-T , te > T (5.6)
T\ A T

where t* = t - (2/c) and is the retarded time. A qualitative sketch of
(5.5,6) is given in Fig. 4 for T' > 2n. When T' << 2n, then the trans-
mitted field is just given by (5.2) times T'.

18
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Figure 4. Qualitative behavior of a pulsed field of time duration T'
after transmission through a highly conductive slab.
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6. Conclusions. Practical Considerations.

We have considered the problem of transmission of steady-state and
transient electromagnetic waves through a slab. An analytical solution has
been obtained for the case of a linear, homogeneous, isotropic, highly con-
ducting infinite slab excited by collinear electric or magnetic dipoles.

The transmitted z-components of the field are expressed as the product
(steady-state case) or the convolution (transient case) of the corresponding
incident field components and a two-term factor. In the frequency domain
the first term of this factor, see (5.1), is exactly the transmission co-
efficient of a plane wave normally incident on the slab. The secondlterm
takes into account the finite distance between the transmitting and receiving
antennas and becomes significant only when this diétancé is of the ordér of,
or smaller than, the free-space wavelength (steady-state'case) or the spatial
length of the incident pulse (transient case). It is therefore possible to
obtain plane wave excitation results even when sources (and receivers) are
Tocated at finite distances. For this, all that is needed is the proper
choice of distance between antennas.

It is certainly true that these results have been obtained under the
coﬁditions that the transmitting antenna is a dipole oriented normal to the
slabjthat the transmitted field is computed along the axial direction of the
dipole; and that only the z-components of the field are used in the compari-
son. However, we believe that our analysis has a more general validity.

For instance, results of the collinear configuration can easily be extended

to transmitted field points off the axis. We should only substitute

20




Jy (€ 0%+ 0'%- 200" cos o' ) (6.1)

for Jo(sp) in Eq. (2.12). Then expansion [20] of the Bessel function

(6.1) and integration in ¢' gives

Fi(p,n) = chJ (1-0?) t(v) 3 (co1-u?) exp(-geru) du  (6.2)
T

which is the generalization of (3.7) to the case p # 0. Then

BFE(p,l)/ap =0 for o = 0, which implies that results of our analysis are

certainly valid also in the neighbors of the axis. Furthermore, use

of Maxwell's equations, with (6.2) as longitudinal fields, shows that the
same is true for transverse fields,

Should further study show that the above considerations can be ex-
tended to more complicated geometries, all simulation studies for shielding
purposes might be worth rgggngjdering. . 7

Some few practical notes are now in order. Reference is made to a

copper slab (o = 5.8)(107 siemens/m) of thickness s = 1 mm, so that

T=1.52x% 10']gsec and n = 70 psec. Only the plane wave transmission
coefficient will be considered. For incident pulses of unit amplitude and
time duration T' << n, the peak of transmitted field is equal to

6.9><10'8T'/n, therefore linearly decreasing with the bandwidth ~ 1/T' of

the signal. In the sinusoidal excitation case, the atténuation due to the

mismatch, 4|al, equa]smthat due to the damping inside the slab material,
exp(-|alks/v2), at the frequency f = 0.72 MHz. At this frequency,

the transmitted field is equal to 11 x 10']2 times the incident one. At

higher frequencies, the signal is decreasing exponentially with the

square-root of the frequency.
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For moderate antenna spacings, it is noted that the transmitted
field can be computed using the plane-wave transmission coefficient only
when the attenuation is Qery high. However, this may not be the case if
even small apertures exist in the screen. Accordingly, we believe it is
worthwhile to extend the analysis presented in this paper to other
canonical problems, which are amenable to the same analytical approach.
‘Among those, we list the problem of an infinite conductive screen with a
single hole; and that of a conductive screen with a regular lattice of
equal small apertures. The former problem can take advantage of the
solution of a plane wave diffraction by apertures in conducting screens
[21-23] and, eventually, of symmetrization procedures [24]. The latter
could make use of artifical dielectric theory [25] properly accommodated

to this single sheet problem.
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